1
|
Mo J, Ding Y, Yang J, Zheng Z, Lu J, Luo H, Wang J, Lin F, Chen J, Li Q, Zheng X, Zha L. Milk Exosomes From Gestational Diabetes Mellitus Parturients Demonstrate Weaker Ability to Promote Intestinal Development in Offspring. Mol Nutr Food Res 2025:e70026. [PMID: 40207769 DOI: 10.1002/mnfr.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/11/2025]
Abstract
This study aims to investigate whether human milk exosomes from gestational diabetes mellitus (GDM-EXO) and healthy (HEA-EXO) parturients differ in regulating intestinal development in offspring. The differential miRNAs associated with intestinal development in GDM-EXO and HEA-EXO were verified by using qPCR and their relationships with gut microbiota (GM) in infants were analyzed. C57BL/6J mice were gavaged with 50 mg/kg·BW HEA-EXO or GDM-EXO. The intestinal morphology, gut barriers, ZO-1 and Occludin, and GM were determined by histological staining, Western blotting, and 16S rDNA amplicon sequencing, respectively. Hsa-miR-19b-3p, hsa-miR-148a-3p, and hsa-miR-320a-3p were upregulated, and hsa-miR-429 was decreased in GDM-EXO compared to HEA-EXO. The GDM parturients' infants had increased intestinal Coriobacteriaceae, Clostridiaceae, Erysipelotrichaceae, Erysipelatoclostridiaceae, and fewer Lactobacillaceae than the healthy parturient's infants. The four differential miRNAs in GDM-EXO all correlated with the infants' GM. GDM-EXO- and HEA-EXO-fed mice had greater villus lengths, villus length-to-crypt depth ratios, goblet cell numbers, elevated ZO-1 and Occludin, and lower crypt depths than control mice. HEA-EXO-fed mice had better intestinal morphology and gut barrier integrity than GDM-EXO-fed mice. GDM-EXO-fed mice had significantly decreased Lachnospiraceae and Oscillospiraceae than HEA-EXO-fed mice. GDM-EXO demonstrate weaker ability to promote intestinal development in offspring than HEA-EXO.
Collapse
Affiliation(s)
- Jiaqi Mo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yudi Ding
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Junyi Yang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Zhongdaixi Zheng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Jiazhi Lu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Jiexian Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Fengjuan Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Junbin Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Qing Li
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Xiangyi Zheng
- Department of Health Management Medicine, Guangzhou Panyu District Health Management Center (Guangzhou Panyu District Rehabilitation Hospital), Guangzhou, Guangdong, P. R. China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
2
|
Modi N. Human milk for preterm infants. Semin Fetal Neonatal Med 2025:101634. [PMID: 40240199 DOI: 10.1016/j.siny.2025.101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The term "human milk" conceals important differences between that from an infant's own mother and that obtained from a person or persons who have donated or sold their breast milk. These include differences in nutritional content, and a wide range of non-nutritional components that promote immune, metabolic, and brain development and have evolved over the course of time to transmit biological information from mother to infant. Human milk feeding to preterm babies also encompasses elements such as processing and storage, differences between feeding expressed breast milk versus suckling at the breast, and societal and economic considerations. Current evidence of clinical effectiveness of donated or commercial human milk, and whether macro and micronutrient supplementation are required indicates considerable uncertainty and the possibility of harm. Preterm nutrition is an emotive subject, but important evidence gaps need to be recognised, acknowledged, and addressed if the care of very preterm babies is to improve through a strong evidence-base.
Collapse
Affiliation(s)
- Neena Modi
- Imperial College London, Chelsea and Westminster Hospital campus, 369 Fulham Road, London, SW10 9NH, UK.
| |
Collapse
|
3
|
Cristóbal-Cañadas D, Parrón-Carrillo R, Parrón-Carreño T. Exosomes in Breast Milk: Their Impact on the Intestinal Microbiota of the Newborn and Therapeutic Perspectives for High-Risk Neonates. Int J Mol Sci 2025; 26:3421. [PMID: 40244312 PMCID: PMC11989396 DOI: 10.3390/ijms26073421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Breast milk exosomes are essential for the nutrition and immune development of the newborn. These 30-150 nm extracellular vesicles contain microRNAs (miRNAs), mesessenger RNAS (mRNA)s, proteins and lipids that facilitate cellular communication and modulate the neonatal immune system. In this article, we analyse the impact of breast milk exosomes on the intestinal microbiota of the newborn, especially in high-risk neonates such as preterm infants or neonates at risk of necrotising enterocolitis (NEC). Exosomes promote the colonisation of beneficial bacteria such as Bifidobacterium and Lactobacillus and strengthen the intestinal barrier. They also regulate the immune response, balancing defence against pathogens and tolerance to non-pathogenic antigens. This effect is key for high-risk infants, who benefit from their anti-inflammatory and preventive properties against complications such as NEC. Research points to their potential therapeutic uses in neonatal care, opening up new opportunities to improve the health of vulnerable newborns through the protective effects of breast milk exosomes.
Collapse
Affiliation(s)
| | - Rocio Parrón-Carrillo
- Department of Psychology, Faculty of Health Sciences, University of Almeria, 04120 Almería, Spain;
| | - Tesifón Parrón-Carreño
- Department of Nursing, Physiotherapy and Medicine, University of Almería, 04120 Almería, Spain
| |
Collapse
|
4
|
Lu Y, Niu S, Zhang G, Guo Y, Fu B, Wang M, Liu J, Zhang H, Lu W, Zhang M. Antagonistic interaction between miR-143 and KRAS gene regulating male mouse germ cell apoptosis. Theriogenology 2025; 235:121-133. [PMID: 39823829 DOI: 10.1016/j.theriogenology.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
Precisely regulated spermatocyte growth, differentiation, and apoptosis are crucial for sustainable male fertility. miR-143 has been demonstrated to regulate gene expression and cell apoptosis in various human cancers. However, the function of mmu-mir-143 (miR-143) in mammalian testes and its underlying mechanism remains unexplored. In this study, the expression of miR-143 was detected in C57BL/6 mice spermatocytes by in situ hybridization (ISH) and immunofluorescence (IF) co-staining and transfecting miR-143 inhibitor into GC-2 cells (mouse spermatogenic cells) shows that miR-143 inhibits cleaved Caspase 3 (CC3)-induced male germ cell death. The current study used IF co-staining of KI67 and γ-H2A.X in the testes of C57BL/6 mice at different developmental stages, revealing that active proliferation and apoptosis of spermatocytes occurred simultaneously in the testes at 14 day post-partum (dpp). Kras was predicted as a potential target of miR-143 in mice using of the online database TargetScan, verified by quantitative real-time PCR (qPCR), western blotting (WB), and Dual-luciferase reporter gene assay. Co-transfection of miR-143 inhibitor and Kras siRNA into GC-2 cells revealed an antagonistic correlation between miR-143 and Kras in regulating male germ cell death. Finally, miR-143 inhibitor and mimics were administered into the seminiferous tubule of 3-week-old C57BL/6 mice. The histomorphology, IF co-staining, and WB data indicated that the testes treated with the miR-143 inhibitor showed significantly aberrant phenotypes, including damaged seminiferous tubules, reduced spermatocyte quantity, and elevated levels of apoptosis. This study uncovered the mechanism by which miR-143 inhibits male germ cell apoptosis through the repression of Kras/KRAS levels and the inhibition of Caspase 3 activation, providing insight into the role of miRNA in spermatogenesis and the maintenance of male fertility.
Collapse
Affiliation(s)
- Yu Lu
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Shudong Niu
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Guisheng Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Yanfeng Guo
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Baotong Fu
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Miaomiao Wang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Jianan Liu
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Wen Lu
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Ming Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China.
| |
Collapse
|
5
|
Li WJ, Gao YC, Hu X, Tan YT, Deng JJ, Pan HF, Tao SS. Association between breastfeeding and the risk of autoimmune diseases: A systematic review and meta-analysis. Autoimmun Rev 2025; 24:103801. [PMID: 40081726 DOI: 10.1016/j.autrev.2025.103801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVES Previous studies on the association between breastfeeding and autoimmune diseases risk have yielded inconsistent findings. This study employed a systematic review and meta-analysis to explore the effect of breastfeeding and its duration against autoimmune diseases. METHODS Six databases (PubMed, Web of Science, Embase, CINAHL, Cochrane Library, PsycINFO) were systematically searched from inception to September 24, 2024. Studies on the association between breastfeeding and rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), ulcerative colitis (UC), Crohn's disease (CD), multiple sclerosis (MS) and type 1 diabetes mellitus (T1D) published within this period were included. Dichotomous outcome data from multiple studies were subjected to a random-effects meta-analysis using the Mantel-Haenszel method to estimate the pooled effect size. The Newcastle-Ottawa Scale was employed to evaluate quality. RESULTS Of the 40 included studies (35 case-control studies and 5 cohort studies), 12 were stratified by the duration of breastfeeding. The combined effect showed a protective association between breastfeeding and a reduced risk of autoimmune diseases (OR = 0.80; 95 %CI: 0.72 to 0.89; P < 0.001). This protective effect was significant for RA (OR = 0.66; 95 %CI: 0.46 to 0.93; P = 0.018), MS (OR = 0.78; 95 % CI: 0.63 to 0.98; P = 0.030) and T1D (OR = 0.80; 95 %CI: 0.66 to 0.98; P = 0.028), and was more pronounced with breastfeeding duration of at least four months (OR = 0.81; 95 %CI: 0.72 to 0.90; P < 0.001). CONCLUSION Breastfeeding provides an overall protective effect against autoimmune diseases and a significant protective effect on RA, MS and T1D. This protective effect appears stronger with breastfeeding duration of at least 4 months. These results highlight the necessity of promoting breastfeeding and supporting related policies to improve infant health.
Collapse
Affiliation(s)
- Wen-Jie Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Yue-Can Gao
- Department of Health Promotion and Behavioral Sciences, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Xiao Hu
- Department of Health Promotion and Behavioral Sciences, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Yu-Tong Tan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Jia-Jun Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China.
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China; Preventive Medicine Experimental Teaching Center, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China.
| |
Collapse
|
6
|
Nai S, Song J, Su W, Liu X. Bidirectional Interplay Among Non-Coding RNAs, the Microbiome, and the Host During Development and Diseases. Genes (Basel) 2025; 16:208. [PMID: 40004537 PMCID: PMC11855195 DOI: 10.3390/genes16020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
It is widely known that the dysregulation of non-coding RNAs (ncRNAs) and dysbiosis of the gut microbiome play significant roles in host development and the progression of various diseases. Emerging evidence has highlighted the bidirectional interplay between ncRNAs and the gut microbiome. This article aims to review the current understanding of the molecular mechanisms underlying the crosstalk between ncRNAs, especially microRNA (miRNA), and the gut microbiome in the context of development and diseases, such as colorectal cancer, inflammatory bowel diseases, neurological disorders, obesity, and cardiovascular disease. Ultimately, this review seeks to provide a foundation for exploring the potential roles of ncRNAs and gut microbiome interactions as biomarkers and therapeutic targets for clinical diagnosis and treatment, such as ncRNA mimics, antisense oligonucleotides, and small-molecule compounds, as well as probiotics, prebiotics, and diets.
Collapse
Affiliation(s)
| | | | | | - Xiaoqian Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (S.N.); (J.S.); (W.S.)
| |
Collapse
|
7
|
Doghish AS, Elazazy O, Mohamed HH, Mansour RM, Ghanem A, Faraag AHI, Elballal MS, Elrebehy MA, Elesawy AE, Abdel Mageed SS, Saber S, Nassar YA, Abulsoud AI, Abdel-Reheim MA, Elawady AS, Ali MA, Basiouny MS, Hemdan M, Lutfy RH, Awad FA, El-Sayed SA, Ashour MM, El-Sayyad GS, Mohammed OA. A Review on miRNAs in Enteric Bacteria-mediated Host Pathophysiology: Mechanisms and Implications. J Biochem Mol Toxicol 2025; 39:e70160. [PMID: 39907181 DOI: 10.1002/jbt.70160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
Recently, many studies focused on the billions of native bacteria found inside and all over the human body, commonly known as the microbiota, and its interactions with the eukaryotic host. One of the niches for such microbiota is the gastrointestinal tract (GIT), which harbors hundreds to thousands of bacterial species commonly known as enteric bacteria. Changes in the enteric bacterial populations were linked to various pathologies such as irritable bowel syndrome and obesity. The gut microbiome could affect the health status of individuals. MicroRNAs (miRNAs) are one of the extensively studied small-sized noncoding RNAs (ncRNAs) over the past decade to explore their multiple roles in health and disease. It was proven that miRNAs circulate in almost all body fluids and tissues, showing signature patterns of dysregulation associated with pathologies. Both cellular and circulating miRNAs participate in the posttranscriptional regulation of genes and are considered the potential key regulators of genes and participate in cellular communication. This manuscript explores the unique interplay between miRNAs and enteric bacteria in the gastrointestinal tract, emphasizing their dual role in shaping host-microbiota dynamics. It delves into the molecular mechanisms by which miRNAs influence bacterial colonization and host immune responses, linking these findings to gut-related diseases. The review highlights innovative therapeutic and diagnostic opportunities, offering insights for targeted treatments of dysbiosis-associated pathologies.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
| | - Hend H Mohamed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
- Biochemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
| | - Ahmed H I Faraag
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Medical Department, School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Yara A Nassar
- Department of Botany, Faculty of Science, Biotechnology and Its Application Program, Mansoura University, Mansoura, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
| | | | - Alaa S Elawady
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
| | | | - Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
| | - Salma A El-Sayed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
| | - Mohamed M Ashour
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala city, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
8
|
Gao Y, Zhang J, Cao M, Zhang Y, Cao M, Gu W, Wang M. MDPAO1 peptide from human milk enhances brown adipose tissue thermogenesis and mitigates obesity. Mol Cell Endocrinol 2025; 597:112443. [PMID: 39710295 DOI: 10.1016/j.mce.2024.112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/19/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
The regulatory effect of breastfeeding on offspring metabolism has garnered significant attention as an effective strategy in combating childhood obesity. However, the underlying mechanism remains largely unknown. Through integrated analysis of multiple human milk peptide databases and functional screening, MDPAO1 (milk-derived peptide associated with obesity 1) was identified as having potential activity in promoting the expression of thermogenic genes. In lactating mice, intervention with MDPAO1 enhanced the thermogenic phenotype of brown adipose tissue (BAT) and overall metabolic activity. Moreover, MDPAO1 intervention led to reduced body weight gain, increased brown fat mass, and improved glucose tolerance and insulin sensitivity in a mouse model of high-fat diet (HFD)-induced obesity. RNA-seq analysis of BAT post-MDPAO1 intervention revealed close association with mitochondrial oxidative respiratory chain and mitophagy. Subsequent in vitro experiments conducted on primary brown adipocytes confirmed that MDPAO1 inhibited mitophagy, increased mitochondrial mass, and elevated levels of mitochondrial respiratory chain complexes. In conclusion, this study underscores the potential of MDPAO1, a peptide enriched in breast milk, in activating the thermogenic phenotype of brown adipose tissue and mitigating obesity, thus offering novel insights into the mechanisms underlying breastfeeding's role in preventing childhood obesity.
Collapse
Affiliation(s)
- Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Jiahui Zhang
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China
| | - Mengda Cao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210044, China
| | - Yiting Zhang
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China; Department of Neonatology, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China
| | - Minkai Cao
- Department of Obstetrics and Gynecology, Affiliated Women's Hospital of Jiangnan University ,Wuxi Maternity and Child Health Care Hospital, Wuxi 214002, China.
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| | - Mingxin Wang
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China; Department of Neonatology, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China.
| |
Collapse
|
9
|
Chen G, Ouyang X, Mu Y, Chen Y. Human breast milk-derived exosomes and their positive role on neonatal intestinal health. Pediatr Res 2025:10.1038/s41390-025-03813-8. [PMID: 39865171 DOI: 10.1038/s41390-025-03813-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 01/28/2025]
Abstract
Although the role of breast milk in promoting neonatal growth and maintaining intestinal homeostasis is well established, underlying mechanisms by which it protects the intestine from damage remain to be elucidated. Human breast milk-derived exosomes (HMDEs) are newly discovered active signaling vesicles with a diameter of 30-150 nm, which are key carriers of biological information exchange between mother and child. In addition, due to their ability to cross the gastrointestinal barrier, low immunogenicity, good biocompatibility and stability, HMDEs play an important role in regulating intestinal barrier integrity in newborns. In addition, HMDEs possess specific properties that are reformable and modifiable, offering promising strategies for the prevention and treatment of neonatal intestinal diseases. However, challenges such as purification, complex content, and quality control hinder their clinical application. This paper provides a comprehensive review of the biogenesis and properties of HMDEs, their isolation and purification, composition, and effects on neonatal intestinal barrier function, and further explores their potential biomedical applications. IMPACT: Breast milk helps maintain intestinal homeostasis in newborns and can prevent diseases, especially necrotizing enterocolitis (NEC). Breast milk contains abundant exosomes, which are important carriers of maternal and infant biological information exchange. Breast milk have the advantages of low immunogenicity, good biocompatibility and good stability, which helps to maintain the integrity of the intestinal barrier. Exosomes can be modified, which is expected to provide a more effective strategy for the prevention and treatment of intestinal diseases.
Collapse
Affiliation(s)
- Gen Chen
- Department of Pediatrics, The First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, China
| | - Xiangdong Ouyang
- Department of Pediatrics, The First People's Hospital of Chenzhou, Chenzhou, Hunan, 423000, China
| | - Yide Mu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Yuqiong Chen
- Department of Pediatrics, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
10
|
Arenas G, Barrera MJ, Contreras-Duarte S. The Impact of Maternal Chronic Inflammatory Conditions on Breast Milk Composition: Possible Influence on Offspring Metabolic Programming. Nutrients 2025; 17:387. [PMID: 39940245 PMCID: PMC11820913 DOI: 10.3390/nu17030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
Breastfeeding is the best way to provide newborns with crucial nutrients and produce a unique bond between mother and child. Breast milk is rich in nutritious and non-nutritive bioactive components, such as immune cells, cytokines, chemokines, immunoglobulins, hormones, fatty acids, and other constituents. Maternal effects during gestation and lactation can alter these components, influencing offspring outcomes. Chronic inflammatory maternal conditions, such as obesity, diabetes, and hypertension, impact breast milk composition. Breast milk from obese mothers exhibits changes in fat content, cytokine levels, and hormonal concentrations, potentially affecting infant growth and health. Similarly, diabetes alters the composition of breast milk, impacting immune factors and metabolic markers. Other pro-inflammatory conditions, such as dyslipidemia and metabolic syndrome, have been barely studied. Thus, maternal obesity, diabetes, and altered tension parameters have been described as modifying the composition of breast milk in its macronutrients and other important biomolecules, likely affecting the offspring's weight. This review emphasizes the impact of chronic inflammatory conditions on breast milk composition and its potential implications for offspring development through the revision of full-access original articles.
Collapse
Affiliation(s)
- Gabriela Arenas
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510602, Chile;
| | - María José Barrera
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 7510157, Chile;
| | - Susana Contreras-Duarte
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago 8420524, Chile
| |
Collapse
|
11
|
Picáns-Leis R, Vázquez-Mosquera ME, Pereira-Hernández M, Vizoso-González M, López-Valverde L, Barbosa-Gouveia S, López-Suárez O, López-Sanguos C, Bravo SB, García-González MA, Couce ML. Characterization of the functional component in human milk and identification of the molecular mechanisms undergoing prematurity. Clin Nutr 2025; 44:178-192. [PMID: 39700709 DOI: 10.1016/j.clnu.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND AND AIMS Human milk (HM) is the earliest form of extrauterine communication between mother and infant, that could promote early programming. The aim of this study is to look for specific biological processes, particularly those undergoing prematurity, modulated by proteins and miRNAs of HM that could be implicated in growth and development. METHODS This is a prospective, observational, single center study in which we collected 48 human milk (HM) samples at two distinct stages of lactation: colostrum (first 72-96 h) and mature milk (at week 4 post-delivery) from mothers of very preterm newborns (<32 weeks) and term (≥37 and < 42 weeks). Qualitative and quantitative proteomic and transcriptomic analysis was done in our samples. RESULTS We performed isolation and characterization of HM extracellular vesicles (EVs) to carry out proteomic and transcriptomic analysis in colostrum (CM) and mature milk (MM). Proteomic analysis revealed a functional role of CM in immunological protection and MM in metabolic processes. TENA, TSP1 and OLF4, proteins with roles in immune response and inflammatory modulation, were upregulated in CM vs MM, particularly in preterm. HM modulation differed depending on gestational age (GA). The miRNAs identified in HM are implicated in structural functions, including growth and neurological development. miRNA-451a was differentially expressed between groups, and downregulated in preterm CM. CONCLUSIONS Because the particularities of each GA are reflected in the EVs content of HM, providing newborns with HM from their own mother is the optimal way for satisfying their specific needs. Although the role of the proteomic profile of CM and MM of different GA in relation to neurodevelopment has been previously described, this is the first study to show a complete functional characterization of HM (proteome, miRNA at the same time), unmasking the molecular mechanisms related to EVs signaling and their functional role in preterm.
Collapse
Affiliation(s)
- Rosaura Picáns-Leis
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - María E Vázquez-Mosquera
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - María Pereira-Hernández
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory, University Clinical Hospital of Santiago de Compostela, Spain; RICORS2040 (Kidney Disease), Santiago de Compostela, Spain.
| | - Marta Vizoso-González
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory, University Clinical Hospital of Santiago de Compostela, Spain.
| | - Laura López-Valverde
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Sofía Barbosa-Gouveia
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Olalla López-Suárez
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Carolina López-Sanguos
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Susana B Bravo
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Proteomic Platform, University Clinical Hospital of Santiago de Compostela, Spain.
| | - Miguel A García-González
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory, University Clinical Hospital of Santiago de Compostela, Spain; RICORS2040 (Kidney Disease), Santiago de Compostela, Spain.
| | - María L Couce
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| |
Collapse
|
12
|
Tessier MEM, Schraw JM, Beer S, Harpavat S, Kyle Jensen M, Magee JC, Ng V, Scheurer ME, Taylor SA, Shneider BL. The association of human milk intake and outcomes in biliary atresia. J Pediatr Gastroenterol Nutr 2025; 80:163-173. [PMID: 39526563 PMCID: PMC11863988 DOI: 10.1002/jpn3.12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/25/2024] [Accepted: 07/30/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Human milk intake has many benefits which could influence outcomes in biliary atresia (BA). However, the role of human milk in BA has not been examined. We hypothesized that human milk intake would be associated with improved outcomes in BA. METHODS We assessed the impact of any human milk (AHM) as compared to formula only (FO) intake before Kasai portoenterostomy (KP) on outcomes in 447 infants with BA using the PROBE database (NCT00061828) post hoc. The primary outcome was clearance of jaundice (COJ = total bilirubin (TB) < 2 mg/dL by 3 months post-KP). Secondary outcomes included 2-year survival with native liver (SNL), bilirubin levels, cholangitis, ascites, and growth. We assessed the fecal microbiome (n = 8) comparing AHM versus FO. RESULTS At baseline, 211 infants received AHM and 215 received FO. 53.9% of AHM and 50.5% of FO achieved COJ (p = NS). SNL was insignificantly increased in AHM (odds ratio = 1.47, 95% confidence interval: 1.00-2.12, p = 0.053). TB decreased in AHM from 4 weeks to 3 months post-KP [4.8-4.0 mg/dL (p = 0.01)] unlike the FO group (4.9-4.9 mg/dL, p = 0.4). At 3 months post-KP, AHM infants had greater weight gain (1.88 ± 0.66 vs. 1.57 ± 0.73 kg, p < 0.001) and mid-upper arm circumference (12.9 ± 1.4 vs. 12.2 ± 1.7 cm, p < 0.001). Other secondary outcomes were not different. Microbiome differences were seen between AHM and FO. CONCLUSIONS Human milk intake in infants with BA did not significantly improve COJ or SNL. However, growth parameters were improved, and TB 3 months post-KP was decreased. Thus, human milk intake should not be discouraged. Prospective studies with detailed assessment of human milk intake are needed.
Collapse
Affiliation(s)
- Mary Elizabeth M Tessier
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Gastroenterology Hepatology and Nutrition, Houston, Texas, USA
| | - Jeremy M Schraw
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
- Department of Pediatrics, Center for Epidemiology and Population Health, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Stacey Beer
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Gastroenterology Hepatology and Nutrition, Houston, Texas, USA
| | - Sanjiv Harpavat
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Gastroenterology Hepatology and Nutrition, Houston, Texas, USA
| | - M Kyle Jensen
- Department of Pediatrics, Pediatric Gastroenterology, Hepatology and Nutrition, Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA
| | - John C Magee
- Department of Surgery, University of Michigan Hospitals and Health Centers, Ann Arbor, Michigan, USA
| | - Vicky Ng
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michael E Scheurer
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
- Department of Pediatrics, Center for Epidemiology and Population Health, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Sarah A Taylor
- Department of Pediatrics, Division of Gastroenterology Hepatology and Nutrition, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Benjamin L Shneider
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Gastroenterology Hepatology and Nutrition, Houston, Texas, USA
| |
Collapse
|
13
|
Cemali Ö, Çelik E, Deveci G, Hirfanoğlu İM, Önal EE, Ağagündüz D. Detection and quantification of miRNA 148a expression in infant formulas. J Food Sci 2025; 90:e17648. [PMID: 39828407 DOI: 10.1111/1750-3841.17648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
MiRNA 148a, which is associated with various biological processes such as immunity and cell differentiation, is one of the most abundant miRNAs in breast milk. This study aimed to determine the amount of miRNA 148a in different infant formulas, which are used for infants who cannot receive breast milk. The study analyzed 20 formulas, including stage one infant formulas (0-6 months of age), stage two follow-up formulas (6-12 months of age), stage three toddler formulas (above 12 months of age), and premature ones, analyzing miRNA 148a expression and qPCR miRNA gene expression, with significance set at p < 0.05. The expression levels of miRNA 148a in different infant formulas were compared, and no statistically significant difference was observed (p > 0.05). Also, there was no difference in relative miRNA 148a expression across formulas with and without probiotics (p > 0.05). Protein levels in probiotic formulas (0 month-1 year+) were positively correlated with relative miRNA 148a expression (p = 0.022). Although miRNA 148a expression has been shown to be present in formulas, it has been revealed that the amount is low compared to breast milk in line with the literature. In this direction, it is important to increase current data on the mechanisms of action of miRNAs in breast milk and the efforts to ensure that infant formulas reach a composition closest to breast milk in line with their biological effects. PRACTICAL APPLICATION: The miRNAs found in exosomal compounds in human breast milk are very diverse in terms of number and health effects, and can control various biological processes in cells, including immunity, cell differentiation, and apoptosis. One of these is miRNA 148a, which is the most abundant in human breast milk. For this reason, in this study, the miRNA 148a content of infant formulas, which are commonly used in healthy babies who cannot receive enough human breast milk (breastfeeding recommended for at least 6 months and up to 2 years) for a valid reason, was analyzed. In conclusion, miRNA expression has been detected in infant formulas, but it has been shown that this expression is at a low level.
Collapse
Affiliation(s)
- Özge Cemali
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Trakya University, Edirne, Türkiye
| | - Elif Çelik
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Süleyman Demirel University, Isparta, Türkiye
| | - Gülsüm Deveci
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Çankırı Karatekin University, Çankırı, Türkiye
| | | | - Eray Esra Önal
- Faculty of Medicine, Department of Child Health and Diseases, Gazi University, Ankara, Türkiye
| | - Duygu Ağagündüz
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Gazi University, Ankara, Türkiye
| |
Collapse
|
14
|
Swanson K, Bell J, Hendrix D, Jiang D, Kutzler M, Batty B, Hanlon M, Bionaz M. Bovine milk consumption affects the transcriptome of porcine adipose stem cells: Do exosomes play any role? PLoS One 2024; 19:e0302702. [PMID: 39705291 DOI: 10.1371/journal.pone.0302702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/03/2024] [Indexed: 12/22/2024] Open
Abstract
The potential association of milk with childhood obesity has been widely debated and researched. Milk is known to contain many bioactive compounds as well as bovine exosomes rich in micro-RNA (miR) that can have effects on various cells, including stem cells. Among them, adipose stem cells (ASC) are particularly interesting due to their role in adipose tissue growth and, thus, obesity. The objective of this study was to evaluate the effect of milk consumption on miR present in circulating exosomes and the transcriptome of ASC in piglets. Piglets were supplemented for 11 weeks with 750 mL of whole milk (n = 6; M) or an isocaloric maltodextrin solution (n = 6; C). After euthanasia, ASC were isolated, quantified, and characterized. RNA was extracted from passage 1 ASC and sequenced. Exosomes were isolated and quantified from the milk and plasma of the pigs at 6-8 hours after milk consumption, and miRs were isolated from exosomes and sequenced. The transfer of exosomes from milk to porcine plasma was assessed by measuring bovine milk-specific miRs and mRNA in exosomes isolated from the plasma of 3 piglets during the first 6h after milk consumption. We observed a higher proportion of exosomes in the 80 nM diameter, enriched in milk, in M vs. C pigs. Over 500 genes were differentially expressed (DEG) in ASC isolated from M vs. C pigs. Bioinformatic analysis of DEG indicated an inhibition of the immune, neuronal, and endocrine systems and insulin-related pathways in ASC of milk-fed pigs compared with maltodextrin-fed pigs. Of the 900 identified miRs in porcine plasma exosomes, only 3 miRs were differentially abundant between the two groups and could target genes associated with neuronal functions. We could not detect exosomal miRs or mRNA transfer from milk to porcine-circulating plasma exosomes. Our data highlights the significant nutrigenomic role of milk consumption on ASC, a finding that does not appear to be attributed to miRs in bovine milk exosomes. The downregulation of insulin resistance and inflammatory-related pathways in the ASC of milk-fed pigs should be further explored in relation to milk and human health. In conclusion, the bioinformatic analyses and the absence of bovine exosomal miRs in porcine plasma suggest that miRs are not vertically transferred from milk exosomes.
Collapse
Affiliation(s)
- Katherine Swanson
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Jimmy Bell
- Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - David Hendrix
- Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Duo Jiang
- Statistics, Oregon State University, Corvallis, Oregon, United States of America
| | - Michelle Kutzler
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Brandon Batty
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Melanie Hanlon
- Food Science and Technology, Oregon State University, Corvallis, Oregon, United States of America
| | - Massimo Bionaz
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
15
|
Di SJ, Cui XW, Liu TJ, Shi YY. Therapeutic potential of human breast milk-derived exosomes in necrotizing enterocolitis. Mol Med 2024; 30:243. [PMID: 39701931 DOI: 10.1186/s10020-024-01010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe inflammatory and necrotizing disease of the intestine that primarily affects the neonates, particularly premature infants. It has a high incidence of approximately 8.9% in extremely preterm infants, with a mortality rate ranging from 20 to 30%. In recent years, exosomes, particularly those derived from breast milk, have emerged as potential candidates for NEC therapy. Human breast milk-derived exosomes (BME) have been shown to enhance intestinal barrier function, protect intestinal epithelial cells from oxidative stress, promote the proliferation and migration of intestinal epithelial cells, and reduce the severity of experimental NEC models. As a subset of extracellular vesicles, BME possess the membrane structure, low immunogenicity, and high permeability, making them ideal vehicles for the treatment of NEC. Additionally, exosomes derived from various sources, including stem cells, intestinal epithelial cells, plants, and bacteria, have been implicated in the development and protection of intestinal diseases. This article summarizes the mechanisms through which exosomes, particularly BME, exert their effects on NEC and discusses the feasibility and obstacles associated with this novel therapeutic strategy.
Collapse
Affiliation(s)
- Si-Jia Di
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xue-Wei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Tian-Jing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Yong-Yan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
16
|
Mu R, Fu Y, Li J, Xie Q, Ma W. Effects of different milk powders on the growth and intestinal flora in weaned rats: Comparison of special formula milk powder with ordinary milk powder. Food Sci Nutr 2024; 12:10448-10462. [PMID: 39723089 PMCID: PMC11666978 DOI: 10.1002/fsn3.4387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 12/28/2024] Open
Abstract
The objective of this investigation was to examine the effects of distinct dosages of infant formula and diverse formula constituents on the growth and development of weaned rats. Fifty specific pathogen-free (SPF) male Sprague-Dawley (SD) rats aged 3 weeks were divided into the basic diet group, 20% ordinary milk powder group, 20% special formula milk powder group, 30% ordinary milk powder group, and 30% special formula milk powder group randomly. After 28 days of feeding, compared with the basic diet group, the body mass and brain/body weight of rats in the 30% ordinary and special formula milk powder groups were decreased. At the Genus level, Bacteroides in the group supplemented with 20% special formula milk powder was significantly lower than that in the basic diet group, and Parabacteroides was significantly lower than that in the 20% ordinary milk powder group. Lactobacillus was significantly higher than those in the basic diet group and the 20% ordinary milk powder group, and Blautia was significantly higher than those in the basic diet group and the 20% and 30% ordinary milk powder groups, and UBA1819 was significantly higher than those in the other groups. The abundance of Parasutterella in the basic diet group was significantly higher than those in the groups supplemented with 20% ordinary milk powder, 20% special formula milk powder, and 30% ordinary milk powder. This study found that different doses and different formula components of infant milk powder could affect body mass and intestinal flora in Sprague-Dawley (SD) rats, and the addition of low-dose (20%) special formula infant milk powder can increase the beneficial bacteria in the intestinal flora of rats and may reduce the pathogenic bacteria.
Collapse
Affiliation(s)
- Ruiqi Mu
- School of Public Health, Beijing Key Laboratory of Environmental ToxicologyCapital Medical UniversityBeijingChina
| | - Yu Fu
- School of Public Health, Beijing Key Laboratory of Environmental ToxicologyCapital Medical UniversityBeijingChina
| | - Jufang Li
- Feihe Research InstituteHeilongjiang Feihe Dairy Co., Ltd.BeijingChina
| | - Qinggang Xie
- Feihe Research InstituteHeilongjiang Feihe Dairy Co., Ltd.BeijingChina
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental ToxicologyCapital Medical UniversityBeijingChina
| |
Collapse
|
17
|
Yang W, Lin P, Gao R, Fang Z, Wang Z, Ma Z, Shi J, Yu W. Cell-derived biomimetic drug delivery system for inflammatory bowel disease therapy. Mater Today Bio 2024; 29:101332. [PMID: 39606424 PMCID: PMC11600033 DOI: 10.1016/j.mtbio.2024.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent disease with an increasing incidence year by year. At present, no safe and effective treatment for IBD exists. Thus, there is an urgent need to create new therapeutic options that have decreased adverse effects and positive clinical efficacy. A range of nanomaterials have fueled the advancement of nanomedicine in recent years, which is establishing more appealing and prospective treatment approaches for IBD. However, traditional synthetic nanomaterials still have some problems in the IBD drug delivery process, such as weak targeting ability of vectors, difficulty escaping immune surveillance, and poor biosecurity. Natural sources of biological nanomaterials have been identified to solve the above problems. A drug delivery system based on bionic technology is expected to achieve a new breakthrough in the targeted therapy of IBD by nanotechnology due to its organic integration of low immunogenicity and natural targeting of biological materials and the controllability and versatility of synthetic nanocarrier design. We begin this review by outlining the fundamental traits of both inflammatory and healthy intestinal microenvironments. Subsequently, we review the latest application of a cell-derived bionic drug delivery system in IBD therapy. Finally, we discuss the development prospects of this delivery system and challenges to its clinical translation. Biomimetic nanotherapy is believed to offer a new strategy for the treatment of IBD.
Collapse
Affiliation(s)
- Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Zhouru Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Zhen Ma
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Jing Shi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenying Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| |
Collapse
|
18
|
Cainelli E, Vedovelli L, Bisiacchi P. The mother-child interface: A neurobiological metamorphosis. Neuroscience 2024; 561:92-106. [PMID: 39427701 DOI: 10.1016/j.neuroscience.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
From the start of pregnancy, mother and child induce reciprocal neurobiological changes in the brain that will prove critical for neurodevelopment and survival of both. Molecular communication between mother and fetus is constantly active and persists even after the fetus starts to synthesize its hormones in late gestation. Intriguingly, some mother and fetus exchange cells remain in the other's brain and body with long-lasting effects and memories that do not follow the laws of classical genetics but involve complex epigenetic mechanisms. After childbirth, mother and child go through a transitional phase, a sort of limbo in which both will have a peculiar functioning profile, which is adaptive for contingencies but also renders them vulnerable. The interplay between these two "limbo" states allows for an easier transition to the subsequent phases of development. In this review, we will trace mother's and child's path from pregnancy to the months following birth and, in particular, unravel i) the key features of pregnancy and brain development and the reciprocal influences; ii) how a transitory pattern of functioning characterize mother and child, moving them toward more flexible and evolved forms; and iii) how mother and fetus act during childbirth to promote neuroprotection, pain reduction, and neurophysiological changes. Therefore, this review covers a wide range of topics, integrating neuroanatomical, neurological, biochemical, neurophysiological, and psychological studies in a meaningful way, trying to integrate them in a holistic view of the mother-child interface that is usually neglected.
Collapse
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, 35131 Padova, Italy.
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular and Public Health Sciences, University of Padova, 35131 Padova, Italy.
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padova, 35131 Padova, Italy; Padova Neuroscience Center, PNC, 35131 Padova, Italy.
| |
Collapse
|
19
|
Wijenayake S, Eisha S, Purohit MK, McGowan PO. Milk derived extracellular vesicle uptake in human microglia regulates the DNA methylation machinery : Short title: milk-derived extracellular vesicles and the epigenetic machinery. Sci Rep 2024; 14:28630. [PMID: 39562680 PMCID: PMC11576889 DOI: 10.1038/s41598-024-79724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
Mammalian milk contains milk-derived extracellular vesicles (MEVs), a group of biological nanovesicles that transport macromolecules. Their ability to cross the blood brain barrier and the presence of cargo capable of modifying gene function have led to the hypothesis that MEVs may play a role in brain function and development. Here, we investigated the uptake of MEVs by human microglia cells in vitro and explored the functional outcomes of MEV uptake. We examined the expression of the miR-148/152 family, highly abundant MEV microRNAs, that directly suppress the translation of DNA methyltransferase (DNMT) enzymes crucial for catalyzing DNA methylation modifications. We also measured phenotypic and inflammatory gene expression in baseline homeostatic and IFN-γ primed microglia to determine if MEVs induce anti-inflammatory effects. We found that MEVs are taken up and localize in baseline and primed microglia. In baseline microglia, MEV supplementation reduced miR-148a-5P levels, increased DNMT1 transcript, protein abundance, and enzymatic activity, compared to cells that did not receive MEVs. In primed microglia, MEV supplementation decreased miR-148a-5P levels and increased DNMT1 protein abundance, but DNMT1 transcript and enzymatic levels remained unchanged. Contrary to predictions, MEV supplementation failed to attenuate pro-inflammatory IL1β expression in primed microglia. This study provides the first evidence of MEV uptake by a brain macrophage, suggesting a potential role in regulating epigenetic machinery and neuroimmune modulation.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada.
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada.
| | - Shafinaz Eisha
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mansi Kamlesh Purohit
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Patrick Owen McGowan
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Department of Psychology, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
García-Martínez J, Salto R, Girón MD, Pérez-Castillo ÍM, Bueno Vargas P, Vílchez JD, Linares-Pérez A, Manzano M, García-Córcoles MT, Rueda R, López-Pedrosa JM. Supplementation with a Whey Protein Concentrate Enriched in Bovine Milk Exosomes Improves Longitudinal Growth and Supports Bone Health During Catch-Up Growth in Rats. Nutrients 2024; 16:3814. [PMID: 39599602 PMCID: PMC11597726 DOI: 10.3390/nu16223814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Undernutrition impairs linear growth while restoration of nutritional provisions leads to accelerated growth patterns. However, the composition of the nutrition provided is key to facilitating effective catch-up growth without compromising bone quantity, quality, and long-term health. METHODS We evaluated the role of a whey protein concentrate enriched in bovine milk exosomes (BMEs) in modulating the proliferative properties of human chondrocytes in vitro and studied how these effects might impact bone quantity and quality measured as longitudinal tibia growth, bone mineral content (BMC) and density (BMD), and trabecular micro-CT parameters in stunted rats during catch-up growth. RESULTS BMEs promoted proliferation in C28/I2 human chondrocytes mediated by mTOR-Akt signaling. In a stunting rat model, two-week supplementation with BMEs during refeeding was associated with improved tibia BMD, trabecular microstructure (trabecular number (Tb. N.) and space (Tb. Sp.)), and a more active growth plate (higher volume, surface, and thickness) compared to non-supplemented stunted rats. Positive effects on physis translated to significantly longer tibias without compromising bone quality when extending the refeeding period for another two weeks. CONCLUSIONS Overall, BME supplementation positively contributed to longitudinal bone growth and improved bone quantity and quality during catch-up growth. These findings might be relevant for improving diets aimed at addressing the nutritional needs of children undergoing undernutrition during early life.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain; (R.S.); (M.D.G.); (J.D.V.); (A.L.-P.)
| | - María D. Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain; (R.S.); (M.D.G.); (J.D.V.); (A.L.-P.)
| | - Íñigo M. Pérez-Castillo
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - Pilar Bueno Vargas
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - Jose D. Vílchez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain; (R.S.); (M.D.G.); (J.D.V.); (A.L.-P.)
| | - Azahara Linares-Pérez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain; (R.S.); (M.D.G.); (J.D.V.); (A.L.-P.)
| | - Manuel Manzano
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - María T. García-Córcoles
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - Ricardo Rueda
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - José M. López-Pedrosa
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| |
Collapse
|
21
|
Quarta A, Quarta MT, Mastromauro C, Chiarelli F, Giannini C. Influence of Nutrition on Growth and Development of Metabolic Syndrome in Children. Nutrients 2024; 16:3801. [PMID: 39599588 PMCID: PMC11597107 DOI: 10.3390/nu16223801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Obesity is currently an increasing public health burden due to its related metabolic and cardiovascular complications. In Western countries, a significant number of people are overweight or obese, and this trend is, unfortunately, becoming increasingly common even among the pediatric population. In this narrative review, we analyzed the role of nutrition during growth and its impact on the risk of developing metabolic syndrome and cardiovascular complications later in life. An impactful role in determining the phenotypic characteristics of the offspring is the parental diet carried out before conception. During intrauterine growth, the main risk factors are represented by an unbalanced maternal diet, excessive gestational weight gain, and impaired glycemic status. Breastfeeding, on the other hand, has many beneficial effects, but at the same time the quality of breast milk may be modified if maternal overweight or obesity subsists. Complementary feeding is likewise pivotal because an early introduction before 4 months of age and a high protein intake contribute to weight gain later. Knowledge of these mechanisms may allow early modification of risk factors by implementing targeted preventive strategies.
Collapse
Affiliation(s)
| | | | | | | | - Cosimo Giannini
- Department of Pediatrics, University of Chieti—Pescara, G. D’Annunzio, 66100 Chieti, Italy; (A.Q.); (M.T.Q.); (C.M.); (F.C.)
| |
Collapse
|
22
|
Ahlberg E, Jenmalm MC, Karlsson A, Karlsson R, Tingö L. Proteome characterization of extracellular vesicles from human milk: Uncovering the surfaceome by a lipid-based protein immobilization technology. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70020. [PMID: 39512873 PMCID: PMC11541861 DOI: 10.1002/jex2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Breast milk is an essential source of nutrition and hydration for the infant. In addition, this highly complex fluid is rich in extracellular vesicles (EVs). Here, we have applied a microfluidic technology, lipid-based protein immobilization (LPI) and liquid chromatography with tandem mass spectrometry (LC-MS/MS) to characterize the proteome of human milk EVs. Mature milk from six mothers was subjected to EV isolation by ultracentrifugation followed by size exclusion chromatography. Three of the samples were carefully characterized; suggesting a subset enriched by small EVs. The EVs were digested by trypsin in an LPI flow cell and in-solution digestion, giving rise to two fractions of peptides originating from the surface proteome (LPI fraction) or the complete proteome (in-solution digestion). LC-MS/MS recovered peptides corresponding to 582 proteins in the LPI fraction and 938 proteins in the in-solution digested samples; 400 of these proteins were uniquely found in the in-solution digested samples and were hence denoted "cargo proteome". GeneOntology overrepresentation analysis gave rise to distinctly different functional predictions of the EV surfaceome and the cargo proteome. The surfaceome tends to be overrepresented in functions and components of relevance for the immune system, while the cargo proteome primarily seems to be associated with EV biogenesis.
Collapse
Affiliation(s)
- Emelie Ahlberg
- Department of Biomedical and Clinical Sciences, Division of Inflammation and InfectionLinköping UniversityLinkopingSweden
| | - Maria C. Jenmalm
- Department of Biomedical and Clinical Sciences, Division of Inflammation and InfectionLinköping UniversityLinkopingSweden
| | | | - Roger Karlsson
- Nanoxis Consulting ABGothenburgSweden
- Department of Clinical MicrobiologySahlgrenska University HospitalGothenburgSweden
| | - Lina Tingö
- Department of Biomedical and Clinical Sciences, Division of Inflammation and InfectionLinköping UniversityLinkopingSweden
- School of Medical SciencesÖrebro UniversityOrebroSweden
| |
Collapse
|
23
|
Çelik E, Cemali Ö, Şahin TÖ, Deveci G, Biçer NÇ, Hirfanoğlu İM, Ağagündüz D, Budán F. Human Breast Milk Exosomes: Affecting Factors, Their Possible Health Outcomes, and Future Directions in Dietetics. Nutrients 2024; 16:3519. [PMID: 39458514 PMCID: PMC11510026 DOI: 10.3390/nu16203519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Human breast milk is a complex biological fluid containing multifaceted biological compounds that boost immune and metabolic system development that support the short- and long-term health of newborns. Recent literature suggests that human breast milk is a substantial source of nutrients, bioactive molecules, and exosomes. Objectives: This review examines the factors influencing exosomes noted in human milk and the impacts of exosomes on infant health. Furthermore, it discusses potential future prospects for exosome research in dietetics. Methods: Through a narrative review of the existing literature, we focused on exosomes in breast milk, exosome components and their potential impact on exosome health. Results: Exosomes are single-membrane extracellular vesicles of endosomal origin, with an approximate radius of 20-200 nm. They are natural messengers that cells secrete to transport a wide range of diverse cargoes, including deoxyribonucleic acid, ribonucleic acid, proteins, and lipids between various cells. Some studies have reported that the components noted in exosomes in human breast milk could be transferred to the infant and cause epigenetic changes. Thus, it can affect gene expression and cellular event regulation in several tissues. Conclusions: In this manner, exosomes are associated with several pathways, including the immune system, oxidative stress, and cell cycle, and they can affect the short- and long-term health of infants. However, there is still much to learn about the functions, effectiveness, and certain impacts on the health of human breast milk exosomes.
Collapse
Affiliation(s)
- Elif Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Süleyman Demirel University, Isparta 32260, Türkiye;
| | - Özge Cemali
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Trakya University, Edirne 22030, Türkiye;
| | - Teslime Özge Şahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Türkiye;
| | - Gülsüm Deveci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çankırı Karatekin University, Çankırı 18100, Türkiye;
| | - Nihan Çakır Biçer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul 34752, Türkiye;
| | | | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara 06490, Türkiye
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
24
|
Li J, Hu H, Fu P, Yang Q, Wang P, Gao X, Yang J, Gun S, Huang X. Pig Milk Exosome Packaging ssc-miR-22-3p Alleviates Pig Intestinal Epithelial Cell Injury and Inflammatory Response by Targeting MAPK14. Int J Mol Sci 2024; 25:10715. [PMID: 39409044 PMCID: PMC11476862 DOI: 10.3390/ijms251910715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammatory diseases of the intestinal tract in piglets severely impair the economic performance of pig farms. Pig milk exosomes can encapsulate miRNAs which can then enter the piglet intestine to play an immunomodulatory role. Previously, we comparatively analyzed and identified exosomal miRNAs in the colostrum and mature milk of Bamei and Landrace pigs, and we screened for ssc-miR-22-3p, which is associated with inflammation and immune response; however, the role played by ssc-miR-22-3p in the immune response in IPEC-J2 cells is not yet clear. In this study, we first constructed a pig intestinal inflammatory response model using Lipopolysaccharide (LPS) and Polyinosinic-polycytidylic acid (Poly (I:C)), and we investigated the role of ssc-miR-22-3p targeting MAPK14 in the regulation of LPS and Poly (I:C)-induced inflammatory injury in IPEC-J2 cells by RT-qPCR, cell counting kit-8 (CCK-8), EdU staining, lactate dehydrogenase (LDH) activity assay, and dual luciferase reporter gene assay. We successfully established LPS and Poly (I:C)-induced cell damage models in IPEC-J2 cells. The immune response of IPEC-J2 cells was stimulated by induction of IPEC-J2 cells at 10 μg/mL LPS and 20 μg/mL Poly (I:C) for 24 h. Overexpression of ssc-miR-22-3p decreased cytokine expression and promoted cell viability and proliferation. The functional enrichment analysis revealed that ssc-miR-22-3p targets genes enriched in the pathways of negative regulation of inflammatory response and bacterial invasion of epithelial cells. The validity of the binding site of ssc-miR-22-3p to MAPK14 was tested by a dual luciferase reporter gene. Pig milk exosome ssc-miR-22-3p promotes cell viability and proliferation by targeting MAPK14, and it alleviates LPS and Poly (I:C)-induced inflammatory responses in IPEC-J2 cells.
Collapse
Affiliation(s)
- Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Huihui Hu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Panpan Fu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.)
| |
Collapse
|
25
|
Lu X, Ren K, Pan L, Liu X. Sheep ( Ovis aries) Milk Exosomal miRNAs Attenuate Dextran Sulfate Sodium-Induced Colitis in Mice via TLR4 and TRAF-1 Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21030-21040. [PMID: 39283309 DOI: 10.1021/acs.jafc.4c05524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Mammalian milk exosomal miRNAs play an important role in maintaining intestinal immune homeostasis and protecting epithelial barrier function, but the specific miRNAs and whether miRNA-mediated mechanisms are responsible for these benefits remain a matter of investigation. This study isolated sheep milk-derived exosomes (sheep MDEs), identifying the enriched miRNAs in sheep MDEs, oar-miR-148a, and oar-let-7b as key components targeting TLR4 and TRAF1, which was validated by a dual-luciferase reporter assay. In dextran sulfate sodium-induced colitis mice, administration of sheep MDEs alleviated colitis symptoms, reduced colonic inflammation, and systemic oxidative stress, as well as significantly increased colonic oar-miR-148a and oar-let-7b while reducing toll-like receptor 4 (TLR4) and TNF-receptor-associated factor 1 (TRAF1) level. Further characterization in TNF-α-challenged Caco-2 cells showed that overexpression of these miRNAs suppressed the TLR4/TRAF1-IκBα-p65 pathway and reduced IL-6 and IL-12 production. These findings indicate that sheep MDEs exert gastrointestinal anti-inflammatory effects through the miRNA-mediated modulation of TLR4 and TRAF1, highlighting their potential in managing colitis.
Collapse
Affiliation(s)
- Xi Lu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Ke Ren
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Lei Pan
- Tangdu Hospital, Air Force Military Medical University, Xi'an 710000, China
| | - Xiaocao Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
26
|
Sou YL, Chilian WM, Ratnam W, Zain SM, Syed Abdul Kadir SZ, Pan Y, Pung YF. Exosomal miRNAs and isomiRs: potential biomarkers for type 2 diabetes mellitus. PRECISION CLINICAL MEDICINE 2024; 7:pbae021. [PMID: 39347441 PMCID: PMC11438237 DOI: 10.1093/pcmedi/pbae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease that is characterized by chronic hyperglycaemia. MicroRNAs (miRNAs) are single-stranded, small non-coding RNAs that play important roles in post-transcriptional gene regulation. They are negative regulators of their target messenger RNAs (mRNAs), in which they bind either to inhibit mRNA translation, or to induce mRNA decay. Similar to proteins, miRNAs exist in different isoforms (isomiRs). miRNAs and isomiRs are selectively loaded into small extracellular vesicles, such as the exosomes, to protect them from RNase degradation. In T2DM, exosomal miRNAs produced by different cell types are transported among the primary sites of insulin action. These interorgan crosstalk regulate various T2DM-associated pathways such as adipocyte inflammation, insulin signalling, and β cells dysfunction among many others. In this review, we first focus on the mechanism of exosome biogenesis, followed by miRNA biogenesis and isomiR formation. Next, we discuss the roles of exosomal miRNAs and isomiRs in the development of T2DM and provide evidence from clinical studies to support their potential roles as T2DM biomarkers. Lastly, we highlight the use of exosomal miRNAs and isomiRs in personalized medicine, as well as addressing the current challenges and future opportunities in this field. This review summarizes how research on exosomal miRNAs and isomiRs has developed from the very basic to clinical applications, with the goal of advancing towards the era of personalized medicine.
Collapse
Affiliation(s)
- Yong Ling Sou
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Wickneswari Ratnam
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Shamsul Mohd Zain
- Department of Pharmacology, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Yan Pan
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| |
Collapse
|
27
|
Mecocci S, Pietrucci D, Milanesi M, Capomaccio S, Pascucci L, Evangelista C, Basiricò L, Bernabucci U, Chillemi G, Cappelli K. Comparison of colostrum and milk extracellular vesicles small RNA cargo in water buffalo. Sci Rep 2024; 14:17991. [PMID: 39097641 PMCID: PMC11297979 DOI: 10.1038/s41598-024-67249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024] Open
Abstract
Recently, much interest has been raised for the characterization of signaling molecules carried by extracellular vesicles (EVs), which are particularly enriched in milk (mEVs). Such interest is linked to the capability of EVs to cross biological barriers, resist acidification in the gastric environment, and exert modulation of the immune system, mainly through their microRNA (miRNA) content. We characterized the small-RNA cargo of colostrum EVs (colosEVs) and mEVs from Italian Mediterranean buffalo through next generation sequencing. Colostrum (first milking after birth) and milk (day 50 of lactation) were sampled from seven subjects from five farms. ColosEVs and mEVs were subjected to morphological characterization, followed by high-depth sequencing of small RNA libraries produced from total RNA. The main difference was the amount of EV in the two samples, with colostrum showing 10 to 100-fold higher content than milk. For both matrices, miRNA was the most abundant RNA species (95% for colosEVs and 96% for mEVs) and three lists were identified: colosEV-specific, mEV-specific and shared most expressed. Gene ontology (GO) enrichment analysis on miRNA targets highlighted many terms related to the epigenetic, transcriptional and translational regulations across the three lists, with a higher number of enriched terms for colosEV-specific miRNAs. Terms specific to colosEVs were related to "cell differentiation" and "microvillus assembly", while for mEV "cardiac and blood vessel development" and "mitochondria" emergerd. Immune modulation terms were found for both sample-specific miRNAs. Overall, both matrices carry a similar molecular message in terms of biological processes potentially modulated into receiving cells, but there is significant difference in the abundance, with colostrum containing much more EVs than milk. Moreover, colosEVs carry molecules involved in signal transduction, cell cycle and immune response, as for mEVs and EVs of other previously characterized species, but with a special enrichment for miRNAs with epigenetic regulation capacities. These beneficial characteristics of colosEVs and mEVs are essential for the calf and could also be exploited for the therapeutic purposes in humans, although further studies are necessary to measure the sanitization treatment impact on EV conservation, especially in buffalo where milk is consumed almost exclusively after processing.
Collapse
Affiliation(s)
- Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100, Viterbo, Italy
| | - Marco Milanesi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100, Viterbo, Italy
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Chiara Evangelista
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100, Viterbo, Italy
| | - Loredana Basiricò
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Umberto Bernabucci
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100, Viterbo, Italy.
- Institute of Translational Pharmacology, National Research Council, CNR, 00133, Rome, Italy.
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| |
Collapse
|
28
|
Melnik BC, Weiskirchen R, Stremmel W, John SM, Schmitz G. Risk of Fat Mass- and Obesity-Associated Gene-Dependent Obesogenic Programming by Formula Feeding Compared to Breastfeeding. Nutrients 2024; 16:2451. [PMID: 39125332 PMCID: PMC11314333 DOI: 10.3390/nu16152451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
It is the purpose of this review to compare differences in postnatal epigenetic programming at the level of DNA and RNA methylation and later obesity risk between infants receiving artificial formula feeding (FF) in contrast to natural breastfeeding (BF). FF bears the risk of aberrant epigenetic programming at the level of DNA methylation and enhances the expression of the RNA demethylase fat mass- and obesity-associated gene (FTO), pointing to further deviations in the RNA methylome. Based on a literature search through Web of Science, Google Scholar, and PubMed databases concerning the dietary and epigenetic factors influencing FTO gene and FTO protein expression and FTO activity, FTO's impact on postnatal adipogenic programming was investigated. Accumulated translational evidence underscores that total protein intake as well as tryptophan, kynurenine, branched-chain amino acids, milk exosomal miRNAs, NADP, and NADPH are crucial regulators modifying FTO gene expression and FTO activity. Increased FTO-mTORC1-S6K1 signaling may epigenetically suppress the WNT/β-catenin pathway, enhancing adipocyte precursor cell proliferation and adipogenesis. Formula-induced FTO-dependent alterations of the N6-methyladenosine (m6A) RNA methylome may represent novel unfavorable molecular events in the postnatal development of adipogenesis and obesity, necessitating further investigations. BF provides physiological epigenetic DNA and RNA regulation, a compelling reason to rely on BF.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Wolfgang Stremmel
- Praxis for Internal Medicine, Beethovenstrasse 2, D-76530 Baden-Baden, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany;
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
29
|
Satheeshan G, Si AK, Rutta J, Venkatesh T. Exosome theranostics: Comparative analysis of P body and exosome proteins and their mutations for clinical applications. Funct Integr Genomics 2024; 24:124. [PMID: 38995459 DOI: 10.1007/s10142-024-01404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Exosomes are lipid-bilayered vesicles, originating from early endosomes that capture cellular proteins and genetic materials to form multi-vesicular bodies. These exosomes are secreted into extracellular fluids such as cerebrospinal fluid, blood, urine, and cell culture supernatants. They play a key role in intercellular communication by carrying active molecules like lipids, cytokines, growth factors, metabolites, proteins, and RNAs. Recently, the potential of exosomal delivery for therapeutic purposes has been explored due to their low immunogenicity, nano-scale size, and ability to cross cellular barriers. This review comprehensively examines the biogenesis of exosomes, their isolation techniques, and their diverse applications in theranostics. We delve into the mechanisms and methods for loading exosomes with mRNA, miRNA, proteins, and drugs, highlighting their transformative role in delivering therapeutic payloads. Additionally, the utility of exosomes in stem cell therapy is discussed, showcasing their potential in regenerative medicine. Insights into exosome cargo using pre- or post-loading techniques are critical for exosome theranostics. We review exosome databases such as ExoCarta, Expedia, and ExoBCD, which document exosome cargo. From these databases, we identified 25 proteins common to both exosomes and P-bodies, known for mutations in the COSMIC database. Exosome databases do not integrate with mutation analysis programs; hence, we performed mutation analysis using additional databases. Accounting for the mutation status of parental cells and exosomal cargo is crucial in exosome theranostics. This review provides a comprehensive report on exosome databases, proteins common to exosomes and P-bodies, and their mutation analysis, along with the latest studies on exosome-engineered theranostics.
Collapse
Affiliation(s)
- Greeshma Satheeshan
- Dept of Biochemistry and Molecular Biology, Central University of Kerala, Krishna building, Periye, Kasargod, 671316, Kerala, India
| | - Ayan Kumar Si
- Dept of Biochemistry and Molecular Biology, Central University of Kerala, Krishna building, Periye, Kasargod, 671316, Kerala, India
| | - Joel Rutta
- Dept of Biochemistry and Molecular Biology, Central University of Kerala, Krishna building, Periye, Kasargod, 671316, Kerala, India
| | - Thejaswini Venkatesh
- Dept of Biochemistry and Molecular Biology, Central University of Kerala, Krishna building, Periye, Kasargod, 671316, Kerala, India.
| |
Collapse
|
30
|
Yang S, Sun Y, Yan C. Recent advances in the use of extracellular vesicles from adipose-derived stem cells for regenerative medical therapeutics. J Nanobiotechnology 2024; 22:316. [PMID: 38844939 PMCID: PMC11157933 DOI: 10.1186/s12951-024-02603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs) isolated from adipose tissue. They possess remarkable properties, including multipotency, self-renewal, and easy clinical availability. ADSCs are also capable of promoting tissue regeneration through the secretion of various cytokines, factors, and extracellular vesicles (EVs). ADSC-derived EVs (ADSC-EVs) act as intercellular signaling mediators that encapsulate a range of biomolecules. These EVs have been found to mediate the therapeutic activities of donor cells by promoting the proliferation and migration of effector cells, facilitating angiogenesis, modulating immunity, and performing other specific functions in different tissues. Compared to the donor cells themselves, ADSC-EVs offer advantages such as fewer safety concerns and more convenient transportation and storage for clinical application. As a result, these EVs have received significant attention as cell-free therapeutic agents with potential future application in regenerative medicine. In this review, we focus on recent research progress regarding regenerative medical use of ADSC-EVs across various medical conditions, including wound healing, chronic limb ischemia, angiogenesis, myocardial infarction, diabetic nephropathy, fat graft survival, bone regeneration, cartilage regeneration, tendinopathy and tendon healing, peripheral nerve regeneration, and acute lung injury, among others. We also discuss the underlying mechanisms responsible for inducing these therapeutic effects. We believe that deciphering the biological properties, therapeutic effects, and underlying mechanisms associated with ADSC-EVs will provide a foundation for developing a novel therapeutic approach in regenerative medicine.
Collapse
Affiliation(s)
- Song Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China.
| | - Chenchen Yan
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| |
Collapse
|
31
|
Hong C, Huang Y, Yang G, Wen X, Wang L, Yang X, Gao K, Jiang Z, Xiao H. Maternal resveratrol improves the intestinal health and weight gain of suckling piglets during high summer temperatures: The involvement of exosome-derived microRNAs and immunoglobin in colostrum. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:36-48. [PMID: 38464951 PMCID: PMC10921242 DOI: 10.1016/j.aninu.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024]
Abstract
Previous studies have shown that maternal resveratrol improved growth performance and altered the microbial composition of suckling piglets under hot summer conditions. However, it remains unclear how maternal resveratrol improves growth performance of suckling piglets during high summer temperatures. A total of 20 sows (Landrace × Large White; three parity) were randomly assigned to 2 groups (with or without 300 mg/kg resveratrol) from d 75 of gestation to d 21 of lactation during high ambient temperatures (from 27 to 30 °C). The results showed that maternal resveratrol supplementation increased total daily weight gain of piglets under hot summer conditions, which is consistent with previous studies. Furthermore, we found that maternal resveratrol improved the intestinal morphology and intestinal epithelial proliferation in suckling piglets. Dietary resveratrol supplementation affected the characteristics of exosome-derived microRNAs (miRNAs) in sow colostrum, as well as the genes targeted by differentially produced miRNAs. MiRNAs are concentrated in the tight junction pathway. As a result, the expression of intestinal tight junction proteins was increased in suckling piglets (P < 0.05). Notably, maternal resveratrol increased the intestinal secretory immunoglobulin A (sIgA) levels of suckling piglets via colostrum immunoglobin (P < 0.05), which could increase the abundance of beneficial microbiota to further increase the concentration of short chain fatty acids (SCFA) in suckling piglets' intestine (P < 0.05). Finally, our correlation analysis further demonstrated the positive associations between significantly differential intestinal microbiota, intestinal sIgA production and SCFA concentrations, as well as the positive relation between total daily weight gain and intestinal health of suckling piglets. Taken together, our findings suggested that maternal resveratrol could promote intestinal health to improve piglet growth during high summer temperatures, which might be associated with the immunoglobin and exosome-derived miRNAs in sows' colostrum.
Collapse
Affiliation(s)
- Changming Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yujian Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xiaolu Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Xuefen Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Kaiguo Gao
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Hao Xiao
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| |
Collapse
|
32
|
Mondragon Portocarrero ADC, Miranda Lopez JM. Food Environment and Its Effects on Human Nutrition and Health. Nutrients 2024; 16:1733. [PMID: 38892666 PMCID: PMC11174789 DOI: 10.3390/nu16111733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/22/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
The concept of a healthy diet is not a static definition; over the years, it has been molded to scientific knowledge [...].
Collapse
Affiliation(s)
| | - Jose Manuel Miranda Lopez
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain;
| |
Collapse
|
33
|
Nofi CP, Prince JM, Wang P, Aziz M. Chromatin as alarmins in necrotizing enterocolitis. Front Immunol 2024; 15:1403018. [PMID: 38881893 PMCID: PMC11176418 DOI: 10.3389/fimmu.2024.1403018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease primarily affecting premature neonates, marked by poorly understood pro-inflammatory signaling cascades. Recent advancements have shed light on a subset of endogenous molecular patterns, termed chromatin-associated molecular patterns (CAMPs), which belong to the broader category of damage-associated molecular patterns (DAMPs). CAMPs play a crucial role in recognizing pattern recognition receptors and orchestrating inflammatory responses. This review focuses into the realm of CAMPs, highlighting key players such as extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), cell-free DNA, neutrophil extracellular traps (NETs), histones, and extracellular RNA. These intrinsic molecules, often perceived as foreign, have the potential to trigger immune signaling pathways, thus contributing to NEC pathogenesis. In this review, we unravel the current understanding of the involvement of CAMPs in both preclinical and clinical NEC scenarios. We also focus on elucidating the downstream signaling pathways activated by these molecular patterns, providing insights into the mechanisms that drive inflammation in NEC. Moreover, we scrutinize the landscape of targeted therapeutic approaches, aiming to mitigate the impact of tissue damage in NEC. This in-depth exploration offers a comprehensive overview of the role of CAMPs in NEC, bridging the gap between preclinical and clinical insights.
Collapse
Affiliation(s)
- Colleen P. Nofi
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Jose M. Prince
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
34
|
Papakonstantinou E, Dragoumani K, Mataragka A, Bacopoulou F, Yapijakis C, Balatsos NA, Pissaridi K, Ladikos D, Eftymiadou A, Katsaros G, Gikas E, Hatzis P, Samiotaki M, Aivaliotis M, Megalooikonomou V, Giannakakis A, Iliopoulos C, Bongcam-Rudloff E, Kossida S, Eliopoulos E, Chrousos GP, Vlachakis D. Fingerprinting Breast Milk; insights into Milk Exosomics. EMBNET.JOURNAL 2024; 29:e1048. [PMID: 38845752 PMCID: PMC11155295 DOI: 10.14806/ej.29.0.1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Breast milk, often referred to as "liquid gold," is a complex biofluid that provides essential nutrients, immune factors, and developmental cues for newborns. Recent advancements in the field of exosome research have shed light on the critical role of exosomes in breast milk. Exosomes are nanosized vesicles that carry bioactive molecules, including proteins, lipids, nucleic acids, and miRNAs. These tiny messengers play a vital role in intercellular communication and are now being recognized as key players in infant health and development. This paper explores the emerging field of milk exosomics, emphasizing the potential of exosome fingerprinting to uncover valuable insights into the composition and function of breast milk. By deciphering the exosomal cargo, we can gain a deeper understanding of how breast milk influences neonatal health and may even pave the way for personalized nutrition strategies.
Collapse
Affiliation(s)
- Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Antonia Mataragka
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Christos Yapijakis
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Nikolaos Aa Balatsos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa, Greece
| | | | | | - Aspasia Eftymiadou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization "DEMETER", Lykovrisi, Greece
| | - George Katsaros
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization "DEMETER", Lykovrisi, Greece
| | - Evangelos Gikas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Michalis Aivaliotis
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Megalooikonomou
- Multidimensional Data Analysis and Knowledge Management Laboratory, Computer Engineering and Informatics Department, School of Engineering, University of Patras, Patras, Greece
| | - Antonis Giannakakis
- Laboratory of Gene Expression, Molecular Diagnostics and Modern Therapeutics, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Costas Iliopoulos
- School of Informatics, Faculty of Natural & Mathematical Sciences, King's College London, London, U.K
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sofia Kossida
- IMGT, the international ImMunoGenetics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine, (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
- School of Informatics, Faculty of Natural & Mathematical Sciences, King's College London, London, U.K
| |
Collapse
|
35
|
Bonet ML, Ribot J, Sánchez J, Palou A, Picó C. Early Life Programming of Adipose Tissue Remodeling and Browning Capacity by Micronutrients and Bioactive Compounds as a Potential Anti-Obesity Strategy. Cells 2024; 13:870. [PMID: 38786092 PMCID: PMC11120104 DOI: 10.3390/cells13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.
Collapse
Affiliation(s)
- M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
36
|
Ma L, Huo Y, Tang Q, Wang X, Wang W, Wu D, Li Y, Chen L, Wang S, Zhu Y, Wang W, Liu Y, Xu N, Chen L, Yu G, Chen J. Human Breast Milk Exosomal miRNAs are Influenced by Premature Delivery and Affect Neurodevelopment. Mol Nutr Food Res 2024; 68:e2300113. [PMID: 38644336 DOI: 10.1002/mnfr.202300113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 02/27/2024] [Indexed: 04/23/2024]
Abstract
SCOPE This study investigates the exosomal microRNA (miRNA) profiles of term and preterm breast milk, including the most abundant and differentially expressed (DE) miRNAs, and their impact on neurodevelopment in infants. METHODS AND RESULTS Mature milk is collected from the mothers of term and preterm infants. Using high-throughput sequencing and subsequent data analysis, exosomal miRNA profiles of term and preterm human breast milk (HBM) are acquired and it is found that the let-7 and miR-148 families are the most abundant miRNAs. Additionally, 23 upregulated and 15 downregulated miRNAs are identified. MiR-3168 is the most upregulated miRNA in preterm HBM exosome, exhibiting targeting activity toward multiple genes involved in the SMAD and MAPK signaling pathways and playing a crucial role in early neurodevelopment. Additionally, the effects of miR-3168 on neurodevelopment is confirmed and it is determined that it is an essential factor in the differentiation of neural stem cells (NSCs). CONCLUSION This study demonstrates that miRNA expression in breast milk exosomes can be influenced by preterm delivery, thereby potentially impacting neurodevelopment in preterm infants.
Collapse
Affiliation(s)
- Ling Ma
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yanyan Huo
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Qingyuan Tang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiulian Wang
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Weiqin Wang
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Dan Wu
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yicheng Li
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Lingyan Chen
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
- Department of Occupational Therapy Science, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto, Nagasaki, 852-8520, Japan
| | - Shasha Wang
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanjie Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Chen
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Guangjun Yu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinjin Chen
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| |
Collapse
|
37
|
Gao F, Wu S, Zhang K, Xu Z, Quan F. Goat milk exosomal microRNAs alleviate LPS-induced intestinal inflammation in mice. Int J Biol Macromol 2024; 268:131698. [PMID: 38642690 DOI: 10.1016/j.ijbiomac.2024.131698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Intestinal inflammation is a common digestive system disease. Milk-derived exosomes can participate in intercellular communication and transport a variety of bioactive components, and the microRNAs (miRNAs) they carry play important roles in a variety of biological processes in the body. At present, the preventive effect and mechanism of action of goat milk exosomes and their derived miRNAs on intestinal inflammation are still unclear. In this study, the protective effect of goat milk exosomes on LPS-induced intestinal inflammation was investigated using mouse intestinal inflammation model and IEC-6 cell inflammation model. Small RNA sequencing was used to analyze the miRNA expression profile of goat milk exosomes. In this study, C-Exo and M-Exo alleviated intestinal inflammation by reducing the LPS-induced release of proinflammatory cytokines, inhibiting the increase in the NLRP3 protein and the activation of the TLR4/NFκB signaling pathway. C-Exo has a more significant inhibitory effect on them, and better therapeutic efficacy than M-Exo. Notably, the target genes of miRNAs in C-Exo and M-Exo were significantly enriched in immune-related pathways. Furthermore, their derived miR-26a-5p and miR-30a-5p were found to ameliorate the IEC-6 inflammatory response. These findings suggest that miRNAs in goat milk exosomes have the potential to attenuate LPS-induced intestinal inflammation.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shenghui Wu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kang Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zhiming Xu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
38
|
Yue Y, Dai W, Wei Y, Cao S, Liao S, Li A, Liu P, Lin J, Zeng H. Unlocking the potential of exosomes: a breakthrough in the theranosis of degenerative orthopaedic diseases. Front Bioeng Biotechnol 2024; 12:1377142. [PMID: 38699435 PMCID: PMC11064847 DOI: 10.3389/fbioe.2024.1377142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Degenerative orthopaedic diseases pose a notable worldwide public health issue attributable to the global aging population. Conventional medical approaches, encompassing physical therapy, pharmaceutical interventions, and surgical methods, face obstacles in halting or reversing the degenerative process. In recent times, exosome-based therapy has gained widespread acceptance and popularity as an effective treatment for degenerative orthopaedic diseases. This therapeutic approach holds the potential for "cell-free" tissue regeneration. Exosomes, membranous vesicles resulting from the fusion of intracellular multivesicles with the cell membrane, are released into the extracellular matrix. Addressing challenges such as the rapid elimination of natural exosomes in vivo and the limitation of drug concentration can be effectively achieved through various strategies, including engineering modification, gene overexpression modification, and biomaterial binding. This review provides a concise overview of the source, classification, and preparation methods of exosomes, followed by an in-depth analysis of their functions and potential applications. Furthermore, the review explores various strategies for utilizing exosomes in the treatment of degenerative orthopaedic diseases, encompassing engineering modification, gene overexpression, and biomaterial binding. The primary objective is to provide a fresh viewpoint on the utilization of exosomes in addressing bone degenerative conditions and to support the practical application of exosomes in the theranosis of degenerative orthopaedic diseases.
Collapse
Affiliation(s)
- Yaohang Yue
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wei Dai
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yihao Wei
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Siyang Cao
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Shuai Liao
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Aikang Li
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Peng Liu
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jianjing Lin
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hui Zeng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
39
|
Zhang C, Zheng J, Han X, Zhao J, Cheng S, Li A. Bovine Colostrum miR-30a-5p Targets the NF-κB Signaling Pathway to Alleviate Inflammation in Intestinal Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38606544 DOI: 10.1021/acs.jafc.3c09856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Inflammatory bowel disease (IBD) is a common disease of the digestive system, and an excessive immune response mediated by the nuclear factor κ-B (NF-κB) signaling pathway is an essential etiology. Recent studies have found that bovine milk exosomes can improve intestinal mucosal health by delivering microRNA (miRNA), but the mechanism of action is so far unknown. In the present study, we analyzed the differential expression profiles of miRNA in colostrum and mature milk exosomes using high-throughput sequencing, based on the demonstration that colostrum exosomes inhibit the lipopolysaccharide (LPS)-induced intestinal epithelial NF-κB inflammatory pathway better than mature milk exosomes. The bta-miR-30a-5p, which is specifically highly expressed in colostrum, was screened, and its predicted target gene TRAM was found to be closely related to the NF-κB signaling pathway by functional enrichment analysis. Further, we used gene overexpression and silencing techniques and found that the bta-miR-30a-5p transfection treatment was confirmed to inhibit LPS-induced NF-κB signaling pathway activation and downstream pro-inflammatory factor expression, while the expression of its potential target gene, TRAM, was also suppressed. It is hypothesized that the high expression of bta-miR-30a-5p in colostrum, which targets TRAM to inhibit the downstream NF-κB inflammatory pathway, may be one of the molecular mechanisms responsible for its superior effect on resisting inflammatory attack compared to mature milk.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Company Limited, Shanghai 200436, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jie Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xueting Han
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingwen Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shihui Cheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Aili Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Company Limited, Shanghai 200436, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
40
|
Liu W, Du C, Nan L, Li C, Wang H, Fan Y, Zhang S. The Difference of Milk-Derived Extracellular Vesicles from Cow Colostrum and Mature Milk on miRNAs Expression and Protecting Intestinal Epithelial Cells against Lipopolysaccharide Damage. Int J Mol Sci 2024; 25:3880. [PMID: 38612689 PMCID: PMC11011493 DOI: 10.3390/ijms25073880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 04/14/2024] Open
Abstract
Intestinal epithelial cells (IECs) play crucial roles in forming an essential barrier, providing host defense against pathogens and regulating nutrients absorption. Milk-derived extracellular vesicles (EVs) within its miRNAs are capable of modulating the recipient cell function. However, the differences between colostrum and mature milk EVs and their biological function in attenuating intestinal epithelial cell injury remain poorly understood. Thus, we carried out the present study to characterize the difference between colostrum and mature milk-derived miRNA of EVs and the effect of colostrum and mature milk EVs on the proliferation, apoptosis, proinflammatory cytokines and intestinal epithelial barrier related genes in IEC-6 induced by LPS. Differential expression of 329 miRNAs was identified between colostrum and mature milk EVs, with 185 miRNAs being downregulated and 144 upregulated. In addition, colostrum contains a greater number and protein concentration of EVs than mature milk. Furthermore, compared to control, EVs derived from colostrum significantly inhibited the expression of apoptosis- (Bax, p53, and caspase-3) and proinflammatory-related genes (TNFα, IL6, and IL1β). EVs derived from mature milk did not affect expression of apoptosis-related genes (Bax, p53, bcl2, and caspase-3). The EVs derived from mature milk significantly inhibited the expression of proinflammatory-related genes (TNFα and IL6). Western blot analysis also indicated that colostrum and mature milk EVs significantly decreased the apoptosis of IEC-6 cells. The EdU assay results showed that colostrum and mature milk EVs significantly increased the proliferation of IEC-6 cells. The expression of intestinal barrier-related genes (TJP1, CLDN1, OCLN, CDX2, MUC2, and IGF1R) was significantly promoted in IEC-6 cells after colostrum and mature milk EVs addition. Importantly, colostrum and mature milk EVs significantly relieved the LPS-induced inhibition of proliferation and intestinal barrier-related genes expression and attenuated apoptosis and proinflammatory responses induced by LPS in IEC-6 cells. Flow cytometry and Western blot analysis also indicated that colostrum and mature milk EVs significantly affect the apoptosis of IEC-6 cells induced by LPS. The results also indicated that EVs derived from colostrum had better effects on inhibiting the apoptosis- and proinflammatory cytokines-related genes expression. However, the EVs derived from mature milk exhibited beneficial effects on intestinal epithelial barrier protection. The present study will provide a better understanding of the role of EVs derived from colostrum and milk in dairy cows with different responses in the regulation of intestinal cells function, and also presents new evidence for the change of EVs cargos during various stages of lactation.
Collapse
Affiliation(s)
- Wenju Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (C.D.); (L.N.); (C.L.); (H.W.); (Y.F.)
- Frontiers Science Center for Animal Breeding and Sustainable Production of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Du
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (C.D.); (L.N.); (C.L.); (H.W.); (Y.F.)
- Frontiers Science Center for Animal Breeding and Sustainable Production of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangkang Nan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (C.D.); (L.N.); (C.L.); (H.W.); (Y.F.)
- Frontiers Science Center for Animal Breeding and Sustainable Production of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunfang Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (C.D.); (L.N.); (C.L.); (H.W.); (Y.F.)
- Frontiers Science Center for Animal Breeding and Sustainable Production of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitong Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (C.D.); (L.N.); (C.L.); (H.W.); (Y.F.)
- Frontiers Science Center for Animal Breeding and Sustainable Production of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yikai Fan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (C.D.); (L.N.); (C.L.); (H.W.); (Y.F.)
- Frontiers Science Center for Animal Breeding and Sustainable Production of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shujun Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.L.); (C.D.); (L.N.); (C.L.); (H.W.); (Y.F.)
- Frontiers Science Center for Animal Breeding and Sustainable Production of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
41
|
Wang S, Luo J, Wang H, Chen T, Sun J, Xi Q, Zhang Y. Extracellular Vesicles: A Crucial Player in the Intestinal Microenvironment and Beyond. Int J Mol Sci 2024; 25:3478. [PMID: 38542448 PMCID: PMC10970531 DOI: 10.3390/ijms25063478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
The intestinal ecological environment plays a crucial role in nutrient absorption and overall well-being. In recent years, research has focused on the effects of extracellular vesicles (EVs) in both physiological and pathological conditions of the intestine. The intestine does not only consume EVs from exogenous foods, but also those from other endogenous tissues and cells, and even from the gut microbiota. The alteration of conditions in the intestine and the intestinal microbiota subsequently gives rise to changes in other organs and systems, including the central nervous system (CNS), namely the microbiome-gut-brain axis, which also exhibits a significant involvement of EVs. This review first gives an overview of the generation and isolation techniques of EVs, and then mainly focuses on elucidating the functions of EVs derived from various origins on the intestine and the intestinal microenvironment, as well as the impacts of an altered intestinal microenvironment on other physiological systems. Lastly, we discuss the role of microbial and cellular EVs in the microbiome-gut-brain axis. This review enhances the understanding of the specific roles of EVs in the gut microenvironment and the central nervous system, thereby promoting more effective treatment strategies for certain associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.W.); (J.L.); (H.W.); (T.C.); (J.S.); (Q.X.)
| |
Collapse
|
42
|
Lou K, Luo H, Jiang X, Feng S. Applications of emerging extracellular vesicles technologies in the treatment of inflammatory diseases. Front Immunol 2024; 15:1364401. [PMID: 38545101 PMCID: PMC10965547 DOI: 10.3389/fimmu.2024.1364401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024] Open
Abstract
The emerging extracellular vesicles technologies is an advanced therapeutic approach showing promising potential for addressing inflammatory diseases. These techniques have been proven to have positive effects on immune modulation and anti-inflammatory responses. With these advancements, a comprehensive review and update on the role of extracellular vesicles in inflammatory diseases have become timely. This review aims to summarize the research progress of extracellular vesicle technologies such as plant-derived extracellular vesicles, milk-derived extracellular vesicles, mesenchymal stem cell-derived extracellular vesicles, macrophage-derived extracellular vesicles, etc., in the treatment of inflammatory diseases. It elucidates their potential significance in regulating inflammation, promoting tissue repair, and treating diseases. The goal is to provide insights for future research in this field, fostering the application and development of extracellular vesicle technology in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Kecheng Lou
- Department of Urology, Lanxi People’s Hospital, Jinhua, Zhejiang, China
| | - Hui Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinghua Jiang
- Department of Urology, Jingdezhen Second People’s Hospital, Jingdezhen, Jiangxi, China
| | - Shangzhi Feng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
43
|
Hu S, Feng L, Yang Z, Fan X, Gao H, Yang T. A recognition of exosomes as regulators of epigenetic mechanisms in central nervous system diseases. Front Mol Neurosci 2024; 17:1370449. [PMID: 38528957 PMCID: PMC10962328 DOI: 10.3389/fnmol.2024.1370449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Exosomes, vesicular structures originating from cells, participate in the conveyance of proteins and nucleic acids. Presently, the centrality of epigenetic modifications in neurological disorders is widely acknowledged. Exosomes exert influence over various epigenetic phenomena, thereby modulating post-transcriptional regulatory processes contingent upon their constituent makeup. Consequently, the heightened attention directed toward exosomes as instigators of epigenetic alterations has burgeoned in recent years. Notably, exosomes serve as vehicles for delivering methyltransferases to recipient cells. More significantly, non-coding RNAs, particularly microRNAs (miRNAs), represent pivotal contents within exosomes, wielding the capacity to influence the expression of diverse factors within the cerebral milieu. The transfer of these exosomal contents amidst brain cells, encompassing neuronal cells and microglia, assumes a critical role in the genesis and progression of neurological disorders, also, this role is not limited to neurological disorders, it may deal with any human disease, such as cancer, and cardiovascular diseases. This review will concentrate on elucidating the regulation of exosome-induced epigenetic events and its subsequent ramifications for neurological diseases. A more profound comprehension of the involvement of exosome-mediated epigenetic regulation in neurological disorders contributes to a heightened awareness of the etiology and advancement of cerebral afflictions.
Collapse
Affiliation(s)
- Shunxin Hu
- Shandong First Medical University, Tai'an, China
| | - Lei Feng
- Jining First People's Hospital, Jining, China
| | | | - Xuechen Fan
- Jining First People's Hospital, Jining, China
| | | | | |
Collapse
|
44
|
Zheng X, Ai H, Qian K, Li G, Zhang S, Zou Y, Lei C, Fu W, Hu S. Small extracellular vesicles purification and scale-up. Front Immunol 2024; 15:1344681. [PMID: 38469310 PMCID: PMC10925713 DOI: 10.3389/fimmu.2024.1344681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
Exosomes are small extracellular vesicles (sEVs) secreted by cells. With advances in the study of sEVs, they have shown great potential in the diagnosis and treatment of disease. However, sEV therapy usually requires a certain dose and purity of sEVs to achieve the therapeutic effect, but the existing sEV purification technology exists in the form of low yield, low purity, time-consuming, complex operation and many other problems, which greatly limits the application of sEVs. Therefore, how to obtain high-purity and high-quality sEVs quickly and efficiently, and make them realize large-scale production is a major problem in current sEV research. This paper discusses how to improve the purity and yield of sEVs from the whole production process of sEVs, including the upstream cell line selection and cell culture process, to the downstream isolation and purification, quality testing and the final storage technology.
Collapse
Affiliation(s)
- Xinya Zheng
- Department of Biomedical Engineering, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongru Ai
- Department of Biomedical Engineering, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Kewen Qian
- Department of Biomedical Engineering, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Guangyao Li
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Shuyi Zhang
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Yitan Zou
- Department of Biomedical Engineering, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Changhai Lei
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Wenyan Fu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Fahe Life Science and Technology Inc., Shanghai, China
| | - Shi Hu
- Department of Biomedical Engineering, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
45
|
Lu D, Liu Y, Kang L, Zhang X, Hu J, Ye H, Huang B, Wu Y, Zhao J, Dai Z, Wang J, Han D. Maternal fiber-rich diet promotes early-life intestinal development in offspring through milk-derived extracellular vesicles carrying miR-146a-5p. J Nanobiotechnology 2024; 22:65. [PMID: 38365722 PMCID: PMC10870446 DOI: 10.1186/s12951-024-02344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUNDS The intestinal development in early life is profoundly influenced by multiple biological components of breast milk, in which milk-derived extracellular vesicles (mEVs) contain a large amount of vertically transmitted signal from the mother. However, little is known about how maternal fiber-rich diet regulates offspring intestinal development by influencing the mEVs. RESULTS In this study, we found that maternal resistant starch (RS) consumption during late gestation and lactation improved the growth and intestinal health of offspring. The mEVs in breast milk are the primary factor driving these beneficial effects, especially enhancing intestinal cell proliferation and migration. To be specific, administration of mEVs after maternal RS intake enhanced intestinal cell proliferation and migration in vivo (performed in mice model and indicated by intestinal histological observation, EdU assay, and the quantification of cyclin proteins) and in vitro (indicated by CCK8, MTT, EdU, and wound healing experiments). Noteworthily, miR-146a-5p was found to be highly expressed in the mEVs from maternal RS group, which also promotes intestinal cell proliferation in cells and mice models. Mechanically, miR-146a-5p target to silence the expression of ubiquitin ligase 3 gene NEDD4L, thereby inhibiting DVL2 ubiquitination, activating the Wnt pathway, and promoting intestinal development. CONCLUSION These findings demonstrated the beneficial role of mEVs in the connection between maternal fiber rich diet and offspring intestinal growth. In addition, we identified a novel miRNA-146a-5p-NEDD4L-β-catenin/Wnt signaling axis in regulating early intestinal development. This work provided a new perspective for studying the influence of maternal diet on offspring development.
Collapse
Affiliation(s)
- Dongdong Lu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, 6700 AH, The Netherlands
| | - Yisi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Luyuan Kang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hao Ye
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, 6700 AH, The Netherlands
| | - Bingxu Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
46
|
Song R, Baker TL, Watters JJ, Kumar S. Obstructive Sleep Apnea-Associated Intermittent Hypoxia-Induced Immune Responses in Males, Pregnancies, and Offspring. Int J Mol Sci 2024; 25:1852. [PMID: 38339130 PMCID: PMC10856042 DOI: 10.3390/ijms25031852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Obstructive sleep apnea (OSA), a respiratory sleep disorder associated with cardiovascular diseases, is more prevalent in men. However, OSA occurrence in pregnant women rises to a level comparable to men during late gestation, creating persistent effects on both maternal and offspring health. The exact mechanisms behind OSA-induced cardiovascular diseases remain unclear, but inflammation and oxidative stress play a key role. Animal models using intermittent hypoxia (IH), a hallmark of OSA, reveal several pro-inflammatory signaling pathways at play in males, such as TLR4/MyD88/NF-κB/MAPK, miRNA/NLRP3, and COX signaling, along with shifts in immune cell populations and function. Limited evidence suggests similarities in pregnancies and offspring. In addition, suppressing these inflammatory molecules ameliorates IH-induced inflammation and tissue injury, providing new potential targets to treat OSA-associated cardiovascular diseases. This review will focus on the inflammatory mechanisms linking IH to cardiovascular dysfunction in males, pregnancies, and their offspring. The goal is to inspire further investigations into the understudied populations of pregnant females and their offspring, which ultimately uncover underlying mechanisms and therapeutic interventions for OSA-associated diseases.
Collapse
Affiliation(s)
- Ruolin Song
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
| | - Tracy L. Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
| | - Jyoti J. Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| |
Collapse
|
47
|
Li J, Shang X, Zhang S, Yang Q, Yan Z, Wang P, Gao X, Gun S, Huang X. Breed-Related Differential microRNA Expression and Analysis of Colostrum and Mature Milk Exosomes in Bamei and Landrace Pigs. Int J Mol Sci 2024; 25:667. [PMID: 38203844 PMCID: PMC10779168 DOI: 10.3390/ijms25010667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Breast milk, an indispensable source of immunological and nutrient components, is essential for the growth and development of newborn mammals. MicroRNAs (miRNAs) are present in various tissues and body fluids and are selectively packaged inside exosomes, a type of membrane vesicle. Milk exosomes have potential regulatory effects on the growth, development, and immunity of newborn piglets. To explore the differences in milk exosomes related to the breed and milk type, we isolated exosomes from colostrum and mature milk from domestic Bamei pigs and foreign Landrace pigs by using density gradient centrifugation and then characterized them by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Furthermore, the profiles and functions of miRNAs in the two types of pig milk exosomes were investigated using miRNA-seq and bioinformatics analysis. We identified a total of 1081 known and 2311 novel miRNAs in pig milk exosomes from Bamei and Landrace pigs. These differentially expressed miRNAs (DE-miRNAs) are closely associated with processes such as cell signaling, cell physiology, and immune system development. Functional enrichment analysis showed that DE-miRNA target genes were significantly enriched in endocytosis, the T cell receptor signaling pathway, and the Th17 cell differentiation signaling pathway. The exosomal miRNAs in both the colostrum and mature milk of the two pig species showed significant differences. Based on related signaling pathways, we found that the colostrum of local pig breeds contained more immune-system-development-related miRNAs. This study provides new insights into the possible function of milk exosomal miRNAs in the development of the piglet immune system.
Collapse
Affiliation(s)
- Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.S.); (S.Z.); (Q.Y.); (Z.Y.); (P.W.); (X.G.); (S.G.)
| | - Xuefeng Shang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.S.); (S.Z.); (Q.Y.); (Z.Y.); (P.W.); (X.G.); (S.G.)
| | - Sen Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.S.); (S.Z.); (Q.Y.); (Z.Y.); (P.W.); (X.G.); (S.G.)
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.S.); (S.Z.); (Q.Y.); (Z.Y.); (P.W.); (X.G.); (S.G.)
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.S.); (S.Z.); (Q.Y.); (Z.Y.); (P.W.); (X.G.); (S.G.)
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.S.); (S.Z.); (Q.Y.); (Z.Y.); (P.W.); (X.G.); (S.G.)
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.S.); (S.Z.); (Q.Y.); (Z.Y.); (P.W.); (X.G.); (S.G.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.S.); (S.Z.); (Q.Y.); (Z.Y.); (P.W.); (X.G.); (S.G.)
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.S.); (S.Z.); (Q.Y.); (Z.Y.); (P.W.); (X.G.); (S.G.)
| |
Collapse
|
48
|
Moholdt T, Stanford KI. Exercised breastmilk: a kick-start to prevent childhood obesity? Trends Endocrinol Metab 2024; 35:23-30. [PMID: 37735048 PMCID: PMC11005327 DOI: 10.1016/j.tem.2023.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023]
Abstract
Exercise has systemic health benefits through effects on multiple tissues, with intertissue communication. Recent studies indicate that exercise may improve breastmilk composition and thereby reduce the intergenerational transmission of obesity. Even if breastmilk is considered optimal infant nutrition, there is evidence for variations in its composition between mothers who are normal weight, those with obesity, and those who are physically active. Nutrition early in life is important for later-life susceptibility to obesity and other metabolic diseases, and maternal exercise may provide protection against the development of metabolic disease. Here we summarize recent research on the influence of maternal obesity on breastmilk composition and discuss the potential role of exercise-induced adaptations to breastmilk as a kick-start to prevent childhood obesity.
Collapse
Affiliation(s)
- Trine Moholdt
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Gynaecology and Obstetrics, St. Olav's Hospital, Trondheim, Norway.
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
49
|
Cui Z, Amevor FK, Zhao X, Mou C, Pang J, Peng X, Liu A, Lan X, Liu L. Potential therapeutic effects of milk-derived exosomes on intestinal diseases. J Nanobiotechnology 2023; 21:496. [PMID: 38115131 PMCID: PMC10731872 DOI: 10.1186/s12951-023-02176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 12/21/2023] Open
Abstract
Exosomes are extracellular vesicles with the diameter of 30 ~ 150 nm, and are widely involved in intercellular communication, disease diagnosis and drug delivery carriers for targeted disease therapy. Therapeutic application of exosomes as drug carriers is limited due to the lack of sources and methods for obtaining adequate exosomes. Milk contains abundant exosomes, several studies have shown that milk-derived exosomes play crucial roles in preventing and treating intestinal diseases. In this review, we summarized the biogenesis, secretion and structure, current novel methods used for the extraction and identification of exosomes, as well as discussed the role of milk-derived exosomes in treating intestinal diseases, such as inflammatory bowel disease, necrotizing enterocolitis, colorectal cancer, and intestinal ischemia and reperfusion injury by regulating intestinal immune homeostasis, restoring gut microbiota composition and improving intestinal structure and integrity, alleviating conditions such as oxidative stress, cell apoptosis and inflammation, and reducing mitochondrial reactive oxygen species (ROS) and lysosome accumulation in both humans and animals. In addition, we discussed future prospects for the standardization of milk exosome production platform to obtain higher concentration and purity, and complete exosomes derived from milk. Several in vivo clinical studies are needed to establish milk-derived exosomes as an effective and efficient drug delivery system, and promote its application in the treatment of various diseases in both humans and animals.
Collapse
Affiliation(s)
- Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, P. R. China
| | - Xingtao Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, P. R. China
| | - Chunyan Mou
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xie Peng
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China.
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China.
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Southwest University, Beibei, Chongqing, 400715, P. R. China.
| |
Collapse
|
50
|
Ávila Morales G, De Leonardis D, Filipe J, Furioso Ferreira R, Agazzi A, Sauerwein H, Comi M, Mrljak V, Lecchi C, Ceciliani F. Porcine milk exosomes modulate the immune functions of CD14 + monocytes in vitro. Sci Rep 2023; 13:21447. [PMID: 38052991 PMCID: PMC10698175 DOI: 10.1038/s41598-023-48376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023] Open
Abstract
Exosomes mediate near and long-distance intercellular communication by transferring their molecular cargo to recipient cells, altering their biological response. Milk exosomes (MEx) are internalized by immune cells and exert immunomodulatory functions in vitro. Porcine MEx can accumulate in the small intestine, rich in macrophages. No information is available on the immunomodulatory ability of porcine MEx on porcine monocytes, which are known precursors of gut macrophages. Therefore, this study aims at (1) assessing the in vitro uptake of porcine MEx by porcine monocytes (CD14+), and (2) evaluating the in vitro impact of porcine MEx on porcine monocytes immune functions. MEx were purified by ultracentrifugation and size exclusion chromatography. The monocytes' internalization of PKH26-labeled MEx was examined using fluorescence microscopy. Monocytes were incubated with increasing exosome concentrations and their apoptosis and viability were measured. Lastly, the ability of MEx to modulate the cells' immune activities was evaluated by measuring monocytes' phagocytosis, the capacity of killing bacteria, chemotaxis, and reactive oxygen species (ROS) production. MEx were internalized by porcine monocytes in vitro. They also decreased their chemotaxis and phagocytosis, and increased ROS production. Altogether, this study provides insights into the role that MEx might play in pigs' immunity by demonstrating that MEx are internalized by porcine monocytes in vitro and exert immunomodulatory effects on inflammatory functions.
Collapse
Affiliation(s)
- Gabriela Ávila Morales
- Department of Veterinary Medicine and Animal Sciences, Università Degli Studi di Milano, Lodi, Italy.
| | - Daria De Leonardis
- Department of Veterinary Medicine and Animal Sciences, Università Degli Studi di Milano, Lodi, Italy
| | - Joel Filipe
- Department of Veterinary Medicine and Animal Sciences, Università Degli Studi di Milano, Lodi, Italy
| | - Rafaela Furioso Ferreira
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Alessandro Agazzi
- Department of Veterinary Science for Health, Animal Production and Alimentary Security, Università Degli Studi di Milano, Lodi, Italy
| | - Helga Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Marcello Comi
- Department of Human Science and Quality of Life Promotion, Università Telematica San Raffaele, Rome, Italy
| | - Vladimir Mrljak
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Cristina Lecchi
- Department of Veterinary Medicine and Animal Sciences, Università Degli Studi di Milano, Lodi, Italy
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine and Animal Sciences, Università Degli Studi di Milano, Lodi, Italy
| |
Collapse
|