1
|
Tanneti NS, Stillwell HA, Weiss SR. Human coronaviruses: activation and antagonism of innate immune responses. Microbiol Mol Biol Rev 2025; 89:e0001623. [PMID: 39699237 PMCID: PMC11948496 DOI: 10.1128/mmbr.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
SUMMARYHuman coronaviruses cause a range of respiratory diseases, from the common cold (HCoV-229E, HCoV-NL63, HCoV-OC43, and SARS-CoV-2) to lethal pneumonia (SARS-CoV, SARS-CoV-2, and MERS-CoV). Coronavirus interactions with host innate immune antiviral responses are an important determinant of disease outcome. This review compares the host's innate response to different human coronaviruses. Host antiviral defenses discussed in this review include frontline defenses against respiratory viruses in the nasal epithelium, early sensing of viral infection by innate immune effectors, double-stranded RNA and stress-induced antiviral pathways, and viral antagonism of innate immune responses conferred by conserved coronavirus nonstructural proteins and genus-specific accessory proteins. The common cold coronaviruses HCoV-229E and -NL63 induce robust interferon signaling and related innate immune pathways, SARS-CoV and SARS-CoV-2 induce intermediate levels of activation, and MERS-CoV shuts down these pathways almost completely.
Collapse
Affiliation(s)
- Nikhila S. Tanneti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helen A. Stillwell
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Imtiaz K, Farooqui N, Ahmed K, Zhamalbekova A, Anwar MF, Nasir A, Ansar Z, Gul K, Hussain A, Sarría-Santamera A, Abidi SH. Analysis of differential expression of matrix metalloproteinases and defensins in the nasopharyngeal milieu of mild and severe COVID-19 cases. PLoS One 2025; 20:e0304311. [PMID: 39965032 PMCID: PMC11835293 DOI: 10.1371/journal.pone.0304311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
INTRODUCTION A subset of COVID-19 disease patients suffers a severe form of the illness; however, underlying early pathophysiological mechanisms associated with the severe form of COVID-19 disease remain to be fully understood. Several studies showed the association of COVID-19 disease severity with the changes in the expression profile of various matrix metalloproteinases (MMPs) and defensins (DA). However, the link between the changes in the expression of MMPs and DA in the nasopharyngeal milieu during early phases of infection and disease severity remains poorly understood. Therefore, we performed differential gene expression analysis of MMPs and DA in the nasopharyngeal swab samples collected from normal (COVID-19 negative), mild, and severe COVID-19 cases and examined the association between MMP and DA expression and disease severity. MATERIAL AND METHOD A total of 118 previously collected nasopharyngeal samples from mild and severe COVID-19 patients (as per the WHO criteria) and 10 healthy individuals (COVID-19 negative, controls) were used in this study. A real-time qPCR assay was used to determine the viral loads and assess the mRNA expression of MMPs and DA. One-way ANOVA was applied to perform multiple comparisons (estimate differences) in MMPs and defensin gene expression in the normal vs mild vs severe groups. In addition, a multivariable logistic regression analysis was carried out with all the variables from the data set using 'severity' as the outcome variable. RESULTS Our results showed that as compared to controls, DA1, DA3, and DA4 expression was significantly (p < 0.05) upregulated in the mild group, whereas the expression of DA6 was significantly downregulated in both mild and severe groups (p-value < 0.05). Similarly, compared to controls, the expression of MMP1 and MMP7 was significantly downregulated in both mild and severe groups, whereas MMP2 expression was upregulated in the mild group (p-value < 0.05). Additionally, the regression analysis showed that the expression of MMP1, MMP2, and MMP9 was significantly associated with the severity of the disease. CONCLUSION The early detection of changes in the expression of MMPs and defensins may act as a useful biomarker/predictor for possible severe COVID-19 disease, which may be useful in the clinical management of patients to reduce COVID-19-associated morbidity and mortality.
Collapse
Affiliation(s)
- Khekashan Imtiaz
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Nida Farooqui
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Khalid Ahmed
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Muhammad Faraz Anwar
- Department of Biochemistry, Bahria University Medical and Dental College, Karachi, Pakistan
| | - Asghar Nasir
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Zeeshan Ansar
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Khitab Gul
- Department of Biosciences, Muhammad Ali Jinnah University, Karachi, Pakistan
| | - Azhar Hussain
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| |
Collapse
|
3
|
Roe T, Talbot T, Terrington I, Johal J, Kemp I, Saeed K, Webb E, Cusack R, Grocott MPW, Dushianthan A. Physiology and pathophysiology of mucus and mucolytic use in critically ill patients. Crit Care 2025; 29:68. [PMID: 39920835 PMCID: PMC11806889 DOI: 10.1186/s13054-025-05286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/18/2025] [Indexed: 02/09/2025] Open
Abstract
Airway mucus is a highly specialised secretory fluid which functions as a physical and immunological barrier to pathogens whilst lubricating the airways and humifying atmospheric air. Dysfunction is common during critical illness and is characterised by changes in production rate, chemical composition, physical properties, and inflammatory phenotype. Mucociliary clearance, which is determined in part by mucus characteristics and in part by ciliary function, is also dysfunctional in critical illness via disease related and iatrogenic mechanisms. The consequences of mucus dysfunction are potentially devastating, contributing to prolonged ventilator dependency, increased risk of secondary pneumonia, and worsened lung injury. Mucolytic therapies are designed to decrease viscosity, improve expectoration/suctioning, and thereby promote mucus removal. Mucolytics, including hypertonic saline, dornase alfa/rhDNase, nebulised heparin, carbocisteine/N-Acetyl cysteine, are commonly used in critically ill patients. This review summarises the physiology and pathophysiology of mucus and the existing evidence for the use of mucolytics in critically ill patients and speculates on journey to individualised mucolytic therapy.
Collapse
Affiliation(s)
- Thomas Roe
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
| | - Thomas Talbot
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Isis Terrington
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
| | - Jayant Johal
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ivan Kemp
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Kordo Saeed
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Elizabeth Webb
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Rebecca Cusack
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Michael P W Grocott
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ahilanandan Dushianthan
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK.
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK.
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
4
|
Araujo Cirne C, Foldvari M. Pulmonary Delivery of Nonviral Nucleic Acid-Based Vaccines With Spotlight on Gold Nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70000. [PMID: 39800783 PMCID: PMC11725562 DOI: 10.1002/wnan.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/15/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Nucleic acid-based vaccines are leading-edge tools in developing next-generation preventative care. Much research has been done to convert vaccine gene therapy from an invasive to a noninvasive administration approach. The lung's large surface area and permeability make the pulmonary route a promising noninvasive delivery option for vaccines, with systemic and local applications. This review summarizes the challenges and the approaches that have been carried out to optimize the delivery of nucleic acids through the pulmonary route for vaccination purposes in recent years, with a spotlight on gold nanoparticles (AuNPs). Nonviral delivery systems have been widely explored, and AuNPs with their unique properties are emerging as promising tools for nucleic acid vaccines due to surface functionalization with mucus-penetrating polymers and targeting moieties that can bypass the barriers in pulmonary delivery and successfully deliver nucleic acids to the cells of interest. However, while promising, several challenges remain including selectively overcoming the lungs' immunological surveillance and adhesive mucus.
Collapse
Affiliation(s)
- Carolina Araujo Cirne
- School of Pharmacy and Waterloo Institute of NanotechnologyUniversity of Waterloo, 200 University Avenue WestWaterlooOntarioCanada
| | - Marianna Foldvari
- School of Pharmacy and Waterloo Institute of NanotechnologyUniversity of Waterloo, 200 University Avenue WestWaterlooOntarioCanada
| |
Collapse
|
5
|
Dai H, He S, Han J, Xing B. Mask Wearers at Risk of Inhaling Respirable Hazards from Leave-On Facial Cosmetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21464-21474. [PMID: 39602556 DOI: 10.1021/acs.est.4c07604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Previous research has widely overlooked the respiratory risks associated with cosmetic powder, a type of mixed particulate matter with intricate chemical compositions, especially in the context of wearing masks. This study investigated the inhalation risks posed by five face powders, focusing on both particulate matter (minerals and primary microplastics) and soluble components (preservatives and organic UV filters). Wearing masks significantly increased the inhalation risk of face powders, with exposure levels influenced by factors such as particle size, density, and composition. Additionally, different samples demonstrated irregular behavioral patterns when exposed to various human tissue environments. Soluble components analysis revealed that multiple additives dissolved in six body fluids, with a higher degree of release observed in the respiratory tract fluid compared to the digestive tract fluid. The alveoli may serve as a specific target for exposure to organic UV filters due to the solubilization effect of pulmonary surfactants. These findings revealed the importance of considering both particulate matter and soluble components when assessing respiratory and digestive exposure risks from cosmetic powders. Furthermore, understanding the interactions between cosmetic particles and body fluids, as well as potential synergistic toxic effects, is crucial for ensuring the safety of cosmetic products and safeguarding public health.
Collapse
Affiliation(s)
- Han Dai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanshan He
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
6
|
Iyadorai T, Lim SH, Wong PL, Sii HL, P'ng CK, Ee SS, Tan MP, Hanafi NS, Ng KT, Chook JB, Takebe Y, Chan KG, Singh S, Sam IC, Tee KK. Clinical symptoms, comorbidities and health outcomes among outpatients infected with the common cold coronaviruses versus influenza virus. Virol J 2024; 21:251. [PMID: 39380036 PMCID: PMC11462790 DOI: 10.1186/s12985-024-02524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Common cold coronaviruses (ccCoVs) and influenza virus are common infectious agents causing upper respiratory tract infections (RTIs). However, clinical symptoms, comorbidities, and health effects of ccCoV infection remain understudied. METHODS A retrospective study evaluated 3,935 outpatients with acute upper RTI at a tertiary teaching hospital. The presence of ccCoV and influenza virus was determined by multiplex molecular assay. The demographic, clinical symptoms, and health outcomes were compared between patients with ccCoV (n = 205) and influenza (n = 417) infections. Multivariable logistic regression was employed to evaluate predictors and health outcomes over a one-year follow-up. RESULTS Sore throat, nasal discharge, headache, and myalgia were more predominant in ccCoV infection; fever was common in influenza. Most patients reported moderate symptoms severity (49.8% ccCoV, 56.1% influenza). Subsequent primary care visits with symptoms of RTI within a year were comparable for both infections (27.3% ccCoV vs. 27.6% influenza). However, patients with influenza reported increased primary care visits for non-RTI episodes and all-cause hospital admission. Baseline comorbidities were associated with increased primary care visits with symptoms of RTI in either ccCoV (adjusted odds ratio [aOR] 2.5; 95% confidence interval [CI] 1.1-5.9; P = 0.034) or influenza (OR 1.9; 95% CI 1.1-3.1; P = 0.017) infections, due probably to the dysregulation of the host immune response following acute infections. In patients infected with influenza infection, dyslipidemia was a predictor for subsequent primary care visits with symptoms of RTI (unadjusted OR 1.8; 95% CI 1.0-3.0; P = 0.040). CONCLUSIONS Both influenza and ccCoV infection pose significant disease burden, especially in patients with comorbidities. The management of comorbidities should be prioritized to mitigate poor health outcomes in infected individuals.
Collapse
Affiliation(s)
- Thevambiga Iyadorai
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sin How Lim
- Department of Social and Preventive Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Pui Li Wong
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hoe Leong Sii
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chun Keat P'ng
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Soon Sean Ee
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Maw Pin Tan
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nik Sherina Hanafi
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kim Tien Ng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jack Bee Chook
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Yutaka Takebe
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- AIDS Research Center, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Jeffrey Cheah School of Medicine and Heath Sciences, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sarbhan Singh
- Biomedical Epidemiology Unit, Special Resource Centre, Institute for Medical Research, Ministry of Health, Shah Alam, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Bondarev DJ, Ryan RM, Mukherjee D. The spectrum of pneumonia among intubated neonates in the neonatal intensive care unit. J Perinatol 2024; 44:1235-1243. [PMID: 38698211 PMCID: PMC11379627 DOI: 10.1038/s41372-024-01973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 02/17/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
We review the pathophysiology, epidemiology, diagnosis, treatment, and prevention of ventilator-associated pneumonia (VAP) in neonates. VAP has been studied primarily in adult ICU patients, although there has been more focus on pediatric and neonatal VAP (neo-VAP) in the last decade. The definition as well as diagnosis of VAP in neonates remains a challenge to date. The neonatal intensivist needs to be familiar with the current diagnostic tools and prevention strategies available to treat and reduce VAP to reduce neonatal morbidity and the emergence of antibiotic resistance. This review also highlights preventive strategies and old and emerging treatments available.
Collapse
Affiliation(s)
- Dayle J Bondarev
- Division of Neonatology, Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rita M Ryan
- Division of Neonatology, Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Devashis Mukherjee
- Division of Neonatology, Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
8
|
Kassaee SN, Richard D, Ayoko GA, Islam N. Lipid polymer hybrid nanoparticles against lung cancer and their application as inhalable formulation. Nanomedicine (Lond) 2024; 19:2113-2133. [PMID: 39143915 PMCID: PMC11486133 DOI: 10.1080/17435889.2024.2387530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Lung cancer is a leading cause of global cancer mortality, often treated with chemotherapeutic agents. However, conventional approaches such as oral or intravenous administration of drugs yield low bioavailability and adverse effects. Nanotechnology has unlocked new gateways for delivering medicine to their target sites. Lipid-polymer hybrid nanoparticles (LPHNPs) are one of the nano-scaled delivery platforms that have been studied to exploit advantages of liposomes and polymers, enhancing stability, drug loading, biocompatibility and controlled release. Pulmonary administration of drug-loaded LPHNPs enables direct lung deposition, rapid onset of action and heightened efficacy at low doses of drugs. In this manuscript, we will review the potential of LPHNPs in management of lung cancer through pulmonary administration.
Collapse
Affiliation(s)
- Seyedeh Negin Kassaee
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Derek Richard
- Centre for Genomics & Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Godwin A. Ayoko
- School of Chemistry & Physics & Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Nazrul Islam
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| |
Collapse
|
9
|
Harvey BJ, McElvaney NG. Sex differences in airway disease: estrogen and airway surface liquid dynamics. Biol Sex Differ 2024; 15:56. [PMID: 39026347 PMCID: PMC11264786 DOI: 10.1186/s13293-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Biological sex differences exist for many airway diseases in which females have either worse or better health outcomes. Inflammatory airway diseases such as cystic fibrosis (CF) and asthma display a clear male advantage in post-puberty while a female benefit is observed in asthma during the pre-puberty years. The influence of menstrual cycle stage and pregnancy on the frequency and severity of pulmonary exacerbations in CF and asthma point to a role for sex steroid hormones, particularly estrogen, in underpinning biological sex differences in these diseases. There are many ways by which estrogen may aggravate asthma and CF involving disturbances in airway surface liquid (ASL) dynamics, inappropriate hyper-immune and allergenic responses, as well as exacerbation of pathogen virulence. The deleterious effect of estrogen on pulmonary function in CF and asthma contrasts with the female advantage observed in airway diseases characterised by pulmonary edema such as pneumonia, acute respiratory distress syndrome (ARDS) and COVID-19. Airway surface liquid hypersecretion and alveolar flooding are hallmarks of ARDS and COVID-19, and contribute to the morbidity and mortality of severe forms of these diseases. ASL dynamics encompasses the intrinsic features of the thin lining of fluid covering the airway epithelium which regulate mucociliary clearance (ciliary beat, ASL height, volume, pH, viscosity, mucins, and channel activating proteases) in addition to innate defence mechanisms (pathogen virulence, cytokines, defensins, specialised pro-resolution lipid mediators, and metabolism). Estrogen regulation of ASL dynamics contributing to biological sex differences in CF, asthma and COVID-19 is a major focus of this review.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland.
- Department of Medicine, RCSI ERC, Beaumont Hospital, Dublin 2, Ireland.
| | - Noel G McElvaney
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
10
|
Wang Q, Bu C, Dai Q, Chen J, Zhang R, Zheng X, Ren H, Xin X, Li X. Recent Progress in Nucleic Acid Pulmonary Delivery toward Overcoming Physiological Barriers and Improving Transfection Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309748. [PMID: 38460157 PMCID: PMC11095210 DOI: 10.1002/advs.202309748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Indexed: 03/11/2024]
Abstract
Pulmonary delivery of therapeutic agents has been considered the desirable administration route for local lung disease treatment. As the latest generation of therapeutic agents, nucleic acid has been gradually developed as gene therapy for local diseases such as asthma, chronic obstructive pulmonary diseases, and lung fibrosis. The features of nucleic acid, specific physiological structure, and pathophysiological barriers of the respiratory tract have strongly affected the delivery efficiency and pulmonary bioavailability of nucleic acid, directly related to the treatment outcomes. The development of pharmaceutics and material science provides the potential for highly effective pulmonary medicine delivery. In this review, the key factors and barriers are first introduced that affect the pulmonary delivery and bioavailability of nucleic acids. The advanced inhaled materials for nucleic acid delivery are further summarized. The recent progress of platform designs for improving the pulmonary delivery efficiency of nucleic acids and their therapeutic outcomes have been systematically analyzed, with the application and the perspectives of advanced vectors for pulmonary gene delivery.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
| | - Chaozhi Bu
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxi214002China
| | - Qihao Dai
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| | - Jinhua Chen
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Ruitao Zhang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xiaomin Zheng
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxi214002China
| | - Hao Ren
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xueming Li
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| |
Collapse
|
11
|
Cadore NA, Lord VO, Recamonde-Mendoza M, Kowalski TW, Vianna FSL. Meta-analysis of Transcriptomic Data from Lung Autopsy and Cellular Models of SARS-CoV-2 Infection. Biochem Genet 2024; 62:892-914. [PMID: 37486510 DOI: 10.1007/s10528-023-10453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Severe COVID-19 is a systemic disorder involving excessive inflammatory response, metabolic dysfunction, multi-organ damage, and several clinical features. Here, we performed a transcriptome meta-analysis investigating genes and molecular mechanisms related to COVID-19 severity and outcomes. First, transcriptomic data of cellular models of SARS-CoV-2 infection were compiled to understand the first response to the infection. Then, transcriptomic data from lung autopsies of patients deceased due to COVID-19 were compiled to analyze altered genes of damaged lung tissue. These analyses were followed by functional enrichment analyses and gene-phenotype association. A biological network was constructed using the disturbed genes in the lung autopsy meta-analysis. Central genes were defined considering closeness and betweenness centrality degrees. A sub-network phenotype-gene interaction analysis was performed. The meta-analysis of cellular models found genes mainly associated with cytokine signaling and other pathogen response pathways. The meta-analysis of lung autopsy tissue found genes associated with coagulopathy, lung fibrosis, multi-organ damage, and long COVID-19. Only genes DNAH9 and FAM216B were found perturbed in both meta-analyses. BLNK, FABP4, GRIA1, ATF3, TREM2, TPPP, TPPP3, FOS, ALB, JUNB, LMNA, ADRB2, PPARG, TNNC1, and EGR1 were identified as central elements among perturbed genes in lung autopsy and were found associated with several clinical features of severe COVID-19. Central elements were suggested as interesting targets to investigate the relation with features of COVID-19 severity, such as coagulopathy, lung fibrosis, and organ damage.
Collapse
Affiliation(s)
- Nathan Araujo Cadore
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Vinicius Oliveira Lord
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Centro Universitário CESUCA, Cachoeirinha, Brazil
| | - Mariana Recamonde-Mendoza
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Thayne Woycinck Kowalski
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Centro Universitário CESUCA, Cachoeirinha, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
12
|
Park E, Kim BY, Lee S, Son KH, Bang J, Hong SH, Lee JW, Uhm KO, Kwak HJ, Lim HJ. Diesel exhaust particle exposure exacerbates ciliary and epithelial barrier dysfunction in the multiciliated bronchial epithelium models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116090. [PMID: 38364346 DOI: 10.1016/j.ecoenv.2024.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Airway epithelium, the first defense barrier of the respiratory system, facilitates mucociliary clearance against inflammatory stimuli, such as pathogens and particulates inhaled into the airway and lung. Inhaled particulate matter 2.5 (PM2.5) can penetrate the alveolar region of the lung, and it can develop and exacerbate respiratory diseases. Although the pathophysiological effects of PM2.5 in the respiratory system are well known, its impact on mucociliary clearance of airway epithelium has yet to be clearly defined. In this study, we used two different 3D in vitro airway models, namely the EpiAirway-full-thickness (FT) model and a normal human bronchial epithelial cell (NHBE)-based air-liquid interface (ALI) system, to investigate the effect of diesel exhaust particles (DEPs) belonging to PM2.5 on mucociliary clearance. RNA-sequencing (RNA-Seq) analyses of EpiAirway-FT exposed to DEPs indicated that DEP-induced differentially expressed genes (DEGs) are related to ciliary and microtubule function and inflammatory-related pathways. The exposure to DEPs significantly decreased the number of ciliated cells and shortened ciliary length. It reduced the expression of cilium-related genes such as acetylated α-tubulin, ARL13B, DNAH5, and DNAL1 in the NHBEs cultured in the ALI system. Furthermore, DEPs significantly increased the expression of MUC5AC, whereas they decreased the expression of epithelial junction proteins, namely, ZO1, Occludin, and E-cadherin. Impairment of mucociliary clearance by DEPs significantly improved the release of epithelial-derived inflammatory and fibrotic mediators such as IL-1β, IL-6, IL-8, GM-CSF, MMP-1, VEGF, and S100A9. Taken together, it can be speculated that DEPs can cause ciliary dysfunction, hyperplasia of goblet cells, and the disruption of the epithelial barrier, resulting in the hyperproduction of lung injury mediators. Our data strongly suggest that PM2.5 exposure is directly associated with ciliary and epithelial barrier dysfunction and may exacerbate lung injury.
Collapse
Affiliation(s)
- Eunsook Park
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Bu-Yeo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, South Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 215565, South Korea
| | - Jihye Bang
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Se Hyang Hong
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Joong Won Lee
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Kyung-Ok Uhm
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea
| | - Hyun-Jeong Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin Univerisity, Seonbuk-Gu, Seoul 02707, South Korea
| | - Hyun Joung Lim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Chungju, Chungcheongbuk-do 28159, South Korea.
| |
Collapse
|
13
|
Abbasnia M, Mosleh N, Dadras H, Shomali T. Effect of enrofloxacin on clinical parameters and mucociliary system of broilers challenged with H9N2 avian influenza/infectious bronchitis viruses. Vet Med Sci 2024; 10:e1390. [PMID: 38419286 PMCID: PMC10902561 DOI: 10.1002/vms3.1390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/17/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Effect of antibacterials on mucociliary system and clinical outcome of chickens with mixed viral respiratory conditions is not properly addressed. OBJECTIVE We evaluated enrofloxacin effects on clinical parameters and mucociliary system of broilers challenged with H9N2/IB viruses. METHODS Broilers (105), at the age of 25 days, were randomly allocated into three groups: Group 1 (negative control), no treatment; Group 2 (positive control [PC]) challenged by intranasal and intraocular route. Group 3 (antibiotic [AB]-treated) challenged and also received enrofloxacin started after manifestation of clinical signs (day 2 post-challenge [pc]) and continued for 5 days. RESULTS Administration of AB was not associated with appreciable changes in body weight, feed conversion ratio (FCR) or the severity of clinical signs although it slightly reduced mortality rate as compared to PC group (p > 0.05). Virus shedding period and number of virus positive tracheal and caecal tonsil samples were also statistically similar between PC and AB groups. In necropsy, the most profound effect of AB was decreased pleuropneumonia severity score on day 12 pc. Histopathological lesion scores were statistically the same between PC and AB groups. However, the administration of AB increased the number of tracheal goblet cells, with no effect on ciliostasis. CONCLUSIONS We found a weak positive effect of enrofloxacin administration in H9N2/IB-infected chickens. Considering the risks of AB treatment in broiler chickens, the results of this small-scale study do not encourage the benefit of enrofloxacin use in these viral diseases.
Collapse
Affiliation(s)
- Mohammad Abbasnia
- Department of Clinical SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Najmeh Mosleh
- Department of Clinical SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Habibollah Dadras
- Department of Clinical SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Tahoora Shomali
- Department of Basic SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| |
Collapse
|
14
|
Harvey BJ. Molecular mechanisms of dexamethasone actions in COVID-19: Ion channels and airway surface liquid dynamics. Steroids 2024; 202:109348. [PMID: 38049079 DOI: 10.1016/j.steroids.2023.109348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
The COVID-19 pandemic has been a global health crisis of unprecedented magnitude. In the battle against the SARS-CoV-2 coronavirus, dexamethasone, a widely used corticosteroid with potent anti-inflammatory properties, has emerged as a promising therapy in the fight against severe COVID-19. Dexamethasone is a synthetic glucocorticoid that exerts its therapeutic effects by suppressing the immune system and reducing inflammation. In the context of COVID-19, the severe form of the disease is often characterized by a hyperactive immune response, known as a cytokine storm. Dexamethasone anti-inflammatory properties make it a potent tool in modulating this exaggerated immune response. Lung inflammation may lead to excessive fluid accumulation in the airways which can reduce gas exchange and mucociliary clearance. Pulmonary oedema and flooding of the airways are hallmarks of severe COVID-19 lung disease. The volume of airway surface liquid is determined by a delicate balance of salt and water secretion and absorption across the airway epithelium. In addition to its anti-inflammatory actions, dexamethasone modulates the activity of ion channels which regulate electrolyte and water transport across the airway epithelium. The observations of dexamethasone activation of sodium ion absorption via ENaC Na+ channels and inhibition of chloride ion secretion via CFTR Cl- channels to decrease airway surface liquid volume indicate a novel therapeutic action of the glucocorticoid to reverse airway flooding. This brief review delves into the early non-genomic and late genomic signaling mechanisms of dexamethasone regulation of ion channels and airway surface liquid dynamics, shedding light on the molecular mechanisms underpinning the action of the glucocorticoid in managing COVID-19.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Centro de Estudios Cientificos, Valdivia, Chile.
| |
Collapse
|
15
|
Çelebi Sözener Z, Treffeisen ER, Özdel Öztürk B, Schneider LC. Global warming and implications for epithelial barrier disruption and respiratory and dermatologic allergic diseases. J Allergy Clin Immunol 2023; 152:1033-1046. [PMID: 37689250 PMCID: PMC10864040 DOI: 10.1016/j.jaci.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Global warming has direct and indirect effects, as well as short- and long-term impacts on the respiratory and skin barriers. Extreme temperature directly affects the airway epithelial barrier by disrupting the structural proteins and by triggering airway inflammation and hyperreactivity. It enhances tidal volume and respiratory rate by affecting the thermoregulatory system, causing specific airway resistance and reflex bronchoconstriction via activation of bronchopulmonary vagal C fibers and upregulation of transient receptor potential vanilloid (TRPV) 1 and TRPV4. Heat shock proteins are activated under heat stress and contribute to both epithelial barrier dysfunction and airway inflammation. Accordingly, the frequency and severity of allergic rhinitis and asthma have been increasing. Heat activates TRPV3 in keratinocytes, causing the secretion of inflammatory mediators and eventually pruritus. Exposure to air pollutants alters the expression of genes that control skin barrier integrity and triggers an immune response, increasing the incidence and prevalence of atopic dermatitis. There is evidence that extreme temperature, heavy rains and floods, air pollution, and wildfires increase atopic dermatitis flares. In this narrative review, focused on the last 3 years of literature, we explore the effects of global warming on respiratory and skin barrier and their clinical consequences.
Collapse
Affiliation(s)
- Zeynep Çelebi Sözener
- Division of Immunology and Allergic Diseases, Ankara Bilkent City Hospital, Ankara, Turkey.
| | - Elsa R Treffeisen
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Betül Özdel Öztürk
- Division of Immunology and Allergic Diseases, Bolu Izzet Baysal Training and Research Hospital, Bolu, Turkey
| | - Lynda C Schneider
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| |
Collapse
|
16
|
Logoń K, Świrkosz G, Nowak M, Wrześniewska M, Szczygieł A, Gomułka K. The Role of the Microbiome in the Pathogenesis and Treatment of Asthma. Biomedicines 2023; 11:1618. [PMID: 37371713 DOI: 10.3390/biomedicines11061618] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The role of the microbiome in the pathogenesis and treatment of asthma is significant. The purpose of this article is to show the interplay between asthma and the microbiome, and main areas that require further research are also highlighted. The literature search was conducted using the PubMed database. After a screening process of studies published before May 2023, a total of 128 articles were selected in our paper. The pre-treatment bronchial microbiome in asthmatic patients plays a role in their responsiveness to treatment. Gut microbiota and its dysbiosis can contribute to immune system modulation and the development of asthma. The association between the microbiome and asthma is complex. Further research is necessary to clarify which factors might moderate that relationship. An appropriate gut microbiome and its intestinal metabolites are a protective factor for asthma development. Prebiotics and certain dietary strategies may have a prophylactic or therapeutic effect, but more research is needed to establish final conclusions. Although the evidence regarding probiotics is ambiguous, and most meta-analyses do not support the use of probiotic intake to reduce asthma, several of the most recent studies have provided promising effects. Further studies should focus on the investigation of specific strains and the examination of their mechanistic and genetic aspects.
Collapse
Affiliation(s)
- Katarzyna Logoń
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Gabriela Świrkosz
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Monika Nowak
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Martyna Wrześniewska
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Aleksandra Szczygieł
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
17
|
Sedaghat MH, Behnia M, Abouali O. Nanoparticle Diffusion in Respiratory Mucus Influenced by Mucociliary Clearance: A Review of Mathematical Modeling. J Aerosol Med Pulm Drug Deliv 2023. [PMID: 37184652 DOI: 10.1089/jamp.2022.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Background: Inhalation and deposition of particles in human airways have attracted considerable attention due to importance of particulate pollutants, transmission of infectious diseases, and therapeutic delivery of drugs at targeted areas. We summarize current state-of-the art research in particle deposition on airway surface liquid (ASL) influenced by mucociliary clearance (MCC) by identifying areas that need further investigation. Methodology: We aim to review focus on governing and constitutive equations describing MCC geometry followed by description of mathematical modeling of ciliary forces, mucus rheology properties, and numerical approaches to solve modified time-dependent Navier-Stokes equations. We also review mathematical modeling of particle deposition in ASL influenced by MCC, particle transport in ASL in terms of Eulerian and Lagrangian approaches, and discuss the corresponding mass transport issues in this layer. Whenever required, numerical predictions are contrasted with the pertinent experimental data. Results: Results indicate that mean mucus and periciliary liquid velocities are strongly influenced by mucus rheological characteristics as well as ciliary abnormalities. However, most of the currently available literature on mucus fiber spacing, ciliary beat frequency, and particle surface chemistry is based on particle deposition on ASL by considering a fixed value of ASL velocity. The effects of real ASL flow regimes on particle deposition in this layer are limited. In addition, no other study is available on modeling nonhomogeneous and viscoelastic characteristics of mucus layer on ASL drug delivery. Conclusion: Simplification of assumptions on governing equations of drug delivery in ASL influenced by MCC leads to imposing some limitations on numerical results.
Collapse
Affiliation(s)
- Mohammad Hadi Sedaghat
- Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran
| | - Mehrdad Behnia
- University of Central Florida School of Medicine, Orlando, Florida, USA
| | - Omid Abouali
- Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
18
|
Tu B, Gao Y, An X, Wang H, Huang Y. Localized delivery of nanomedicine and antibodies for combating COVID-19. Acta Pharm Sin B 2023; 13:1828-1846. [PMID: 36168329 PMCID: PMC9502448 DOI: 10.1016/j.apsb.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been a major health burden in the world. So far, many strategies have been investigated to control the spread of COVID-19, including social distancing, disinfection protocols, vaccines, and antiviral treatments. Despite the significant achievement, due to the constantly emerging new variants, COVID-19 is still a great challenge to the global healthcare system. It is an urgent demand for the development of new therapeutics and technologies for containing the wild spread of SARS-CoV-2. Inhaled administration is useful for the treatment of lung and respiratory diseases, and enables the drugs to reach the site of action directly with benefits of decreased dose, improved safety, and enhanced patient compliance. Nanotechnology has been extensively applied in the prevention and treatment of COVID-19. In this review, the inhaled nanomedicines and antibodies, as well as intranasal nanodrugs, for the prevention and treatment of COVID-19 are summarized.
Collapse
Affiliation(s)
- Bin Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanrong Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinran An
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Huiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528437, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
- Taizhou University, School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou 318000, China
| |
Collapse
|
19
|
Laborie E, Melchionna S, Sterpone F. An operative framework to model mucus clearance in silico by coupling cilia motion with the liquid environment. J Chem Phys 2023; 158:095103. [PMID: 36889954 DOI: 10.1063/5.0135216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Mucociliary clearance is the first defense mechanism of the respiratory tract against inhaled particles. This mechanism is based on the collective beating motion of cilia at the surface of epithelial cells. Impaired clearance, either caused by malfunctioning or absent cilia, or mucus defects, is a symptom of many respiratory diseases. Here, by exploiting the lattice Boltzmann particle dynamics technique, we develop a model to simulate the dynamics of multiciliated cells in a two-layer fluid. First, we tuned our model to reproduce the characteristic length- and time-scales of the cilia beating. We then check for the emergence of the metachronal wave as a consequence of hydrodynamic mediated correlations between beating cilia. Finally, we tune the viscosity of the top fluid layer to simulate the mucus flow upon cilia beating, and evaluate the pushing efficiency of a carpet of cilia. With this work, we build a realistic framework that can be used to explore several important physiological aspects of mucociliary clearance.
Collapse
Affiliation(s)
- Emeline Laborie
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | | | - Fabio Sterpone
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
20
|
Rasai D, Hosseinian SA, Asasi K, Shekarforosh SS, Tafti K. The beneficial effects of spraying of probiotic Bacillus and Lactobacillus bacteria on broiler chickens experimentally infected with avian influenza virus H9N2. Poult Sci 2023; 102:102669. [PMID: 37146538 DOI: 10.1016/j.psj.2023.102669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
This study investigated the clinical, antiviral, and immunological effects of spraying Bacillus spp. and Lactobacillus spp. as a single or mixture probiotic compound on experimentally infected broiler chickens with AIV H9N2. Two hundred and forty 1-day-old broilers were randomly assigned to 6 groups as follows: Ctrl- (no challenge AIV; no spray probiotic), Ctrl+ (AIV challenged; no spray probiotic), AI+B (AIV challenged; daily spraying of probiotic Bacillus spp.), AI+L group (AIV challenged; daily spraying of probiotic Lactobacillus spp.), AIV+BL (AIV challenged; daily spraying of probiotic Bacillus spp. and Lactobacillus spp.), and G-DW (daily spraying of normal saline; no AIV challenged). The birds were reared for 35 d. On the 22nd day of age, broiler chickens were challenged by AIV H9N2. The probiotics were sprayed at 9×109 CFU/m2 daily for 35 d. Growth performance, clinical signs, virus shedding, macroscopic and microscopic lesions were evaluated at various days in all groups. Spraying with probiotics improved the body weight gain and food conversion ratio in the AI+B, AI+L, and AI+BL groups compared to the Ctrl+. The severity of clinical signs, gross lesions, pathological lesions and viral shedding in the probiotic treatment groups was lower than in the Ctrl+ group. The findings of this study suggest the daily spraying of Lactobacillus and Bacillus probiotics alone or in combination during the rearing period reduce clinical and nonclinical aspects of H9N2 virus infection; so, it can be effective as a preventive protocol for controlling the severity of AIV H9N2 infection in broilers.
Collapse
|
21
|
Singh S, Dutta J, Ray A, Karmakar A, Mabalirajan U. Airway Epithelium: A Neglected but Crucial Cell Type in Asthma Pathobiology. Diagnostics (Basel) 2023; 13:diagnostics13040808. [PMID: 36832296 PMCID: PMC9955099 DOI: 10.3390/diagnostics13040808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
The features of allergic asthma are believed to be mediated mostly through the Th2 immune response. In this Th2-dominant concept, the airway epithelium is presented as the helpless victim of Th2 cytokines. However, this Th2-dominant concept is inadequate to fill some of the vital knowledge gaps in asthma pathogenesis, like the poor correlation between airway inflammation and airway remodeling and severe asthma endotypes, including Th2-low asthma, therapy resistance, etc. Since the discovery of type 2 innate lymphoid cells in 2010, asthma researchers started believing in that the airway epithelium played a crucial role, as alarmins, which are the inducers of ILC2, are almost exclusively secreted by the airway epithelium. This underscores the eminence of airway epithelium in asthma pathogenesis. However, the airway epithelium has a bipartite functionality in sustaining healthy lung homeostasis and asthmatic lungs. On the one hand, the airway epithelium maintains lung homeostasis against environmental irritants/pollutants with the aid of its various armamentaria, including its chemosensory apparatus and detoxification system. Alternatively, it induces an ILC2-mediated type 2 immune response through alarmins to amplify the inflammatory response. However, the available evidence indicates that restoring epithelial health may attenuate asthmatic features. Thus, we conjecture that an epithelium-driven concept in asthma pathogenesis could fill most of the gaps in current asthma knowledge, and the incorporation of epithelial-protective agents to enhance the robustness of the epithelial barrier and the combative capacity of the airway epithelium against exogenous irritants/allergens may mitigate asthma incidence and severity, resulting in better asthma control.
Collapse
Affiliation(s)
- Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Archita Ray
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Atmaja Karmakar
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700091, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
22
|
TSLP and HMGB1: Inflammatory Targets and Potential Biomarkers for Precision Medicine in Asthma and COPD. Biomedicines 2023; 11:biomedicines11020437. [PMID: 36830972 PMCID: PMC9953666 DOI: 10.3390/biomedicines11020437] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The airway epithelium, through pattern recognition receptors expressed transmembrane or intracellularly, acts as a first line of defense for the lungs against many environmental triggers. It is involved in the release of alarmin cytokines, which are important mediators of inflammation, with receptors widely expressed in structural cells as well as innate and adaptive immune cells. Knowledge of the role of epithelial cells in orchestrating the immune response and mediating the clearance of invading pathogens and dead/damaged cells to facilitate resolution of inflammation is necessary to understand how, in many chronic lung diseases, there is a persistent inflammatory response that becomes the basis of underlying pathogenesis. This review will focus on the role of pulmonary epithelial cells and of airway epithelial cell alarmins, in particular thymic stromal lymphopoietin (TSLP) and high mobility group box 1 (HMGB1), as key mediators in driving the inflammation of chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD), evaluating the similarities and differences. Moreover, emerging concepts regarding the therapeutic role of molecules that act on airway epithelial cell alarmins will be explored for a precision medicine approach in the context of pulmonary diseases, thus allowing the use of these molecules as possible predictive biomarkers of clinical and biological response.
Collapse
|
23
|
Essaidi-Laziosi M, Royston L, Boda B, Pérez-Rodriguez FJ, Piuz I, Hulo N, Kaiser L, Clément S, Huang S, Constant S, Tapparel C. Altered cell function and increased replication of rhinoviruses and EV-D68 in airway epithelia of asthma patients. Front Microbiol 2023; 14:1106945. [PMID: 36937308 PMCID: PMC10014885 DOI: 10.3389/fmicb.2023.1106945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/18/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Rhinovirus (RV) infections constitute one of the main triggers of asthma exacerbations and an important burden in pediatric yard. However, the mechanisms underlying this association remain poorly understood. Methods In the present study, we compared infections of in vitro reconstituted airway epithelia originating from asthmatic versus healthy donors with representative strains of RV-A major group and minor groups, RV-C, RV-B, and the respiratory enterovirus EV-D68. Results We found that viral replication was higher in tissues derived from asthmatic donors for all tested viruses. Viral receptor expression was comparable in non-infected tissues from both groups. After infection, ICAM1 and LDLR were upregulated, while CDHR3 was downregulated. Overall, these variations were related to viral replication levels. The presence of the CDHR3 asthma susceptibility allele (rs6967330) was not associated with increased RV-C replication. Regarding the tissue response, a significantly higher interferon (IFN) induction was demonstrated in infected tissues derived from asthmatic donors, which excludes a defect in IFN-response. Unbiased transcriptomic comparison of asthmatic versus control tissues revealed significant modifications, such as alterations of cilia structure and motility, in both infected and non-infected tissues. These observations were supported by a reduced mucociliary clearance and increased mucus secretion in non-infected tissues from asthmatic donors. Discussion Altogether, we demonstrated an increased permissiveness and susceptibility to RV and respiratory EV infections in HAE derived from asthmatic patients, which was associated with a global alteration in epithelial cell functions. These results unveil the mechanisms underlying the pathogenesis of asthma exacerbation and suggest interesting therapeutic targets.
Collapse
Affiliation(s)
- Manel Essaidi-Laziosi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Léna Royston
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Francisco Javier Pérez-Rodriguez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Isabelle Piuz
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Hulo
- Service for Biomathematical and Biostatistical Analyses, Institute of Genetics and Genomics, University of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Song Huang
- Epithelix Sàrl, Plan les Ouates, Geneva, Switzerland
| | | | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- *Correspondence: Caroline Tapparel,
| |
Collapse
|
24
|
Kato T, Asakura T, Edwards CE, Dang H, Mikami Y, Okuda K, Chen G, Sun L, Gilmore RC, Hawkins P, De la Cruz G, Cooley MR, Bailey AB, Hewitt SM, Chertow DS, Borczuk AC, Salvatore S, Martinez FJ, Thorne LB, Askin FB, Ehre C, Randell SH, O’Neal WK, Baric RS, Boucher RC. Prevalence and Mechanisms of Mucus Accumulation in COVID-19 Lung Disease. Am J Respir Crit Care Med 2022; 206:1336-1352. [PMID: 35816430 PMCID: PMC9746856 DOI: 10.1164/rccm.202111-2606oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Rationale: The incidence and sites of mucus accumulation and molecular regulation of mucin gene expression in coronavirus (COVID-19) lung disease have not been reported. Objectives: To characterize the incidence of mucus accumulation and the mechanisms mediating mucin hypersecretion in COVID-19 lung disease. Methods: Airway mucus and mucins were evaluated in COVID-19 autopsy lungs by Alcian blue and periodic acid-Schiff staining, immunohistochemical staining, RNA in situ hybridization, and spatial transcriptional profiling. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected human bronchial epithelial (HBE) cultures were used to investigate mechanisms of SARS-CoV-2-induced mucin expression and synthesis and test candidate countermeasures. Measurements and Main Results: MUC5B and variably MUC5AC RNA concentrations were increased throughout all airway regions of COVID-19 autopsy lungs, notably in the subacute/chronic disease phase after SARS-CoV-2 clearance. In the distal lung, MUC5B-dominated mucus plugging was observed in 90% of subjects with COVID-19 in both morphologically identified bronchioles and microcysts, and MUC5B accumulated in damaged alveolar spaces. SARS-CoV-2-infected HBE cultures exhibited peak titers 3 days after inoculation, whereas induction of MUC5B/MUC5AC peaked 7-14 days after inoculation. SARS-CoV-2 infection of HBE cultures induced expression of epidermal growth factor receptor (EGFR) ligands and inflammatory cytokines (e.g., IL-1α/β) associated with mucin gene regulation. Inhibiting EGFR/IL-1R pathways or administration of dexamethasone reduced SARS-CoV-2-induced mucin expression. Conclusions: SARS-CoV-2 infection is associated with a high prevalence of distal airspace mucus accumulation and increased MUC5B expression in COVID-19 autopsy lungs. HBE culture studies identified roles for EGFR and IL-1R signaling in mucin gene regulation after SARS-CoV-2 infection. These data suggest that time-sensitive mucolytic agents, specific pathway inhibitors, or corticosteroid administration may be therapeutic for COVID-19 lung disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Stephen M. Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel S. Chertow
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland; and
| | | | | | | | - Leigh B. Thorne
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Frederic B. Askin
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | |
Collapse
|
25
|
Morton CO, Griffiths JS, Loeffler J, Orr S, White PL. Defective antifungal immunity in patients with COVID-19. Front Immunol 2022; 13:1080822. [PMID: 36531987 PMCID: PMC9750792 DOI: 10.3389/fimmu.2022.1080822] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
The COVID-19 pandemic has placed a huge strain on global healthcare and been a significant cause of increased morbidity and mortality, particularly in at-risk populations. This disease attacks the respiratory systems and causes significant immune dysregulation in affected patients creating a perfect opportunity for the development of invasive fungal disease (IFD). COVID-19 infection can instill a significant, poorly regulated pro-inflammatory response. Clinically induced immunosuppression or pro-inflammatory damage to mucosa facilitate the development of IFD and Aspergillus, Mucorales, and Candida infections have been regularly reported throughout the COVID-19 pandemic. Corticosteroids and immune modulators are used in the treatment of COVID-19. Corticosteroid use is also a risk factor for IFD, but not the only reason for IFD in COVID -19 patients. Specific dysregulation of the immune system through functional exhaustion of Natural killer (NK) cells and T cells has been observed in COVID-19 through the expression of the exhaustion markers NK-G2A and PD-1. Reduced fungicidal activity of neutrophils from COVID-19 patients indicates that immune dysfunction/imbalance are important risk factors for IFD. The COVID-19 pandemic has significantly increased the at-risk population for IFD. Even if the incidence of IFD is relatively low, the size of this new at-risk population will result in a substantial increase in the overall, annual number of IFD cases. It is important to understand how and why certain patients with COVID-19 developed increased susceptibility to IFD, as this will improve our understanding of risk of IFD in the face of future pandemics but also in a clinical era of increased clinical immuno-suppression/modulation.
Collapse
Affiliation(s)
| | - James S. Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, London, United Kingdom
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Selinda Orr
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - P. Lewis White
- Public Health Wales, Microbiology Cardiff, Wales, United Kingdom,*Correspondence: P. Lewis White,
| |
Collapse
|
26
|
Biogeography of Black Mold Aspergillus niger: Global Situation and Future Perspective under Several Climate Change Scenarios Using MaxEnt Modeling. DIVERSITY 2022. [DOI: 10.3390/d14100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Climate change impacts represent one of the most important ecological and medical issues during this century. Several fungal species will change their distribution through space and time as a response to climate changes. This will rearrange many fungal diseases throughout the world. One of the most important and very common fungi is the black mold Aspergillus niger. The COVID-19 pandemic reforms the way in which mycologists think about this fungus as an emerging healthy issue. Through this work, about one thousand records of Aspergillus niger were used to model its current and future global distribution using 19 bioclimatic variables under several climate change scenarios. Maximum entropy implemented in Maxent was chosen as the modeling tool, especially with its accuracy and reliability over the other modeling techniques. The annual mean temperature (bio 1) forms the most contributed climatological parameter to black mold distribution. The produced current distribution model came compatible with the real distribution of the species with a cosmopolitan range. The rise of temperature due to global warming will form a limitation to Aspergillus niger through several parts of its range. The generated maps of the future status of this fungus under two different RCPs for 2050 and 2070, indicate several parts that become free from black mold due to temperature limitations. The present results need more intensive future evaluation using data science and GIS, especially on a local scale including more ecological parameters other than climatological data.
Collapse
|
27
|
Ivaturi K, Tsukhai V, Hassan WM. Influenza Type B Complicates a Previously Undiagnosed Case of Pericarditis. Cureus 2022; 14:e30810. [PMID: 36457595 PMCID: PMC9705055 DOI: 10.7759/cureus.30810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
We report the first case of pericarditis exacerbation due to influenza B viral infection while emphasizing the importance of cardiac magnetic resonance (CMR) for the timely diagnosis and ruling out of non-effusive pericarditis in a patient with compatible, unexplained chest pain. The patient presented with left-sided chest pain that was partially relieved by leaning backward and noted persistent fatigue for several days. Pericardial friction rub, electrocardiogram (ECG), and echocardiogram abnormalities were not detected. After discharge on the morning following admission, fatigue and fever several minutes after physical exertion continued. The patient contracted influenza type B, leading to pneumonia and a second hospitalization, during which echocardiography showed moderate pericardial effusion. We conclude that the patient had pericarditis on the first admission because other compatible causes of chest pain were ruled out, symptoms were compatible with non-effusive pericarditis and could not be ruled out since CMR was not done, and the patient tested positive during his second admission for multiple known etiologic agents of pericarditis. We highlight the importance of CMR in screening patients presenting with chest pain of unknown origin to facilitate early detection and intervention.
Collapse
Affiliation(s)
- Keerti Ivaturi
- Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Valerie Tsukhai
- Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Wail M Hassan
- Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, USA
| |
Collapse
|
28
|
The Renshen Chishao Decoction Could Ameliorate the Acute Lung Injury but Could Not Reduce the Neutrophil Extracellular Traps Formation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7784148. [PMID: 36072401 PMCID: PMC9444383 DOI: 10.1155/2022/7784148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/18/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022]
Abstract
The acute lung injury (ALI) causes severe pulmonary diseases, leading to a high mortality rate. The Renshen and Chishao have protective and anti-inflammatory effects against the ALI. To explore the protective effects of the Renshen Chishao (RC) decoction against the ALI, we established the lipopolysaccharide-indued ALI model and randomly divided the mice into seven groups: control group, ALI group, high-dose RC group, middle-dose RC group, low-dose RC group, middle-dose RC group + CXCR2 antagonist group, and ALI + CXCR2 antagonist group. We estimated the lung injury by the hematoxylin and eosin staining, the neutrophil extracellular traps (NETs) formations by the immunofluorescence colocalization and enzyme-linked immunosorbent assay (ELISA), and the CXCR2/CXCL2 pathway by the flow cytometry, ELISA, and real-time polymerase chain reaction. We conducted the high-throughput sequencing and enrichment analyses to explore the potential mechanisms. The results showed that the RC decoction pathologically ameliorated the lipopolysaccharide-induced lung injury and inflammatory response but failed to reduce the circulating and lung tissue NETs formation and the blood neutrophil percent. The high-dose RC decoction increased the plasma CXCL2 level, but the RC decoction had no effects on the neutrophilic CXCR2 levels. Under the inhibition of the CXCR2, the middle-dose RC decoction still decreased the lung injury score but as yet had unobvious influence on the NETs formation. Other potential mechanisms of the RC decoction against the ALI involved the pathways of ribosome and coronavirus disease 2019 (COVID-19); the target genes of inflammatory factors, such as Ccl17, Cxcl17, Cd163, Cxcr5, and Il31ra, and lncRNAs; and the regulations of the respiratory cilia. In conclusion, the RC decoction pathologically ameliorated the lipopolysaccharide-induced lung inflammatory injury via upregulating the CXCL2/CXCR2 pathway but could not reduce the circulating or lung tissue NETs formation.
Collapse
|
29
|
Zhang D, Hugo W, Bergsneider M, Wang MB, Kim W, Vinters HV, Heaney AP. Single-cell RNA sequencing in silent corticotroph tumors confirms impaired POMC processing and provides new insights into their invasive behavior. Eur J Endocrinol 2022; 187:49-64. [PMID: 35521707 PMCID: PMC9248914 DOI: 10.1530/eje-21-1183] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/21/2022] [Indexed: 11/08/2022]
Abstract
Objective Provide insights into the defective POMC processing and invasive behavior in silent pituitary corticotroph tumors. Design and methods Single-cell RNAseq was used to compare the cellular makeup and transcriptome of silent and active corticotroph tumors. Results A series of transcripts related to hormone processing peptidases and genes involved in the structural organization of secretory vesicles were reduced in silent compared to active corticotroph tumors. Most relevant to their invasive behavior, silent corticotroph tumors exhibited several features of epithelial-to-mesenchymal transition, with increased expression of mesenchymal genes along with the loss of transcripts that regulate hormonal biogenesis and secretion. Silent corticotroph tumor vascular smooth muscle cell and pericyte stromal cell populations also exhibited plasticity in their mesenchymal features. Conclusions Our findings provide novel insights into the mechanisms of impaired POMC processing and invasion in silent corticotroph tumors and suggest that a common transcriptional reprogramming mechanism simultaneously impairs POMC processing and activates tumor invasion.
Collapse
Affiliation(s)
- Dongyun Zhang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Willy Hugo
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Marvin Bergsneider
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles
| | - Marilene B. Wang
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles
| | - Won Kim
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles
| | - Harry V. Vinters
- Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Anthony P. Heaney
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
30
|
Wang X, Wan W, Lu J, Zhang Y, Quan G, Pan X, Wu Z, Liu P. Inhalable cryptotanshinone spray-dried swellable microparticles for pulmonary fibrosis therapy by regulating TGF-β1/Smad3, STAT3 and SIRT3 pathways. Eur J Pharm Biopharm 2022; 172:177-192. [PMID: 35202797 DOI: 10.1016/j.ejpb.2022.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022]
Abstract
Cryptotanshinone (CTS) is a promising therapeutic option for pulmonary fibrosis (PF). However, clinical applications of CTS are limited owing to high photosensitivity and poor oral bioavailability. Pulmonary drug delivery, especially sustained pulmonary drug delivery, is promising for local treatment of chronic lung diseases. In this study, CTS was encapsulated in an optimized chitosan/L-leucine-based swellable microparticles (SMs) system, which exhibited an appropriate aerosolization performance, sustained release and storage stability. SMs enhanced the in vitro anti-fibrosis efficacy of CTS as shown by the improved cellular uptake. The effect of PF status on in vivo fate of the pulmonary delivered drug was also assessed. Pharmacokinetics and tissue distribution of oral and pulmonary delivery CTS in bleomycin-induced PF rats were compared. Pulmonary delivery exhibited high drug concentrations in pulmonary lesion areas, with reduced exposure to blood and non-targeted tissues after administration at a significantly lower dose compared with oral delivery. Moreover, PF pathological status enhanced activity of SMs, implying that pulmonary delivery was highly effective for PF treatment. Compared to oral delivery, Inhaled SMs showed comparable or even better efficacies at approximately 60-fold low dose compared with oral delivery. A sustained efficacy was observed under a prolonged administration interval (corresponding to half the total dose). Inhalation safety of SMs was established, and important mechanism-related signaling pathways against PF were investigated in vitro and in vivo. In summary, the findings showed that the developed CTS-loaded sustained pulmonary delivery system is a safe and effective strategy for chronic PF treatment.
Collapse
Affiliation(s)
- Xiuhua Wang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Lu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuting Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Peiqing Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Baddley JW, Thompson GR, Chen SCA, White PL, Johnson MD, Nguyen MH, Schwartz IS, Spec A, Ostrosky-Zeichner L, Jackson BR, Patterson TF, Pappas PG. Coronavirus Disease 2019-Associated Invasive Fungal Infection. Open Forum Infect Dis 2021; 8:ofab510. [PMID: 34877364 PMCID: PMC8643686 DOI: 10.1093/ofid/ofab510] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) can become complicated by secondary invasive fungal infections (IFIs), stemming primarily from severe lung damage and immunologic deficits associated with the virus or immunomodulatory therapy. Other risk factors include poorly controlled diabetes, structural lung disease and/or other comorbidities, and fungal colonization. Opportunistic IFI following severe respiratory viral illness has been increasingly recognized, most notably with severe influenza. There have been many reports of fungal infections associated with COVID-19, initially predominated by pulmonary aspergillosis, but with recent emergence of mucormycosis, candidiasis, and endemic mycoses. These infections can be challenging to diagnose and are associated with poor outcomes. The reported incidence of IFI has varied, often related to heterogeneity in patient populations, surveillance protocols, and definitions used for classification of fungal infections. Herein, we review IFI complicating COVID-19 and address knowledge gaps related to epidemiology, diagnosis, and management of COVID-19-associated fungal infections.
Collapse
Affiliation(s)
- John W Baddley
- Department of Medicine, University of Maryland School of Medicine and Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases and Department of Medical Microbiology and Immunology, University of California, Davis Medical Center, Sacramento, California, USA
| | - Sharon C -A Chen
- Centre for Infectious Diseases and Microbiology, Westmead Hospital and Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
| | - P Lewis White
- Public Health Wales Microbiology Cardiff, University Hospital of Wales, Cardiff, United Kingdom
| | - Melissa D Johnson
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - M Hong Nguyen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ilan S Schwartz
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andrej Spec
- Division of Infectious Diseases, Department of Medicine, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | | | | | - Thomas F Patterson
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Peter G Pappas
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
32
|
Xi J, Lei LR, Zouzas W, April Si X. Nasally inhaled therapeutics and vaccination for COVID-19: Developments and challenges. MedComm (Beijing) 2021; 2:569-586. [PMID: 34977869 PMCID: PMC8706742 DOI: 10.1002/mco2.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022] Open
Abstract
The nose is the initial site of viral infection, replication, and transmission in the human body. Nasally inhaled vaccines may act as a promising alternative for COVID-19 management in addition to intramuscular vaccination. In this review, the latest developments of nasal sprays either as repurposed or antiviral formulations were presented. Nasal vaccines based on traditional medicines, such as grapefruit seed extract, algae-isolated carrageenan, and Yogurt-fermenting Lactobacillus, are promising and under active investigations. Inherent challenges that hinder effective intranasal delivery were discussed in detail, which included nasal device issues and human nose physiological complexities. We examined factors related to nasal spray administration, including the nasal angiotensin I converting enzyme 2 (ACE2) locations as the delivery target, nasal devices, medication translocation after application, delivery methods, safety issues, and other nasal delivery options. The effects of human factors on nasal spray efficacy, such as nasal physiology, disease-induced physiological modifications, intersubject variability, and mucociliary clearance, were also examined. Finally, the potential impact of nasal vaccines on COVID-19 management in the developing world was discussed. It is concluded that effective delivery of nasal sprays to ACE2-rich regions is urgently needed, especially in the context that new variants may become unresponsive to current vaccines and more refractory to existing therapies.
Collapse
Affiliation(s)
- Jinxiang Xi
- Department of Biomedical EngineeringUniversity of MassachusettsLowellMassachusettsUSA
| | - Lameng Ray Lei
- Amphastar Pharmaceuticals, IncRancho CucamongaCaliforniaUSA
| | - William Zouzas
- Department of Biomedical EngineeringUniversity of MassachusettsLowellMassachusettsUSA
| | - Xiuhua April Si
- Department of AerospaceIndustrial and Mechanical EngineeringCalifornia Baptist UniversityRiversideCaliforniaUSA
| |
Collapse
|
33
|
Burgoyne RA, Fisher AJ, Borthwick LA. The Role of Epithelial Damage in the Pulmonary Immune Response. Cells 2021; 10:cells10102763. [PMID: 34685744 PMCID: PMC8534416 DOI: 10.3390/cells10102763] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.
Collapse
Affiliation(s)
- Rachel Ann Burgoyne
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Andrew John Fisher
- Regenerative Medicine, Stem Cells and Transplantation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Lee Anthony Borthwick
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: ; Tel.: +44-191-208-3112
| |
Collapse
|
34
|
Abstract
BACKGROUND As with other inflammatory diseases, the (dry) cough in COVID-19 patients indicates that mucociliary clearance (MCC) is at least at risk, if not overloaded, damaged or largely inoperable. Coughing is an important secondary mechanism that only takes over bronchial cleansing as a replacement if the MCC has failed. METHOD The review article describes the physiology and pathophysiology of MCC and its possible role in the pathogenesis of COVID-19. RESULTS AND CONCLUSIONS Human and animal studies as well as autopsy reports indicate that MCC could also be important for the COVID-19 pathogenesis. In primary care, MCC plays a major role in inflammatory respiratory diseases. In Germany, drugs for self-medication are approved for treatment and, due to the high quality of studies, are also recommended in the respective guidelines. A symptomatic approach to stabilize the airway barrier would also be conceivable in the early outpatient phase of COVID-19.
Collapse
Affiliation(s)
- Thomas Wittig
- Leiter Medizin & Klinische Forschung G. Pohl-Boskamp GmbH & Co KG, Arzt für Allgemeinmedizin, Kieler Straße 11, 25551, Hohenlockstedt, Germany.
| |
Collapse
|