1
|
Vishwanath S, Carnell GW, Ferrari M, Asbach B, Billmeier M, George C, Sans MS, Nadesalingam A, Huang CQ, Paloniemi M, Stewart H, Chan A, Wells DA, Neckermann P, Peterhoff D, Einhauser S, Cantoni D, Neto MM, Jordan I, Sandig V, Tonks P, Temperton N, Frost S, Sohr K, Ballesteros MTL, Arbabi F, Geiger J, Dohmen C, Plank C, Kinsley R, Wagner R, Heeney JL. A computationally designed antigen eliciting broad humoral responses against SARS-CoV-2 and related sarbecoviruses. Nat Biomed Eng 2025; 9:153-166. [PMID: 37749309 PMCID: PMC11839467 DOI: 10.1038/s41551-023-01094-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 08/23/2023] [Indexed: 09/27/2023]
Abstract
The threat of spillovers of coronaviruses associated with the severe acute respiratory syndrome (SARS) from animals to humans necessitates vaccines that offer broader protection from sarbecoviruses. By leveraging a viral-genome-informed computational method for selecting immune-optimized and structurally engineered antigens, here we show that a single antigen based on the receptor binding domain of the spike protein of sarbecoviruses elicits broad humoral responses against SARS-CoV-1, SARS-CoV-2, WIV16 and RaTG13 in mice, rabbits and guinea pigs. When administered as a DNA immunogen or by a vector based on a modified vaccinia virus Ankara, the optimized antigen induced vaccine protection from the Delta variant of SARS-CoV-2 in mice genetically engineered to express angiotensin-converting enzyme 2 and primed by a viral-vector vaccine (AZD1222) against SARS-CoV-2. A vaccine formulation incorporating mRNA coding for the optimized antigen further validated its broad immunogenicity. Vaccines that elicit broad immune responses across subgroups of coronaviruses may counteract the threat of zoonotic spillovers of betacoronaviruses.
Collapse
Affiliation(s)
- Sneha Vishwanath
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - George William Carnell
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Martina Billmeier
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Charlotte George
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Maria Suau Sans
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Angalee Nadesalingam
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Chloe Qingzhou Huang
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Minna Paloniemi
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Hazel Stewart
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrew Chan
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Patrick Neckermann
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, UK
| | - Martin Mayora Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, UK
| | | | | | - Paul Tonks
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, UK
| | - Simon Frost
- DIOSynVax Ltd, University of Cambridge, Cambridge, UK
- London School of Hygiene and Tropical Medicine, London, UK
- Microsoft Health Futures, Redmond, WA, USA
| | | | | | | | | | | | | | - Rebecca Kinsley
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- DIOSynVax Ltd, University of Cambridge, Cambridge, UK
| | - Ralf Wagner
- DIOSynVax Ltd, University of Cambridge, Cambridge, UK
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Jonathan Luke Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
- DIOSynVax Ltd, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Djaïleb A, Parker MF, Lavallée É, Stuible M, Durocher Y, Thériault M, Santerre K, Gilbert C, Boudreau D, Baz M, Masson JF, Langlois MA, Trottier S, Quaglia D, Pelletier JN. Longitudinal determination of seroprevalence and immune response to SARS-CoV-2 in a population of food and retail workers through decentralized testing and transformation of ELISA datasets. PLoS One 2024; 19:e0314499. [PMID: 39680559 DOI: 10.1371/journal.pone.0314499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Since the onset of the global COVID-19 pandemic in early 2020, numerous studies have been conducted worldwide to understand our immune response to the virus and to vaccination. This study investigates the humoral response elicited by SARS-CoV-2 infection and by vaccination in the poorly studied population of food and retail workers. These occupations were classified as essential by the Public Health Agency of Canada, potentially placing this population at greater risk of infection. Such a risk requires access to reliable and adaptable serological assays that can be rapidly deployed to guide public health strategies. Here we investigate the benefits and limitations of applying adaptable, decentralized tests for population-level immune surveillance in response to a pandemic, even before centralized testing is available. METHODS AND FINDINGS The 1.5-year study period spans from early 2021, when vaccination became available in this region, to mid-2022, following the emergence of the first Omicron variants. The cohort of 304 food and retail workers was recruited in the Québec City area. Participants attended five evenly spaced visits, providing blood samples as well as information on SARS-CoV-2 symptoms or risk factors, prior antigen or PCR test results and vaccination status, as well as work-related risk factors and protective measures. Parallel COVID-19 serological assays were performed using both a standardized chemiluminescent ELISA assay at the centralized platform operated in partnership with the Public Health Agency of Canada, and a semi-automated in-house colorimetric ELISA assay developed at our decentralized site. The YES/NO determination of SARS-CoV-2 vaccine seroconversion and/or infection events using the SARS-CoV-2 ancestral spike protein and nucleocapsid protein validated coherence of the centralized and decentralized assays. The flexibility of the decentralized assays allowed broadening the study to determine cross-reactivity of IgG directed against the spike protein of the SARS-CoV-2 Delta and Omicron VOCs, and IgM directed against the ancestral spike and nucleocapsid proteins. The nature of the data obtained in the decentralized assays allowed treatment with a recently developed mathematical transformation to obtain normal distribution, enabling ANOVA-Welsh statistical analysis. Although no significant differences were observed in humoral response as related to BMI, age, level of education, or chronic illnesses in this cohort of workers, statistically higher levels of vaccine-induced antibodies were observed for restaurant workers and hardware store workers in the early stages of the study, compared to workers in bars and grocery stores and in non-smokers versus smokers. CONCLUSIONS This work highlights the importance of developing adaptable, decentralized tests for population-level immune surveillance in response to a pandemic, even before centralized testing is available. To our knowledge, no other study has reported such an extensive longitudinal investigation during key periods of the COVID-19 pandemic in a cohort of food and retail workers to analyze two types of immunoglobulin, three epitopes and antigens to three VOC. This study will inform strategies and measures to be implemented in the event of a future pandemic.
Collapse
Affiliation(s)
- Abdelhadi Djaïleb
- Département de Chimie, Université de Montréal, Montréal, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, Canada
| | - Megan-Faye Parker
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
| | - Étienne Lavallée
- Département de Chimie, Université de Montréal, Montréal, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, Canada
| | - Matthew Stuible
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Canada
| | - Yves Durocher
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Canada
| | - Mathieu Thériault
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Kim Santerre
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Caroline Gilbert
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Denis Boudreau
- Département de Chimie, Université Laval, Québec, Canada
- Centre d'Optique, Photonique et Laser, Université Laval, Québec, Canada
| | - Mariana Baz
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Jean-Francois Masson
- Département de Chimie, Université de Montréal, Montréal, Canada
- Institut Courtois, Université de Montréal, Montréal, Canada
- Centre Québécois sur les Matériaux Fonctionnels, Regroupement Québécois sur les Matériaux de Pointe, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Montréal, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Center for Infection, Immunity and Inflammation (CI3), Ottawa, Canada
| | - Sylvie Trottier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec, Canada
| | - Daniela Quaglia
- Département de Chimie, Université de Montréal, Montréal, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
- Département de Chimie, Université du Québec à Montréal, Montréal, Canada
| | - Joelle N Pelletier
- Département de Chimie, Université de Montréal, Montréal, Canada
- PROTEO, Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Québec, Canada
- Centre en Chimie Verte et Catalyse, Université de Montréal, Montréal, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
3
|
Sharma S, Roy D, Cherian S. In-silico evaluation of the T-cell based immune response against SARS-CoV-2 omicron variants. Sci Rep 2024; 14:25413. [PMID: 39455652 PMCID: PMC11511884 DOI: 10.1038/s41598-024-75658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
During of COVID-19 pandemic, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has continuously evolved, resulting in the emergence of several new variants of concerns (VOCs) with numerous mutations. These VOCs dominate in various regions due to increased transmissibility and antibody evasion, potentially reducing vaccine effectiveness. Nonetheless, it remains uncertain whether the recent SARS-CoV-2 VOCs have the ability to circumvent the T cell immunity elicited by either COVID-19 vaccination or natural infection. To address this, we conducted in-silico analysis to examine the impact of VOC-specific mutations at the epitope level and T cell cross-reactivity with the ancestral SARS-CoV-2. According to the in-silico investigation, T cell responses triggered by immunization or prior infections still recognize the variants in spite of mutations. These variants are expected to either maintain their dominant epitope HLA patterns or bind with new HLAs, unlike the epitopes of the ancestral strain. Our findings indicate that a significant proportion of immuno-dominant CD8 + and CD4 + epitopes are conserved across all the variants, implying that existing vaccines might maintain efficacy against new variations. However, further in-vitro and in-vivo studies are needed to validate the in-silico results and fully elucidate immune sensitivities to VOCs.
Collapse
Affiliation(s)
- Shivangi Sharma
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, Pune, Maharashtra, 411001, India
| | - Diya Roy
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, Pune, Maharashtra, 411001, India
| | - Sarah Cherian
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, Pune, Maharashtra, 411001, India.
| |
Collapse
|
4
|
Seadawy MG, Marei MI, Mohanad M, Hmed AA, Sofy AR. Genome sequencing of SARS-Co-V-2 reveals mutations including F559I and V781D in S protein and LI123-124L in the nsp6 in 21K and 21L clades. Virusdisease 2024; 35:400-419. [PMID: 39464730 PMCID: PMC11502607 DOI: 10.1007/s13337-024-00876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/17/2024] [Indexed: 10/29/2024] Open
Abstract
Contagious and virulent virus variants like B.1.1.529 have complicated the 2019 global COVID-19 pandemic from Wuhan, China. Omicron, with extensive mutations and high transmissibility, is replacing Delta in some regions. Remarkably, Omicron exhibits reduced disease severity and resistance to certain vaccines and treatments. Our research sought to identify Egypt-specific variants of concern (VOCs) and their mutation patterns, aiming to provide critical insights for tailored public health strategies. We also looked at vaccine compatibility with these VOCs, as well as the efficacy of current treatments against new SARS-CoV-2 variants. We collected 103 PCR-confirmed COVID-19 cases from an Egyptian army hospital and used next-generation sequencing technology to sequence the entire viral genome. The viral genome was then assembled and reconstructed. Nextclade tools aided in clade assignment and Phylogenetic analysis, allowing classification, and understanding of these genomes' Phylogenetic relationships. Our findings reveal that the dominant VOCs in Egypt are the 21K clade, mainly Pango lineages BA.1 (34%), BA.1.1 (30.1%), and BA.1.17 (6.8%), and the 21L clade represented by Pango lineages BA.2. We also identified novel mutations, including F559I in the S protein (consistent in the 21K clade), V781D in the S protein (present in > 50% of both 21K and 21L clades), and LI123-124L in the nsp6 gene (found in both 21K and 21L clades). Finally, our research provides important insights into Egypt's evolving COVID-19 landscape, allowing for tailored responses and risk mitigation strategies for emerging variants in the region.
Collapse
Affiliation(s)
- Mohamed G. Seadawy
- Biodefense Center for Infectious and Emerging Diseases, Ministry of Defense, Cairo, Egypt
- Military Medical Academy, Cairo, Egypt
| | - Mohamed I. Marei
- Biodefense Center for Infectious and Emerging Diseases, Ministry of Defense, Cairo, Egypt
| | - Marwa Mohanad
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Ahmed A. Hmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884 Egypt
| | - Ahmed R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884 Egypt
| |
Collapse
|
5
|
Velma G, Shen Z, Holberg C, Fu J, Soleymani F, Cooper L, Ramos OL, Indukuri D, Musku SR, Rychetsky P, Slilaty S, Li Z, Ratia K, Rong L, Schenten D, Xiong R, J Thatcher GR. Non-Covalent Inhibitors of SARS-CoV-2 Papain-Like Protease (PLpro): In Vitro and In Vivo Antiviral Activity. J Med Chem 2024; 67:13681-13702. [PMID: 39102360 PMCID: PMC11345844 DOI: 10.1021/acs.jmedchem.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
The SARS-CoV-2 papain-like protease (PLpro), essential for viral processing and immune response disruption, is a promising target for treating acute infection of SARS-CoV-2. To date, there have been no reports of PLpro inhibitors with both submicromolar potency and animal model efficacy. To address the challenge of PLpro's featureless active site, a noncovalent inhibitor library with over 50 new analogs was developed, targeting the PLpro active site by modulating the BL2-loop and engaging the BL2-groove. Notably, compounds 42 and 10 exhibited strong antiviral effects and were further analyzed pharmacokinetically. 10, in particular, showed a significant lung accumulation, up to 12.9-fold greater than plasma exposure, and was effective in a mouse model of SARS-CoV-2 infection, as well as against several SARS-CoV-2 variants. These findings highlight the potential of 10 as an in vivo chemical probe for studying PLpro inhibition in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ganga
Reddy Velma
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson 85721, Arizona, United States
| | - Zhengnan Shen
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson 85721, Arizona, United States
| | - Cameron Holberg
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson 85721, Arizona, United States
| | - Jiqiang Fu
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson 85721, Arizona, United States
| | - Farinaz Soleymani
- Department
of Chemistry & Biochemistry, Colleges of Science and Medicine, University of Arizona, Tucson 85721, Arizona, United States
| | - Laura Cooper
- Department
of Microbiology, College of Medicine, University
of Illinois at Chicago (UIC), Chicago 60612, Illinois, United States
| | - Omar Lozano Ramos
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson 85721, Arizona, United States
| | - Divakar Indukuri
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson 85721, Arizona, United States
| | - Soumya Reddy Musku
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson 85721, Arizona, United States
| | - Pavel Rychetsky
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson 85721, Arizona, United States
| | - Steve Slilaty
- Sunshine
Biopharma Inc, 333 Las Olas Way, CU4 Suite 433, Fort Lauderdale 33301, Florida, United States
| | - Zuomei Li
- Sunshine
Biopharma Inc, 333 Las Olas Way, CU4 Suite 433, Fort Lauderdale 33301, Florida, United States
| | - Kiira Ratia
- Research
Resources Center, University of Illinois
at Chicago (UIC), Chicago 60612, Illinois, United States
| | - Lijun Rong
- Department
of Microbiology, College of Medicine, University
of Illinois at Chicago (UIC), Chicago 60612, Illinois, United States
| | - Dominik Schenten
- Department
of Immunology, College of Medicine, University
of Arizona, Tucson 85721, Arizona, United States
| | - Rui Xiong
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson 85721, Arizona, United States
| | - Gregory R. J Thatcher
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson 85721, Arizona, United States
- Department
of Chemistry & Biochemistry, Colleges of Science and Medicine, University of Arizona, Tucson 85721, Arizona, United States
| |
Collapse
|
6
|
Abbasian MH, Rahimian K, Mahmanzar M, Bayat S, Kuehu DL, Sisakht MM, Moradi B, Deng Y. Comparative Atlas of SARS-CoV-2 Substitution Mutations: A Focus on Iranian Strains Amidst Global Trends. Viruses 2024; 16:1331. [PMID: 39205305 PMCID: PMC11359407 DOI: 10.3390/v16081331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new emerging coronavirus that caused coronavirus disease 2019 (COVID-19). Whole-genome tracking of SARS-CoV-2 enhanced our understanding of the mechanism of the disease, control, and prevention of COVID-19. METHODS we analyzed 3368 SARS-CoV-2 protein sequences from Iran and compared them with 15.6 million global sequences in the GISAID database, using the Wuhan-Hu-1 strain as a reference. RESULTS Our investigation revealed that NSP12-P323L, ORF9c-G50N, NSP14-I42V, membrane-A63T, Q19E, and NSP3-G489S were found to be the most frequent mutations among Iranian SARS-CoV-2 sequences. Furthermore, it was observed that more than 94% of the SARS-CoV-2 genome, including NSP7, NSP8, NSP9, NSP10, NSP11, and ORF8, had no mutations when compared to the Wuhan-Hu-1 strain. Finally, our data indicated that the ORF3a-T24I, NSP3-G489S, NSP5-P132H, NSP14-I42V, envelope-T9I, nucleocapsid-D3L, membrane-Q19E, and membrane-A63T mutations might be responsible factors for the surge in the SARS-CoV-2 Omicron variant wave in Iran. CONCLUSIONS real-time genomic surveillance is crucial for detecting new SARS-CoV-2 variants, updating diagnostic tools, designing vaccines, and understanding adaptation to new environments.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran 1497716316, Iran;
| | - Karim Rahimian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14174, Iran;
| | - Mohammadamin Mahmanzar
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish 7941639982, Iran;
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Saleha Bayat
- Department of Biology & Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran;
| | - Donna Lee Kuehu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Mahsa Mollapour Sisakht
- Faculty of Pharmacy, Biotechnology Research Center, Tehran University of Medical Sciences, Tehran 1936893813, Iran;
| | - Bahman Moradi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran;
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| |
Collapse
|
7
|
Maiti AK. Progressive Evolutionary Dynamics of Gene-Specific ω Led to the Emergence of Novel SARS-CoV-2 Strains Having Super-Infectivity and Virulence with Vaccine Neutralization. Int J Mol Sci 2024; 25:6306. [PMID: 38928018 PMCID: PMC11204377 DOI: 10.3390/ijms25126306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
An estimation of the proportion of nonsynonymous to synonymous mutation (dn/ds, ω) of the SARS-CoV-2 genome would indicate the evolutionary dynamics necessary to evolve into novel strains with increased infection, virulence, and vaccine neutralization. A temporal estimation of ω of the whole genome, and all twenty-nine SARS-CoV-2 genes of major virulent strains of alpha, delta and omicron demonstrates that the SARS-CoV-2 genome originally emerged (ω ~ 0.04) with a strong purifying selection (ω < 1) and reached (ω ~ 0.85) in omicron towards diversifying selection (ω > 1). A marked increase in the ω occurred in the spike gene from alpha (ω = 0.2) to omicron (ω = 1.97). The ω of the replication machinery genes including RDRP, NSP3, NSP4, NSP7, NSP8, NSP10, NSP13, NSP14, and ORF9 are markedly increased, indicating that these genes/proteins are yet to be evolutionary stabilized and are contributing to the evolution of novel virulent strains. The delta-specific maximum increase in ω in the immunomodulatory genes of NSP8, NSP10, NSP16, ORF4, ORF5, ORF6, ORF7A, and ORF8 compared to alpha or omicron indicates delta-specific vulnerabilities for severe COVID-19 related hospitalization and death. The maximum values of ω are observed for spike (S), NSP4, ORF8 and NSP15, which indicates that the gene-specific temporal estimation of ω identifies specific genes for its super-infectivity and virulency that could be targeted for drug development.
Collapse
Affiliation(s)
- Amit K Maiti
- Department of Genetics and Genomics, Mydnavar, 28475 Greenfield Rd, Southfield, MI 48076, USA
| |
Collapse
|
8
|
Combe M, Cherif E, Deremarque T, Rivera-Ingraham G, Seck-Thiam F, Justy F, Doudou JC, Carod JF, Carage T, Procureur A, Gozlan RE. Wastewater sequencing as a powerful tool to reveal SARS-CoV-2 variant introduction and spread in French Guiana, South America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171645. [PMID: 38479523 DOI: 10.1016/j.scitotenv.2024.171645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/19/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
The origin of introduction of a new pathogen in a country, the evolutionary dynamics of an epidemic within a country, and the role of cross-border areas on pathogen dynamics remain complex to disentangle and are often poorly understood. For instance, cross-border areas represent the ideal location for the sharing of viral variants between countries, with international air travel, land travel and waterways playing an important role in the cross-border spread of infectious diseases. Unfortunately, monitoring the point of entry and the evolutionary dynamics of viruses in space and time within local populations remain challenging. Here we tested the efficiency of wastewater-based epidemiology and genotyping in monitoring Covid-19 epidemiology and SARS-CoV-2 variant dynamics in French Guiana, a tropical country located in South America. Our results suggest that wastewater-based epidemiology and genotyping are powerful tools to monitor variant introduction and disease evolution within a tropical country but the inclusion of both clinical and wastewater samples could still improve our understanding of genetic diversity co-circulating. Wastewater sequencing also revealed the cryptic transmission of SARS-CoV-2 variants within the country. Interestingly, we found some amino acid changes specific to the variants co-circulating in French Guiana, suggesting a local evolution of the SARS-CoV-2 variants after their introduction. More importantly, our results showed that the proximity to bordering countries was not the origin of the emergence of the French Guianese B.1.160.25 variant, but rather that this variant emerged from an ancestor B.1.160 variant introduced by European air plane travelers, suggesting thus that air travel remains a significant risk for cross-border spread of infectious diseases. Overall, we suggest that wastewater-based epidemiology and genotyping provides a cost effective and non-invasive approach for pathogen monitoring and an early-warning tool for disease emergence and spread within a tropical country.
Collapse
Affiliation(s)
- Marine Combe
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France.
| | - Emira Cherif
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | | | - Georgina Rivera-Ingraham
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France; Centre IRD de Cayenne, Guyane Française, France
| | | | | | | | - Jean-François Carod
- Laboratoire et Pôle Appui aux Fonctions Cliniques, Centre Hospitalier de l'Ouest Guyanais (CHOG), 97320 Saint-Laurent du Maroni, Guyane Française, France
| | - Thierry Carage
- Laboratoire de Biologie Médicale Carage de Kourou, 6 avenue Leopold Heder, 97310 Kourou, Guyane Française, France
| | - Angélique Procureur
- Laboratoire de Biologie Médicale Carage de Kourou, 6 avenue Leopold Heder, 97310 Kourou, Guyane Française, France
| | | |
Collapse
|
9
|
Brady DK, Gurijala AR, Huang L, Hussain AA, Lingan AL, Pembridge OG, Ratangee BA, Sealy TT, Vallone KT, Clements TP. A guide to COVID-19 antiviral therapeutics: a summary and perspective of the antiviral weapons against SARS-CoV-2 infection. FEBS J 2024; 291:1632-1662. [PMID: 36266238 PMCID: PMC9874604 DOI: 10.1111/febs.16662] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/11/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Antiviral therapies are integral in the fight against SARS-CoV-2 (i.e. severe acute respiratory syndrome coronavirus 2), the causative agent of COVID-19. Antiviral therapeutics can be divided into categories based on how they combat the virus, including viral entry into the host cell, viral replication, protein trafficking, post-translational processing, and immune response regulation. Drugs that target how the virus enters the cell include: Evusheld, REGEN-COV, bamlanivimab and etesevimab, bebtelovimab, sotrovimab, Arbidol, nitazoxanide, and chloroquine. Drugs that prevent the virus from replicating include: Paxlovid, remdesivir, molnupiravir, favipiravir, ribavirin, and Kaletra. Drugs that interfere with protein trafficking and post-translational processing include nitazoxanide and ivermectin. Lastly, drugs that target immune response regulation include interferons and the use of anti-inflammatory drugs such as dexamethasone. Antiviral therapies offer an alternative solution for those unable or unwilling to be vaccinated and are a vital weapon in the battle against the global pandemic. Learning more about these therapies helps raise awareness in the general population about the options available to them with respect to aiding in the reduction of the severity of COVID-19 infection. In this 'A Guide To' article, we provide an in-depth insight into the development of antiviral therapeutics against SARS-CoV-2 and their ability to help fight COVID-19.
Collapse
Affiliation(s)
- Drugan K. Brady
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Aashi R. Gurijala
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Liyu Huang
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Ali A. Hussain
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Audrey L. Lingan
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | | | - Brina A. Ratangee
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Tristan T. Sealy
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Kyle T. Vallone
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | | |
Collapse
|
10
|
Sheng YJ, Kuo STA, Yang T, Russell DH, Yan X, Xu S, Liu WR, Fierke CA. BRD4354 Is a Potent Covalent Inhibitor against the SARS-CoV-2 Main Protease. Biochemistry 2024:10.1021/acs.biochem.3c00685. [PMID: 38329238 PMCID: PMC11306412 DOI: 10.1021/acs.biochem.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Numerous organic molecules are known to inhibit the main protease (MPro) of SARS-CoV-2, the pathogen of Coronavirus Disease 2019 (COVID-19). Guided by previous research on zinc-ligand inhibitors of MPro and zinc-dependent histone deacetylases (HDACs), we identified BRD4354 as a potent inhibitor of MPro. The in vitro protease activity assays show that BRD4354 displays time-dependent inhibition against MPro with an IC50 (concentration that inhibits activity by 50%) of 0.72 ± 0.04 μM after 60 min of incubation. Inactivation follows a two-step process with an initial rapid binding step with a KI of 1.9 ± 0.5 μM followed by a second slow inactivation step, kinact,max of 0.040 ± 0.002 min-1. Native mass spectrometry studies indicate that a covalent intermediate is formed where the ortho-quinone methide fragment of BRD4354 forms a covalent bond with the catalytic cysteine C145 of MPro. Based on these data, a Michael-addition reaction mechanism between MPro C145 and BRD4354 was proposed. These results suggest that both preclinical testing of BRD4354 and structure-activity relationship studies based on BRD4354 are warranted to develop more effective anti-COVID therapeutics.
Collapse
Affiliation(s)
- Yan J. Sheng
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Syuan-Ting Alex Kuo
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Tingyuan Yang
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Shiqing Xu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Wenshe R. Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Carol A. Fierke
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
11
|
Hu K, Zhang L. Challenges and Opportunities Associated with Lifting the Zero COVID-19 Policy in China. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2024; 9:71-75. [PMID: 38572142 PMCID: PMC10989839 DOI: 10.14218/erhm.2023.00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Chinese government lifted its "Zero COVID-19" policy in December 2022. The estimated COVDI-19 new cases and deaths after the policy change are 167-279 million (about 12.0% to 20.1% of the Chinese population) and 0.68-2.1 million, respectively. Recent data also revealed continuous drops in fertility rate and historically lowest growth in gross domestic production in China. Thus, balancing COVID-19 control and economic recovery in China is of paramount importance yet very difficult. Supply chain disruption, essential service reduction and shortage of intensive care units have been discussed as the challenges associated with lifting "Zero COVID-19" policy. The additional challenges may include triple epidemic of COVID-19, respiratory syncytial virus and influenza, mental health issues of healthcare providers, care givers and patients, impact on human mobility, lack of robust genomic and epidemiological data and long COVID-19. However, the policy-associated opportunities and other challenges are largely untouched, but warrant attention of and prompt reactions by the policy makers, healthcare providers, public health officials and other stakeholders. The associated benefits are quick reach of herd immunity, boost of economy and businesses activities and increase in social activities. At this moment, we must embrace the policy change, effectively mitigate its associated problems and timely and effectively maximize its associated benefits.
Collapse
Affiliation(s)
- Kun Hu
- Department of Pathology, Tufts Medical Center, Boston, MA, USA
| | - Lanjing Zhang
- Department of Pathology, Princeton Medical Center, Plainsboro, NJ, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Abhinand CS, Prabhakaran AA, Krishnamurthy A, Raju R, Keshava Prasad TS, Nair AS, Rajasekharan KN, Oommen OV, Sudhakaran PR. SARS-CoV-2 variants infectivity prediction and therapeutic peptide design using computational approaches. J Biomol Struct Dyn 2023; 41:11166-11177. [PMID: 36572420 DOI: 10.1080/07391102.2022.2160819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
The outbreak of severe acute respiratory coronavirus 2 (SARS-CoV-2) has created a public health emergency globally. SARS-CoV-2 enters the human cell through the binding of the spike protein to human angiotensin converting enzyme 2 (ACE2) receptor. Significant changes have been reported in the mutational landscape of SARS-CoV-2 in the receptor binding domain (RBD) of S protein, subsequent to evolution of the pandemic. The present study examines the correlation between the binding affinity of mutated S-proteins and the rate of viral infectivity. For this, the binding affinity of SARS-CoV and variants of SARS-CoV-2 towards ACE2 was computationally determined. Subsequently, the RBD mutations were classified on the basis of the number of strains identified with respect to each mutation and the resulting variation in the binding affinity was computationally examined. The molecular docking studies indicated a significant correlation between the Z-Rank score of mutated S proteins and the rate of infectivity, suitable for predicting SARS-CoV-2 infectivity. Accordingly, a 30-mer peptide was designed and the inhibitory properties were computationally analyzed. Single amino acid-wise mutation was performed subsequently to identify the peptide with the highest binding affinity. Molecular dynamics and free energy calculations were then performed to examine the stability of the peptide-protein complexes. Additionally, selected peptides were synthesized and screened using a colorimetric assay. Together, this study developed a model to predict the rate of infectivity of SARS-CoV-2 variants and propose a potential peptide that can be used as an inhibitor for the viral entry to human.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chandran S Abhinand
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Athira A Prabhakaran
- Inter-University Centre for Genomics and Gene Technology, University of Kerala, Thiruvananthapuram, Kerala, India
| | | | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | | | - Oommen V Oommen
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Perumana R Sudhakaran
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
13
|
Ashraf J, Bukhari SARS, Kanji A, Iqbal T, Yameen M, Nisar MI, Khan W, Hasan Z. Substitution spectra of SARS-CoV-2 genome from Pakistan reveals insights into the evolution of variants across the pandemic. Sci Rep 2023; 13:20955. [PMID: 38017265 PMCID: PMC10684861 DOI: 10.1038/s41598-023-48272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023] Open
Abstract
Changing morbidity and mortality due to COVID-19 across the pandemic has been linked with factors such as the emergence of SARS-CoV-2 variants and vaccination. Mutations in the Spike glycoprotein enhanced viral transmission and virulence. We investigated whether SARS-CoV-2 mutation rates and entropy were associated COVID-19 in Pakistan, before and after the introduction of vaccinations. We analyzed 1,705 SARS-CoV-2 genomes using the Augur phylogenetic pipeline. Substitution rates and entropy across the genome, and in the Spike glycoprotein were compared between 2020, 2021 and 2022 (as periods A, B and C). Mortality was greatest in B whilst cases were highest during C. In period A, G clades were predominant, and substitution rate was 5.25 × 10-4 per site per year. In B, Delta variants dominated, and substitution rates increased to 9.74 × 10-4. In C, Omicron variants led to substitution rates of 5.02 × 10-4. Genome-wide entropy was the highest during B particularly, at Spike E484K and K417N. During C, genome-wide mutations increased whilst entropy was reduced. Enhanced SARS-CoV-2 genome substitution rates were associated with a period when more virulent SARS-CoV-2 variants were prevalent. Reduced substitution rates and stabilization of genome entropy was subsequently evident when vaccinations were introduced. Whole genome entropy analysis can help predict virus evolution to guide public health interventions.
Collapse
Affiliation(s)
- Javaria Ashraf
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O. Box 3500, Karachi, 74800, Pakistan
| | - Sayed Ali Raza Shah Bukhari
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O. Box 3500, Karachi, 74800, Pakistan
| | - Akbar Kanji
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O. Box 3500, Karachi, 74800, Pakistan
| | - Tulaib Iqbal
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O. Box 3500, Karachi, 74800, Pakistan
| | - Maliha Yameen
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O. Box 3500, Karachi, 74800, Pakistan
| | - Muhammad Imran Nisar
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
- Department of Pediatrics and Child Health, CITRIC Center for Bioinformatics and Computational Biology, Aga Khan University, Karachi, Pakistan
| | - Waqasuddin Khan
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
- Department of Pediatrics and Child Health, CITRIC Center for Bioinformatics and Computational Biology, Aga Khan University, Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Stadium Road, P.O. Box 3500, Karachi, 74800, Pakistan.
| |
Collapse
|
14
|
Bhattacharya M, Alshammari A, Alharbi M, Dhama K, Lee SS, Chakraborty C. A novel mutation-proof, next-generation vaccine to fight against upcoming SARS-CoV-2 variants and subvariants, designed through AI enabled approaches and tools, along with the machine learning based immune simulation: A vaccine breakthrough. Int J Biol Macromol 2023; 242:124893. [PMID: 37207746 DOI: 10.1016/j.ijbiomac.2023.124893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Emerging SARS-CoV-2 variants and subvariants are great concerns for their significant mutations, which are also responsible for vaccine escape. Therefore, the study was undertaken to develop a mutation-proof, next-generation vaccine to protect against all upcoming SARS-CoV-2 variants. We used advanced computational and bioinformatics approaches to develop a multi-epitopic vaccine, especially the AI model for mutation selection and machine learning (ML) strategies for immune simulation. AI-enabled and the top-ranked antigenic selection approaches were used to select nine mutations from 835 RBD mutations. We selected twelve common antigenic B cell and T cell epitopes (CTL and HTL) containing the nine RBD mutations and joined them with the adjuvants, PADRE sequence, and suitable linkers. The constructs' binding affinity was confirmed through docking with TLR4/MD2 complex and showed significant binding free energy (-96.67 kcal mol-1) with positive binding affinity. Similarly, the calculated eigenvalue (2.428517e-05) from the NMA of the complex reveals proper molecular motion and superior residues' flexibility. Immune simulation shows that the candidate can induce a robust immune response. The designed mutation-proof, multi-epitopic vaccine could be a remarkable candidate for upcoming SARS-CoV-2 variants and subvariants. The study method might guide researchers in developing AI-ML and immunoinformatics-based vaccines for infectious disease.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| |
Collapse
|
15
|
Patiño LH, Ballesteros N, Muñoz M, Ramírez AL, Luna N, Castañeda S, Gutierrez-Marin R, Mendoza-Ibarra JA, Rodriguez R, Bohada DP, Ramírez JD, Paniz-Mondolfi A. Mu SARS-CoV-2 (B.1.621) variant: A genomic snapshot across the Colombian-Venezuelan border. J Med Virol 2023; 95:e28766. [PMID: 37185861 DOI: 10.1002/jmv.28766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Angie L Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nicolas Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Reinaldo Gutierrez-Marin
- Grupo de investigación en enfermedades parasitarias tropicales e infecciosas (GIEPATI), Universidad de Pamplona, Cúcuta, Colombia
| | - Jesús A Mendoza-Ibarra
- Grupo de investigación en ciencias agropecuarias (GICA), Universidad de Pamplona, Cúcuta, Colombia
| | - Raúl Rodriguez
- Grupo de investigación en recursos naturales (GIRN), Universidad de Pamplona, Cúcuta, Colombia
| | - Diana Patricia Bohada
- Grupo de investigación en recursos naturales (GIRN), Universidad de Pamplona, Cúcuta, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
16
|
Nizet S, Rieger J, Sarabi A, Lajtai G, Zatloukal K, Tschegg C. Binding and inactivation of human coronaviruses, including SARS-CoV-2, onto purified clinoptilolite-tuff. Sci Rep 2023; 13:4673. [PMID: 36949092 PMCID: PMC10031168 DOI: 10.1038/s41598-023-31744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
The current COVID19 pandemic is caused by a positive-sense single-stranded RNA virus, which presents high mutational rates. The development of effective therapeutics and mitigation strategies using vaccination or therapeutic antibodies faces serious challenges because of the regular emergence of immune escape variants of the virus. An efficient approach would involve the use of an agent to non-specifically limit or block viruses contacting the mucosae and therefore entering the body. Here, we investigated the ability of a micronized purified clinoptilolite-tuff to bind and neutralize different viruses from the Coronaviridae family. Using plaque assay, RT-qPCR and immunostaining, the adsorption and inactivation of the seasonal human coronavirus HCoV-229E and of 2 SARS-CoV-2 variants were demonstrated. The resulting data suggest that purified clinoptilolite-tuff could be used as an ingredient in new medical devices and/or pharmaceuticals to prevent or mitigate SARS-CoV-2 dissemination.
Collapse
Affiliation(s)
- S Nizet
- Glock Health, Science and Research GmbH, Hausfeldstrasse 17, 2232, Deutsch-Wagram, Austria.
| | - J Rieger
- Diagnostic and Research Institute of Pathology, Medical University Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - A Sarabi
- Glock Health, Science and Research GmbH, Hausfeldstrasse 17, 2232, Deutsch-Wagram, Austria
| | | | - K Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - C Tschegg
- Glock Health, Science and Research GmbH, Hausfeldstrasse 17, 2232, Deutsch-Wagram, Austria
| |
Collapse
|
17
|
Evaluating Data Sharing of SARS-CoV-2 Genomes for Molecular Epidemiology across the COVID-19 Pandemic. Viruses 2023; 15:v15020560. [PMID: 36851774 PMCID: PMC9959893 DOI: 10.3390/v15020560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Following the emergence of COVID-19 in December 2019, caused by the coronavirus SARS-CoV-2, the disease spread dramatically worldwide. The use of genomics to trace the dissemination of the virus and the identification of novel variants was essential in defining measures for containing the disease. We aim to evaluate the global effort to genomically characterize the circulating lineages of SARS-CoV-2, considering the data deposited in GISAID, the major platform for data sharing in a massive worldwide collaborative undertaking. We contextualize data for nearly three years (January 2020-October 2022) for the major contributing countries, percentage of characterized isolates and time for data processing in the context of the global pandemic. Within this collaborative effort, we also evaluated the early detection of seven major SARS-CoV-2 lineages, G, GR, GH, GK, GV, GRY and GRA. While Europe and the USA, following an initial period, showed positive results across time in terms of cases sequenced and time for data deposition, this effort is heterogeneous worldwide. Given the current immunization the major threat is the appearance of variants that evade the acquired immunity. In that scenario, the monitoring of those hypothetical variants will still play an essential role.
Collapse
|
18
|
Chavda VP, Bezbaruah R, Valu D, Patel B, Kumar A, Prasad S, Kakoti BB, Kaushik A, Jesawadawala M. Adenoviral Vector-Based Vaccine Platform for COVID-19: Current Status. Vaccines (Basel) 2023; 11:432. [PMID: 36851309 PMCID: PMC9965371 DOI: 10.3390/vaccines11020432] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus disease (COVID-19) breakout had an unimaginable worldwide effect in the 21st century, claiming millions of lives and putting a huge burden on the global economy. The potential developments in vaccine technologies following the determination of the genetic sequence of SARS-CoV-2 and the increasing global efforts to bring potential vaccines and therapeutics into the market for emergency use have provided a small bright spot to this tragic event. Several intriguing vaccine candidates have been developed using recombinant technology, genetic engineering, and other vaccine development technologies. In the last decade, a vast amount of the vaccine development process has diversified towards the usage of viral vector-based vaccines. The immune response elicited by such vaccines is comparatively higher than other approved vaccine candidates that require a booster dose to provide sufficient immune protection. The non-replicating adenoviral vectors are promising vaccine carriers for infectious diseases due to better yield, cGMP-friendly manufacturing processes, safety, better efficacy, manageable shipping, and storage procedures. As of April 2022, the WHO has approved a total of 10 vaccines around the world for COVID-19 (33 vaccines approved by at least one country), among which three candidates are adenoviral vector-based vaccines. This review sheds light on the developmental summary of all the adenoviral vector-based vaccines that are under emergency use authorization (EUA) or in the different stages of development for COVID-19 management.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Disha Valu
- Drug Product Development Laboratory, Biopharma Division, Intas Pharmaceutical Ltd., Moraiya, Ahmedabad 382213, Gujarat, India
| | - Bindra Patel
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Anup Kumar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Sanjay Prasad
- Cell and Gene Therapy Drug Product Development Laboratory, Biopharma Division, Intas Pharmaceutical Ltd., Moraiya, Ahmedabad 382213, Gujarat, India
| | - Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, USA
| | - Mariya Jesawadawala
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
19
|
Shkurnikov M, Nersisyan S, Averinskaya D, Chekova M, Polyakov F, Titov A, Doroshenko D, Vechorko V, Tonevitsky A. HLA-A*01:01 allele diminishing in COVID-19 patients population associated with non-structural epitope abundance in CD8+ T-cell repertoire. PeerJ 2023; 11:e14707. [PMID: 36691482 PMCID: PMC9864130 DOI: 10.7717/peerj.14707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
In mid-2021, the SARS-CoV-2 Delta variant caused the third wave of the COVID-19 pandemic in several countries worldwide. The pivotal studies were aimed at studying changes in the efficiency of neutralizing antibodies to the spike protein. However, much less attention was paid to the T-cell response and the presentation of virus peptides by MHC-I molecules. In this study, we compared the features of the HLA-I genotype in symptomatic patients with COVID-19 in the first and third waves of the pandemic. As a result, we could identify the diminishing of carriers of the HLA-A*01:01 allele in the third wave and demonstrate the unique properties of this allele. Thus, HLA-A*01:01-binding immunoprevalent epitopes are mostly derived from ORF1ab. A set of epitopes from ORF1ab was tested, and their high immunogenicity was confirmed. Moreover, analysis of the results of single-cell phenotyping of T-cells in recovered patients showed that the predominant phenotype in HLA-A*01:01 carriers is central memory T-cells. The predominance of T-lymphocytes of this phenotype may contribute to forming long-term T-cell immunity in carriers of this allele. Our results can be the basis for highly effective vaccines based on ORF1ab peptides.
Collapse
Affiliation(s)
- Maxim Shkurnikov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
- Armenian Bioinformatics Institute (ABI), Yerevan, Armenia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Darya Averinskaya
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Milena Chekova
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Fedor Polyakov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Aleksei Titov
- National Research Center for Hematology, Moscow, Russia
| | | | | | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
20
|
Fantini J, Chahinian H, Yahi N. Convergent Evolution Dynamics of SARS-CoV-2 and HIV Surface Envelope Glycoproteins Driven by Host Cell Surface Receptors and Lipid Rafts: Lessons for the Future. Int J Mol Sci 2023; 24:1923. [PMID: 36768244 PMCID: PMC9915253 DOI: 10.3390/ijms24031923] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Although very different, in terms of their genomic organization, their enzymatic proteins, and their structural proteins, HIV and SARS-CoV-2 have an extraordinary evolutionary potential in common. Faced with various selection pressures that may be generated by treatments or immune responses, these RNA viruses demonstrate very high adaptive capacities, which result in the continuous emergence of variants and quasi-species. In this retrospective analysis of viral proteins, ensuring the adhesion of these viruses to the plasma membrane of host cells, we highlight many common points that suggest the convergent mechanisms of evolution. HIV and SARS-CoV-2 first recognize a lipid raft microdomain that acts as a landing strip for viral particles on the host cell surface. In the case of mucosal cells, which are the primary targets of both viruses, these microdomains are enriched in anionic glycolipids (gangliosides) forming a global electronegative field. Both viruses use lipid rafts to surf on the cell surface in search of a protein receptor able to trigger the fusion process. This implies that viral envelope proteins are both geometrically and electrically compatible to the biomolecules they select to invade host cells. In the present study, we identify the surface electrostatic potential as a critical parameter controlling the convergent evolution dynamics of HIV-1 and SARS-CoV-2 surface envelope proteins, and we discuss the impact of this parameter on the phenotypic properties of both viruses. The virological data accumulated since the emergence of HIV in the early 1980s should help us to face present and future virus pandemics.
Collapse
Affiliation(s)
| | | | - Nouara Yahi
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| |
Collapse
|
21
|
Calidonio JM, Hamad-Schifferli K. Biophysical and biochemical insights in the design of immunoassays. Biochim Biophys Acta Gen Subj 2023; 1867:130266. [PMID: 36309294 PMCID: PMC11193098 DOI: 10.1016/j.bbagen.2022.130266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Rapid antigen assays have been attractive for decentralized, point of care diagnostics because of their low cost, robustness, and ease of use. The development of a diagnostic assay for a newly emerging infectious disease needs to take into account the progression of a disease, whether there is human to human transmission, and patient biomarker levels with time, and these all impact the choice of antigen targets and affinity agents. SCOPE OF REVIEW The factors involved in the biophysical design of rapid antigen immunoassays are discussed, focusing on antigen selection and designing for cross-reactivity. State of the art in the biophysical characterization of protein-ligand or antigen-antibody interactions, the different types of affinity agents used in immunoassays, and biochemical conjugation strategies are described. MAJOR CONCLUSIONS Antigen choice is a critical factor in immunoassay diagnostic development, and should account for the properties of the virion, virus, and disease progression. Biophysical and biochemical aspects of immunoassays are critical for performance. GENERAL SIGNIFICANCE This review can serve as an instructive guide to aid in diagnostic development for future emerging diseases.
Collapse
Affiliation(s)
| | - Kimberly Hamad-Schifferli
- Dept. of Engineering, University of Massachusetts Boston, Boston, MA, USA; School for the Environment, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
22
|
Li J, Liang T, Hei A, Wang X, Li H, Yu X, Zhao R, Gao P, Fang C, Zhou J, Li M, He E, Skog S. Novel neutralizing chicken IgY antibodies targeting 17 potent conserved peptides identified by SARS-CoV-2 proteome microarray, and future prospects. Front Immunol 2022; 13:1074077. [PMID: 36618358 PMCID: PMC9815496 DOI: 10.3389/fimmu.2022.1074077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction An approach toward novel neutralizing IgY polyclonal antibodies (N-IgY-pAb) against SARS-CoV-2 S-ECD was developed. Material and methods The novel N-IgY-pAb and its intranasal spray response against the wild type ("'WH-Human 1") SARS-CoV-2 virus, variants of Delta or Omicron were up to 98%. Unique virus peptides binding to N-IgY-pAb were screened by a SARS-CoV-2 proteome microarray. Results Seventeen mutation-free peptides with a Z-score > 3.0 were identified as potent targets from a total of 966 peptides. The new findings show that one is in the RBM domain (461LKPFERDISTEIYQA475 ), two are in the NTD domain (21RTQLPPAYTNSFTRG35, 291CALDPLSETKCTLKS305) four are in the C1/2-terminal (561PFQQFGRDIADTTDA575,571DTTDAVRDPQTLEIL585,581TLEILDITPCSFGGV595, 661ECDIPIGAGICASYQ675 ), three are in the S1/S2 border (741YICGDSTECSNLLLQ755, 811KPSKRSFIEDLLFNK825, 821LLFNKVTLADAGFIK835) one target is in HR2 (1161SPDVDLGDISGINAS1175) and one is in HR2-TM (1201QELGKYEQYIKWPWY1215). Moreover, five potential peptides were in the NSP domain: nsp3-55 (1361SNEKQEILGTVSWNL1375), nsp14-50 (614HHANEYRLYLDAYNM642, ORF10-3 (21MNSRNYIAQVDVVNFNLT38, ORF7a-1(1MKIILFLALITLATC15) and ORF7a-12 (1116TLCFTLKRKTE121). Discussion and conclusion We concluded that the N-IgY-pAb could effectively neutralize the SARS-CoV-2. The new findings of seventeen potent conserved peptides are extremely important for developing new vaccines and "cocktails" of neutralizing Abs for efficient treatments for patients infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Jin Li
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Te Liang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Ailian Hei
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Xiangbin Wang
- SciProtech Co., Ltd, Beijing Changping Science Park, Beijing, China
| | - Huijun Li
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences-Beijing (PHOENIX Centre), Beijing Institute of LifeOmics, Beijing, China
| | - Rui Zhao
- SciProtech Co., Ltd, Beijing Changping Science Park, Beijing, China
| | - Peng Gao
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Cong Fang
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Ji Zhou
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Maogang Li
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Ellen He
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Sven Skog
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China,*Correspondence: Sven Skog,
| |
Collapse
|
23
|
Perlinska AP, Stasiulewicz A, Nguyen ML, Swiderska K, Zmudzinski M, Maksymiuk AW, Drag M, Sulkowska JI. Amino acid variants of SARS-CoV-2 papain-like protease have impact on drug binding. PLoS Comput Biol 2022; 18:e1010667. [PMID: 36409737 PMCID: PMC9721480 DOI: 10.1371/journal.pcbi.1010667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/05/2022] [Accepted: 10/19/2022] [Indexed: 11/22/2022] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused both a health and economic crisis around the world. Its papain-like protease (PLpro) is one of the protein targets utilized in designing new drugs that would aid vaccines in the fight against the virus. Although there are already several potential candidates for a good inhibitor of this protein, the degree of variability of the protein itself is not taken into account. As an RNA virus, SARS-CoV-2 can mutate to a high degree, but PLpro variability has not been studied to date. Based on sequence data available in databases, we analyzed the mutational potential of this protein. We focused on the effect of observed mutations on inhibitors' binding mode and their efficacy as well as protein's activity. Our analysis identifies five mutations that should be monitored and included in the drug design process: P247S, E263D-Y264H and T265A-Y268C.
Collapse
Affiliation(s)
| | - Adam Stasiulewicz
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Mai Lan Nguyen
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Karolina Swiderska
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Mikolaj Zmudzinski
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Alicja W. Maksymiuk
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| | | |
Collapse
|
24
|
Goswami GG, Labib T. Modeling COVID-19 Transmission Dynamics: A Bibliometric Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14143. [PMID: 36361019 PMCID: PMC9655715 DOI: 10.3390/ijerph192114143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
A good amount of research has evolved just in three years in COVID-19 transmission, mortality, vaccination, and some socioeconomic studies. A few bibliometric reviews have already been performed in the literature, especially on the broad theme of COVID-19, without any particular area such as transmission, mortality, or vaccination. This paper fills this gap by conducting a bibliometric review on COVID-19 transmission as the first of its kind. The main aim of this study is to conduct a bibliometric review of the literature in the area of COVID-19 transmission dynamics. We have conducted bibliometric analysis using descriptive and network analysis methods to review the literature in this area using RStudio, Openrefine, VOSviewer, and Tableau. We reviewed 1103 articles published in 2020-2022. The result identified the top authors, top disciplines, research patterns, and hotspots and gave us clear directions for classifying research topics in this area. New research areas are rapidly emerging in this area, which needs constant observation by researchers to combat this global epidemic.
Collapse
|
25
|
Genomic surveillance of SARS-CoV-2 in patients presenting neurological manifestations. PLoS One 2022; 17:e0270024. [PMID: 35771751 PMCID: PMC9246207 DOI: 10.1371/journal.pone.0270024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/02/2022] [Indexed: 11/19/2022] Open
Abstract
During the first wave of infections, neurological symptoms in Coronavirus Disease 2019 (COVID-19) patients raised particular concern, suggesting that, in a subset of patients, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could invade and damage cells of the central nervous system (CNS). Indeed, up to date several in vitro and in vivo studies have shown the ability of SARS-CoV-2 to reach the CNS. Both viral and/or host related features could explain why this occurs only in certain individuals and not in all the infected population. The aim of the present study was to evaluate if onset of neurological manifestations in COVID-19 patients was related to specific viral genomic signatures. To this end, viral genome was extracted directly from nasopharyngeal swabs of selected SARS-CoV-2 positive patients presenting a spectrum of neurological symptoms related to COVID-19, ranging from anosmia/ageusia to more severe symptoms. By adopting a whole genome sequences approach, here we describe a panel of known as well as unknown mutations detected in the analyzed SARS-CoV-2 genomes. While some of the found mutations were already associated with an improved viral fitness, no common signatures were detected when comparing viral sequences belonging to specific groups of patients. In conclusion, our data support the notion that COVID-19 neurological manifestations are mainly linked to patient-specific features more than to virus genomic peculiarities.
Collapse
|
26
|
Rotondo JC, Martini F, Maritati M, Caselli E, Gallenga CE, Guarino M, De Giorgio R, Mazziotta C, Tramarin ML, Badiale G, Tognon M, Contini C. Advanced Molecular and Immunological Diagnostic Methods to Detect SARS-CoV-2 Infection. Microorganisms 2022; 10:1193. [PMID: 35744711 PMCID: PMC9231257 DOI: 10.3390/microorganisms10061193] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 emerged in late 2019 in China and quickly spread across the globe, causing over 521 million cases of infection and 6.26 million deaths to date. After 2 years, numerous advances have been made. First of all, the preventive vaccine, which has been implemented in record time, is effective in more than 95% of cases. Additionally, in the diagnostic field, there are numerous molecular and antigenic diagnostic kits that are equipped with high sensitivity and specificity. Real Time-PCR-based assays for the detection of viral RNA are currently considered the gold-standard method for SARS-CoV-2 diagnosis and can be used efficiently on pooled nasopharyngeal, or oropharyngeal samples for widespread screening. Moreover, additional, and more advanced molecular methods such as droplet-digital PCR (ddPCR), clustered regularly interspaced short palindromic repeats (CRISPR) and next-generation sequencing (NGS), are currently under development to detect the SARS-CoV-2 RNA. However, as the number of subjects infected with SARS-CoV-2 continuously increases globally, health care systems are being placed under increased stress. Thus, the clinical laboratory plays an important role, helping to select especially asymptomatic individuals who are actively carrying the live replicating virus, with fast and non-invasive molecular technologies. Recent diagnostic strategies, other than molecular methods, have been adopted to either detect viral antigens, i.e., antigen-based immunoassays, or human anti-SARS-CoV-2 antibodies, i.e., antibody-based immunoassays, in nasal or oropharyngeal swabs, as well as in blood or saliva samples. However, the role of mucosal sIgAs, which are essential in the control of viruses entering the body through mucosal surfaces, remains to be elucidated, and in particular the role of the immune response in counteracting SARS-CoV-2 infection, primarily at the site(s) of virus entry that appears to be promising.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Orthopaedic Ward, Casa di Cura Santa Maria Maddalena, 45030 Occhiobello, Italy
| | - Elisabetta Caselli
- Section of Microbiology, CIAS Research Center and LTTA, Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Carla Enrica Gallenga
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Matteo Guarino
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (M.G.); (R.D.G.)
| | - Roberto De Giorgio
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (M.G.); (R.D.G.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Letizia Tramarin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Giada Badiale
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Carlo Contini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| |
Collapse
|
27
|
Troyano-Hernáez P, Reinosa R, Holguín Á. Evolution of SARS-CoV-2 in Spain during the First Two Years of the Pandemic: Circulating Variants, Amino Acid Conservation, and Genetic Variability in Structural, Non-Structural, and Accessory Proteins. Int J Mol Sci 2022; 23:6394. [PMID: 35742840 PMCID: PMC9223475 DOI: 10.3390/ijms23126394] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Monitoring SARS-CoV-2’s genetic diversity and emerging mutations in this ongoing pandemic is crucial to understanding its evolution and ensuring the performance of COVID-19 diagnostic tests, vaccines, and therapies. Spain has been one of the main epicenters of COVID-19, reaching the highest number of cases and deaths per 100,000 population in Europe at the beginning of the pandemic. This study aims to investigate the epidemiology of SARS-CoV-2 in Spain and its 18 Autonomous Communities across the six epidemic waves established from February 2020 to January 2022. We report on the circulating SARS-CoV-2 variants in each epidemic wave and Spanish region and analyze the mutation frequency, amino acid (aa) conservation, and most frequent aa changes across each structural/non-structural/accessory viral protein among the Spanish sequences deposited in the GISAID database during the study period. The overall SARS-CoV-2 mutation frequency was 1.24 × 10−5. The aa conservation was >99% in the three types of protein, being non-structural the most conserved. Accessory proteins had more variable positions, while structural proteins presented more aa changes per sequence. Six main lineages spread successfully in Spain from 2020 to 2022. The presented data provide an insight into the SARS-CoV-2 circulation and genetic variability in Spain during the first two years of the pandemic.
Collapse
Affiliation(s)
| | | | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology Department and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) in Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), 28034 Madrid, Spain; (P.T.-H.); (R.R.)
| |
Collapse
|
28
|
Rubio-Casillas A, Redwan EM, Uversky VN. SARS-CoV-2: A Master of Immune Evasion. Biomedicines 2022; 10:1339. [PMID: 35740361 PMCID: PMC9220273 DOI: 10.3390/biomedicines10061339] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023] Open
Abstract
Viruses and their hosts have coevolved for a long time. This coevolution places both the pathogen and the human immune system under selective pressure; on the one hand, the immune system has evolved to combat viruses and virally infected cells, while viruses have developed sophisticated mechanisms to escape recognition and destruction by the immune system. SARS-CoV-2, the pathogen that is causing the current COVID-19 pandemic, has shown a remarkable ability to escape antibody neutralization, putting vaccine efficacy at risk. One of the virus's immune evasion strategies is mitochondrial sabotage: by causing reactive oxygen species (ROS) production, mitochondrial physiology is impaired, and the interferon antiviral response is suppressed. Seminal studies have identified an intra-cytoplasmatic pathway for viral infection, which occurs through the construction of tunneling nanotubes (TNTs), hence enhancing infection and avoiding immune surveillance. Another method of evading immune monitoring is the disruption of the antigen presentation. In this scenario, SARS-CoV-2 infection reduces MHC-I molecule expression: SARS-CoV-2's open reading frames (ORF 6 and ORF 8) produce viral proteins that specifically downregulate MHC-I molecules. All of these strategies are also exploited by other viruses to elude immune detection and should be studied in depth to improve the effectiveness of future antiviral treatments. Compared to the Wuhan strain or the Delta variant, Omicron has developed mutations that have impaired its ability to generate syncytia, thus reducing its pathogenicity. Conversely, other mutations have allowed it to escape antibody neutralization and preventing cellular immune recognition, making it the most contagious and evasive variant to date.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán 48900, Jalisco, Mexico
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
29
|
Goud VR, Chakraborty R, Chakraborty A, Lavudi K, Patnaik S, Sharma S, Patnaik S. A bioinformatic approach of targeting SARS-CoV-2 replication by silencing a conserved alternative reserve of the orf8 gene using host miRNAs. Comput Biol Med 2022; 145:105436. [PMID: 35366472 PMCID: PMC8942883 DOI: 10.1016/j.compbiomed.2022.105436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
The causative agent of the COVID-19 pandemic, the SARS-CoV-2 virus has yielded multiple relevant mutations, many of which have branched into major variants. The Omicron variant has a huge similarity with the original viral strain (first COVID-19 strain from Wuhan). Among different genes, the highly variable orf8 gene is responsible for crucial host interactions and has undergone multiple mutations and indels. The sequence of the orf8 gene of the Omicron variant is, however, identical with the gene sequence of the wild type. orf8 modulates the host immunity making it easier for the virus to conceal itself and remain undetected. Variants seem to be deleting this gene without affecting the viral replication. While analyzing, we came across the conserved orf7a gene in the viral genome which exhibits a partial sequence homology as well as functional similarity with the SARS-CoV-2 orf8. Hence, we have proposed here in our hypothesis that, orf7a might be an alternative reserve of orf8 present in the virus which was compensating for the lost gene. A computational approach was adopted where we screened various miRNAs targeted against the orf8 gene. These miRNAs were then docked onto the orf8 mRNA sequences. The same set of miRNAs was then used to check for their binding affinity with the orf7a reference mRNA. Results showed that miRNAs targeting the orf8 had favorable shape complementarity and successfully docked with the orf7a gene as well. These findings provide a basis for developing new therapeutic approaches where both orf8 and orf7a can be targeted simultaneously.
Collapse
Affiliation(s)
| | | | | | - Kousalya Lavudi
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Sriram Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Swati Sharma
- School of Biotechnology, KIIT University, Bhubaneswar, India,Dept. of Skill Buildings Shri Ramasamy Memorial University, Sikkim, Gangtok, 737102, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, India,Corresponding author. School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| |
Collapse
|
30
|
Borras-Bermejo B, Piñana M, Andrés C, Zules R, González-Sánchez A, Esperalba J, Parés-Badell O, García-Cehic D, Rando A, Campos C, Codina MG, Martín MC, Castillo C, García-Comuñas K, Vásquez-Mercado R, Martins-Martins R, Colomer-Castell S, Pumarola T, Campins M, Quer J, Antón A. Characteristics of 24 SARS-CoV-2-Sequenced Reinfection Cases in a Tertiary Hospital in Spain. Front Microbiol 2022; 13:876409. [PMID: 35722299 PMCID: PMC9201979 DOI: 10.3389/fmicb.2022.876409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
Background Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the main concern is whether reinfections are possible, and which are the associated risk factors. This study aims to describe the clinical and molecular characteristics of 24 sequence-confirmed reinfection SARS-CoV-2 cases over 1 year in Barcelona (Catalonia, Spain). Methods Patients with > 45 days between two positive PCR tests regardless of symptoms and negative tests between episodes were initially considered as suspected reinfection cases from November 2020 to May 2021. Whole-genome sequencing (WGS) was performed to confirm genetic differences between consensus sequences and for phylogenetic studies based on PANGOLIN nomenclature. Reinfections were confirmed by the number of mutations, change in lineage, or epidemiological criteria. Results From 39 reported suspected reinfection cases, complete viral genomes could be sequenced from both episodes of 24 patients, all were confirmed as true reinfections. With a median age of 44 years (interquartile range [IQR] 32–65), 66% were women and 58% were healthcare workers (HCWs). The median days between episodes were 122 (IQR 72–199), occurring one-third within 3 months. Reinfection episodes were frequently asymptomatic and less severe than primary infections. The absence of seroconversion was associated with symptomatic reinfections. Only one case was reinfected with a variant of concern (VOC). Conclusion Severe acute respiratory syndrome coronavirus 2 reinfections can occur in a shorter time than previously reported and are mainly found in immunocompetent patients. Surveillance through WGS is useful to identify viral mutations associated with immune evasion.
Collapse
Affiliation(s)
- Blanca Borras-Bermejo
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Piñana
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Andrés
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Zules
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandra González-Sánchez
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Juliana Esperalba
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Oleguer Parés-Badell
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Damir García-Cehic
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ariadna Rando
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Campos
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca, Barcelona, Spain
| | - Maria Gema Codina
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Carmen Martín
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Carla Castillo
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Karen García-Comuñas
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Rodrigo Vásquez-Mercado
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Reginald Martins-Martins
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Sergi Colomer-Castell
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca, Barcelona, Spain
| | - Tomàs Pumarola
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Magda Campins
- Department of Preventive Medicine and Epidemiology, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Quer
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Josep Quer,
| | - Andrés Antón
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Andrés Antón,
| |
Collapse
|
31
|
Assessment of the Diagnostic Performance of a Novel SARS-CoV-2 Antigen Sealing Tube Test Strip (Colloidal Gold) as Point-of-Care Surveillance Test. Diagnostics (Basel) 2022; 12:diagnostics12051279. [PMID: 35626434 PMCID: PMC9141887 DOI: 10.3390/diagnostics12051279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant outbreaks have highlighted the need of antigen-detecting rapid diagnostic tests (Ag-RDTs) that can be used at the point-of-care (POC). Although many Ag-RDTs have been approved for SARS-CoV-2 detection, studies demonstrating the clinical performance of Ag-RDTs against variants of concern, especially the new Omicron variant, are limited. The aim of this study was to evaluate the diagnostic sensitivity and specificity of the AMAZING COVID-19 Antigen Sealing Tube Test Strip (Colloidal Gold) in 584 early symptomatic and asymptomatic participants (age range 0–90 years). The performance of this Ag-RDT was assessed by comparing its results with reverse transcription RT-PCR (rRT-PCR). One hundred twenty positive samples were also analyzed with rRT-PCR to discriminate Omicron and Delta/Kappa variants (72.50% Omicron; 27.50% Delta/Kappa). Overall, the Ag-RDT showed high positive and negative percent values of 92.52% (95% CI, 86.61–95.95%) and 98.05% (95% CI, 96.41–98.95%), respectively, as well as an overall diagnostic accuracy of 96.92% (95% CI, 95.17–98.16%). Taken together, these data indicate that this inexpensive and simple-to-use Ag-RDT presents excellent analytical performance and can reliably detect Omicron and Delta/Kappa variants.
Collapse
|
32
|
Burgold-Voigt S, Müller E, Zopf D, Monecke S, Braun SD, Frankenfeld K, Kiehntopf M, Weis S, Schumacher T, Pletz MW, Ehricht R. Development of a new antigen-based microarray platform for screening and detection of human IgG antibodies against SARS-CoV-2. Sci Rep 2022; 12:8067. [PMID: 35577791 PMCID: PMC9109672 DOI: 10.1038/s41598-022-10823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Strategies to contain the current SARS-CoV-2 pandemic rely, beside vaccinations, also on molecular and serological testing. For any kind of assay development, screening for the optimal antigen is essential. Here we describe the verification of a new protein microarray with different commercially available preparations significant antigens of SARS-CoV-2 that can be used for the evaluation of the performance of these antigens in serological assays and for antibody screening in serum samples. Antigens of other pathogens that are addressed by widely used vaccinations were also included. To evaluate the accuracy of 21 different antigens or antigen preparations on the microarray, receiver operating characteristics (ROC) curve analysis using ELISA results as reference were performed. Except for a single concentration, a diagnostic sensitivity of 1 was determined for all antigen preparations. A diagnostic specificity, as well as an area under the curve (AUC) of 1 was obtained for 16 of 21 antigen preparations. For the remaining five, the diagnostic specificity ranged from 0.942 to 0.981 and AUC from 0.974 to 0.999. The optimized assay was subsequently also applied to determine the immune status of previously tested individuals and/or to detect the immunization status after COVID-19 vaccination. Microarray evaluation of the antibody profiles of COVID-19 convalescent and post vaccination sera showed that the IgG response differed between these groups, and that the choice of the test antigen is crucial for the assay performance. Furthermore, the results showed that the immune response is highly individualized, depended on several factors (e.g., age or sex), and was not directly related to the severity of disease. The new protein microarray provides an ideal method for the parallel screening of many different antigens of vaccine-preventable diseases in a single sample and for reliable and meaningful diagnostic tests, as well as for the development of safe and specific vaccines.
Collapse
Affiliation(s)
- Sindy Burgold-Voigt
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany.
- InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany.
| | - Elke Müller
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany
- InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany
| | - David Zopf
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Monecke
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany
- InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany
- Institute for Medical Microbiology and Virology, Dresden University Hospital, Dresden, Germany
| | - Sascha D Braun
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany
- InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany
| | - Katrin Frankenfeld
- INTER-ARRAY, Research Center for Medical Technology and Biotechnology (fzmb GmbH), Bad Langensalza, Germany
| | - Michael Kiehntopf
- Institute for Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Sebastian Weis
- Institute for Infectious Diseases and Infection Control, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
- Leibniz-Institute for Infection Biology and Natural Product Research-Hans Knöll Institute - HKI, Jena, Germany
| | | | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Ralf Ehricht
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany
- InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
33
|
Wilson IM, Frazier MN, Li JL, Randall TA, Stanley RE. Biochemical Characterization of Emerging SARS-CoV-2 Nsp15 Endoribonuclease Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.10.491349. [PMID: 35611336 PMCID: PMC9128782 DOI: 10.1101/2022.05.10.491349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Global sequencing efforts from the ongoing COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, continue to provide insight into the evolution of the viral genome. Coronaviruses encode 16 nonstructural proteins, within the first two-thirds of their genome, that facilitate viral replication and transcription as well as evasion of the host immune response. However, many of these viral proteins remain understudied. Nsp15 is a uridine-specific endoribonuclease conserved across all coronaviruses. The nuclease activity of Nsp15 helps the virus evade triggering an innate immune response. Understanding how Nsp15 has changed over the course of the pandemic, and how mutations affect its RNA processing function, will provide insight into the evolution of an oligomerization-dependent endoribonuclease and inform drug design. In combination with previous structural data, bioinformatics analyses of 1.9+ million SARS-CoV-2 sequences revealed mutations across Nsp15’s three structured domains (N-terminal, Middle, EndoU). Selected Nsp15 variants were characterized biochemically and compared to wild type Nsp15. We found that mutations to important catalytic residues decreased cleavage activity but increased the hexamer/monomer ratio of the recombinant protein. Many of the highly prevalent variants we analyzed led to decreased nuclease activity as well as an increase in the inactive, monomeric form. Overall, our work establishes how Nsp15 variants seen in patient samples affect nuclease activity and oligomerization, providing insight into the effect of these variants in vivo .
Collapse
Affiliation(s)
- Isha M Wilson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
34
|
Yavarian J, Nejati A, Salimi V, Shafiei Jandaghi NZ, Sadeghi K, Abedi A, Sharifi Zarchi A, Gouya MM, Mokhtari-Azad T. Whole genome sequencing of SARS-CoV2 strains circulating in Iran during five waves of pandemic. PLoS One 2022; 17:e0267847. [PMID: 35499994 PMCID: PMC9060343 DOI: 10.1371/journal.pone.0267847] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/14/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Whole genome sequencing of SARS-CoV2 is important to find useful information about the viral lineages, variants of interests and variants of concern. As there are not enough data about the circulating SARS-CoV2 variants in Iran, we sequenced 54 SARS-CoV2 genomes during the 5 waves of pandemic in Iran. METHODS After viral RNA extraction from clinical samples collected during the COVID-19 pandemic, next generation sequencing was performed using the Nextseq platform. The sequencing data were analyzed and compared with reference sequences. RESULTS During the 1st wave, V and L clades were detected. The second wave was recognized by G, GH and GR clades. Circulating clades during the 3rd wave were GH and GR. In the fourth wave GRY (alpha variant), GK (delta variant) and one GH clade (beta variant) were detected. All viruses in the fifth wave were in clade GK (delta variant). There were different mutations in all parts of the genomes but Spike-D614G, NSP12-P323L, N-R203K and N-G204R were the most frequent mutants in these studied viruses. CONCLUSIONS These findings display the significance of SARS-CoV2 monitoring to help on time detection of possible variants for pandemic control and vaccination plans.
Collapse
Affiliation(s)
- Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nejati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kaveh Sadeghi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Adel Abedi
- Mathematics Department, Shahid Beheshti University, Tehran, Iran
| | - Ali Sharifi Zarchi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Talat Mokhtari-Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Agrawal S, Orschler L, Schubert S, Zachmann K, Heijnen L, Tavazzi S, Gawlik BM, de Graaf M, Medema G, Lackner S. Prevalence and circulation patterns of SARS-CoV-2 variants in European sewage mirror clinical data of 54 European cities. WATER RESEARCH 2022; 214:118162. [PMID: 35193077 PMCID: PMC8817224 DOI: 10.1016/j.watres.2022.118162] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 05/04/2023]
Abstract
For community-level monitoring, the European Commission under the EU Sewage Sentinel System recommends wastewater-based SARS-CoV-2 surveillance. Tracking SARS-CoV-2 variants in a community is pivotal for appropriate public health response. Genome sequencing of SARS-CoV-2 in wastewater samples for tracking variants is challenging, often resulting in low coverage genome sequences, thereby impeding the detection of the SARS-CoV-2 mutations. Therefore, we aimed at high-coverage SARS-CoV-2 genome sequences from sewage samples which we successfully accomplished. This first pan-European surveillance compared the mutation profiles associated with the variants of concerns: B.1.1.7, P.1, B.1.351 and B.1.617.2 across 20 European countries, including 54 municipalities. The results highlight that SARS-CoV-2 variants detected in the wastewater samples mirror the variants profiles reported in clinical data. This study demonstrated that >98% coverage of SARS-CoV-2 genomic sequences is possible and can be used to track SARS-CoV-2 mutations in wastewater to support identifying variants circulating in a city at the community level.
Collapse
Affiliation(s)
- Shelesh Agrawal
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Darmstadt, Germany.
| | - Laura Orschler
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Darmstadt, Germany
| | - Selina Schubert
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Darmstadt, Germany
| | - Kira Zachmann
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Darmstadt, Germany
| | - Leo Heijnen
- KWR Water Research Institute, Nieuwegein, the Netherland
| | - Simona Tavazzi
- European Commission, Joint Research Centre, Ispra, VA, Italy
| | | | - Miranda de Graaf
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherland
| | - Gertjan Medema
- KWR Water Research Institute, Nieuwegein, the Netherland
| | - Susanne Lackner
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
36
|
Gautam P, Paul D, Suroliya V, Garg R, Agarwal R, Das S, Kaur US, Pandey A, Bhugra A, Tarai B, Bihari C, Sarin SK, Gupta E. SARS-CoV-2 Lineage Tracking, and Evolving Trends Seen during Three Consecutive Peaks of Infection in Delhi, India: a Clinico-Genomic Study. Microbiol Spectr 2022; 10:e0272921. [PMID: 35311567 PMCID: PMC9045110 DOI: 10.1128/spectrum.02729-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
Since its advent, the pandemic has caused havoc in multiple waves due partly to amplified transmissibility and immune escape to vaccines. Delhi, India also witnessed brutal multiple peaks causing exponential rise in cases. Here we had retrospectively investigated clade variation, emergence of new lineages and varied clinical characteristics during those three peaks in order to understand the trajectory of the ongoing pandemic. In this study, a total of 123,378 samples were collected for a time span of 14 months (1 June 2020 to 3 August 2021) encompassing three different peaks in Delhi. A subset of 747 samples was processed for sequencing. Complete clinical and demographic details of all the enrolled cases were also collected. We detected 26 lineages across three peaks nonuniformly from 612 quality passed samples. The first peak was driven by diverse early variants, while the second one by B.1.36 and B.1.617.2, unlike third peak caused entirely by B.1.617.2. A total of 18,316 mutations with median of 34 were reported. Majority of mutations were present in less than 1% of samples. Differences in clinical characteristics across three peaks was also reported. To be ahead of the frequently changing course of the ongoing pandemic, it is of utmost importance that novel lineages be tracked continuously. Prioritized sequencing of sudden local outburst and community hot spots must be done to swiftly detect a novel mutation/lineage of potential clinical importance. IMPORTANCE Genome surveillance of the Delhi data provides a more detailed picture of diverse circulating lineages. The added value that the current study provides by clinical details of the patients is of importance. We looked at the shifting patterns of lineages, clinical characteristics and mutation types and mutation load during each successive infection surge in Delhi. The importance of widespread genomic surveillance cannot be stressed enough to timely detect new variants so that appropriate policies can be immediately implemented upon to help control the infection spread. The entire idea of genomic surveillance is to arm us with the clues as to how the novel mutations and/or variants can prove to be more transmissible and/or fatal. In India, the densely populated cities have an added concern of the huge burden that even the milder variants of the virus combined with co-morbidity can have on the community/primary health care centers.
Collapse
Affiliation(s)
- Pramod Gautam
- Genome Sequencing Laboratory, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Diptanu Paul
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Varun Suroliya
- Genome Sequencing Laboratory, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rahul Garg
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Reshu Agarwal
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Santanu Das
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Urvinder S. Kaur
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Amit Pandey
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Arjun Bhugra
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital, Max Healthcare, New Delhi, India
| | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - S. K. Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ekta Gupta
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
37
|
McLean G, Kamil J, Lee B, Moore P, Schulz TF, Muik A, Sahin U, Türeci Ö, Pather S. The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines. mBio 2022; 13:e0297921. [PMID: 35352979 PMCID: PMC9040821 DOI: 10.1128/mbio.02979-21] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/26/2022] Open
Abstract
The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms.
Collapse
Affiliation(s)
- Gary McLean
- School of Human Sciences, London Metropolitan University and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jeremy Kamil
- Louisiana State University Health, Shreveport, Louisiana, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Penny Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, The University of the Witwatersrand, Johannesburg, South Africa
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence 2155 RESIST, Hannover, Germany
- German Centre for Infection Research, Hannover-Braunschweig Site, Germany
| | | | | | | | | |
Collapse
|
38
|
Yang KS, Alex Kuo ST, Blankenship LR, Geng ZZ, Li SG, Russell DH, Yan X, Xu S, Liu WR. Repurposing Halicin as a potent covalent inhibitor for the SARS-CoV-2 main protease. CURRENT RESEARCH IN CHEMICAL BIOLOGY 2022; 2:100025. [PMID: 35815070 PMCID: PMC9023366 DOI: 10.1016/j.crchbi.2022.100025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/14/2022]
Abstract
The rapid spread of COVID-19 has caused a worldwide public health crisis. For prompt and effective development of antivirals for SARS-CoV-2, the pathogen of COVID-19, drug repurposing has been broadly conducted by targeting the main protease (MPro), a key enzyme responsible for the replication of virus inside the host. In this study, we evaluate the inhibition potency of a nitrothiazole-containing drug, halicin, and reveal its reaction and interaction mechanism with MPro. The in vitro potency test shows that halicin inhibits the activity of MPro an IC50 of 181.7 nM. Native mass spectrometry and X-ray crystallography studies clearly indicate that the nitrothiazole fragment of halicin covalently binds to the catalytic cysteine C145 of MPro. Interaction and conformational changes inside the active site of MPro suggest a favorable nucleophilic aromatic substitution reaction mechanism between MPro C145 and halicin, explaining the high inhibition potency of halicin towards MPro.
Collapse
Affiliation(s)
- Kai S Yang
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Syuan-Ting Alex Kuo
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Lauren R Blankenship
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Zhi Zachary Geng
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Shuhua G Li
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - David H Russell
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Xin Yan
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Shiqing Xu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
39
|
Zandi M, Soltani S, Tabibzadeh A, Nasimzadeh S, Behboudi E, Zakeri A, Erfani Y, Salmanzadeh S, Abbasi S. Partial sequence conservation of SARS-CoV-2 NSP-2, NSP-12, and Spike in stool samples from Abadan, Iran. Biotechnol Appl Biochem 2022; 70:201-209. [PMID: 35396867 PMCID: PMC9082511 DOI: 10.1002/bab.2343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022]
Abstract
Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, the clinical manifestations of the virus have undergone many changes. Recently, there have been many reports on gastrointestinal symptoms in COVID-19 patients. This study is aimed to perform a detailed phylogenetic study and assessment of different SNVs in the RNA genome of viruses isolated from fecal samples of patients with COVID-19 who have gastrointestinal symptoms, which can help better understand viral pathogenesis. In the present study, 20 fecal samples were collected by written consent from COVID-19 patients. According to the manufacturer's protocol, virus nucleic acid was extracted from stool samples and the SARS-CoV-2 genome presence in stool samples was confirmed by RT-PCR assay. Three viral genes, S, nsp12, and nsp2, were amplified using the reverse transcription polymerase chain reaction (RT-PCR) method and specific primers. Multiple sequencing alignment (MSA) was performed in the CLC word bench, and a phylogenetic tree was generated by MEGA X based on the neighbor-joining method. Of all cases, 11 (55%) were males. The mean age of the patients was 33.6 years. Diabetes (70%) and blood pressure (55%) were the most prevalent comorbidities. All 20 patients were positive for SARS-CoV-2 infection in respiratory samples. Molecular analysis investigation among 20 stool samples revealed that the SARS-CoV-2 genome was found among 10 stool samples; only three samples were used for sequencing. The polymorphism and phylogenetic analysis in SARS-CoV-2 showed great similarity among all of the evaluated genes with the Wuhan reference sequence and all of the current variants of concern (VOCs). The current study represents a great similarity in polymorphism and phylogenetic analysis of the SARS-CoV-2 isolates with the Wuhan reference sequence and all of the current VOC in the particular evaluated partial sequences of S, nsp12, and nsp2.
Collapse
Affiliation(s)
- Milad Zandi
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Saber Soltani
- Department of VirologySchool of Public HealthTehran University of Medical SciencesTehranIran
| | | | - Sepideh Nasimzadeh
- Department of Medical VirologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Emad Behboudi
- Department of MicrobiologyGolestan University of Medical SciencesGorganIran
| | - Armin Zakeri
- Department of HematologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Yousef Erfani
- Department of Medical Laboratory SciencesSchool of Allied Medical SciencesTehran University Medical SciencesTehranIran
| | - Shokrollah Salmanzadeh
- Health Research InstituteInfectious and Tropical Diseases Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Samaneh Abbasi
- Department of MicrobiologySchool of MedicineAbadan University of Medical SciencesAbadanIran
| |
Collapse
|
40
|
Radvánszka M, Paul ED, Hajdu R, Boršová K, Kováčová V, Putaj P, Bírová S, Čirková I, Čarnecký M, Buranovská K, Szobi A, Vojtaššáková N, Drobná D, Čabanová V, Sláviková M, Ličková M, Vaňová V, Fumačová Havlíková S, Lukáčiková Ľ, Kajanová I, Koči J, Rusňáková D, Sedláčková T, Max KEA, Tuschl T, Szemes T, Klempa B, Čekan P. Sequential development of several RT-qPCR tests using LNA nucleotides and dual probe technology to differentiate SARS-CoV-2 from influenza A and B. Microb Biotechnol 2022; 15:1995-2021. [PMID: 35316574 PMCID: PMC9111289 DOI: 10.1111/1751-7915.14031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 12/19/2022] Open
Abstract
Sensitive and accurate RT-qPCR tests are the primary diagnostic tools to identify SARS-CoV-2-infected patients. While many SARS-CoV-2 RT-qPCR tests are available, there are significant differences in test sensitivity, workflow (e.g. hands-on-time), gene targets and other functionalities that users must consider. Several publicly available protocols shared by reference labs and public health authorities provide useful tools for SARS-CoV-2 diagnosis, but many have shortcomings related to sensitivity and laborious workflows. Here, we describe a series of SARS-CoV-2 RT-qPCR tests that are originally based on the protocol targeting regions of the RNA-dependent RNA polymerase (RdRp) and envelope (E) coding genes developed by the Charité Berlin. We redesigned the primers/probes, utilized locked nucleic acid nucleotides, incorporated dual probe technology and conducted extensive optimizations of reaction conditions to enhance the sensitivity and specificity of these tests. By incorporating an RNase P internal control and developing multiplexed assays for distinguishing SARS-CoV-2 and influenza A and B, we streamlined the workflow to provide quicker results and reduced consumable costs. Some of these tests use modified enzymes enabling the formulation of a room temperature-stable master mix and lyophilized positive control, thus increasing the functionality of the test and eliminating cold chain shipping and storage. Moreover, a rapid, RNA extraction-free version enables high sensitivity detection of SARS-CoV-2 in about an hour using minimally invasive, self-collected gargle samples. These RT-qPCR assays can easily be implemented in any diagnostic laboratory and can provide a powerful tool to detect SARS-CoV-2 and the most common seasonal influenzas during the vaccination phase of the pandemic.
Collapse
Affiliation(s)
- Monika Radvánszka
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Evan D Paul
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Roman Hajdu
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA.,College of Medical, Veterinary and Life Sciences, School of Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Kristína Boršová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Viera Kováčová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA.,Institute for Biological Physics, University of Cologne, Zülpicher Str. 77, Köln, 50937, Germany
| | - Piotr Putaj
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Stanislava Bírová
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Ivana Čirková
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Martin Čarnecký
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Katarína Buranovská
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Adrián Szobi
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Nina Vojtaššáková
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Diana Drobná
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| | - Viktória Čabanová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Monika Sláviková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Martina Ličková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Veronika Vaňová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Sabína Fumačová Havlíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Ľubomíra Lukáčiková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Ivana Kajanová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Juraj Koči
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Diana Rusňáková
- Geneton s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 842 15, Slovakia
| | - Tatiana Sedláčková
- Geneton s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia
| | - Klaas E A Max
- Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Thomas Tuschl
- Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Tomáš Szemes
- Geneton s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 842 15, Slovakia.,Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia
| | - Boris Klempa
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovakia
| | - Pavol Čekan
- MultiplexDX, s.r.o., Comenius University Science Park, Ilkovičova 8, Bratislava, 841 04, Slovakia.,MultiplexDX, Inc, One Research Court, Suite 450, Rockville, MD, 20850, USA
| |
Collapse
|
41
|
Inhibition of the hexamerization of SARS-CoV-2 endoribonuclease and modeling of RNA structures bound to the hexamer. Sci Rep 2022; 12:3860. [PMID: 35264667 PMCID: PMC8907205 DOI: 10.1038/s41598-022-07792-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
Non-structural protein 15 (Nsp15) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) forms a homo hexamer and functions as an endoribonuclease. Here, we propose that Nsp15 activity may be inhibited by preventing its hexamerization through drug binding. We first explored the stable conformation of the Nsp15 monomer as the global free energy minimum conformation in the free energy landscape using a combination of parallel cascade selection molecular dynamics (PaCS-MD) and the Markov state model (MSM), and found that the Nsp15 monomer forms a more open conformation with larger druggable pockets on the surface. Targeting the pockets with high druggability scores, we conducted ligand docking and identified compounds that tightly bind to the Nsp15 monomer. The top poses with Nsp15 were subjected to binding free energy calculations by dissociation PaCS-MD and MSM (dPaCS-MD/MSM), indicating the stability of the complexes. One of the identified pockets, which is distinctively bound by inosine analogues, may be an alternative binding site to stabilize viral RNA binding and/or an alternative catalytic site. We constructed a stable RNA structure model bound to both UTP and alternative binding sites, providing a reasonable proposed model of the Nsp15/RNA complex.
Collapse
|
42
|
Miller JK, Elenberg K, Dubrawski A. Forecasting emergence of COVID-19 variants of concern. PLoS One 2022; 17:e0264198. [PMID: 35202422 PMCID: PMC8870573 DOI: 10.1371/journal.pone.0264198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/04/2022] [Indexed: 12/02/2022] Open
Abstract
We consider whether one can forecast the emergence of variants of concern in the SARS-CoV-2 outbreak and similar pandemics. We explore methods of population genetics and identify key relevant principles in both deterministic and stochastic models of spread of infectious disease. Finally, we demonstrate that fitness variation, defined as a trait for which an increase in its value is associated with an increase in net Darwinian fitness if the value of other traits are held constant, is a strong indicator of imminent transition in the viral population.
Collapse
Affiliation(s)
- James Kyle Miller
- Auton Systems LLC, Pittsburgh, PA, United States of America
- * E-mail:
| | - Kimberly Elenberg
- United States Department of Defense Covid Task Force, Washington, DC, United States of America
| | | |
Collapse
|
43
|
Herkenrath SD, Boschung K, Nacov JA, Heibges A, Schroer B, Treml M, Randerath WJ. Initial Proportion and Dynamic of B.1.1.7 SARS-CoV-2 in a Large City in the West of Germany. Biomed Hub 2022; 7:36-41. [DOI: 10.1159/000519968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
<b><i>Rationale:</i></b> Several mutational variants of SARS-CoV-2 have been identified in the past months with increasing prevalence worldwide. Some variants, such as B.1.1.7, are of high relevance due to increased transmissibility, facilitating virus spread and calling for stricter containment measures. <b><i>Objectives:</i></b> The aim of this study was to examine proportion and dynamic of B.1.1.7 in SARS-CoV-2-positive samples in a large city in the west of Germany. <b><i>Methods:</i></b> Consecutive SARS-CoV-2-positive samples from a local outpatient clinic, obtained over a period of 4 weeks (mid-January to mid-February 2021), were examined for the presence of the variant B.1.1.7. The size of B.1.1.7 infection clusters was compared with non-B.1.1.7 clusters. The transmissibility of SARS-CoV-2 variant B.1.1.7 was described based on corresponding cases of an infection cluster in a local child daycare centre. <b><i>Results:</i></b> Among 226 SARS-CoV-2-positive cases, B.1.1.7 was detected in 74 subjects (33%). The 7-day moving mean of the B.1.1.7 proportion started at 20% and reached 50% only 3 weeks later. B.1.1.7 clusters comprised 10.7 ± 12.1 persons per cluster, while non-B.1.1.7 clusters were considerably smaller (5.1 ± 5.8). One specific B.1.1.7 infection cluster in a 40-children daycare centre started with one teacher leading to 11 infected children and 8 infections among teachers. The infection spread to 6 families and one other daycare centre, with a total 43 SARS-CoV-2-positive subjects. <b><i>Conclusions:</i></b> We found a rapid increase in the SARS-CoV-2 variant B.1.1.7 with larger infection clusters than non-B.1.1.7. These results suggested a rapid increase in the B.1.1.7 proportion and a renewed increase in the total number of SARS-CoV-2 infections for the time following the analysed period. Considering the rapid emergence and spread of viral variants, close monitoring of mutation events is essential. Therefore, routine whole-genome sequencing appears to be useful in addition to searching for known mutations.
Collapse
|
44
|
Thakur S, Sasi S, Pillai SG, Nag A, Shukla D, Singhal R, Phalke S, Velu GSK. SARS-CoV-2 Mutations and Their Impact on Diagnostics, Therapeutics and Vaccines. Front Med (Lausanne) 2022; 9:815389. [PMID: 35273977 PMCID: PMC8902153 DOI: 10.3389/fmed.2022.815389] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
With the high rate of COVID-19 infections worldwide, the emergence of SARS-CoV-2 variants was inevitable. Several mutations have been identified in the SARS-CoV-2 genome, with the spike protein as one of the mutational hot spots. Specific amino acid substitutions such as D614G and N501Y were found to alter the transmissibility and virulence of the virus. The WHO has classified the variants identified with fitness-enhancing mutations as variants of concern (VOC), variants of interest (VOI) or variants under monitoring (VUM). The VOCs pose an imminent threat as they exhibit higher transmissibility, disease severity and ability to evade vaccine-induced and natural immunity. Here we review the mutational landscape on the SARS-CoV-2 structural and non-structural proteins and their impact on diagnostics, therapeutics and vaccines. We also look at the effectiveness of approved vaccines, antibody therapy and convalescent plasma on the currently prevalent VOCs, which are B.1.17, B.1.351, P.1, B.1.617.2 and B.1.1.529. We further discuss the possible factors influencing mutation rates and future directions.
Collapse
Affiliation(s)
- Suresh Thakur
- Trivitron Healthcare Pvt., Ltd., Visakhapatnam, India
| | - Shalitha Sasi
- Blue Horizon International Therapeutic Sciences, Hackensack, NJ, United States
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Ritu Singhal
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Disease, New Delhi, India
| | - Sameer Phalke
- Trivitron Healthcare Pvt., Ltd., Visakhapatnam, India
| | - G. S. K. Velu
- Trivitron Healthcare Pvt., Ltd., Visakhapatnam, India
| |
Collapse
|
45
|
Li SG, Yang KS, Blankenship LR, Cho CCD, Xu S, Wang H, Liu WR. An Enhanced Hybrid Screening Approach to Identify Potent Inhibitors for the SARS-CoV-2 Main Protease From the NCI Compound Library. Front Chem 2022; 10:816576. [PMID: 35252116 PMCID: PMC8892251 DOI: 10.3389/fchem.2022.816576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
The emergence and rapid spread of SARS-CoV-2, the pathogen of COVID-19, have caused a worldwide public health crisis. The SARS-CoV-2 main protease (Mpro) is an essential enzyme for the virus and therefore an appealing target for the development of antivirals to treat COVID-19 patients. Recently, many in silico screenings have been performed against the main protease to discover novel hits. However, the actual hit rate of virtual screening is often low, and most of the predicted compounds are false positive hits. In this study, we developed a refined virtual screening strategy that incorporated molecular docking and post-docking filtering based on parameters including molecular weight and surface area, aiming to achieve predictions with fewer false positive hits. We applied this strategy to the NCI library containing 284,176 compounds against Mpro. In vitro potency analyses validated several potent inhibitors and thus confirmed the feasibility of our virtual screening strategy. Overall, The study resulted in several potent hit Mpro inhibitors, in which two inhibitors have IC50 values below 1 μM, that are worth being further optimized and explored. Meanwhile, the refined virtual screen strategy is also applicable to improve general in silico screening hit rates and is useful to accelerate drug discovery for treating COVID-19 and other viral infections.
Collapse
Affiliation(s)
- Shuhua G. Li
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, United States
| | - Kai S. Yang
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, United States
| | - Lauren R. Blankenship
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, United States
| | - Chia-Chuan D. Cho
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, United States
| | - Shiqing Xu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, United States
- *Correspondence: Shiqing Xu, ; Hongbin Wang, ; Wenshe Ray Liu,
| | - Hongbin Wang
- Center for Biomedical Informatics, College of Medicine, Texas A&M University, Houston, TX, United States
- *Correspondence: Shiqing Xu, ; Hongbin Wang, ; Wenshe Ray Liu,
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX, United States
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, United States
- *Correspondence: Shiqing Xu, ; Hongbin Wang, ; Wenshe Ray Liu,
| |
Collapse
|
46
|
Fernández-Rivas G, Barallat J, Gonzalez V, Martinez S, Bordoy AE, Jimenez L, Casañ C, Blanco I. Analytical Performance of Quantitative DiaSorin Liaison SARS-COV-2 Antigen Test for the Asymptomatic Population. Front Public Health 2022; 9:788581. [PMID: 35071169 PMCID: PMC8777041 DOI: 10.3389/fpubh.2021.788581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) antigen (Ag) tests have been widely employed to identify patients for a rapid diagnosis and pandemic control. Rapid lateral-flow techniques are currently the most used, but automated technologies have emerged as another viable alternative to molecular methods. We aimed to evaluate the analytical performance of the DiaSorin Liaison SARS-CoV-2 Ag test in asymptomatic population and close contacts, for its use as a tool in pandemic control efforts. Material and Methods: A retrospective study was conducted. A total of 861 samples were included, 291 (34%) were positive for SARS-CoV-2 with cycle threshold (Ct) <40, and 570 (66%) were negative. Results: A strong correlation was observed between reverse transcriptase-PCR (RT-PCR) Ct and Ag 50% Tissue Culture Infectious Dose per milliliter (TCID50/ml; r = 0.6486; p < 0.0001) and all RT-PCR negative samples tested negative for the 200 TCID50/ml SARS-Cov-2 Ag cutoff, i.e., a specificity of 100% was reached (95% CI: 99.4–100.0%). Samples with <25 Ct and/or >106 extrapolated copies/ml were reached a sensitivity of 100% (95% IC 97.0–100.0%). For intermediate viral loads (>105 extrapolated copies/ml or <30 Ct), the sensitivity value still exceeded 80%. As with other Ag methods, samples between 30 and 40 Ct could not be detected with a reliable sensitivity. Conclusions: The LIAISON® SARS-CoV-2 Ag assay displays an acceptable sensitivity and a very high specificity that is useful for detecting the presence of SARS-CoV-2 in nasal swabs (NPS) of asymptomatic population or to regular monitoring of risk groups in controlled settings. Additionally, the flexibility in processing different samples and in the sampling preparation process makes this test an option for its use in high throughput laboratories. Automated tests may facilitate result reporting and yield consistent data, while avoiding some of the pitfalls of rapid lateral-flow techniques, such as observer variability.
Collapse
Affiliation(s)
- Gema Fernández-Rivas
- Microbiology Department, Clinical Laboratory North Metropolitan Area, Germans Trias i Pujol University Hospital, Badalona, Spain.,Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
| | - Jaume Barallat
- Biochemistry Department, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Victoria Gonzalez
- Microbiology Department, Clinical Laboratory North Metropolitan Area, Germans Trias i Pujol University Hospital, Badalona, Spain.,Center for Epidemiological Studies on Human Immunodeficiency Virus Infection and Acquired Immunodeficiency Syndrome (HIV/AIDS) and Sexually Transmitted Infections (STI) of Catalonia (CEEISCAT), Generalitat de Catalunya, Badalona, Spain.,Centro de Investigación Biomédica en Red (CIBER) in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Silvia Martinez
- Biochemistry Department, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Antoni E Bordoy
- Metropolitana Nord Laboratory, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Laura Jimenez
- Biochemistry Department, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Cristina Casañ
- Microbiology Department, Clinical Laboratory North Metropolitan Area, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Ignacio Blanco
- Metropolitana Nord Laboratory, Germans Trias i Pujol University Hospital, Badalona, Spain
| |
Collapse
|
47
|
Epistatic models predict mutable sites in SARS-CoV-2 proteins and epitopes. Proc Natl Acad Sci U S A 2022; 119:2113118119. [PMID: 35022216 PMCID: PMC8795541 DOI: 10.1073/pnas.2113118119] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
During the COVID pandemic, new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants emerge and spread, some being of major concern due to their increased infectivity or capacity to reduce vaccine efficiency. Anticipating mutations, which might give rise to new variants, would be of great interest. We construct sequence models predicting how mutable SARS-CoV-2 positions are, using a single SARS-CoV-2 sequence and databases of other coronaviruses. Predictions are tested against available mutagenesis data and the observed variability of SARS-CoV-2 proteins. Interestingly, predictions agree increasingly with observations, as more SARS-CoV-2 sequences become available. Combining predictions with immunological data, we find an overrepresentation of mutations in current variants of concern. The approach may become relevant for potential outbreaks of future viral diseases. The emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major concern given their potential impact on the transmissibility and pathogenicity of the virus as well as the efficacy of therapeutic interventions. Here, we predict the mutability of all positions in SARS-CoV-2 protein domains to forecast the appearance of unseen variants. Using sequence data from other coronaviruses, preexisting to SARS-CoV-2, we build statistical models that not only capture amino acid conservation but also more complex patterns resulting from epistasis. We show that these models are notably superior to conservation profiles in estimating the already observable SARS-CoV-2 variability. In the receptor binding domain of the spike protein, we observe that the predicted mutability correlates well with experimental measures of protein stability and that both are reliable mutability predictors (receiver operating characteristic areas under the curve ∼0.8). Most interestingly, we observe an increasing agreement between our model and the observed variability as more data become available over time, proving the anticipatory capacity of our model. When combined with data concerning the immune response, our approach identifies positions where current variants of concern are highly overrepresented. These results could assist studies on viral evolution and future viral outbreaks and, in particular, guide the exploration and anticipation of potentially harmful future SARS-CoV-2 variants.
Collapse
|
48
|
Mutational landscape and in silico structure models of SARS-CoV-2 spike receptor binding domain reveal key molecular determinants for virus-host interaction. BMC Mol Cell Biol 2022; 23:2. [PMID: 34991443 PMCID: PMC8736301 DOI: 10.1186/s12860-021-00403-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background SARS-CoV-2, the causative agent of COVID-19 pandemic is a RNA virus prone to mutations. Formation of a stable binding interface between the Receptor Binding Domain (RBD) of SARS-CoV-2 Spike (S) protein and Angiotensin-Converting Enzyme 2 (ACE2) of host is pivotal for viral entry. RBD has been shown to mutate frequently during pandemic. Although, a few mutations in RBD exhibit enhanced transmission rates leading to rise of new variants of concern, most RBD mutations show sustained ACE2 binding and virus infectivity. Yet, how all these mutations make the binding interface constantly favourable for virus remain enigmatic. This study aims to delineate molecular rearrangements in the binding interface of SARS-CoV-2 RBD mutants. Results Here, we have generated a mutational and structural landscape of SARS-CoV-2 RBD in first six months of the pandemic. We analyzed 31,403 SARS-CoV-2 genomes randomly across the globe, and identified 444 non-synonymous mutations in RBD that cause 49 distinct amino acid substitutions in contact and non-contact amino acid residues. Molecular phylogenetic analysis suggested independent emergence of RBD mutants. Structural mapping of these mutations on the SARS-CoV-2 Wuhan reference strain RBD and structural comparison with RBDs from bat-CoV, SARS-CoV, and pangolin-CoV, all bound to human or mouse ACE2, revealed several changes in the interfacial interactions in all three binding clusters. Interestingly, interactions mediated via N487 residue in cluster-I and Y449, G496, T500, G502 residues in cluster-III remained largely unchanged in all RBD mutants. Further analysis showed that these interactions are evolutionarily conserved in sarbecoviruses which use ACE2 for entry. Importantly, despite extensive changes in the interface, RBD-ACE2 stability and binding affinities were maintained in all the analyzed mutants. Taken together, these findings reveal how SARS-CoV-2 uses its RBD residues to constantly remodel the binding interface. Conclusion Our study broadly signifies understanding virus-host binding interfaces and their alterations during pandemic. Our findings propose a possible interface remodelling mechanism used by SARS-CoV-2 to escape deleterious mutations. Future investigations will focus on functional validation of in-silico findings and on investigating interface remodelling mechanisms across sarbecoviruses. Thus, in long run, this study may provide novel clues to therapeutically target RBD-ACE2 interface for pan-sarbecovirus infections. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00403-4.
Collapse
|
49
|
Prathiviraj R, Chellapandi P, Begum A, Kiran GS, Selvin J. Identification of genotypic variants and its proteomic mutations of Brazilian SARS-CoV-2 isolates. Virus Res 2022; 307:198618. [PMID: 34740719 PMCID: PMC8563081 DOI: 10.1016/j.virusres.2021.198618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
The second wave of COVID-19 caused by severe acute respiratory syndrome virus (SARS-CoV-2) is rapidly spreading over the world. Mechanisms behind the flee from current antivirals are still unclear due to the continuous occurrence of SARS-CoV-2 genetic variants. Brazil is the world's second-most COVID-19 affected country. In the present study, we identified the genomic and proteomic variants of Brazilian SARS-CoV-2 isolates. We identified 16 different genotypic variants were found among the 27 isolates. The genotypes of three isolates such as Bra/1236/2021 (G15), Bra/MASP2C844R2/2020 (G11), and Bra/RJ-DCVN5/2020 (G9) have a unique mutant in NSP4 (S184N), 2'O-Mutase (R216N), membrane protein (A2V) and Envelope protein (V5A). A mutation in RdRp of SARS-CoV-2, particularly the change of Pro-to Leu-at 323 resulted in the stabilization of the structure in BRA/CD1739-P4/2020. NSP4, NSP5 protein mutants are more virulent in genotype 15 and 16. A fast protein folding rate changes the structural stability and leads to escape for current antivirals. Thus, our findings help researchers to develop the best potent antivirals based on the new mutant of Brazilian isolates.
Collapse
Affiliation(s)
| | - Paulchamy Chellapandi
- Department of Bioinformatics, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ajima Begum
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
50
|
Ramalhete C, Gonçalves BMF, Barbosa F, Duarte N, Ferreira MJU. Momordica balsamina: phytochemistry and pharmacological potential of a gifted species. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:617-646. [PMID: 35153639 PMCID: PMC8821832 DOI: 10.1007/s11101-022-09802-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/09/2022] [Indexed: 05/07/2023]
Abstract
Momordica balsamina L. (Cucurbitaceae), frequently named balsam apple, southern balsam pear or African pumpkin, is a vegetable with high nutritional value, being mostly used as food in sub-Saharan Africa. It has also been largely used in traditional medicine to treat several diseases, such as malaria fevers and diabetes. As a member of the Cucurbitaceae family, the main constituents are cucurbitane-type triterpenoids, with different oxidation patterns, named cucurbitacins. This review aims at summarizing our contribution to the phytochemical study of M. balsamina and the evaluation of the isolated cucurbitacins and derivatives as multidrug resistance reversers in cancer cells and bacteria. In this way, the selective antiproliferative activity against multidrug resistant cancer cells of cucurbitacins obtained from M. balsamina, their ability as P-glycoprotein inhibitors in cancer cells overexpressing this ABC transporter, as well as efflux pump inhibitors in resistant bacteria strains are reviewed. Moreover, the in vitro antimalarial activity of cucurbitacins and acyl derivatives against the blood and liver-stages of Plasmodium strains, and the in vivo activity of selected compounds is also reviewed. Besides our work, edible and medicinal uses, and other studies mainly reporting the biological activities of M. balsamina extracts, such as antidiabetic, antibacterial, anti-inflammatory, and antioxidant properties are also addressed.
Collapse
Affiliation(s)
- Cátia Ramalhete
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- ATLÂNTICA – Instituto Universitário, Fábrica da Pólvora de Barcarena, Barcarena, Oeiras, 2730-036 Portugal
| | - Bruno M. F. Gonçalves
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Filipa Barbosa
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Noélia Duarte
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria-José U. Ferreira
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|