1
|
He R, Sun J, Yuan Y, Bai X, Lin Q, Zhang Y, Dai K, Xu Z. Electrochemical enhancement of the accumulation of photosensitive components in anoxygenic phototrophic bacteria extracellular: A new insight into the preparation of degradable microbial photosensitizer for water treatment. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137403. [PMID: 39889609 DOI: 10.1016/j.jhazmat.2025.137403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/05/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Extracellular polymeric substances (EPS) are promising biomaterials for environmental remediation, but their application is hindered by low production efficiency and limited pollutant degradation capacity. In this study, photosynthetic electron extraction enabled Rhodopseudomonas palustris (R. palustris) to efficiently produce EPS enriched with functionalized components. The enhanced EPS (0.2V-EPS), produced from electrically domesticated R. palustris, achieved an 82 % degradation rate of sulfamethoxazole (SMX) within 10 hours, an 18 % improvement compared to EPS produced under open-circuit conditions (OP-EPS). Mechanistic analysis revealed that photosynthetic electron extraction enriched EPS with photosensitive molecules, including tryptophan, humic acid, fulvic acid, which significantly promoted the generation of reactive species. The primary reactive species identified were triplet-excited EPS (³EPS*), ¹O₂, and •OH, with ¹O₂ as the dominant contributor to SMX degradation. The steady-state concentration of ³EPS*, ¹O₂, and •OH increased by 73 %, 34 % and 16 %, respectively, compared to the control. Structural modifications of 0.2V-EPS, including increased hydrophilicity, electronegativity, and aromaticity, enhance its physicochemical properties, thereby facilitating interactions with pollutants. Furthermore, an 88 % reduction in biofilm polysaccharides diminished free radical scavenging activity, promoting the generation of reactive species. This study provides a sustainable strategy for enhancing EPS functionality and offers insights into the metabolic regulation of microorganisms for pollutant degradation.
Collapse
Affiliation(s)
- Ronghui He
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou 510655, China
| | - Jian Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyan Bai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Qintie Lin
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaping Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Kang Dai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenbo Xu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Ghosh S, Bal T. Neem gum and its derivatives as potential polymeric scaffold for diverse applications: a review. Int J Biol Macromol 2025; 310:143012. [PMID: 40216102 DOI: 10.1016/j.ijbiomac.2025.143012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Naturally occurring polymers, particularly polysaccharides, are gaining significant attention for their eco-friendly, non-toxic nature and abundant availability. Neem Gum (NEG), a natural exudate from the neem tree (Azadirachta indica), is secreted as a defense mechanism to protect against microbial invasion and physical damage. Unlike common polysaccharides, NEG exhibits a distinct composition rich in bioactive constituents, including heteropolysaccharides and secondary metabolites, contributing to its diverse functional and therapeutic potential. These unique characteristics make NEG a promising biopolymer for applications in pharmaceuticals, food, cosmetics, and environmental industries, where it serves as a binding, emulsifying, gelling, and stabilizing agent. Recent advancements have focused on developing NEG composites and derivatives with enhanced properties and broader applications. Structural modifications like grafting and carboxymethylation have improved its utility in drug delivery, wound healing, and biodegradable materials. Modified NEG derivatives exhibit superior antimicrobial, anti-inflammatory, and antioxidant effects, expanding their biomedical potential in tissue engineering and controlled drug release. NEG-based hydrogels and films show promise in eco-friendly packaging and self-healing biomaterials. This review compiles NEG's diverse applications, highlighting its role in sustainable technologies and emerging fields like self-healing materials and smart polymers. It addresses challenges in scaling production, regulatory compliance, and technical constraints.
Collapse
Affiliation(s)
- Soumyadip Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology-Mesra, Ranchi, Jharkhand-835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology-Mesra, Ranchi, Jharkhand-835215, India.
| |
Collapse
|
3
|
Cheong KL, Chen W, Wang M, Zhong S, Veeraperumal S. Therapeutic Prospects of Undaria pinnatifida Polysaccharides: Extraction, Purification, and Functional Activity. Mar Drugs 2025; 23:163. [PMID: 40278284 DOI: 10.3390/md23040163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Undaria pinnatifida, an edible brown seaweed that is widely consumed in East Asia, has gained increasing recognition for its health benefits. Among its bioactive compounds, polysaccharides have attracted significant attention due to their diverse biological activity. This review provides a comprehensive overview of recent advancements in the extraction, purification, structural characterization, and bioactivity of U. pinnatifida polysaccharides. We discuss state-of-the-art extraction techniques, including ultrasound-assisted, microwave-assisted, and enzyme-assisted extraction, as well as purification strategies such as membrane separation and chromatographic methods. Furthermore, we highlight their potential biological activity, including antioxidant, immunomodulatory, anticancer, gut health-promoting, and anti-hyperglycemic effects, along with their underlying mechanisms of action. By summarizing the latest research, this review aims to provide valuable insights into the development and application of U. pinnatifida polysaccharides in functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wenjie Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Min Wang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| |
Collapse
|
4
|
Zhang Y, Yang J, Ling Y, Liu Y, Chen K, Shen Y, Zhou Y, Luo B. Dynamic high-pressure microfluidization for the extraction and processing of polysaccharides: a focus on some foods and by-products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3170-3183. [PMID: 39838747 DOI: 10.1002/jsfa.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/31/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
Dynamic high-pressure microfluidization (DHPM) is an emerging treatment technology and has been widely used for the recovery of natural polysaccharides. The aim of the present contribution is to discuss the DHPM-assisted extraction and processing of polysaccharides from some foods and by-products by reviewing the instrument and working principle, procedures, key parameters, and effects of DHPM on the structures, food properties, and bioactivities of resulting polysaccharides. It was found that a DHPM instrument with Z-type chamber is preferable for extracting polysaccharides, and a DHPM with Y-type chamber is applicable for processing polysaccharides. The solid-to-liquid ratio (or concentration), pressure, and number of passes are the key parameters influencing the outcome of DHPM extraction and processing. The DHPM under suitable conditions is conducive to boosting the extraction yields of polysaccharides, enriching the carbohydrates and uronic acids in polysaccharides, lowering the protein impurities, and transforming insoluble dietary fibers into soluble ones. In most cases, DHPM treatment improved the food properties of polysaccharides via decreasing viscosity, molecular weight, and particle size, as well as losing the surface morphology. More importantly, DHPM is a mild treatment technique that barely affects the chain backbones of polysaccharides. DHPM-assisted extraction and processing endowed polysaccharides with enhanced antioxidant, hypolipidemic, and hypoglycemic activities, exhibiting potential for the treatment of cardiovascular disease. In addition, DHPM-treated polysaccharides exerted certain potential in whitening cosmetics via inhibiting tyrosinase. In conclusion, DHPM is a mild, efficient, and green technology to recover and modify polysaccharides from natural resources, especially foods and by-products. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Jingchun Yang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yuchun Ling
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yaqi Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Kun Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yingchao Shen
- Department of Orthopedics and Traumatology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yuan Zhou
- Department of Orthopedics and Traumatology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Bing Luo
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| |
Collapse
|
5
|
Koşar M, Uluata S, Durmaz G, Kadkhodaee R. Malatya apricot gum: A source of natural gum and its physicochemical, functional and antioxidant properties. Int J Biol Macromol 2025; 301:140447. [PMID: 39884603 DOI: 10.1016/j.ijbiomac.2025.140447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Gums are commonly used in the food industry for their functional properties. However, the growing demand for sustainable and alternative sources has drawn attention to the need for identifying and characterizing non-conventional gum sources with comparable or enhanced features. This study aimed to investigate the exudate gum from apricot trees (Prunus armeniaca) in Malatya as a potential alternative. Since the composition and physicochemical properties of plant exudates can be affected by climate and growing region, our aim was to investigate the differences in the properties of the gum collected from Malatya apricot trees. The crude gum (CG) was purified (PG) and analyzed for its composition and properties. Approximate compositional analysis showed that CG consisted of 68.20 % carbohydrates, 2.23 % protein, 12.37 % moisture, and 4.37 % ash. These values, except for moisture content and fat, increased upon purification. The gum had a molecular weight of 5.55 × 105 Da, which remained unchanged upon purification. Galactose and arabinose were the main components of the sugar composition of the gum, with minor contributions from xylose and rhamnose, which showed variations in ratio after purification. Color metrics also indicated an increase in lightness (L*) and yellowness (b*) and a decrease in greenness (a*) after purification. The native pH of PG solution was found to be similar to that of CG and below 7 due to the presence of uronic acid residues in the gum structure, as confirmed by FTIR analysis. The total phenolic content was determined to be 1.14 mg GAE/g in CG and 1.17 mg GAE/g in PG, resulting in a higher antioxidant capacity for the latter. Purification also increased the content of dietary fibers from 1.61 % to 2.85 %. DSC analysis revealed that PG had higher thermal stability compared to CG. SEM images demonstrated that the gum particles were irregularly shaped, non-uniformly sized, and had rough and indented surfaces. Based on their Carr's index and Hausner ratio, both forms of apricot gum were classified as good flowable powders. These findings demonstrate the similarity of apricot gum to other tree exudates and highlight its potential as a new gum source. However, further studies are needed to determine its potential for industrial applications.
Collapse
Affiliation(s)
- Maide Koşar
- Department of Food Engineering, Inonu University, 44280 Malatya, Turkey
| | - Sibel Uluata
- Department of Nutrition and Dietetics, Inonu University, 44280 Malatya, Turkey.
| | - Gökhan Durmaz
- Department of Food Engineering, Inonu University, 44280 Malatya, Turkey; Department of Food Science, University of Massachusetts Amherst, 01003 Amherst, MA, USA
| | - Rassoul Kadkhodaee
- Department of Food Physics, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| |
Collapse
|
6
|
Kang L, Zhu X, Yan Y, Zhu R, Wei W, Peng F, Sun L. Characterization and Antioxidant Activity of Polysaccharides From Agaricus bisporus by Gradient Ethanol Precipitation. Chem Biodivers 2025:e202500120. [PMID: 40165028 DOI: 10.1002/cbdv.202500120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
In this present work, the polysaccharides from Agaricus bisporus were extracted and fractioned with gradient ethanol precipitation method for the first time. Five fractions (ABP40, ABP50, ABP60, ABP70, and ABP80) were obtained with ethanol concentrations of 40%, 50%, 60%, 70%, and 80%, respectively, and their characteristics and antioxidant activities in vitro were investigated. The five fractions presented significant differences in total sugar, protein, and uronic acid content, with a marked discrepancy in the molar ratio of the monosaccharide composition. The molecular weights of the polysaccharides decreased with increasing ethanol concentration. Compared to the other four fractions, ABP70, which has the highest uronic acid content, showed more conspicuous radical-scavenging activities against hydroxyl (89.9 ± 0.33%) and DPPH radicals (80.1 ± 0.01%). Moreover, it was found that the total sugar content and antioxidant activities of polysaccharides increased with the extension of precipitation time, with the highest antioxidant activities at 24 h. Therefore, ABP70, precipitated for 24 h, may have a potential application value for the development of antioxidants. This study provides valuable information for the further commercial applications of polysaccharides from Agaricus bisporus.
Collapse
Affiliation(s)
- Liqin Kang
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Xinji Zhu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Yangtian Yan
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Rui Zhu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Wei Wei
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Fei Peng
- Department of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Lei Sun
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| |
Collapse
|
7
|
Zang J, Yan B, Liu Z, Tang D, Liu Y, Chen J, Yin Z. Current state, challenges and future orientations of the applications of lactic acid bacteria exopolysaccharide in foods. Food Microbiol 2025; 126:104678. [PMID: 39638447 DOI: 10.1016/j.fm.2024.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
In the quest for a balanced diet and better health, the global shift towards nutrient-dense foods highlights the multiple roles of lactic acid bacteria exopolysaccharides (LAB-EPS) in improving food quality and health. This paper offers a comprehensive survey of LAB-EPS, focusing on their classification, biosynthesis pathways and application in the food industry, from dairy products to bakery products and meat. It highlights the impact of LAB-EPS on the texture and sensory qualities of food. Despite their promising prospects, these polysaccharides face various application challenges in the food industry. These include variability in EPS production among LAB strains, complexity in structure-function relationships, and limited understanding of their health benefits. In order to address these issues, the review identifies and suggests future research directions to optimize the production of LAB-EPS, elucidating their health benefit mechanisms, and expanding their application scope. In summary, this review aims to contribute to advance innovation and progress in the food industry by developing healthier food options and deepening the understanding of LAB-EPS in promoting human health.
Collapse
Affiliation(s)
- Jianwei Zang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bingxu Yan
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zebo Liu
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou, 510610, China
| | - Yuanzhi Liu
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiguang Chen
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
8
|
Rahman SSA, Pasupathi S, Karuppiah S. Influence of deep-eutectic and organic solvents on the recovery, molecular mass, and functional properties of dextran: Application using dextran film. Int J Biol Macromol 2025; 293:139202. [PMID: 39733893 DOI: 10.1016/j.ijbiomac.2024.139202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
The novelty of this study is to examine the impact of different solvent systems, namely organic and deep eutectic solvents, on recovery yield, antioxidant activity, poly-dispersity index, and functional properties of microbial dextran. The optimized conditions for maximum dextran recovery were obtained using organic solvent found to be: supernatant: organic solvent - 1:4 v/v; organic solvents: ethanol, isopropanol, and acetone; temperature: 0 °C; and time: 16 h. Though a similar structure was obtained for dextran recovered using various solvents, the degree of branching varied, with DES-precipitated dextran having the highest branching of 20 % α-(1,3) linkages. Similarly, the molecular mass and functional properties of dextran were significantly influenced by solvents, enabling their different applications. Ethanol-recovered dextran had the highest water-holding capacity (441.7 ± 2.5 %), whose films could be used in agriculture to retain soil water. On the contrary, acetone-precipitated dextran had a maximum solubility (96.0 ± 0.4 %) and antioxidant activity, which could be used as food additives and/or wound dressings. The DES-recovered dextran exhibited high fat-binding capacity (287.1 ± 2.0 %) and emulsifying activity (50.0 ± 2.9 %), making it suitable as an emulsifier in mayonnaise, etc. The isopropanol-recovered dextran showed the highest mass-average molecular mass (3224.8 kDa) and could be employed as flocculants for waste-water remediation.
Collapse
Affiliation(s)
- Sameeha Syed Abdul Rahman
- Bioprocess Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, India
| | - Saroja Pasupathi
- Bioprocess Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, India
| | - Sugumaran Karuppiah
- Bioprocess Engineering Laboratory, School of Chemical and Biotechnology, Centre for Bioenergy, SASTRA Deemed to be University, India.
| |
Collapse
|
9
|
Wang Z, Zheng Y, Lai Z, Kong Z, Hu X, Zhang P, Yang Y, Li N. Effect of Saccharomyces cerevisiae CICC 32883 Fermentation on the Structural Features and Antioxidant Protection Effect of Chinese Yam Polysaccharide. Foods 2025; 14:564. [PMID: 40002008 PMCID: PMC11854135 DOI: 10.3390/foods14040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, Chinese yam polysaccharide (CYP) was fermented by Saccharomyces cerevisiae CICC 32883, and its structural features and antioxidant activities before and after fermentation were analyzed. S. cerevisiae CICC 32883-fermented CYP (CYP-SC) had higher carbohydrate content and lower protein content than the nonfermented CYP (CYP-NF). The monosaccharide composition of CYP-SC was unaffected, but the proportion was changed. Compared with CYP-NF's molecular weight and polydispersity of 124.774 kDa and 6.58, respectively, those of CYP-SC were reduced to 20.384 kDa and 3.379. Antioxidant results showed that CYP-SC had better effects than CYP-NF in scavenging DPPH, ABTS, hydroxyl, and superoxide radicals. Moreover, CYP-SC showed better activities in enhancing oxidation capacity and protecting HepG2 cells than CYP-NF. Furthermore, the effects of CYP-SC on alleviating and repairing H2O2-damaged HepG2 cells are superior to those of CYP-NF. This work offers a green and efficient method for enhancing the antioxidant activity of dietary plant polysaccharides.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ziru Lai
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Zhihao Kong
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xilei Hu
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Peiyao Zhang
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Yahui Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Editorial Department of Journal of Henan University of Technology, Zhengzhou 450001, China
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Dong J, Chi Z, Lu S, Xie X, Gong P, Li H, Liu W. Bacterial exopolysaccharides: Characteristics and antioxidant mechanism. Int J Biol Macromol 2025; 289:138849. [PMID: 39701244 DOI: 10.1016/j.ijbiomac.2024.138849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Bacterial exopolysaccharides (EPS) are secondary metabolites of microorganisms which play important roles in adhesion, protection, biofilm formation, and as a source of nutrition. Compared with polysaccharides obtained from animal and plant species, bacterial polysaccharides have significant advantages in terms of production cost and large-scale production due to their abundant metabolic pathways and efficient polysaccharide production capacity. Most extracellular polysaccharides are water-soluble, and some are insoluble, such as bacterial cellulose. Some soluble bacterial EPS also have biological activities such as anticancer, antioxidant, antibacterial and immunomodulatory activities. These biological activities are mainly affected by the molecular weight, monosaccharide type, composition and structure of EPS. In recent years, bacterial EPS are considered as novel functional polysaccharides with important application prospects, especially in free radical scavenging and antioxidation. This review focuses on the characteristics of bacterial EPS, their ability to scavenge free radicals and their corresponding antioxidant mechanisms, and summarizes the relationship between different structures (such as monosaccharide composition, functional groups, molecular weight, etc.) and antioxidant activities. It provides a new idea for the development of more bioactive bacterial EPS antioxidants, points out a new direction for the commercial production of natural, safe and economical polysaccharide drugs and health products.
Collapse
Affiliation(s)
- Junqi Dong
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Zhenxing Chi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Siqi Lu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Xiaoqin Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Pixian Gong
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China.
| | - Huijing Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Wei Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China.
| |
Collapse
|
11
|
Salehi M, Rashidinejad A. Multifaceted roles of plant-derived bioactive polysaccharides: A review of their biological functions, delivery, bioavailability, and applications within the food and pharmaceutical sectors. Int J Biol Macromol 2025; 290:138855. [PMID: 39701227 DOI: 10.1016/j.ijbiomac.2024.138855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Plant-derived bioactive polysaccharides (PDBPs), versatile polymers originating from various botanical sources, exhibit a spectrum of biological functionalities crucial for human health. This review delves into the multifaceted roles of these bioactive compounds, elucidating their immune-boosting properties, antioxidant prowess, anti-inflammatory capabilities, and contributions to gut health. Amidst their pivotal roles, the efficiency of PDBPs delivery and bioavailability in the human system stands as a central determinant of their efficacy and utilization. This review paper extensively and systematically examines the diverse biological activities, such as immunomodulatory effects, delivery mechanisms like microencapsulation, and promising applications of PDBPs within the realms of both food (functional foods and nutraceuticals) and pharmaceutical (antimicrobial agents and anti-inflammatory drugs) sectors. Additionally, it offers a comprehensive overview of the classification, sources, and structural diversity of these polysaccharides, highlighting various identification techniques and rheological considerations. Moreover, the review addresses critical safety and regulatory concerns alongside global legislation about plant bioactive polysaccharides, envisaging a broader landscape for their utilization. Through this synthesis, we aim to underscore the holistic significance of PDBPs and their potential to revolutionize nutritional and therapeutic paradigms.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Food Sciences, Khazar Institute of Higher Education, Mahmoud Abad, Iran
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| |
Collapse
|
12
|
Nguyen TM, Kim J, Hung NT, Tho NH, Tran QM, Van Hung H. Comparison of antioxidant and antimicrobial activities of submerged culture mycelium and basidioma extracts of Tropicoporus linteus. Food Sci Biotechnol 2025; 34:169-179. [PMID: 39758739 PMCID: PMC11695526 DOI: 10.1007/s10068-024-01612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 02/21/2024] [Accepted: 05/17/2024] [Indexed: 01/07/2025] Open
Abstract
This research aimed to assess the biological characteristics of both submerged culture mycelium and artificial basidioma of Tropicoporus linteus NTH-PL4. The extraction yield from the basidioma surpassed that of the mycelium. The use of hot water extract resulted in the highest total carbohydrate content, predominantly found in the basidioma. Conversely, the 75% methanol extract exhibited higher levels of total phenolics and total flavonoids, predominantly in the mycelium. Tests on antioxidant capacity indicated that 75% methanol yielded the best results among the tested solvents, with the basidioma extract displaying superior DPPH scavenging, ferrous ion chelation, and reduction power compared to the mycelium extract. Moreover, ethyl acetate emerged as an effective solvent, yielding a stronger extract from the basidioma. Compound analysis revealed higher concentrations of gallic acid, salicylic acid, caffeic acid, and ellagic acid in the mycelium for the solvents used, while hispidin and beta-glucan exhibited an opposite trend. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01612-1.
Collapse
Affiliation(s)
- Tuan Manh Nguyen
- Institute of Life Science, Thai Nguyen University of Agriculture and Forestry, 251-210 Quyet Thang, Thai Nguyen, 250-000 Vietnam
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences and Engineering, Kyonggi University, Suwon, Gyeonggi-do 16227 Republic of Korea
| | - Nguyen The Hung
- Department of Agronomy, Thai Nguyen University of Agriculture and Forestry, 251-210 Quyet Thang, Thai Nguyen, 250-000 Vietnam
| | - Nguyen Huu Tho
- Department of Agronomy, Thai Nguyen University of Agriculture and Forestry, 251-210 Quyet Thang, Thai Nguyen, 250-000 Vietnam
| | - Quan Minh Tran
- Institute of Life Science, Thai Nguyen University of Agriculture and Forestry, 251-210 Quyet Thang, Thai Nguyen, 250-000 Vietnam
| | - Hoang Van Hung
- Institute of Life Science, Thai Nguyen University of Agriculture and Forestry, 251-210 Quyet Thang, Thai Nguyen, 250-000 Vietnam
| |
Collapse
|
13
|
Tian J, Zhang Z, Shang Y, Yang T, Zhou R. Isolation, structures, bioactivities, and applications of the polysaccharides from Boletus spp.: A review. Int J Biol Macromol 2025; 285:137622. [PMID: 39551313 DOI: 10.1016/j.ijbiomac.2024.137622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Boletus spp., the edible mushrooms distributed in Europe, Asia, and North America, have been widely used as food and medicinal ingredients worldwide. Bioactive polysaccharides are highly abundant in Boletus spp., as demonstrated by modern phytochemical studies. The isolation, chemical properties, and bioactivities of polysaccharides from Boletus spp. have long been attracted by academics worldwide. However, there is still a lack of systematic tracking of research progress on Boletus polysaccharides (BPs), which is essential for researchers to understand their potential and gain a deeper insight into their functional mechanisms. In this review, we summarized the recent development of BPs, including the extraction and purification methods, physiochemical and structural features, bioactivities and functional mechanisms, the structure-activity relationship, and the potential applications. This review aims to provide researchers with a comprehensive understanding of the current progress and potential of BPs to assist their further investigations.
Collapse
Affiliation(s)
- Jinfeng Tian
- College of Basic Medicine, Panzhihua University, Panzhihua 617000, PR China
| | - Zhe Zhang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Yuanhong Shang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China.
| | - Tao Yang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Ruifeng Zhou
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| |
Collapse
|
14
|
Choudhury PD, Ikbal AMA, Saha S, Debnath R, Debnath B, Singh LS, Singh WS. Recent Advances in Multifaceted Drug Delivery Using Natural Polysaccharides and Polyacrylamide-based Nanomaterials in Nanoformulation. Curr Top Med Chem 2025; 25:395-408. [PMID: 39473113 DOI: 10.2174/0115680266316522241015143856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 04/25/2025]
Abstract
Rapid growth in nanotechnology, also known as 21st-century technology, is occurring in response to the increasing diversity of diseases. The development of safe and effective drug delivery methods to enhance bioavailability is of paramount importance. Researchers have focused on creating safe, cost-effective, and environmentally friendly nanoparticle construction processes. Natural polysaccharides, a type of multifaceted polymer with a wide range of applications and advantages, are particularly well suited for nanoparticle formulations, as they can mitigate the adverse consequences of synthetic nanoparticle formulations and promote sustainability. This review summarizes various sources of natural-based polysaccharides and polyacrylamide-based nanomaterials in nanoparticle preparation. Additionally, it discusses the use of natural polysaccharides in formulations beyond nanotechnology, highlighting their importance in green synthesis and different preparation methods.
Collapse
Affiliation(s)
- Paromita Dutta Choudhury
- Department of Pharmaceutics, Regional Institute of Pharmaceutical Science and Technology, Abhoynagar, Agartala, 799 005, India
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar-788011, India
| | - Sourav Saha
- Bharat Pharmaceutical Technology, Department of Pharmaceutical Chemistry, Amtali, Agartala, 799130, India
| | - Rabin Debnath
- ISF College of Pharmacy, MOGA GT Road, NH-95, Ghall Kalan, Punjab, 142001, India
| | - Bikash Debnath
- Institute of Pharmacy, Assam Don Bosco University, Tapesia Gardens, Sonapur, Guwahati, Assam, 782402, India
| | - Loushambam Samananda Singh
- Institute of Pharmacy, Assam Don Bosco University, Tapesia Gardens, Sonapur, Guwahati, Assam, 782402, India
| | - Waikhom Somraj Singh
- Institute of Pharmacy, Assam Don Bosco University, Tapesia Gardens, Sonapur, Guwahati, Assam, 782402, India
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Agartala, 799 022, India
| |
Collapse
|
15
|
Costa FF, Dias TG, Mendes PM, Viana JPM, Madeira EB, Pereira ALF, Ferreira AGN, Neto MS, Dutra RP, Reis AS, Maciel MCG. Antioxidant and Antimicrobial Properties of Probiotics: Insights from In Vitro Assays. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10426-w. [PMID: 39718712 DOI: 10.1007/s12602-024-10426-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 12/25/2024]
Abstract
Probiotics are microorganisms that provide health benefits at adequate doses and exhibit notable antioxidant and antimicrobial activities. These properties play crucial roles in combating chronic diseases linked to oxidative stress and antimicrobial resistance. This review aimed to summarize the antioxidant and antimicrobial properties of probiotics determined in in vitro studies and discuss mechanistic actions and analysis methods. The MEDLINE (PubMed), Web of Science, Scopus, Science Direct, and Embase databases were utilized. The included articles demonstrated the antioxidant and antimicrobial activities of both isolated and food matrix-associated probiotics, with the most common genera being Lactobacillus, Bifidobacterium, Saccharomyces, and Streptococcus. Antioxidant activity was the most studied property, yielding varied results attributed to evaluation tests and probiotic strain. Antibacterial activity was consistently reported in all studies. Additionally, fermentation with probiotic microorganisms improved the content and bioaccessibility of bioactive compounds. In conclusion, analysis results highlight the antioxidant and antimicrobial activity of probiotics reported in in vitro studies. They enhance bioactive content and bioaccessibility and produce novel beneficial metabolites during fermentation. These results reinforce the therapeutic promise of probiotics associated with plant matrices and indicate the need for clinical studies to confirm their efficacy in improving human health.
Collapse
Affiliation(s)
- Fernanda Farias Costa
- Center for Sciences of Imperatriz, Graduate Program in Health and Technology, Federal University of Maranhão, Imperatriz, Maranhão, Brazil
| | - Tatielle Gomes Dias
- Graduate Program in Health Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | | - Jesse Pereira Machado Viana
- Graduate Program in Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | | | - Ana Lúcia Fernandes Pereira
- Center for Sciences of Imperatriz, Graduate Program in Health and Technology, Federal University of Maranhão, Imperatriz, Maranhão, Brazil
| | - Adriana Gomes Nogueira Ferreira
- Center for Sciences of Imperatriz, Graduate Program in Health and Technology, Federal University of Maranhão, Imperatriz, Maranhão, Brazil
| | - Marcelino Santos Neto
- Center for Sciences of Imperatriz, Graduate Program in Health and Technology, Federal University of Maranhão, Imperatriz, Maranhão, Brazil
| | - Richard Pereira Dutra
- Center for Sciences of Imperatriz, Graduate Program in Health and Technology, Federal University of Maranhão, Imperatriz, Maranhão, Brazil
| | - Aramys Silva Reis
- Center for Sciences of Imperatriz, Graduate Program in Health and Technology, Federal University of Maranhão, Imperatriz, Maranhão, Brazil
| | - Márcia Cristina Gonçalves Maciel
- Center for Sciences of Imperatriz, Graduate Program in Health and Technology, Federal University of Maranhão, Imperatriz, Maranhão, Brazil.
- Graduate Program in Health Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil.
- Graduate Program in Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
16
|
Murshed M, AL-Tamimi J, Mares MM, Hailan WAQ, Ibrahim KE, Al-Quraishy S. Pharmacological Effects of Biosynthesis Silver Nanoparticles Utilizing Calotropis procera Leaf Extracts on Plasmodium berghei-Infected Liver in Experiment Mice. Int J Nanomedicine 2024; 19:13717-13733. [PMID: 39726977 PMCID: PMC11669542 DOI: 10.2147/ijn.s490119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Malaria caused by Plasmodium spp. is the most hazardous disease in the world. It is regarded as a life-threatening hematological disorder caused by parasites transferred to humans by the bite of Anopheles mosquitoes. Purpose Calotropis procera leaf extract combined with biosynthesized silver nanoparticles (CPLEAgNPs) to evaluate its antiplasmodium and hepatoprotective effects against P. berghei-induced infection in experimental mice. Methods The animal groups were divided into four groups: the first non-infected group was orally administered distilled water daily 7 days. The second group received an oral dose of 50 mg/kg of CPLE AgNPs. The third group received intraperitoneal injections of 105 P. berghei. The fourth group received of 105 P. berghei with 50 mg/kg CPLE AgNPs. All mice were anesthetized with CO2 and dissected for sample collection. Results This study of C. procera leaves showed that they contain chemically active substances, as shown by the amounts of phenols, flavonoids, and tannins. The antioxidant activity of the samples was assessed using 1.1-diphenyl-2-picrylhydrazyl (DPPH) and 2.2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. Treatment of infected mice with CPLE AgNPs for 7 days resulted in a significant decrease in parasitemia and a reduction in histopathological alterations in the liver. Furthermore, CPLE AgNPs mitigated oxidative damage caused by P. berghei infection in the liver. In addition, after receiving the medication, the liver levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase decreased. In addition, CPLE AgNPs regulated the expression of liver cytokines, including IL-1β, and I-10. Discussion Based on these findings, the study proved that CPLE AgNPs have hepatoprotective and antiplasmodial properties.
Collapse
Affiliation(s)
- Mutee Murshed
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Jameel AL-Tamimi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammed M Mares
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Waleed A Q Hailan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Lin D, Rezaei MJ. Plant polysaccharides and antioxidant benefits for exercise performance and gut health: from molecular pathways to clinic. Mol Cell Biochem 2024:10.1007/s11010-024-05178-8. [PMID: 39692997 DOI: 10.1007/s11010-024-05178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
In the last three decades, our understanding of how exercise induces oxidative stress has significantly advanced. Plant polysaccharides, such as dietary fibers and resistant starches, have been shown to enhance exercise performance by improving energy metabolism, reducing fatigue, increasing strength and stamina, mitigating oxidative stress post-exercise, facilitating muscle recovery, and aiding in detoxification. Moreover, antioxidants found in plant-based foods play a crucial role in protecting the body against oxidative stress induced by intense physical activity. By scavenging free radicals and reducing oxidative damage, antioxidants can improve exercise endurance, enhance recovery, and support immune function. Furthermore, the interaction between plant polysaccharides and antioxidants in the gut microbiota can lead to synergistic effects on overall health and performance. This review provides a comprehensive overview of the current research on plant polysaccharides and antioxidants in relation to exercise performance and gut health.
Collapse
Affiliation(s)
- Di Lin
- School of Sports, Zhengzhou Shengda University, Zhengzhou, 451191, Henan, China.
| | - Mohammad J Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Adewale OO, Wińska P, Piasek A, Cieśla J. The Potential of Plant Polysaccharides and Chemotherapeutic Drug Combinations in the Suppression of Breast Cancer. Int J Mol Sci 2024; 25:12202. [PMID: 39596268 PMCID: PMC11594611 DOI: 10.3390/ijms252212202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Breast cancer is the most common cancer affecting women worldwide. The associated morbidity and mortality have been on the increase while available therapies for its treatment have not been totally effective. The most common treatment, chemotherapy, sometimes has dangerous side effects because of non-specific targeting, in addition to poor therapeutic indices, and high dose requirements. Consequently, agents with anticancer effects are being sought that can reduce the side effects induced by chemotherapy while increasing its cytotoxicity to cancer cells. This is possible using natural compounds that are safe and biologically active. There are many reports on plant polysaccharides due to their bioactive and anticancer properties. The use of plant polysaccharide together with a conventional cytotoxic drug may offer wide benefits in cancer therapy, producing synergistic effects, thereby reducing drug dose and, so, its associated side effects. In this review, we highlight an overview of the use of plant polysaccharides and chemotherapeutic drugs in breast cancer preclinical studies, including their mechanisms of anticancer activities. The findings emphasize the potential of plant polysaccharides to improve chemotherapeutic outcomes in breast cancer, paving the way for more effective and safer treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Joanna Cieśla
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (O.O.A.); (P.W.); (A.P.)
| |
Collapse
|
19
|
Han S, Hu F, Ji X, Liu Y, Zhang S, Wang Z, Qiao K. Polysaccharides from Ziziphus jujuba prolong lifespan and attenuate oxidative stress in Caenorhabditis elegans via DAF-16 and SKN-1. Int J Biol Macromol 2024; 282:137482. [PMID: 39528176 DOI: 10.1016/j.ijbiomac.2024.137482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Jujube is a commonly consumed traditional Chinese medicinal food. Recent evidence revealed crude polysaccharides of jujube extract (CPJE) exhibited bioactive properties in vitro; however, its antioxidant capacity in vivo remains unknown. The objectives of this study were to evaluate the effects of CPJE on growth, locomotion, reproduction, lifespan, and antioxidant defense system using Caenorhabditis elegans. Results showed CPJE were not toxic to C. elegans with no effects on bacterial growth. Compared to control, CPJE significantly increased body length and width, head thrashes, body bends, and brood size of nematodes. In addition, CPJE at higher concentrations significantly increased pharyngeal pumping of the nematodes. Moreover, CPJE at 0.25, 0.5, and 1 mg/mL promoted lifespan by 17.9 %, 34.7 % and 46.3 %, respectively. CPJE at higher concentrations reduced level of ROS, increased activities of SOD, CAT, and GSH. CPJE also upregulated the expression of daf-16, skn-1, sod-3, and gcs-1 in N2 nematodes. Meanwhile, results from studies with nematode mutants also suggested that improved stress resistance of CPJE was due to modulation of daf-16 and skn-1. Overall, our results suggest CPJE promote longevity and reduce oxidative stress via DAF-16 and SKN-1. Our findings shed a new light on the utilization of CPJE to attenuate oxidative stress.
Collapse
Affiliation(s)
- Shaohua Han
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Fengyuan Hu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiaoxue Ji
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yong Liu
- Shandong Huayang Technology Co., Ltd., Tai'an, Shandong 271411, China
| | - Shouan Zhang
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida, IFAS, Homestead, FL 33031, USA
| | - Zhongtang Wang
- Shandong Institute of Pomology, Tai'an, Shandong 271000, China.
| | - Kang Qiao
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Huayang Technology Co., Ltd., Tai'an, Shandong 271411, China.
| |
Collapse
|
20
|
Ghosh S, Abdullah MF. Extraction of polysaccharide fraction from cadamba (Neolamarckia cadamba) fruits and evaluation of its in vitro and in vivo antioxidant activities. Int J Biol Macromol 2024; 279:135564. [PMID: 39270906 DOI: 10.1016/j.ijbiomac.2024.135564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
In this study, polysaccharide fraction (PFFNC) derived from Neolamarckia cadamba fruits showed remarkable antioxidant activity. The PFFNC was successfully extracted from the fruits by the hot water extraction process, followed by decolorization, defatting, and deproteinization. The chemical composition of PFFNC was effectively characterized by the use of UV-Vis, FT-IR, CHN, GC-MS, and 13C NMR spectroscopy. The findings indicated that PFFNC had an average molecular weight of 292 kDa and was predominantly composed of carbohydrates (76 %), with notable contributions from uronic acids (37.22 %) and proteins (12.35 %). The primary components of the sugar content were glucose (19.24 %), galactose (10.19 %), mannose (4.09 %), and glucuronic acid (2.8 %). The tertiary structural study verified the existence of a triple-helical structure. PFFNC exhibited a strong reducing power in vitro as determined by ABTS (IC50: 121 ± 0.12 μg/mL), DPPH (IC50: 146.065 ± 0.54 μg/mL), FRAP (677.788 ± 24.189 mM Fe (II)/g), hydroxyl radical scavenging (IC50: 78.736 ± 0.32 μg/mL), and phosphomolybdate assay (90.7 ± 0.43 mg AAE/g). In addition, the PFFNC furthermore showed significant in vivo antioxidant capacity, as determined using the brine shrimp (Bsmp) (Artemia salina Leach) model. The PFFNC exhibits significant antioxidant potential, suggesting broad spectrum applications in pharmaceuticals, nutraceuticals, and oxidative stress-related disorders.
Collapse
Affiliation(s)
- Soumyadeep Ghosh
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India.
| | - Md Farooque Abdullah
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India.
| |
Collapse
|
21
|
Inanan T, Önal Darilmaz D, Karaduman Yeşildal T, Yüksekdağ Z, Yavuz S. Structural characteristics of Lacticaseibacillus rhamnosus ACS5 exopolysaccharide in association with its antioxidant and antidiabetic activity in vitro. Int J Biol Macromol 2024; 280:136148. [PMID: 39357712 DOI: 10.1016/j.ijbiomac.2024.136148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
A novel structure of exopolysaccharide from the Lactic Acid Bacteria (LAB) Lacticaseibacillus rhamnosus ACS5, isolated from home-made Turkish cheese, is described. After lyophilization, the L-EPS-ACS5 was characterized in production and functional activities in vitro, including antioxidant and antidiabetic activities. The physicochemical characterizations of the L-EPS-ACS5 were determined through molecular weight, UV, FTIR, SEM, TGA, HPLC, NMR, methylation, and GC-MS analysis. Strong antioxidant activities of L-EPS-ACS5 were confirmed from the results obtained in the hydroxyl radical, DPPH, ABTS, FRAP, superoxide anion radical, total antioxidant activity, and DNA damage protective effect, and also the L-EPS-ACS5 exhibited high antidiabetic activity (60 %). This study isolated L-EPS-ACS5 from a home-made cheese L. rhamnosus strain, demonstrating its novel and enhanced functionalities compared to existing strains. This opens exciting avenues for its development in the fields of biomedicine and pharmaceuticals.
Collapse
Affiliation(s)
- Tülden Inanan
- Technical Vocational School, Department of Chemistry and Chemical Processing Technology, Aksaray University, Aksaray 68100, Turkey
| | - Derya Önal Darilmaz
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, Aksaray 68100, Turkey.
| | - Tuğçe Karaduman Yeşildal
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, Aksaray 68100, Turkey
| | - Zehranur Yüksekdağ
- Department of Biology, Faculty of Science, Gazi University, Ankara 06500, Turkey.
| | - Serkan Yavuz
- Department of Chemistry, Faculty of Science, Gazi University, Ankara 06500, Turkey.
| |
Collapse
|
22
|
Şahin S, Aybastıer Ö. Physicochemical properties of oleaster extract and the role of oleaster antioxidants on oxidative induced DNA damage. Food Sci Nutr 2024; 12:8377-8386. [PMID: 39479667 PMCID: PMC11521664 DOI: 10.1002/fsn3.4443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 11/02/2024] Open
Abstract
Oleaster (Elaeagnus angustifolia L.) is a plant with high medicinal value and economic and nutritional importance, which has been used in traditional medicine for a long time. Oleaster contains phenolic compounds that have the ability to prevent a wide variety of diseases. In this study antioxidant capacity, total phenolic content, and total carbohydrate content were found as 108.70 ± 0.20 μg GAE/g of oleaster extract, 28.80 ± 0.01 μg TE/g of oleaster extract, and 15.40 ± 0.01 mg D-glucose/g of oleaster extract, respectively. The oleaster extract was analyzed using the HPLC-DAD system. The results showed rutin, caffeic acid, protocatechuic acid, and ferulic acid. The protective abilities of rutin, caffeic acid, protocatechuic acid, ferulic acid, and oleaster extract were tested against the oxidation of DNA. The mix of phenolic compounds (inhibited about 93.29% of the damage) and oleaster extract (inhibited about 94.14% of the damage) showed better protect DNA against oxidation than phenolic compounds. The results obtained from this study are guiding for new applications involving the physicochemical properties of oleaster extract with high antioxidant properties for food applications.
Collapse
Affiliation(s)
- Saliha Şahin
- Chemistry Department, Science and Arts FacultyBursa Uludağ UniversityBursaTürkiye
| | - Önder Aybastıer
- Chemistry Department, Science and Arts FacultyBursa Uludağ UniversityBursaTürkiye
| |
Collapse
|
23
|
Ha JS, Kim JW, Lee NK, Paik HD. Antioxidative and immunity-enhancing effects of heat-killed probiotic Enterococcus faecium KU22001 without toxin or antibiotic resistance. Microb Pathog 2024; 195:106875. [PMID: 39173849 DOI: 10.1016/j.micpath.2024.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
This study evaluated the probiotic properties, safety profile, and antioxidative and immune system-enhancing effects of Enterococcus faecium strains isolated from human infant feces. E. faecium KU22001, E. faecium KU22002, and E. faecium KU22005 exhibited potential probiotic properties; however, to eliminate concerns about toxin production and antibiotic resistance, the E. faecium strains were heat-treated prior to experimental usage. E. faecium KU22001 showed the highest antioxidant activity and lowest reactive oxygen species production among the three strains. The immune system-enhancing effects of heat-killed E. faecium strains were evaluated using a nitric oxide assay. E. faecium KU22001 induced an increase in the mRNA expression of inducible nitric oxide synthase, cyclooxygenase-2, and proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6 in RAW 264.7 cells. Furthermore, E. faecium KU22001 activated the mitogen-activated protein kinase pathway, which was a key regulator of the immune system. These results demonstrate the potential use of E. faecium KU22001 as a multifunctional food material.
Collapse
Affiliation(s)
- Jun-Su Ha
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jong-Woo Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
24
|
Hejna M, Dell'Anno M, Liu Y, Rossi L, Aksmann A, Pogorzelski G, Jóźwik A. Assessment of the antibacterial and antioxidant activities of seaweed-derived extracts. Sci Rep 2024; 14:21044. [PMID: 39251803 PMCID: PMC11383966 DOI: 10.1038/s41598-024-71961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
In swine farming, animals develop diseases that require the use of antibiotics. In-feed antibiotics as growth promoters have been banned due to the increasing concern of antimicrobial resistance. Seaweeds offer bioactive molecules with antibacterial and antioxidant properties. The aim was to estimate the in vitro properties of seaweed extracts: Ascophyllum nodosum (AN), Palmaria palmata (PP), Ulva lactuca (UL), and 1:1 mixes (ANPP, ANUL, PPUL). Escherichia coli strains were used to test for growth inhibitory activity, and chemical-based assays were performed for antioxidant properties. The treatments were 2 (with/without Escherichia coli) × 2 (F4 + and F18 +) × 5 doses (0, 1.44, 2.87, 5.75, 11.50, and 23.0 mg/mL). Bacteria were supplemented with seaweed extracts, and growth was monitored. The antioxidant activity was assessed with 6 doses (0, 1, 50, 100, 200, 500, and 600 mg/mL) × 6 compounds using two chemical assays. Data were evaluated through SAS. The results showed that AN and UL significantly inhibited (p < 0.05) the growth of F4 + and F18 +. PP and mixes did not display an inhibition of the bacteria growth. AN, PP, UL extracts, and mixes exhibited antioxidant activities, with AN showing the strongest dose-response. Thus, AN and UL seaweed extracts reveal promising antibacterial and antioxidant effects and may be candidates for in-feed additives.
Collapse
Affiliation(s)
- Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzębiec, Poland.
| | - Matteo Dell'Anno
- Department of Veterinary Medicine and Animal Sciences-DIVAS, Università degli Studi di Milano, Dell'Università 6, 26900, Lodi, Italy
| | - Yanhong Liu
- Department of Animal Science, University of California, 2251 Meyer Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences-DIVAS, Università degli Studi di Milano, Dell'Università 6, 26900, Lodi, Italy
| | - Anna Aksmann
- Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Pogorzelski
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzębiec, Poland
| | - Artur Jóźwik
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzębiec, Poland
| |
Collapse
|
25
|
Zhang K, Qi X, Feng N, Wang Y, Wei H, Liu M. Antioxidant capacity of xylooligosaccharides generated from beechwood xylan by recombinant family GH10 Aspergillus niger xylanase A and insights into the enzyme's competitive inhibition by riceXIP. Enzyme Microb Technol 2024; 179:110456. [PMID: 38754147 DOI: 10.1016/j.enzmictec.2024.110456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
In this study, the family GH10 xylanase AnXylA10 derived from Aspergillus niger JL15 strain was expressed in Pichia pastoris X33. The recombinant xylanase, reAnXylA10 exhibited optimal activity at 40 ℃ and pH 5.0. The hydrolysates generated from beechwood xylan using reAnXylA10 primarily consisted of xylobiose (X2) to xylohexaose (X6) and demonstrated remarkable antioxidant capacity. Furthermore, the rice xylanase inhibitory protein (riceXIP) was observed to competitively inhibit reAnXylA10, exhibiting an inhibition constant (Ki) of 140.6 nM. Molecular dynamics (MD) simulations of AnXylA10-riceXIP complex revealed that the α-7 helix (Q225-S238) of riceXIP intruded into the catalytic pocket of AnXylA10, thereby obstructing substrate access to the active site. Specifically, residue K226 of riceXIP formed robust interactions with E136 and E242, the two catalytic sites of AnXylA10, predominantly through high-occupied hydrogen bonds. Based on QTAIM, electron densities for the atom pairs K226riceXIP@HZ1-E136AnXylA10@OE2 and K226riceXIP@HZ3-E242AnXylA10@OE1 were determined to be 0.04628 and 0.02914 a.u., respectively. Binding free energy of AnXylA10-riceXIP complex was -59.0±7.6 kcal/mol, significantly driven by electrostatic and van der Waals forces. Gaining insights into the interaction between xylanase and its inhibitors, and mining the inhibition mechanism in depth, will facilitate the design of innovative GH10 family xylanases that are both highly efficient and resistant to inhibitors.
Collapse
Affiliation(s)
- Keer Zhang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xinyu Qi
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Ningxin Feng
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yuzhu Wang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Huiwen Wei
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Mingqi Liu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
26
|
Pi Y, Fang M, Li Y, Cai L, Han R, Sun W, Jiang X, Chen L, Du J, Zhu Z, Li X. Interactions between Gut Microbiota and Natural Bioactive Polysaccharides in Metabolic Diseases: Review. Nutrients 2024; 16:2838. [PMID: 39275156 PMCID: PMC11397228 DOI: 10.3390/nu16172838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The gut microbiota constitutes a complex ecosystem, comprising trillions of microbes that have co-evolved with their host over hundreds of millions of years. Over the past decade, a growing body of knowledge has underscored the intricate connections among diet, gut microbiota, and human health. Bioactive polysaccharides (BPs) from natural sources like medicinal plants, seaweeds, and fungi have diverse biological functions including antioxidant, immunoregulatory, and metabolic activities. Their effects are closely tied to the gut microbiota, which metabolizes BPs into health-influencing compounds. Understanding how BPs and gut microbiota interact is critical for harnessing their potential health benefits. This review provides an overview of the human gut microbiota, focusing on its role in metabolic diseases like obesity, type II diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. It explores the basic characteristics of several BPs and their impact on gut microbiota. Given their significance for human health, we summarize the biological functions of these BPs, particularly in terms of immunoregulatory activities, blood sugar, and hypolipidemic effect, thus providing a valuable reference for understanding the potential benefits of natural BPs in treating metabolic diseases. These properties make BPs promising agents for preventing and treating metabolic diseases. The comprehensive understanding of the mechanisms by which BPs exert their effects through gut microbiota opens new avenues for developing targeted therapies to improve metabolic health.
Collapse
Affiliation(s)
- Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyu Fang
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruyi Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Zhigang Zhu
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
27
|
Aktaş H, Napiórkowska A, Szpicer A, Custodio-Mendoza JA, Paraskevopoulou A, Pavlidou E, Kurek MA. Microencapsulation of green tea polyphenols: Utilizing oat oil and starch-based double emulsions for improved delivery. Int J Biol Macromol 2024; 274:133295. [PMID: 38914398 DOI: 10.1016/j.ijbiomac.2024.133295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024]
Abstract
The stability and bioavailability of green tea polyphenols, crucial for their health benefits, are compromised by environmental sensitivity, limiting their use in functional foods and supplements. This study introduces a novel water-in-oil-in-water double emulsion technique with microwave-assisted extraction, significantly enhancing the stability and bioavailability of these compounds. The primary objective of this study was to assess the effectiveness of several encapsulating agents, such as gum Arabic as control and native and modified starches, in improving encapsulated substances' stability and release control. Native and modified starches were chosen for their outstanding film-forming properties, improving encapsulation efficiency and protecting bioactive compounds from oxidative degradation. The combination of maltodextrin and tapioca starch improved phenolic content retention, giving 46.25 ± 2.63 mg/g in tapioca starch microcapsules (GTTA) and 41.73 ± 3.24 mg/g in gum arabic microcapsules (GTGA). Besides the control, modified starches also had the most potent antioxidant activity, with a 45 % inhibition (inh%) in the DPPH analysis. Oat oil was utilized for its superior viscosity and nutritional profile, boosting emulsion stability and providing the integrity of the encapsulated polyphenols, as indicated by the microcapsules' narrow span index (1.30 ± 0.002). The microcapsules' thermal behavior and structural integrity were confirmed using advanced methods such as Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared Spectroscopy (FT-IR). This study highlights the critical role of choosing appropriate wall materials and extraction techniques. It sets a new standard for microencapsulation applications in the food industry, paving the way for future innovations.
Collapse
Affiliation(s)
- Havva Aktaş
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Alicja Napiórkowska
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Arkadiusz Szpicer
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Jorge A Custodio-Mendoza
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Adamantini Paraskevopoulou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Pavlidou
- Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marcin A Kurek
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| |
Collapse
|
28
|
Dadashi Ouranj Z, Hosseini S, Alipour A, Homaeigohar S, Azari S, Ghazizadeh L, Shokrgozar M, Thomas S, Irian S, Shahsavarani H. The potent osteo-inductive capacity of bioinspired brown seaweed-derived carbohydrate nanofibrous three-dimensional scaffolds. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:515-534. [PMID: 39219680 PMCID: PMC11358581 DOI: 10.1007/s42995-024-00241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the osteo-inductive capacity of a fucoidan polysaccharide network derived from brown algae on human adipose-derived stem cells (HA-MSCs) for bone regeneration. The physiochemical properties of the scaffold including surface morphology, surface chemistry, hydrophilicity, mechanical stiffness, and porosity were thoroughly characterized. Both in vitro and in vivo measurements implied a superior cell viability, proliferation, adhesion, and osteo-inductive performance of obtained scaffolds compared to using specific osteogenic induction medium with increased irregular growth of calcium crystallites, which mimic the structure of natural bones. That scaffold was highly biocompatible and suitable for cell cultures. Various examinations, such as quantification of mineralization, alkaline phosphatase, gene expression, and immunocytochemical staining of pre-osteocyte and bone markers confirmed that HAD-MSCs differentiate into osteoblasts, even without an osteogenic induction medium. This study provides evidence for the positive relationship and synergistic effects between the physical properties of the decellularized seaweed scaffold and the chemical composition of fucoidan in promoting the osteogenic differentiation of HA-MSCs. Altogether, the natural matrices derived from brown seaweed offers a sustainable, cost-effective, non-toxic bioinspired scaffold and holds promise for future clinical applications in orthopedics.
Collapse
Affiliation(s)
- Zahra Dadashi Ouranj
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911 Iran
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Atefeh Alipour
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN UK
| | - Shahram Azari
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Leila Ghazizadeh
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Mohammadali Shokrgozar
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala India
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911 Iran
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 19839-69411 Iran
- Iranian Biological Resource Center, Academic Center for Education, Culture and Research (ACECR), Tehran, 1533734716 Iran
| |
Collapse
|
29
|
Sundram S, Dhiman N, Malviya R, Awasthi R. Synthesis of Novel Acrylamide Graft Copolymer of Acacia nilotica Gum for the Stabilization of Melatonin Nanoparticles for Improved Therapeutic Effect: Optimization Using (3) 2 Factorial Design. Assay Drug Dev Technol 2024; 22:278-307. [PMID: 38962889 DOI: 10.1089/adt.2024.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
The objective of the present study was to optimize the microwave-assisted synthesis of the acrylamide graft copolymer of Acacia nilotica gum (AM-co-ANG). Furthermore, graft copolymer was used for the formulation of a nanoparticulate system using a novel top to bottom solvent antisolvent technique for the delivery of melatonin. Grafting of ANG was optimized by using 32 factorial design, where concentrations of polymer and monomer (acrylamide) were used as independent variables and swelling index in acidic (0.1 N HCl) and basic (1 N NaOH) pH. Grafted polymers were further used to develop and optimize nanoparticulate system using concentration of the graft copolymer and concentration of drug as independent variables. The size of the nanoformulation and entrapment efficiency were selected as dependent variables. Difference in infrared spectrum and absorbance maxima in the ultraviolet region confirm that grafting has taken place. Porous structure and a higher contact angle confirmed hydrophobic nature of AM-co-ANG as compared with the native polymer. Acrylamide graft copolymers show more swelling in 1 N NaOH as compared with 0.1 N HCl. In vitro toxicity studies in hepatic (HepG2 cell line), brain (SHSY5Y cell line), and skin (HaCaT cell line) cells easily predict that synthesized polymer have no cytotoxicity. The entrapment efficiency ranged from 55.24 ± 1.35% to 73.21 ± 1.83%. A nonlinear correlation was observed between independent and dependent variables, as confirmed by multivariate analysis of variance, surface regression, and the correlation report. The prepared formulations were able to release drug up to 12 h. The regression coefficient easily predicted that most of the formulations followed Baker-Lonsdale drug release kinetics.
Collapse
Affiliation(s)
- Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Neerupma Dhiman
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| |
Collapse
|
30
|
Bao L, Bo S, Bu R, Wu S, Bao L, Ochir S. Structural characteristics and antioxidant activities of a novel polysaccharide from Euphorbia himalayensis root. Fitoterapia 2024; 176:106009. [PMID: 38759735 DOI: 10.1016/j.fitote.2024.106009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Euphorbia himalayensis Boiss. is an alpine member of the Euphorbiaceae family. Its dried roots have been used to treat digestive problems and chest congestion in traditional Tibetan and Mongolian medicine. Despite thousands of years of use in medicine, the bioactive compounds of the root remain unknown. Herein, we isolated a novel aqueous-soluble polysaccharide (EHP2) from the E. himalayensis root and determined its structural characteristics via high-performance gel permeation chromatography, Fourier-transform infrared spectroscopy, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectrometry. The homogeneous molecular weight of EHP2 was 23.6 kDa with narrow polydisperity (Mw/Mn = 1.4), and EHP2 mainly comprised of glucose (86.4%), galactose (11.9%) and mannose (1.7%). The major backbone of EHP2 was →4)-α-D-GalAp-(1 → 4)-α-D-Glcp-(1 → and the branch chain was α-D-Glcp-(1→. The antioxidant activity of the EHP2 was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion radical scavenging assays, and antioxidant enzyme activity (SOD, GSH and MDA) was determined in human umbilical vein endothelial cells (HUVECs). The EHP2 demonstrated lower potential scavenging effects on DPPH and superoxide free radical scavenger than ascorbic acid, and in HUVECs, it led to increased SOD and GSH activities and decreased MDA levels. This study is the first to describe an E. himalayensis polysaccharide compound with potential antioxidant activity.
Collapse
Affiliation(s)
- Lechaolu Bao
- Medical Innovation Center for Nationalities, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, Inner Mongolia 010110, PR China
| | - Surina Bo
- College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, Inner Mongolia 010110, PR China
| | - Ren Bu
- College of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, Inner Mongolia 010110, PR China
| | - Siqinbilige Wu
- Medical Innovation Center for Nationalities, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, Inner Mongolia 010110, PR China
| | - Liang Bao
- Medical Innovation Center for Nationalities, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, Inner Mongolia 010110, PR China.
| | - Sarangowa Ochir
- Medical Innovation Center for Nationalities, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, Inner Mongolia 010110, PR China; Tasmanian Institute of Agriculture, University of Tasmania, 16-20 Mooreville Road, Burnie, Tasmania 7320, Australia.
| |
Collapse
|
31
|
Guo Q, Zhang M, Mujumdar AS. Progress of plant-derived non-starch polysaccharides and their challenges and applications in future foods. Compr Rev Food Sci Food Saf 2024; 23:e13361. [PMID: 39031723 DOI: 10.1111/1541-4337.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 07/22/2024]
Abstract
The development of future food is devoted not only to obtaining a sustainable food supply but also to providing high-quality foods for humans. Plant-derived non-starch polysaccharides (PNPs) are widely available, biocompatible, and nontoxic and have been largely applied to the food industry owing to their mechanical properties and biological activities. PNPs are considered excellent biomaterials and food ingredients contributing to future food development. However, a comprehensive review of the potential applications of PNPs in future food has not been reported. This review summarized the physicochemical and biological activities of PNPs and then discussed the structure-activity relationships of PNPs. Latest studies of PNPs on future foods including cell-cultured meat, food for special medical purposes (FSMPs), and three-dimensional-printed foods were reviewed. The challenges and prospects of PNPs applied to future food were critically proposed. PNPs with strong thermal stability are considered good thickeners, emulsifiers, and gelatinizers that greatly improve the processing adaptability of foods. The mechanical properties of PNPs and decellularized plant-based PNPs make them desirable scaffolds for cultured meat manufacturing. In addition, the biological activities of PNPs exhibit multiple health-promoting effects; therefore, PNPs can act as food ingredients producing FSMP to promote human health. Three-dimensional printing technology enhances food structures and biological activities of functional foods, which is in favor of expanding the application scopes of PNPs in future food. PNPs are promising in future food manufacturing, and more efforts need to be made to realize their commercial applications.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| |
Collapse
|
32
|
Sun M, Zhang Y, Gao W, He Y, Wang Y, Sun Y, Kuang H. Polysaccharides from Porphyra haitanensis: A Review of Their Extraction, Modification, Structures, and Bioactivities. Molecules 2024; 29:3105. [PMID: 38999057 PMCID: PMC11243187 DOI: 10.3390/molecules29133105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Porphyra haitanensis (P. haitanensis), an important food source for coastal residents in China, has a long history of medicinal and edible value. P. haitanensis polysaccharides are some of the main active ingredients in P. haitanensis. It is worth noting that P. haitanensis polysaccharides have a surprising and satisfactory biological activity, which explains the various benefits of P. haitanensis to human health, such as anti-oxidation, immune regulation, anti-allergy, and anticancer properties. Hence, a systematic review aimed at comprehensively summarizing the recent research advances in P. haitanensis polysaccharides is necessary for promoting their better understanding. In this review, we systematically and comprehensively summarize the research progress on the extraction, purification, structural characterization, modification, and biological activity of P. haitanensis polysaccharides and address the shortcomings of the published research and suggest area of focus for future research, providing a new reference for the exploitation of polysaccharides from P. haitanensis in the fields of medicine and functional foods.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China; (M.S.); (Y.Z.); (W.G.); (Y.H.); (Y.W.)
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China; (M.S.); (Y.Z.); (W.G.); (Y.H.); (Y.W.)
| |
Collapse
|
33
|
Chen N, Jiang T, Xu J, Xi W, Shang E, Xiao P, Duan JA. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated. Int J Biol Macromol 2024; 270:132391. [PMID: 38761914 DOI: 10.1016/j.ijbiomac.2024.132391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
34
|
Caichiolo M, Zampieri RM, Adessi A, Ciani M, Caldara F, Dalla Valle L, La Rocca N. Microbial Polysaccharides Extracted from Different Mature Muds of the Euganean Thermal District Show Similar Anti-Inflammatory Activity In Vivo. Int J Mol Sci 2024; 25:4999. [PMID: 38732217 PMCID: PMC11084611 DOI: 10.3390/ijms25094999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The Euganean Thermal District, situated in North-East Italy, is one of Europe's largest and oldest thermal centres. The topical application of its therapeutic thermal muds is recognised by the Italian Health System as a beneficial treatment for patients suffering from arthro-rheumatic diseases. Polysaccharides produced by the mud microbiota have been recently identified as anti-inflammatory bioactive molecules. In this paper we analysed the efficacy of Microbial-Polysaccharides (M-PS) derived from mature muds obtained at different maturation temperatures, both within and outside the codified traditional mud maturation range. M-PSs were extracted from six mature muds produced by five spas of the Euganean Thermal District and investigated for their chemical properties, monosaccharide composition and in vivo anti-inflammatory potential, using the zebrafish model organism. Additionally, mature muds were characterized for their microbiota composition using Next-Generation Sequencing. The results showed that all M-PSs exhibit similar anti-inflammatory potential, referable to their comparable chemical composition. This consistency was observed despite changes in cyanobacteria populations, suggesting a possible role of the entire microbial community in shaping the properties of these biomolecules. These findings highlight the importance of scientific research in untangling the origins of the therapeutic efficacy of Euganean Thermal muds in the treatment of chronic inflammatory conditions.
Collapse
Affiliation(s)
- Micol Caichiolo
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (M.C.); (R.M.Z.); (N.L.R.)
| | - Raffaella Margherita Zampieri
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (M.C.); (R.M.Z.); (N.L.R.)
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019 Firenze, Italy
| | - Alessandra Adessi
- Department of Agriculture, Food, Environment and Forest (DAGRI), University of Florence, Via Maragliano 77, 50144 Firenze, Italy; (A.A.); (M.C.)
| | - Matilde Ciani
- Department of Agriculture, Food, Environment and Forest (DAGRI), University of Florence, Via Maragliano 77, 50144 Firenze, Italy; (A.A.); (M.C.)
| | - Fabrizio Caldara
- Pietro D’Abano Thermal Studies Center, Via Jappelli 5, 35031 Padova, Italy;
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (M.C.); (R.M.Z.); (N.L.R.)
| | - Nicoletta La Rocca
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (M.C.); (R.M.Z.); (N.L.R.)
| |
Collapse
|
35
|
Wang J, Liao E, Ren Z, Wang Q, Xu Z, Wu S, Yu C, Yin Y. Extraction and In Vitro Skincare Effect Assessment of Polysaccharides Extract from the Roots of Abelmoschus manihot (L.). Molecules 2024; 29:2109. [PMID: 38731598 PMCID: PMC11085328 DOI: 10.3390/molecules29092109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Obtaining high-added value compounds from agricultural waste receives increasing attention, as it can both improve resource utilization efficiency and reduce waste generation. In this study, polysaccharides are extracted from the discarded roots of Abelmoschus manihot (L.) by the high-efficiency ultrasound-assisted extraction (UAE). The optimized condition was determined as solid-liquid ratio SL ratio = 1:20, temperature T = 30 °C and time T = 40 min, achieving an extraction yield of 13.41%. Composition analysis revealed that glucose (Glc, 44.65%), rhamnose (Rha, 26.30%), galacturonic acid (GalA, 12.50%) and galactose (Gal, 9.86%) are the major monosaccharides of the extract. The extract showed a low degree of esterification (DE) value of 40.95%, and its Fourier-transform infrared (FT-IR) spectrum exhibited several characteristic peaks of polysaccharides. Inspired by the wide cosmetic applications of polysaccharides, the skincare effect of the extract was evaluated via the moisture retention, total phenolic content (TPC) quantification, 2,2-Diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging activity, anti-hyaluronidase and anti-elastase activity experiments. The extract solutions demonstrated a 48 h moisture retention rate of 10.75%, which is superior to that of commercially available moisturizer hyaluronic acid (HA). Moreover, both the TPC value of 16.16 mg GAE/g (dw) and DPPH-free radical scavenging activity of 89.20% at the concentration of 2 mg/mL indicated the strong anti-oxidant properties of the extract. Furthermore, the anti-hyaluronidase activity and moderate anti-elastase activity were determined as 72.16% and 42.02%, respectively. In general, in vitro skincare effect experiments suggest moisturizing, anti-oxidant, anti-radical and anti-aging activities of the A. manihot root extract, indicating its potential applications in the cosmetic industry.
Collapse
Affiliation(s)
- Junjie Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Enhui Liao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| | - Zixuan Ren
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| | - Qiong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| | - Zenglai Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| | - Shufang Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Chaoguang Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| | - Yunlong Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.W.); (E.L.); (Z.R.); (Z.X.); (C.Y.)
| |
Collapse
|
36
|
Alugoju P, Tencomnao T. Effect of levan polysaccharide on chronological aging in the yeast Saccharomyces cerevisiae. Int J Biol Macromol 2024; 266:131307. [PMID: 38574907 DOI: 10.1016/j.ijbiomac.2024.131307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Levan is a fructose-based biopolymer with diverse applications in the medicinal, pharmaceutical, and food industries. However, despite its extensive biological and pharmacological actions, including antioxidant, anti-inflammatory, and antidiabetic properties, research on its anti-aging potential is limited. This study explored levan's impact on the chronological lifespan (CLS) of yeast Saccharomyces cerevisiae for the first time. The results show that levan treatment significantly extended the CLS of wild-type (WT) yeast by preventing the accumulation of oxidative stress markers (reactive oxygen species, malondialdehyde, and protein carbonyl content) and ameliorating apoptotic features such as reduced mitochondrial membrane potential, loss of plasma membrane integrity, and externalization of phosphatidylserine. By day 40 of the CLS, a significant increase in yeast viability of 6.8 % (p < 0.01), 11.9 % (p < 0.01), and 20.8 % (p < 0.01) was observed at 0.25, 0.5, and 1 mg/mL of levan concentrations, respectively, compared to control (0 %). This study's results indicate that levan treatment substantially modulates the expression of genes involved in the TORC1/Sch9 pathway. Moreover, levan treatment significantly extended the CLS of yeast antioxidant-deficient mutant sod2Δ and antiapoptotic gene-deficient mutant pep4Δ. Levan also extended the CLS of signaling pathway gene-deficient mutants such as pkh2Δ, rim15Δ, atg1, and ras2Δ, while not affecting the CLS of tor1Δ and sch9Δ.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
37
|
Alharbi NK, Azeez ZF, Alhussain HM, Shahlol AMA, Albureikan MOI, Elsehrawy MG, Aloraini GS, El-Nablaway M, Khatrawi EM, Ghareeb A. Tapping the biosynthetic potential of marine Bacillus licheniformis LHG166, a prolific sulphated exopolysaccharide producer: structural insights, bio-prospecting its antioxidant, antifungal, antibacterial and anti-biofilm potency as a novel anti-infective lead. Front Microbiol 2024; 15:1385493. [PMID: 38659983 PMCID: PMC11039919 DOI: 10.3389/fmicb.2024.1385493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
The escalating global threat of antimicrobial resistance necessitates prospecting uncharted microbial biodiversity for novel therapeutic leads. This study mines the promising chemical richness of Bacillus licheniformis LHG166, a prolific exopolysaccharide (EPSR2-7.22 g/L). It comprised 5 different monosaccharides with 48.11% uronic acid, 17.40% sulfate groups, and 6.09% N-acetyl glucosamine residues. EPSR2 displayed potent antioxidant activity in DPPH and ABTS+, TAC and FRAP assays. Of all the fungi tested, the yeast Candida albicans displayed the highest susceptibility and antibiofilm inhibition. The fungi Aspergillus niger and Penicillium glabrum showed moderate EPSR2 susceptibility. In contrast, the fungi Mucor circinelloides and Trichoderma harzianum were resistant. Among G+ve tested bacteria, Enterococcus faecalis was the most susceptible, while Salmonella typhi was the most sensitive to G-ve pathogens. Encouragingly, EPSR2 predominantly demonstrated bactericidal effects against both bacterial classes based on MBC/MIC of either 1 or 2 superior Gentamicin. At 75% of MBC, EPSR2 displayed the highest anti-biofilm activity of 88.30% against B. subtilis, while for G-ve antibiofilm inhibition, At 75% of MBC, EPSR2 displayed the highest anti-biofilm activity of 96.63% against Escherichia coli, Even at the lowest dose of 25% MBC, EPSR2 reduced biofilm formation by 84.13% in E. coli, 61.46% in B. subtilis. The microbial metabolite EPSR2 from Bacillus licheniformis LHG166 shows promise as an eco-friendly natural antibiotic alternative for treating infections and oxidative stress.
Collapse
Affiliation(s)
- Nada K. Alharbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | - Aisha M. A. Shahlol
- Department of Medical Laboratory Technology, Faculty of Medical Technology, Wadi-Al-Shatii University, Brack, Libya
| | - Mona Othman I. Albureikan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Gamal Elsehrawy
- College of Nursing, Prince Sattam Bin Abdelaziz University, Al-Kharj, Saudi Arabia
- Faculty of Nursing, Port Said University, Port Said, Egypt
| | - Ghfren S. Aloraini
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Elham Mohammed Khatrawi
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
38
|
Tian J, Zhang Z, Shang Y, Zheng Y. Extraction, structure and antioxidant activity of the polysaccharides from morels (Morchella spp.): A review. Int J Biol Macromol 2024; 264:130656. [PMID: 38453116 DOI: 10.1016/j.ijbiomac.2024.130656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Morels (Morchella spp.), which are cultivated only in a few regions of the world, are edible mushrooms known for their various properties including antioxidation, immune regulation, antiinflammation, and antitumor effects. Polysaccharides from Morchella are principally responsible for its antioxidant activity. This paper reviews the extraction, purification, structural analysis and antioxidant activity of Morchella polysaccharides (MPs), providing updated research progress. Meanwhile, the structural-property relationships of MPs were further discussed. In addition, based on in vitro and in vivo studies, the major factors responsible for the antioxidant activity of MPs were summarized including scavenging free radicals, reduction capacity, inhibitory lipid peroxidation activity, regulating the signal transduction pathway, reducing the production of ROS and NO, etc. Finally, we hope that our research can provide a reference for further research and development of MPs.
Collapse
Affiliation(s)
- Jinfeng Tian
- College of Basic Medicine, Panzhihua University, Panzhihua 617000, PR China
| | - Zhe Zhang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Yuanhong Shang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China.
| | - Yi Zheng
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| |
Collapse
|
39
|
Zhou Z, Li G, Gao L, Zhou Y, Xiao Y, Bi H, Yang H. Lichen pectin-containing polysaccharide from Xanthoria elegans and its ability to effectively protect LX-2 cells from H 2O 2-induced oxidative damage. Int J Biol Macromol 2024; 265:130712. [PMID: 38471602 DOI: 10.1016/j.ijbiomac.2024.130712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Xanthoria elegans, a drought-tolerant lichen, is the original plant of the traditional Chinese medicine "Shihua" and effectively treats a variety of liver diseases. However, thus far, the hepatoprotective effects of polysaccharides, the most important chemical constituents of X. elegans, have not been determined. The aim of this study was to screen the polysaccharide fraction for hepatoprotective activity by using free radical scavenging assays and a H2O2-induced Lieming Xu-2 cell (LX-2) oxidative damage model and to elucidate the chemical composition of the bioactive polysaccharide fraction. In the present study, three polysaccharide fractions (XEP-50, XEP-70 and XEP-90) were obtained from X. elegans by hot-water extraction, DEAE-cellulose anion exchange chromatography separation and ethanol gradient precipitation. Among the three polysaccharide fractions, XEP-70 exhibited the best antioxidant activity in free radical scavenging capacity and reducing power assays. Structural studies showed that XEP-70 was a pectin-containing heteropolysaccharide fraction that was composed mainly of (1 → 4)-linked and (1 → 4,6)-linked α-D-Glcp, (1 → 4)-linked α-D-GalpA, (1 → 2)-linked, (1 → 6)-linked and (1 → 2,6)-linked α-D-Manp, and (1 → 6)-linked and (1 → 2,6)-linked β-D-Galf. Furthermore, XEP-70 exhibited effectively protect LX-2 cells against H2O2-induced oxidative damage by enhancing cellular antioxidant capacity by activating the Nrf2/Keap1/ARE signaling pathway. Thus, XEP-70 has good potential to protect hepatic stellate cells against oxidative damage.
Collapse
Affiliation(s)
- Zheng Zhou
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Gao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yubi Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongxia Yang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
40
|
El-Aidie SAM, Khalifa GSA. Innovative applications of whey protein for sustainable dairy industry: Environmental and technological perspectives-A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13319. [PMID: 38506186 DOI: 10.1111/1541-4337.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Industrial waste management is critical to maintaining environmental sustainability. The dairy industry (DI), as one of the major consumers of freshwater, generates substantial whey dairy effluent, which is notably rich in organic matter and thus a significant pollutant. The effluent represents environmental risks due to its high biological and chemical oxygen demands. Today, stringent government regulations, environmental laws, and heightened consumer health awareness are compelling industries to responsibly manage and reuse whey waste. Therefore, this study investigates sustainable solutions for efficiently utilizing DI waste. Employing a systematic review approach, the research reveals that innovative technologies enable the creation of renewable, high-quality, value-added food products from dairy byproducts. These innovations offer promising sustainable waste management strategies for the dairy sector, aligning with economic interests. The main objectives of the study deal with, (a) assessing the environmental impact of dairy sector waste, (b) exploring the multifaceted nutritional and health benefits inherent in cheese whey, and (c) investigating diverse biotechnological approaches to fashion value-added, eco-friendly dairy whey-based products for potential integration into various food products, and thus fostering economic sustainability. Finally, the implications of this work span theoretical considerations, practical applications, and outline future research pathways crucial for advancing the sustainable management of dairy waste.
Collapse
Affiliation(s)
- Safaa A M El-Aidie
- Dairy Technology Department, Animal Production Research Institute, Agricultural Research Centre, Giza, Egypt
| | | |
Collapse
|
41
|
Mohamadzadeh M, Fazeli A, Shojaosadati SA. Polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics to improve stability and viability in the gastrointestinal tract: A review. Int J Biol Macromol 2024; 259:129287. [PMID: 38211924 DOI: 10.1016/j.ijbiomac.2024.129287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Probiotics have recently received significant attention due to their various benefits, such as the modulation of gut flora, reduction of blood sugar and insulin resistance, prevention and treatment of digestive disorders, and strengthening of the immune system. One of the major issues concerning probiotics is the maintenance of their viability in the presence of digestive conditions and extended shelf life during storage. To address this concern, numerous techniques have been explored to achieve success. Among these methods, the microencapsulation of probiotics has been proposed as the most effective way to overcome this challenge. The combination of nanomaterials with biopolymer coating is considered a novel approach to improve its viability and effective delivery. The use of polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics has emerged as an efficient and promising approach for maintaining cell viability and targeted delivery. This review article aims to investigate the use of different bionanocomposites in microencapsulation of probiotics and their effect on cell survival in long-term storage and harsh conditions in the gastrointestinal tract.
Collapse
Affiliation(s)
| | - Ahmad Fazeli
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
42
|
Xu Y, Yang J, Liu J, Tang Y, Li X, Ye D, He J, Tang H, Zhang Y. Effects of synergistic Fenton-microwave treatment on the antioxidant stress of soluble polysaccharides and the physicochemical properties of insoluble polysaccharides from Gelidium amansii. Int J Biol Macromol 2024; 254:128366. [PMID: 37995786 DOI: 10.1016/j.ijbiomac.2023.128366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
In this study, we individually obtained crude Gelidium amansii water-soluble polysaccharides and water-insoluble polysaccharides (GAIPs) using an improved Fenton-microwave synergistic treatment. The former were purified by alcohol precipitation and deproteinization to obtain Gelidium amansii water-soluble polysaccharides (GASPs), and their effects on the oxidative stress resistance of Caenorhabditis elegans were investigated. GAIPs were studied for their physicochemical properties, including hydration characteristics, adsorption, and cation-exchange capacity. The results showed that compared with the negative control, 1.0 mg/mL GASPs significantly upregulated (>1.70-fold) the expression of antioxidant-related genes, such as daf-16, sir-2.1, and skn-1 (p < 0.05), which prolonged the mean survival time and increased the mean number of head bobbing (p < 0.05). The hydration characteristics and oil-holding capacity of GAIPs were lower than those of G. amansii powder (GAP) and G. amansii filtrate residue (GADP). However, the adsorption capacity of GAIPs for cholesterol (pH 7.0) and sodium cholate and the cation-exchange capacity were significantly better than those of GAP (5.17, 13.16 & 1.63 times, p < 0.05) and GADP (8.42, 6.39, & 2.05 times, p < 0.05). To conclude, the synergistic Fenton-microwave treatment contributed to the increase in the oxidative stress resistance of GASPs and improved the adsorption capacity and cation-exchange capacity of GAIPs.
Collapse
Affiliation(s)
- Yuting Xu
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China
| | - Jun Yang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China
| | - Jiaqi Liu
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China
| | - Yuxuan Tang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China
| | - Xiangyu Li
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China
| | - Deting Ye
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China
| | - Jiyuan He
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China
| | - Huinan Tang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China
| | - Yongjun Zhang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, PR China.
| |
Collapse
|
43
|
Liang L, Yue Y, Zhong L, Liang Y, Shi R, Luo R, Zhao M, Cao X, Yang M, Du J, Shen X, Wang Y, Shu Z. Anti-aging activities of Rehmannia glutinosa Libosch. crude polysaccharide in Caenorhabditis elegans based on gut microbiota and metabonomic analysis. Int J Biol Macromol 2023; 253:127647. [PMID: 37884235 DOI: 10.1016/j.ijbiomac.2023.127647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Aging is a degenerative progress, accompanied by oxidative damage, metabolic disorders and intestinal flora imbalance. Natural macromolecular polysaccharides have shown excellent anti-aging and antioxidant properties, while maintaining metabolic and intestinal homeostasis. The molecular weight, monosaccharide composition, infrared spectrum and other chemical structure information of four Rehmannia glutinosa polysaccharides (RG50, RG70, RG90, RGB) were determined, and their free radical scavenging ability was assessed. Molecular weight and monosaccharide composition analysis exhibited that RG50 (2-72 kDa), RG70 (3.2-37 kDa), RG70 (3-42 kDa), and RGB (3.1-180 kDa) were heteropolysaccharide with significant different monosaccharide species and molar ratios. We found that RG70 had the best antioxidant activity in vitro and RG70 could enhance the antioxidant enzyme system of Caenorhabditis elegans, diminished lipofuscin and reactive oxygen species levels, up-regulate the expression of daf-16, skn-1 and their downstream genes, and down-regulate the expression of age-1. Metabolomics results showed that RG70 mainly influenced glycine, serine and threonine metabolism and citric acid cycle. 16S rRNA sequencing showed that RG70 significantly up-regulated the abundance of Lachnospiraceae_NK4B4_group, which were positively correlated with amino acid metabolism and energy cycling. These results suggest that RG70 may delay aging by enhancing antioxidant effects, affecting probiotics and regulating key metabolic pathways.
Collapse
Affiliation(s)
- Lanyuan Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yimin Yue
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyang Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yefang Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruixiang Shi
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rongfeng Luo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mantong Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Cao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengru Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieyong Du
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuejuan Shen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zunpeng Shu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
44
|
Wu Y, Li BH, Chen MM, Liu B, Jiang LL. Research progress on ginger polysaccharides: extraction, purification and structure-bioactivity relationship. Food Funct 2023; 14:10651-10666. [PMID: 37975522 DOI: 10.1039/d3fo03552b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Ginger is a widespread source of herbal medicine and traditional spices. Among its various bioactive components, ginger polysaccharides (GPs) have attracted the attention of researchers worldwide because of their significant bioactivity. Recent studies have demonstrated the antioxidant, antitumour, anti-inflammatory, immunomodulatory, hypoglycaemic, cough suppressant and thrombotic anticoagulant effects of GPs. However, the structure-bioactivity relationship of GPs has yet to be comprehensively investigated. This review aims to explore all the current published studies on GPs. It further examines various aspects, including the extraction and purification methods, structure, bioactivity, application and structure-bioactivity relationship of GPs. Thus, this review intends to provide a reference for future GP-related research and development.
Collapse
Affiliation(s)
- Yuan Wu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
| | - Bing-Hang Li
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
| | - Miao-Miao Chen
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
| | - Bing Liu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
| | - Liang-Liang Jiang
- School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
45
|
Punthi F, Yudhistira B, Gavahian M, Chang CK, Husnayain N, Hou CY, Yu CC, Hsieh CW. Optimization of Plasma Activated Water Extraction of Pleurotus ostreatus Polysaccharides on Its Physiochemical and Biological Activity Using Response Surface Methodology. Foods 2023; 12:4347. [PMID: 38231788 DOI: 10.3390/foods12234347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
This study focused on optimizing the extraction of P. ostreatus polysaccharides (POPs) using plasma-activated water (PAW). A single factor and response surface methodology were employed to optimize and evaluate the polysaccharide yield, physiochemical characteristics, and biological activities of POPs. The observed findings were compared to those obtained by the conventional hot water extraction method (100 °C, 3 h), as the control treatment. The optimal extraction conditions were obtained at 700 W PAW power, 58 s treatment time, 1:19 sample-to-water ratio, and 15 L/min gas flow rate. In these conditions, the PAW-treated samples experienced changes in surface morphology due to plasma etching, leading to a 288% increase in the polysaccharide yield (11.67%) compared to the control sample (3.01%). Furthermore, the PAW-treated sample exhibited superior performance in terms of biological activities, namely phenolic compounds (53.79 mg GAE/100 g), DPPH scavenging activity (72.77%), and OH scavenging activity (65.03%), which were 29%, 18%, and 38% higher than those of control sample, respectively. The results highlighted the importance of process optimization and provided new evidence for PAW as an alternative approach to enhance the extraction efficiency of POPs, a novel source of natural antioxidants which enables diverse applications in the food industry.
Collapse
Affiliation(s)
- Fuangfah Punthi
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Bara Yudhistira
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan
- Department of Food Science and Technology, Sebelas Maret University, Surakarta City 57126, Indonesia
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung City 91201, Taiwan
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Naila Husnayain
- International Master Program of Agriculture, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 40402, Taiwan
| |
Collapse
|
46
|
Zou Q, Chen Y, Qin H, Tang R, Han T, Guo Z, Zhao J, Xu D. The role and mechanism of TCM in the prevention and treatment of infectious diseases. Front Microbiol 2023; 14:1286364. [PMID: 38033575 PMCID: PMC10682724 DOI: 10.3389/fmicb.2023.1286364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The constant presence of infectious diseases poses an everlasting threat to the entire world. In recent years, there has been an increased attention toward the application of traditional Chinese medicine (TCM) in the treatment of emerging infectious diseases, as it has played a significant role. The aim of this article is to provide a concise overview of the roles and mechanisms of TCM in treating infectious diseases. TCM possesses the ability to modulate relevant factors, impede signaling pathways, and inhibit microbial growth, thereby exhibiting potent antiviral, antibacterial, and anti-inflammatory effects that demonstrate remarkable efficacy against viral and bacterial infections. This article concludes that the comprehensive regulatory features of Chinese herbal medicines, with their various components, targets, and pathways, result in synergistic effects. The significance of Chinese herbal medicines in the context of infectious diseases should not be underestimated; however, it is crucial to also acknowledge their underutilization. This paper presents constructive suggestions regarding the challenges and opportunities faced by Chinese medicines. Particularly, it emphasizes the effectiveness and characteristics of Chinese medicines in the treatment of infectious diseases, specifying how these medicines' active substances can be utilized to target infectious diseases. This perspective is advantageous in facilitating researchers' pharmacological studies on Chinese medicines, focusing on the specific points of action. The mechanism of action of Chinese herbal medicines in the treatment of infectious diseases is comprehensively elucidated in this paper, providing compelling evidence for the superior treatment of infectious diseases through Chinese medicine. This information is favorable for advancing the development of TCM and its potential applications in the field of infectious diseases.
Collapse
Affiliation(s)
- Qifei Zou
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yitong Chen
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huanxin Qin
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui Tang
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Taojian Han
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ziyi Guo
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Delin Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
47
|
Luo J, Lu Q, Sun B, Shao N, Huang W, Hu G, Cai B, Si W. Chrysophanol improves memory impairment and cell injury by reducing the level of ferroptosis in A β25-35 treated rat and PC12 cells. 3 Biotech 2023; 13:348. [PMID: 37780805 PMCID: PMC10539257 DOI: 10.1007/s13205-023-03769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related chronic and neurodegenerative disease that has become a global health problem. AD pathogenesis is complex, and the clinical efficacy of commonly used anti-AD drugs is suboptimal. Recent research has revealed a close association between AD-induced damage and the activation of ferroptosis signaling pathways. Chrysophanol (CHR) the principal medicinal component of Rhubarb, has been reported to have anti-AD effects and can reduce ROS levels in AD-damaged models. AD has been linked to the activation of ferroptosis signaling pathways, which has an important feature of higher levels of reactive oxygen species (ROS). Therefore, the present study explored whether CHR had an anti-AD effect by regulating the ferroptosis levels in AD injury models. Morris water maze, novel object recognition test, Y-maze test, Hematoxylin-eosin (H&E) staining, western blotting, ROS measurement, GPx activity measurement, LPO measurement, transmission electron microscopy, live/dead cell staining were used to investigate the changes in spatial memory level and ferroptosis level in AD model, and the intervention effect of CHR. CHR improved the spatial memory level of AD rat models, reduced the level of hippocampal neuron damage, and improved the survival rate of PC12 cells damaged by β-amyloid (Aβ). Meanwhile, CHR increased glutathione peroxidase-4 (GPX4) protein expression, GPx activity, and GSH, decreased ROS and LPO levels in AD rat models and Aβ-damaged PC12 cells, and improved mitochondrial pathological damage. Our findings suggest that CHR may play a protective role in AD injury by lowering ferroptosis levels, which may provide a potential pathway for developing drugs for AD. However, the mechanism of CHR's role requires further investigation.
Collapse
Affiliation(s)
- Jing Luo
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Qingyang Lu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Bin Sun
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Nan Shao
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Wei Huang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Guanhua Hu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012 China
| | - Wenwen Si
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012 China
| |
Collapse
|
48
|
Wang Y, Wei S, Lian H, Tong L, Yang L, Ren B, Guo D, Huang H. A Neutral Polysaccharide from Spores of Ophiocordyceps gracilis Regulates Oxidative Stress via NRF2/FNIP1 Pathway. Int J Mol Sci 2023; 24:14721. [PMID: 37834168 PMCID: PMC10572349 DOI: 10.3390/ijms241914721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Ophiocordyceps gracilis (O. gracilis) is a parasitic fungus used in traditional Chinese medicine and functional foods. In this study, a neutral heteropolysaccharide (GSP-1a) was isolated from spores of O. gracilis, and its structure and antioxidant capacities were investigated. GSP-1a was found to have a molecular weight of 72.8 kDa and primarily consisted of mannose (42.28%), galactose (35.7%), and glucose (22.02%). The backbone of GSP-1a was composed of various sugar residues, including →6)-α-D-Manp-(1→, →2,6)-α-D-Manp-(1→, →2,4,6)-α-D-Manp-(1→, →6)-α-D-Glcp-(1→, and →3,6)-α-D-Glcp-(1→, with some branches consisting of →6)-α-D-Manp-(1→ and α-D-Gal-(1→. In vitro, antioxidant activity assays demonstrated that GSP-1a exhibited scavenging effects on hydroxyl radical (•OH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS•+), and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•). Moreover, GSP-1a was found to alleviate H2O2-induced oxidative stress in HepG2 cells by reducing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activities of superoxide dismutase (SOD). Furthermore, GSP-1a upregulated the mRNA expression of antioxidant enzymes such as Ho-1, Gclm, and Nqo1, and regulated the NRF2/KEAP1 and FNIP1/FEM1B pathways. The findings elucidated the structural types of GSP-1a and provided a reliable theoretical basis for its usage as a natural antioxidant in functional foods or medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongsheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO 1, Wen Yuan Road, Nanjing 210023, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO 1, Wen Yuan Road, Nanjing 210023, China
| |
Collapse
|
49
|
Naveen KV, Sathiyaseelan A, Mandal S, Han K, Wang MH. Unveiling the Structural Characteristics and Bioactivities of the Polysaccharides Extracted from Endophytic Penicillium sp. Molecules 2023; 28:5788. [PMID: 37570759 PMCID: PMC10421393 DOI: 10.3390/molecules28155788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Polysaccharides are abundantly present in fungi and are gaining recognition for their exceptional bioactivities. Hence, the present study aimed to extract intracellular polysaccharides (IPS-1 and IPS-2) from the endophytic Penicillium radiatolobatum and compare their physicochemical and bioactive attributes. The monosaccharide composition analysis revealed the existence of galactose, glucose, and mannose in both the IPS, while a trace amount of xylose was found in IPS-1. Further, FT-IR, 1H NMR, and 13C NMR analysis suggested that the IPS-2 was mainly composed of the β-(1→4)-D-Galactose and β-(1→4)-D-Glucose as the main chain, with the β-(1→6)-D-mannose as branched chains. Compared to IPS-1, the IPS-2 showed higher antioxidant activities with an IC50 value of 108 ± 2.5 μg/mL, 272 ± 4.0 μg/mL, and 760 ± 5.0 μg/mL for ABTS+ scavenging, DPPH radical scavenging, and ferric reducing power, respectively. In addition, the IPS-2 inhibited the viability of prostate cancer (PC-3) cells (IC50; 435 ± 3.0 μg/mL) via apoptosis associated with mitochondrial membrane potential collapse and altered morphological features, which was revealed by cellular staining and flow cytometric analysis. Moreover, no apparent cytotoxic effects were seen in IPS-2-treated (1000 μg/mL) non-cancerous cells (HEK-293 and NIH3T3). Overall, the findings of this study suggest that P. radiatolobatum could be a potent source of polysaccharides with promising antioxidant and anticancer activity.
Collapse
Affiliation(s)
- Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (K.V.N.); (A.S.); (K.H.)
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (K.V.N.); (A.S.); (K.H.)
| | - Sumana Mandal
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Kiseok Han
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (K.V.N.); (A.S.); (K.H.)
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (K.V.N.); (A.S.); (K.H.)
| |
Collapse
|
50
|
Alzahrani FA, Khan MI, Kameli N, Alsahafi E, Riza YM. Plant-Derived Extracellular Vesicles and Their Exciting Potential as the Future of Next-Generation Drug Delivery. Biomolecules 2023; 13:biom13050839. [PMID: 37238708 DOI: 10.3390/biom13050839] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Plant cells release tiny membranous vesicles called extracellular vesicles (EVs), which are rich in lipids, proteins, nucleic acids, and pharmacologically active compounds. These plant-derived EVs (PDEVs) are safe and easily extractable and have been shown to have therapeutic effects against inflammation, cancer, bacteria, and aging. They have shown promise in preventing or treating colitis, cancer, alcoholic liver disease, and even COVID-19. PDEVs can also be used as natural carriers for small-molecule drugs and nucleic acids through various administration routes such as oral, transdermal, or injection. The unique advantages of PDEVs make them highly competitive in clinical applications and preventive healthcare products in the future. This review covers the latest methods for isolating and characterizing PDEVs, their applications in disease prevention and treatment, and their potential as a new drug carrier, with special attention to their commercial viability and toxicological profile, as the future of nanomedicine therapeutics. This review champions the formation of a new task force specializing in PDEVs to address a global need for rigor and standardization in PDEV research.
Collapse
Affiliation(s)
- Faisal A Alzahrani
- Department of Biochemistry, Faculty of science, Embryonic Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nader Kameli
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 82621, Saudi Arabia
- Medical Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Elham Alsahafi
- Department of Basic and Clinical Sciences, Faculty of Dentistry, Umm AlQura University, P.O. Box 715, Mecca 21955, Saudi Arabia
| | - Yasir Mohamed Riza
- Department of Biochemistry, Faculty of science, Embryonic Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|