1
|
Yildiz AY, Öztekin S, Anaya K. Effects of plant-derived antioxidants to the oxidative stability of edible oils under thermal and storage conditions: Benefits, challenges and sustainable solutions. Food Chem 2025; 479:143752. [PMID: 40086382 DOI: 10.1016/j.foodchem.2025.143752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/25/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
The stability of edible oils significantly influences their quality, safety, and shelf life. While synthetic antioxidants have traditionally been used, the growing consumer interest in food safety and sustainability has shifted focus towards natural alternatives. Plant-derived antioxidants offer a promising solution, enhancing oxidative stability while meeting clean-label demands. This review examines recent advancements in using plant-derived antioxidants, such as extracts, essential oils, and agro-industrial by-products, to inhibit lipid peroxidation and improve edible oils' oxidative and thermal stability. Natural antioxidants from peels, seeds, spices, fruits, and vegetables effectively reduce hydrolysis, polymerization, and secondary oxidation products. Despite their potential, challenges remain, including impacts on sensory attributes, regulatory compliance, and the need for standardized extraction and application protocols. Addressing these limitations can advance sustainable food preservation and encourage the integration of natural antioxidants in the food industry, contributing to a more sustainable economy and shelf life.
Collapse
Affiliation(s)
- Aysun Yurdunuseven Yildiz
- Department of Food Engineering, Faculty of Engineering, Pamukkale University, Denizli, 20160, Türkiye.
| | - Sebahat Öztekin
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, 69000, Türkiye.
| | - Katya Anaya
- Health Sciences College of Trairi, Federal University of Rio Grande do Norte, Santa Cruz, RN, Brazil.
| |
Collapse
|
2
|
Wahab A, Suhag R, Ferrentino G, Morozova K, Scampicchio M. Oxidation kinetics of fats from meat and meat products by isothermal calorimetry. Food Chem 2025; 478:143653. [PMID: 40049132 DOI: 10.1016/j.foodchem.2025.143653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 04/06/2025]
Abstract
Lipid oxidation significantly affects the nutritional value and sensory properties of processed meat products. This study aimed to apply isothermal calorimetry to analyze the oxidation kinetics of fats from chicken, pork, lamb and speck at 40 °C in presence of 2,2'-Azobis(2-methylpropionitrile) (AIBN) radical initiator. Isothermal calorimetry allowed for continuous monitoring of the heat flow developed during the oxidation reaction determining key kinetic parameters such as the induction time (τ), rates of inhibited (Rinh) and uninhibited (Runi) periods, and oxidizability index (O.I.). The calorimetric data were validated using oximetry and peroxide value measurements (R2 = 0.99). Chicken fat exhibited longest τ followed by pork > speck > lamb. The results correlated with the concentration of antioxidants, mainly tocopherols, present in the samples. Furthermore, the O.I. of the fat samples varied significantly (p < 0.05) due to the different fatty acid compositions. Overall, isothermal calorimetry provided valuable kinetic insights while enabling the simultaneous analysis of multiple samples.
Collapse
Affiliation(s)
- Abdul Wahab
- Faculty of Agricultural, Environmental and Food Sciences, University of Bozen-Bolzano, Bolzano, Italy
| | - Rajat Suhag
- Faculty of Agricultural, Environmental and Food Sciences, University of Bozen-Bolzano, Bolzano, Italy
| | - Giovanna Ferrentino
- Faculty of Agricultural, Environmental and Food Sciences, University of Bozen-Bolzano, Bolzano, Italy.
| | - Ksenia Morozova
- Faculty of Agricultural, Environmental and Food Sciences, University of Bozen-Bolzano, Bolzano, Italy
| | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Sciences, University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
3
|
Erdoğan Ü, Önder D, Önder S, Tonguç M, Ince RE. Green solvent 2-methyltetrahydrofuran (2-MeTHF) improves recovery of bioactive molecules from oilseeds and prevents lipid peroxidation in oils. Food Chem 2025; 478:143659. [PMID: 40049128 DOI: 10.1016/j.foodchem.2025.143659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 04/06/2025]
Abstract
The study compared the effects of hexane and 2-methyltetrahydrofuran (MeTHF) on oil yield, stability and bioactive compounds in fig, black cumin and rosehip oils. MeTHF increased oil yield in fig (11.7 %), black cumin (28.3 %) and rosehip (13.2 %). Solvent type did not change fatty acid and tocopherol composition and 18 fatty acids were identified. MeTHF increased number of phenolic compounds from 9 to 16 and amount of total tocopherol, phenolics, chlorophylls and carotenoids in oils. The antioxidant activity of oils was measured by CUPRAC and DPPH assays and MeTHF extracted oils had significantly higher antioxidant capacity. Oxidative stability test revealed that hexane-extracted oils peroxide value (PV) increased dramatically in fig (182.7 %) and rosehip (221.1 %) oils, while PV of MeTHF extracted oils was not significant in fig and rosehip oils. Black cumin oil was stable for both solvents. Results show that MeTHF is more efficient for obtaining oils with bioactive molecules to improve stability and quality.
Collapse
Affiliation(s)
- Ümit Erdoğan
- Rose and Aromatic Plants Application and Research Center, Isparta University of Applied Sciences, Isparta 32200, Türkiye.
| | - Damla Önder
- Department of Biology, Faculty of Engineering and Natural Sciences, Süleyman Demirel University, Isparta 32260, Türkiye
| | - Sercan Önder
- Department of Agricultural Biotechnology, Faculty of Agriculture, Isparta University of Applied Sciences, Isparta 32200, Türkiye
| | - Muhammet Tonguç
- Department of Agricultural Biotechnology, Faculty of Agriculture, Isparta University of Applied Sciences, Isparta 32200, Türkiye
| | - Riza Eren Ince
- Department of Agricultural Biotechnology, Faculty of Agriculture, Isparta University of Applied Sciences, Isparta 32200, Türkiye
| |
Collapse
|
4
|
Rozirwan, Khotimah NN, Putri WAE, Fauziyah, Aryawati R, Diansyah G, Nugroho RY. Biomarkers of heavy metals pollution in mangrove ecosystems: Comparative assessment in industrial impact and conservation zones. Toxicol Rep 2025; 14:102011. [PMID: 40230513 PMCID: PMC11994975 DOI: 10.1016/j.toxrep.2025.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Heavy metal contamination from industrial activities in coastal regions can lead to pollution in mangrove ecosystems. Mangroves produce antioxidant compounds to mitigate the impact of free radicals. This study aimed to analyze the correlation between the concentration of heavy metals Pb and Cu and antioxidant activity in Avicennia alba and Excoecaria agallocha mangroves from areas affected by industrial activities and conservation areas, Banyuasin, South Sumatra, Indonesia. This study was conducted in September 2023 with sampling locations in the Payung Island area and the Barong River conservation area, Berbak Sembilang National Park. The samples taken included sediment and mangrove leaves. The concentration of heavy metals Pb and Cu was measured by atomic absorption spectrometry. Antioxidant activity test using the DPPH test, total phenol using the Folin-Ciocalteu method, and phytochemical profile screening using GCMS. Statistical analysis of the correlation between antioxidant activity and heavy metal concentration using the Pearson correlation. The results showed that the highest concentration of heavy metals in sediment and mangrove leaves was found in the area affected by industrial activity, with a range of Pb values of 0.67 ± 0.16-18.70 ± 0.48 mg/kg and Cu values of 3.39 ± 0.20-6.07 ± 0.37 mg / kg. The results of sediment pollution assessment for heavy metals Pb and Cu at Igeo < 0 indicates uncontaminated, 1 < Cf < 3 indicates low contamination, and PLI 0-2 indicates not polluted. While the results of heavy metal bioaccumulation in leaves were BCF < 1, indicates low bioaccumulation. E. agallocha leaves from the Pulau Payung area showed very strong antioxidant activity of 21.63 μg/ml, and the highest total phenol content reached 398.80 mg GAE/g. Analysis of compounds with the highest antioxidant activity identified the presence of esters, aldehydes, alcohols, fatty acids, glycosides, flavonoids, terpenoids, and steroids. Correlation analysis shows that higher heavy metal concentrations correspond to increased antioxidant activity and total phenol content (r ≠ 0). These findings are expected to contribute to scientific knowledge that enhances environmental sustainability, supporting effective management of coastal natural resources.
Collapse
Affiliation(s)
- Rozirwan
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra 30862, Indonesia
| | - Nadila Nur Khotimah
- Environmental Management Study Program, Graduate Program, Universitas Sriwijaya, Palembang 30139, Indonesia
| | - Wike Ayu Eka Putri
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra 30862, Indonesia
| | - Fauziyah
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra 30862, Indonesia
| | - Riris Aryawati
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra 30862, Indonesia
| | - Gusti Diansyah
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra 30862, Indonesia
| | - Redho Yoga Nugroho
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra 30862, Indonesia
| |
Collapse
|
5
|
Shaw A, Teng R, Fasina T, Gonzales AS, Wong A, Schweitzer D, Akefe IO. Lipid dysregulation and delirium in older adults: A review of the current evidence and future directions. Brain Res Bull 2025; 224:111299. [PMID: 40086765 DOI: 10.1016/j.brainresbull.2025.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Delirium is a complex medical condition marked by acute episodes of cognitive dysfunction and behavioral disturbances, with a multifaceted etiology and challenging management across various clinical settings. Older adults, particularly in postoperative contexts, are at increased risk of developing delirium. Despite extensive research, a single underlying pathophysiological mechanism for delirium remains elusive. However, emerging evidence suggests a correlation between lipid dysregulation and delirium development in elderly patients, especially in postoperative settings. This connection has led to proposed treatments targeting dyslipidemia and associated neuroinflammatory effects in acute-phase delirium. This review aims to synthesize current literature on the relationship between lipid dysregulation and delirium in older adults, highlighting the need for further research into specific neurolipidome constituents and age-related lipid profile changes, potentially uncovering novel therapeutic strategies for delirium.
Collapse
Affiliation(s)
- AnaLee Shaw
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Rujia Teng
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Toluwani Fasina
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Ana-Sofia Gonzales
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Audrey Wong
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- Academy for Medical Education, The University of Queensland, Herston, QLD 4006, Australia; CDU Menzies School of Medicine, Charles Darwin University, Ellengowan Drive, Darwin, NT 0909, Australia.
| |
Collapse
|
6
|
Yadav M, Singh VP. A review on benzoselenazoles: synthetic methodologies and potential biological applications. Org Biomol Chem 2025; 23:3712-3740. [PMID: 40152071 DOI: 10.1039/d4ob01897d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Among the various heterocyclic organoselenium compounds, a new class of benzoselenazoles has received great attention due to their chemical properties and biological applications. The ever-growing interest in the five-membered benzoselenazole heterocycles amongst chemists has made commendable impact. These heterocycles are a prominent class of organic molecules that have emerged as potential therapeutic agents for the treatment of a wide range of diseases. Substantial progress has been made in elucidating the complex chemical properties of these heterocycles. Moreover, they have garnered significant importance in a wide range of biological applications. However, despite their biological activities, research on benzoselenazoles remains relatively limited, emphasising the need for further exploration in this area. Hence, considering the importance of benzoselenazoles, this comprehensive review compiles various synthetic procedures, highlighting the recent advances in their synthesis that have been disclosed in the literature. This review would offer chemists an array of information that will assist them in the development of more affordable and effective synthesis processes for benzoselenazoles. Therefore, it is believed that this review would provide relevant context on these achievements and will inspire synthetic organic chemists to use these effective technologies of such heterocycles for the future treatment of diseases caused by oxidative stress. The biological and pharmacological properties of these organoselenium heterocycles, which include their antioxidant, antitumor, and antibacterial activities and their application in Alzheimer's disease treatment and as pancreatic lipase inhibitors, are thoroughly summarized. Finally, this review provides some perspectives on the challenges and future directions in the development of benzoselenazoles as heterocyclic organoselenium compounds.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh - 160 014, India.
| | - Vijay P Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh - 160 014, India.
| |
Collapse
|
7
|
Ahmed J, Kumar VV, Kumar V, AlMomin S. High-pressure treatment of the green and orange Dunaliella salina biomass: effect on particle size distribution, small amplitude oscillatory shear rheology, and microstructure. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03160-2. [PMID: 40232384 DOI: 10.1007/s00449-025-03160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025]
Abstract
Dunaliella salina, a halophilic microalga, is well known for its ability to produce β-carotene and has significant commercial applications. The actively growing green culture turns to orange color due to photosensitization, during which there is a significant reduction in chlorophyll content (chlorophyll A and B: 16.04 and 2.80-1.70, 0.21 mg/g dry basis, respectively) with an increase in carotenoids (α- and β-carotenes: 1.60 and 4.81 mg/g dry basis). This change has been accompanied by a considerable variation in protein content (green: 34.27% and orange: 18.57%) and ash content (green: 38.37% and orange: 58.11%). To avoid extreme heat sensitivity, high-pressure (HP) processing, a nonthermal technology, has been applied to pigment-rich Dunaliella. This research aimed to examine the effects of HP treatment (300-600 MPa/15 min) on the rheological, structural, and particle size distribution of Dunaliella in two consecutive cell growth stages (e.g., green and orange). Oscillatory rheology data displayed a distinct protein denaturation at 57.87 °C for untreated green cells, whereas orange cells did not. Conversely, several denaturation peaks appeared in the HP-treated orange cell suspensions, and those peaks remained unaffected by pressure treatment. Isothermal heating exhibited liquid-like behavior for green cells, whereas the solid-like behavior was evident for orange cells. PSD displayed a shift of unimodal to bimodal distributions of Dunaliella cells after the HP treatment. Orange cells exhibited PSD parameters of Dv10: 8.60 μm, Dv50: 71.6 μm, and Dv90: 255 μm. XRD patterns of both green and orange cells are almost identical, exhibiting several peaks that were attributed to metal ions absorbed by the cells from the growth media. Overall, a significant difference in compositional and functional properties was observed between the green and orange Dunaliella biomass.
Collapse
Affiliation(s)
- Jasim Ahmed
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait.
| | - Vanita Vinod Kumar
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| | - Vinod Kumar
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| | - Sabah AlMomin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| |
Collapse
|
8
|
Okumuş E, Canbolat F, Acar İ. Evaluation of antioxidant activity, anti-lipid peroxidation effect and elemental impurity risk of some wild Agaricus species mushrooms. BMC PLANT BIOLOGY 2025; 25:476. [PMID: 40234754 PMCID: PMC11998388 DOI: 10.1186/s12870-025-06520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Mushrooms are natural antioxidant sources that have been consumed as food from past to present and have a nutraceutical effect thanks to the bioactive components they contain. The aim of this study is to comparatively evaluate the antioxidant activity, total phenolic content (TPC) and lipid peroxidation (LPO) inhibition effect of three mushroom species (A. bernardii, A. bresadolanus and A. cupreobrunneus) belonging to the Agaricus genus and to perform the carcinogenic and noncarcinogenic risk assessment of toxic elements such as cadmium (Cd), lead (Pb), arsenic (As) and mercury (Hg) in mushrooms. RESULTS The highest antioxidant activity (12.85 mg/mL), TPC (993.04 mg GAE/100 g), and LPO inhibition effect (2.50 mg/mL) were detected in A. bresadolanus mushroom. The lowest content of bioactive compounds was measured in A. cupreobrunneus mushroom. The range of Cd, Pb, As, and Hg levels detected in the three mushroom species were 1775.54-7521.61 µg/kg, 1176.87-2377.37 µg/kg, 15201.26-3092.53 µg/kg and 147.86-576.53 µg/kg, respectively. The THQ value of As in A. bresadolanus was found to be higher than 1. The HI values of A. bernardii, A. cupreobrunneus and A. bresadolanu were 1.29, 0.98 and 5.57, respectively. The CR values of Cd, As, and Hg were found to be around 10- 4 in A. bernardii, A. cupreobrunneus, and A. bresadolanus. Meanwhile, the CR levels of Pb were found to be around 10- 6 in the three mushrooms. The HI value for non-carcinogenic risk assessment was higher than 1, and the CR for carcinogenic effect was around 10- 4, indicating that consumption of these mushrooms poses a risk to human health. CONCLUSIONS It is thought that the elemental impurity levels in the analysed edible mushroom species were found to be at a risk potential level, and despite their antioxidant properties, uncontrolled consumption of wild edible mushrooms may cause serious risks. In order to minimize these risks, metal risk assessment studies should be continued in addition to the antioxidant effects and health-beneficial properties of mushrooms.
Collapse
Affiliation(s)
- Emine Okumuş
- Department of Food Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Zeve Campus, Tuşba, Van, 65080, Turkey
| | - Fadime Canbolat
- Department of Pharmacy Services, Vocational School of Health Services, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - İsmail Acar
- Department of Organic Agriculture, Başkale Vocational High School, Van Yuzuncu Yil University, Van, Turkey.
| |
Collapse
|
9
|
Tuersong T, Wu QF, Chen Y, Shan Li P, Yong YX, Shataer M, Shataer S, Ma LY, Yang XL. Integrated network pharmacology, metabolomics, and microbiome studies to reveal the therapeutic effects of Anacyclus pyrethrum in PD-MCI mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156729. [PMID: 40253741 DOI: 10.1016/j.phymed.2025.156729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/03/2025] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Anacyclus pyrethrum (l.) DC has potential value in treating Parkinson's disease (PD)-mild cognitive impairment (MCI), manifesting as impaired memory, attention, executive function, and language. However, the specific targets and modes of action of A. pyrethrum remain unclear. PURPOSE The aim of this study was to identify the active components of A. pyrethrum and examine their effectiveness in treating a mouse model of PD-MCI. METHODS We generated ethanol extracts of A. pyrethrum root (EEAP) and identified its active components and related targets using UHPLC-MS/MS and network pharmacology.The PD-MCI model was induced via intraperitoneal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP). After following continuous administration of EEAP,Altered learning or memory, as well as anxiety, were tested using the morris water maze, eight-arm radial arm maze (RAM), and open-field test,elevated plus-maze. Brain histopathology and ultrastructural changes were examined using brightfield microscopy, and electron microscopy, respectively. Furthermore, protein expression was assessed using western blotting.Stool samples were used for metabolomics analysis by UHPLC-MS/MS and for 16S rDNA sequencing to determine the compositional changes of the gut microbiota.We conducted a short-chain fatty acid targeted metabolomics experiment to study their role in the gut-brain axis in PD-MCI. RESULTS Using UPLC-MS-MS, 126 compounds were identified from A. pyrethrum samples.After searching the databases and literature reports, 31 active components and 544 drug-disease targets were screened. Biological processes and molecular functions, such as energy channels, cell signaling, and metabolism, were discovered through GO analysis. The water maze experiment showed that the average swimming distance and escape latency of mice in EEAP groups decreased. The eight-arm maze experiment showed that model had a much higher number of errors related to working memory than the control mice. In the open field experiment, compared with the control group, the mice in the EEAP group exhibited an increase in the average movement speed and total movement distance, along with a decrease in the residence time.In the elevated plus maze, the control had less anxiety than the Model. Donepezil/Levodopa(D/l) mitigated anxiety-like behavior, and EEAP (100-400 mg/kg) showed a dose-dependent increase in open-arm metrics, suggesting it may ease anxiety in mice.Hippocampal tissue of mice treated with different doses of EEAP showed intact cellular layers and the hematoxylin-eosin-stained cones were slightly better;cells were arranged neatly; their morphology was normal, and were distributed uniformly. Electron microscopy revealed that the nuclear membrane, chromatin, and nucleoli were clearly demarcated in the hippocampus of mice treated with different doses of EEAP, contrary to that in the model group. In brain extracts of the EEAP group, lighter thinner bands for amyloid precursor protein (APP) and Aβ were observed compared to those in the model group. In model mice, APP and Aβ protein expression was higher than in the blank group, as shown by stronger bands. In EEAP-treated mice, the bands were weaker, indicating reduced expression. In the model group had lower Bcl-2 and higher Bax levels. EEAP treatment increased Bcl-2 and decreased Bax expression.Compared to the control group, the model showed substantially low glutathione peroxidase (GSH-Px),superoxide dismutase(SOD),catalase (CAT)activity (p < 0.05),much higher (p < 0.05) in the EEAP-H group than that in the model. EEAP intervention significantly modulated the fecal metabolic profile of PD-MCI mice. The abundance of steroid and lipid metabolites, including linoleylethanolamine, was markedly altered in the model group compared to the control group, with EEAP treatment reversing several of these abnormalities. PLS-DA and OPLS-DA revealed significant separation between groups (Q2= 0.542, p < 0.01), confirming a dose-dependent effect. Random forest analysis identified 15 key metabolic markers, such as dose-dependent changes in d-glutamine and hydrocodone. Metabolic pathway analysis demonstrated significant enrichment in phenylalanine, tyrosine, tryptophan metabolism, and arginine biosynthesis pathways (p < 0.05). The Support Vector Machine (SVM) model achieved an AUC approaching 1, indicating substantial differences in metabolite profiles. EEAP intervention significantly influenced the composition and functional profile of the intestinal microbiota. The Venn diagram illustrates that each group shared 342 operational taxonomic units (OTUs), with the EEAP 400 group exhibiting a distinct Bacteroidetes proportion. LEfSe analysis identified g_Prevotella as the characteristic bacterium in the control group, c_Epsilonproteobacteria in the model group, and g_Adlercreutzia in the EEAP 100 group. The Faith's Phylogenetic Diversity (PD) index was highest in the EEAP 100 group, and Non-metric Multidimensional Scaling (NMDS)/Principal Coordinates Analysis (PCoA) revealed significant differences in microbial community structure. Short-chain fatty acids (SCFAs) analysis indicated that acetic acid was the predominant metabolite, while EEAP dose-dependently regulated propionic acid and isovaleric acid levels (VIP > 1, p < 0.001). These findings demonstrate that EEAP exerts its regulatory effects by reshaping the structure and metabolic functions of the gut microbiota. CONCLUSION EEAP holds great promise as a potential therapeutic agent for PD-MCI, exerting its effects through multiple mechanisms, including regulating protein expression, modulating the fecal metabolic profile, and reshaping the gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Tayier Tuersong
- Department of Pharmacy, Xinjiang Key Laboratory of Neurological Diseases, Xinjiang Clinical Research Center for Nervous System Diseases, Second Affiliated Hospital of Xinjiang Medical University, Ürümqi 830001, Xinjiang, PR China
| | - Qin Fen Wu
- Department of Neurology, Xinjiang Key Laboratory of Neurological Diseases, Xinjiang Clinical Research Center for Nervous System Diseases, Second Affiliated Hospital of Xinjiang Medical University, Ürümqi 830001, Xinjiang, PR China
| | - Yan Chen
- Department of Pharmacy, Xinjiang Key Laboratory of Neurological Diseases, Xinjiang Clinical Research Center for Nervous System Diseases, Second Affiliated Hospital of Xinjiang Medical University, Ürümqi 830001, Xinjiang, PR China
| | - Pei Shan Li
- Department of Neurology, Xinjiang Key Laboratory of Neurological Diseases, Xinjiang Clinical Research Center for Nervous System Diseases, Second Affiliated Hospital of Xinjiang Medical University, Ürümqi 830001, Xinjiang, PR China
| | - Yu Xuan Yong
- Department of Neurology, Xinjiang Key Laboratory of Neurological Diseases, Xinjiang Clinical Research Center for Nervous System Diseases, Second Affiliated Hospital of Xinjiang Medical University, Ürümqi 830001, Xinjiang, PR China
| | - Munire Shataer
- Department of Histology and Embryology, Basic Medical College of Xinjiang Medical University, Ürümqi 830001, Xinjiang, PR China
| | - Samire Shataer
- Department of Neurology, Xinjiang Key Laboratory of Neurological Diseases, Xinjiang Clinical Research Center for Nervous System Diseases, Second Affiliated Hospital of Xinjiang Medical University, Ürümqi 830001, Xinjiang, PR China
| | - Liang Ying Ma
- Department of Pharmacy, Xinjiang Key Laboratory of Neurological Diseases, Xinjiang Clinical Research Center for Nervous System Diseases, Second Affiliated Hospital of Xinjiang Medical University, Ürümqi 830001, Xinjiang, PR China
| | - Xin Ling Yang
- Department of Neurology, Xinjiang Key Laboratory of Neurological Diseases, Xinjiang Clinical Research Center for Nervous System Diseases, Second Affiliated Hospital of Xinjiang Medical University, Ürümqi 830001, Xinjiang, PR China.
| |
Collapse
|
10
|
Kellil A, Suhag R, Tenuta MC, Bolchini S, Merkyte V, Scampicchio M, Morozova K, Ferrentino G. Sequential extraction of antioxidants from Citrus aurantium L. flower and kinetic evaluation of their effect on oil microparticle oxidative stability. Food Chem X 2025; 27:102448. [PMID: 40276231 PMCID: PMC12018209 DOI: 10.1016/j.fochx.2025.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/02/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
This study applied supercritical CO2 and ultrasound-assisted ethanol extraction (UAE) to obtain apolar and polar antioxidant fractions from Citrus aurantium flowers. HPLC-HRMS revealed distinct phytochemical profiles, with the polar extract showing higher phenolic content and antioxidant activity. Linseed oil was co-encapsulated with these extracts at varying concentrations (1, 2, and 5 mg/g of oil) using the Particles from Gas Saturated Solution (PGSS) technique, and the oxidative stability was assessed using isothermal calorimetry. Key kinetic parameters, such as induction time (τ), oxidation rates (R inh , R uni ), and antioxidant efficiency (A.E.), were measured. The polar extract demonstrated superior A.E., further confirmed by the DPPH stopped-flow assay. Co-encapsulation of both extracts produced an additive effect, surpassing the synthetic antioxidant BHT (200 μg/g). This study highlights Citrus aurantium flower extracts as natural antioxidants, enhancing the oxidative stability of encapsulated oils, while offering a sustainable method for bioactive compound recovery for food applications.
Collapse
Affiliation(s)
- Abdessamie Kellil
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| | - Rajat Suhag
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| | - Maria Concetta Tenuta
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| | - Sara Bolchini
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| | - Vakare Merkyte
- Nestlé NPTC Waters, Via Dogana Vecchia snc, 24040 Madone, Italy
| | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| | - Ksenia Morozova
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| | - Giovanna Ferrentino
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| |
Collapse
|
11
|
Yu Q, Mao H, Vijayalakshmi A, Zhou M. Acacetin Prevents Renal Damage Induced by Streptozotocin via Altering the NF-κB/ASC/NLRP3 and AMPK/SIRT1 Pathways in Mice. Biotechnol Appl Biochem 2025:e2753. [PMID: 40150865 DOI: 10.1002/bab.2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease. Its pathogenesis includes inflammation, an excess of reactive oxygen species, and kidney damage. The present study intended to explore the nephroprotective effects of acacetin (ACN) in streptozotocin-induced diabetic animals. The following are the experimental groups: One millilitre of 0.9% saline was given to Group I (control), Streptozotocin (STZ) (diabetic animals) + 0.9% saline to Group II (DN group) (negative control), DN + ACN (15 mg/kg body weight [bw]) to Group III, and DN + Valsartan (150 mg/kg bw) to Group IV. According to the findings, ACN decreased the levels of glucose, serum creatinine (Scr), blood urea nitrogen (BUN), malondialdehyde (MDA), and proinflammatory cytokines while increasing the bw, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in comparison to the DN animals. The histopathological analysis revealed that the animals treated with ACN showed recovery of renal damage in the tissues caused by STZ. In the STZ-induced DN mice, ACN reduced renal damage by upregulating the proteins of 5' adenosine monophosphate-activated protein kinase (AMPK), p-AMPK, and SIRT1 and downregulating the proteins of TGF-β, COL-1, COL-IV, NF-κB, ASC, NLRP3, and GSDMD, according to western blot analysis. Hence, the current study demonstrated that the regulation of the AMPK/SIRT1 and NF-κB/ASC/NLRP3 inflammasome pathways in DN mice was responsible for the protective effects of ACN. ACN may therefore be a viable treatment option for DN.
Collapse
Affiliation(s)
- Qingfei Yu
- Department of Nephrology, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Hongyan Mao
- Department of Nephrology, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Annamalai Vijayalakshmi
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Meilan Zhou
- Department of Nephrology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Munteanu C, Galaction AI, Onose G, Turnea M, Rotariu M. The Janus Face of Oxidative Stress and Hydrogen Sulfide: Insights into Neurodegenerative Disease Pathogenesis. Antioxidants (Basel) 2025; 14:360. [PMID: 40227410 PMCID: PMC11939184 DOI: 10.3390/antiox14030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/09/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Oxidative stress plays an essential role in neurodegenerative pathophysiology, acting as both a critical signaling mediator and a driver of neuronal damage. Hydrogen sulfide (H2S), a versatile gasotransmitter, exhibits a similarly "Janus-faced" nature, acting as a potent antioxidant and cytoprotective molecule at physiological concentrations, but becoming detrimental when dysregulated. This review explores the dual roles of oxidative stress and H2S in normal cellular physiology and pathophysiology, focusing on neurodegenerative disease progression. We highlight potential therapeutic opportunities for targeting redox and sulfur-based signaling systems in neurodegenerative diseases by elucidating the intricate balance between these opposing forces.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| |
Collapse
|
13
|
Yu M, Liu S, Li J, Ni C, Li X, Cui W. Efficacy of antioxidant intervention and exercise intervention for lipid peroxidation in dialysis patients: a meta-analysis. Front Med (Lausanne) 2025; 12:1473818. [PMID: 40166056 PMCID: PMC11955636 DOI: 10.3389/fmed.2025.1473818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Background Lipid peroxidation is a major factor known to contribute to occurrence of cardiovascular events in dialysis patients. This study aims to investigate whether antioxidant interventions can improve lipid peroxidation damage in dialysis patients. Methods A comprehensive search in PubMed, Embase, and the Cochrane Library was conducted to identify eligible randomized controlled trials (RCTs) up to June 2024. Endpoints of interest included biomarkers related to Lipid peroxidation. The results from eligible studies were performed using RevMan 5.3 and Stata17.0 software. Results A total of 25 RCTs were included, involving eight interventions such as vitamin C supplementation, vitamin E supplementation, vitamin E-coated dialyzer, ω-fatty acid supplementation, curcumin supplementation, pomegranate juice supplementation, exercise intervention, and multiple antioxidant interventions. Outcome indicators included malondialdehyde (MDA) and oxidized low-density lipoprotein (Ox-LDL). The meta-analysis revealed that vitamin E supplementation caused significant reductions in MDA (p = 0.01). Treatment with vitamin E-coated dialyzer markedly decreased MDA levels (p < 0.0001). Curcumin supplementation significantly reduced Ox-LDL levels (p = 0.03). Exercise intervention decreased MDA levels (p < 0.0001). Multiple antioxidant interventions significantly decreased MDA (p = 0.01). Conclusion Supplementation of vitamin E, vitamin E-coated dialyzer treatment, curcumin supplementation, exercise intervention, and multiple antioxidant interventions can effectively reduce the level of lipid peroxidation biomarkers in dialysis patients. Systematic review registration https://www.crd.york.ac.uk/PROSPERO (CRD42023455399).
Collapse
Affiliation(s)
| | | | | | | | | | - Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Sun D, Wang L, Wu Y, Yu Y, Yao Y, Yang H, Hao C. Lipid metabolism in ferroptosis: mechanistic insights and therapeutic potential. Front Immunol 2025; 16:1545339. [PMID: 40134420 PMCID: PMC11932849 DOI: 10.3389/fimmu.2025.1545339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, plays a pivotal role in various physiological and pathological processes. In this review, we summarize the core mechanisms of ferroptosis, emphasizing its intricate connections to lipid metabolism, including fatty acid synthesis, phospholipid remodeling, and oxidation dynamics. We further highlight advancements in detection technologies, such as fluorescence imaging, lipidomics, and in vivo PET imaging, which have deepened our understanding of ferroptotic regulation. Additionally, we discuss the role of ferroptosis in human diseases, where it acts as a double-edged sword, contributing to cancer cell death while also driving ischemia-reperfusion injury and neurodegeneration. Finally, we explore therapeutic strategies aimed at either inducing or inhibiting ferroptosis, including iron chelation, antioxidant modulation, and lipid-targeted interventions. By integrating mechanistic insights, disease relevance, and therapeutic potential, this review provides a comprehensive perspective on ferroptosis as a crucial interface between lipid metabolism and oxidative stress.
Collapse
Affiliation(s)
- Daoyun Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Zhengzhou, Henan, China
| | - Longfei Wang
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Zhengzhou, Henan, China
| | - Yufan Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hongju Yang
- Division of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chunlin Hao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Li Q, Peng J, Ding F. 1,25(OH)₂D₃ inhibits ferroptosis in nucleus pulposus cells via VDR signaling to mitigate lumbar intervertebral disc degeneration. Sci Rep 2025; 15:7968. [PMID: 40055439 DOI: 10.1038/s41598-025-92405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/27/2025] [Indexed: 03/12/2025] Open
Abstract
Lumbar intervertebral disc degeneration (LIDD) serves as a principal contributor to low back pain, a condition that poses considerable global health and socioeconomic challenges. Recent studies have emphasized the significance of ferroptosis, an iron-dependent mechanism of programmed cell death, in the degeneration of nucleus pulposus cells (NPCs). This research examines the protective role of 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃], the active metabolite of Vitamin D (VD), in LIDD through the modulation of ferroptosis. The results indicate that 1,25(OH)₂D₃ significantly inhibits ferroptosis in NPCs through the reduction of lipid peroxidation, restoration of glutathione levels, and enhancement of antioxidant defenses. 1,25(OH)₂D₃ exerts its effects by activating the VD receptor (VDR) signaling pathway, which regulates important ferroptosis-associated molecules, including glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). The findings indicate the therapeutic potential of 1,25(OH)₂D₃ in alleviating LIDD, presenting a new strategy to inhibit ferroptosis and maintain intervertebral disc function.
Collapse
Affiliation(s)
- Qiang Li
- Department of Spine Surgery, Wuhan Puren Hospital, Wuhan University of Science and Technology, Benxi Rd. 1#, Wuhan, 430000, Hubei, China
| | - Jing Peng
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, No. 183, Zhongshan Road West, Guangzhou, 510630, China
| | - Fan Ding
- Department of Spine Surgery, Wuhan Puren Hospital, Wuhan University of Science and Technology, Benxi Rd. 1#, Wuhan, 430000, Hubei, China.
| |
Collapse
|
16
|
Du B, Fu Q, Yang Q, Yang Y, Li R, Yang X, Yang Q, Li S, Tian J, Liu H. Different types of cell death and their interactions in myocardial ischemia-reperfusion injury. Cell Death Discov 2025; 11:87. [PMID: 40044643 PMCID: PMC11883039 DOI: 10.1038/s41420-025-02372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a multifaceted process observed in patients with coronary artery disease when blood flow is restored to the heart tissue following ischemia-induced damage. Cardiomyocyte cell death, particularly through apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, is pivotal in myocardial I/R injury. Preventing cell death during the process of I/R is vital for improving ischemic cardiomyopathy. These multiple forms of cell death can occur simultaneously, interact with each other, and contribute to the complexity of myocardial I/R injury. In this review, we aim to provide a comprehensive summary of the key molecular mechanisms and regulatory patterns involved in these five types of cell death in myocardial I/R injury. We will also discuss the crosstalk and intricate interactions among these mechanisms, highlighting the interplay between different types of cell death. Furthermore, we will explore specific molecules or targets that participate in different cell death pathways and elucidate their mechanisms of action. It is important to note that manipulating the molecules or targets involved in distinct cell death processes may have a significant impact on reducing myocardial I/R injury. By enhancing researchers' understanding of the mechanisms and interactions among different types of cell death in myocardial I/R injury, this review aims to pave the way for the development of novel interventions for cardio-protection in patients affected by myocardial I/R injury.
Collapse
Affiliation(s)
- Bingxin Du
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiang Fu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qin Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yeying Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingrong Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Li
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China
| | - Jinwei Tian
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China.
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Huibin Liu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China.
| |
Collapse
|
17
|
Awasthi A, Maparu K, Singh S. Ferroptosis role in complexity of cell death: unrevealing mechanisms in Parkinson's disease and therapeutic approaches. Inflammopharmacology 2025; 33:1271-1287. [PMID: 39998712 DOI: 10.1007/s10787-025-01672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
Parkinson's disease (PD), a common neurodegenerative disorder, is characterized by progressive loss of dopaminergic neurons, and accumulation of α-synuclein in the substantial nigra. Emerging evidence identifies ferroptosis as a regulated iron-dependent cell death mechanism marked by excessive lipid peroxidation (LPO) as a key contributor to PD pathogenesis. Ferroptosis is intertwined with critical disease processes such as aggregation of α-synuclein protein, oxidative stress generation, mitochondrial alteration, iron homeostasis dysregulation, and neuroinflammation. This mechanism disrupts cellular homeostasis by impairing iron metabolism and antioxidant pathways like the xc-/glutathione/GPX4 axis and the CoQ10 pathway. This review consolidates current advancements in understanding ferroptosis in these mechanisms, increasing interest in contribution to PD pathology. In addition, it explores the latest developments in ferroptosis-targeting pharmacological agents, including their application in the preclinical and clinical study, and highlights their potential to revolutionize PD management. Unraveling the interplay between ferroptosis and PD offers a transformative perspective, paving the way for innovative therapies to combat this debilitating disease condition.
Collapse
Affiliation(s)
- Anupam Awasthi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Kousik Maparu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
18
|
Martin M, Kumar R, Buchkovich NJ, Norbury CC. HCMV infection downregulates GPX4 and stimulates lipid peroxidation but does not induce ferroptosis. J Virol 2025; 99:e0185124. [PMID: 39772623 PMCID: PMC11852782 DOI: 10.1128/jvi.01851-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Human cytomegalovirus (HCMV) modulates numerous cellular pathways to facilitate infection, including key components in cellular iron homeostasis. Iron is essential to many cellular processes but, if present in excess, drives cell death through ferroptosis. Ferroptosis is a process that is dependent upon the accumulation of oxidatively damaged phospholipids (lipid peroxides); when these lipid peroxides accumulate in membranes, this culminates in plasma membrane rupture and eventual cell lysis. Here, we demonstrate that HCMV infection downregulates the expression of a key modulator of lipid peroxidation, glutathione peroxidase 4 (GPX4). HCMV infection also markedly increased levels of lipid peroxides within infected cells. Despite the marked downregulation of GPX4 by HCMV, further inhibition of GPX4 impaired virus replication. Interestingly, overexpression of GPX4 did not reduce the production of lipid peroxides within infected cells. In contrast, lipid peroxide levels were reduced by treatment with ferrostatin-1, a ferrous iron-dependent scavenger of alkoxyl radicals, indicating a role for iron in the production of lipid peroxides. HCMV-infected cells became less sensitive to GPX4 inhibition as infection progressed, requiring substantially higher levels of GPX4 inhibitors to induce ferroptosis compared to uninfected cells. This observed difference in sensitivity to ferroptosis upon infection correlated with a large increase in lipid production by infected cells. Therefore, the marked stimulation of lipid peroxidation by HCMV likely proceeds through a pathway that is independent of GPX4 regulation, but the ability of lipid peroxides to stimulate ferroptosis by modulating plasma membrane rupture is likely blunted by the massive increase in lipid production during HCMV infection. IMPORTANCE Human cytomegalovirus (HCMV) infection is intimately linked with countless host cell pathways that are modulated in a coordinated fashion to facilitate infection. Here, we describe HCMV-induced regulation of lipid peroxidation, a precursor of the iron-regulated cell death pathway known as ferroptosis, during human cytomegalovirus infection. These studies reveal hitherto unidentified changes in metabolism mediated by HCMV that decrease sensitivity to ferroptosis, despite increases in lipid peroxidation and transient increases in intracellular iron levels in infected cells.
Collapse
Affiliation(s)
- Madison Martin
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Rinki Kumar
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Nicholas J. Buchkovich
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Christopher C. Norbury
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
19
|
Kacemi R, Campos MG. Bee Pollen Potential to Modulate Ferroptosis: Phytochemical Insights for Age-Related Diseases. Antioxidants (Basel) 2025; 14:265. [PMID: 40227202 PMCID: PMC11939620 DOI: 10.3390/antiox14030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 04/15/2025] Open
Abstract
Bee pollen (BP) is one of the richest known natural resources of micronutrients and bioactive phytochemicals. Some captivating bioactivities of BP compounds, although being largely investigated for the latter as individual molecules, remain very scarcely investigated or completely uninvestigated in bee pollen as a whole product. Among the most intriguing of these bioactivities, we identified ferroptosis as a major one. Ferroptosis, a recently discovered form of cell death (connecting oxidative stress and inflammation), is a complex pathophysiological process and one of the most crucial and perplexing events in current challenging human diseases such as cancer, neurodegeneration, and general aging diseases. Many BP compounds were found to intricately modulate ferroptosis depending on the cellular context by inducing this cell death mechanism in malignant cells and preventing it in non-malignant cells. Since research in both fields, i.e., BP and ferroptosis, is still recent, we deemed it necessary to undertake this review to figure out the extent of BP potential in modulating ferroptosis mechanisms. Our research proved that a wide range of BP compounds (polyphenols, phenolamides, carotenoids, vitamins, minerals, and others) substantially modulate diverse ferroptosis mechanisms. Accordingly, these phytochemicals and nutrients showed interesting potential in preclinical studies to lead to ferroptosis-mediated outcomes in important pathophysiological processes, including many aging-related disorders. One of the most paramount challenges that remain to be resolved is to determine how different BP compounds act on ferroptosis in different biological and pathophysiological contexts, either through synergistic or antagonistic behaviors. We hope that our current work constitutes a valuable incentive for future investigations in this promising and very relevant research avenue.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3000-548 Coimbra, Portugal
| |
Collapse
|
20
|
Rowland EC, D'Antuono M, Jermakowicz AM, Ayad NG. Methionine cycle inhibition disrupts antioxidant metabolism and reduces glioblastoma cell survival. J Biol Chem 2025; 301:108349. [PMID: 40015640 PMCID: PMC11994328 DOI: 10.1016/j.jbc.2025.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary malignant adult brain tumor that inevitably recurs with a fatal prognosis. This is due in part to metabolic reprogramming that allows tumors to evade treatment. Therefore, we must uncover the pathways mediating these adaptations to develop novel and effective treatments. We searched for genes that are essential in GBM cells as measured by a whole-genome pan-cancer CRISPR screen available from DepMap and identified the methionine metabolism genes MAT2A and AHCY. We conducted genetic knockdown, evaluated mitochondrial respiration, and performed targeted metabolomics to study the function of these genes in GBM. We demonstrate that MAT2A or AHCY knockdown induces oxidative stress, hinders cellular respiration, and reduces the survival of GBM cells. Furthermore, selective MAT2a or AHCY inhibition reduces GBM cell viability, impairs oxidative metabolism, and shifts the cellular metabolic profile towards oxidative stress and cell death. Mechanistically, MAT2a and AHCY regulate spare respiratory capacity, the redox buffer cystathionine, lipid and amino acid metabolism, and prevent oxidative damage in GBM cells. Our results point to the methionine metabolic pathway as a novel vulnerability point in GBM.
Collapse
Affiliation(s)
- Emma C Rowland
- Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - Matthew D'Antuono
- Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - Anna M Jermakowicz
- Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - Nagi G Ayad
- Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA.
| |
Collapse
|
21
|
Gonçalves S, Caramelo A. The Role of Elderberry Hydrolate as a Therapeutic Agent in Palliative Care. Antioxidants (Basel) 2025; 14:233. [PMID: 40002417 PMCID: PMC11851581 DOI: 10.3390/antiox14020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Elderberry hydrolate, derived from the berries of Sambucus nigra, has gained attention for its therapeutic properties, particularly in skincare. This review explores its potential applications in palliative care, where patients often experience compromised skin health due to illness or treatment. The bioactive compounds in elderberry hydrolate, including phenylacetaldehyde, 2-acetyl-pyrrole, n-hexanal, furfural, and (E)-beta-damascenone, contribute to its anti-inflammatory, antioxidant, antimicrobial, and skin-healing effects. These properties make it a promising option for addressing common dermatological issues in palliative care, such as irritation, dryness, pruritus, and inflammation. For example, phenylacetaldehyde's antimicrobial and anti-inflammatory actions help soothe irritated skin, while 2-acetyl-pyrrole's antioxidant effects protect sensitive skin from oxidative stress. Additionally, n-hexanal's antimicrobial properties reduce infection risks and furfural aids in skin regeneration. (E)-beta-damascenone's antioxidant effects help maintain skin health and prevent further damage. Despite these promising effects, barriers to the widespread implementation of elderberry hydrolate in palliative care exist, including cost, accessibility, patient sensitivities, and regulatory challenges. Future research focusing on standardized chemical profiling, clinical trials, and addressing these practical concerns will be crucial for integrating elderberry hydrolate into palliative care regimens. This review highlights its potential as a natural, supportive therapy for enhancing patient comfort and quality of life in palliative care settings.
Collapse
Affiliation(s)
- Sara Gonçalves
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Department of Nursing, School of Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Caramelo
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Department of Nursing, School of Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- RISE-Health Research Network, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
22
|
Ghorbani M, Roxburgh NPC, Tran MP, Blinco JP, Kempe K. Nitroxide-Containing Poly(2-oxazoline)s Show Dual-Stimuli-Responsive Behavior and Radical-Trapping Activity. Biomacromolecules 2025; 26:1260-1273. [PMID: 39883722 DOI: 10.1021/acs.biomac.4c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
2,2,6,6-Tetramethylpiperidine-N-oxyl (TEMPO) structures possess potent antioxidant activities for biomedical applications. TEMPO immobilization on hydrophilic polymers is a powerful strategy to improve its properties; however, it is mostly limited to reversible-deactivation radical polymerizations or postpolymerization approaches. Here, we immobilized TEMPO units on a hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) backbone through cationic ring-opening polymerization (CROP) of a new 2-oxazoline monomer bearing a methoxy-protected TEMPO 2-substituent with 2-ethyl-2-oxazoline (EtOx). The ratios of EtOx/TempOx were adjusted to optimize the nitroxide content while maintaining suitable water solubility of the resulting P(EtOxx-stat-TempOx-Oy•) copolymers upon deprotection. P(EtOx40-stat-TempOx-O10•) and P(EtOx33-stat-TempOx-O17•) showed a dual stimuli-responsive behavior and demonstrated significant radical-trapping activities in aqueous media. Particularly, a meaningful augmentation in the activity of TempOx-O• was observed when it was immobilized as P(EtOxx-stat-TempOx-Oy•). The P(EtOx40-stat-TempOx-O10•) system exhibited a longer-lasting activity in water, statistically comparable to that of the antioxidant ferrostatin-1 (Fer-1). Overall, this study introduces a biocompatible polymeric platform for TEMPO immobilization that augments its radical-trapping activity and offers controllable stimuli-responsive properties.
Collapse
Affiliation(s)
- Milad Ghorbani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Nicholas P C Roxburgh
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Mai P Tran
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - James P Blinco
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
23
|
Sasse R, Carpenter N, Simpkins CO. Selective nitric oxide redistribution by phospholipid nanoparticles: A novel strategy to mitigate massive nitric oxide release and prevent reperfusion injury in septic shock. Free Radic Biol Med 2025; 227:276-281. [PMID: 39645204 DOI: 10.1016/j.freeradbiomed.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Nitric oxide plays a critical role in regulating vascular tone, but excessive nitric oxide release during septic shock results in hypotension due to excessive vasodilation and the formation of toxic free radicals. VBI-S is a phospholipid nanoparticle based fluid composed of lipid bilayers formed primarily by phosphatidylcholine and micelles of soybean oil encapsulated by a monolayer of phosphatidylcholine. These nanoparticles offer a novel solution by absorbing and redistributing nitric oxide and nitrite, potentially mitigating the harmful effects of excessive nitric oxide in sepsis. This paper proposes a mechanism in which VBI-S not only redistributes nitric oxide but also reduces ischemia-reperfusion injury by limiting the production and availability of reactive species. VBI-S captures nitric oxide and nitrite in areas of high concentration and redistributes them in low-nitric oxide environments, primarily within oxygen-deprived tissues. Nitrite then contributes to nitric oxide regeneration in hypoxic microvasculature via various reduction pathways, thereby improving tissue perfusion and minimizing oxidative stress. Preliminary studies suggest that nitrite may also decrease reactive species production, primarily superoxide, through the inhibition of mitochondrial complex I. Additionally, the lipid composition of VBI-S is rich in poly and monounsaturated fatty acids which allows VBI-S to act as a substrate for peroxidation via peroxynitrite. Therefore, VBI-S acts as a decoy target thereby protecting cellular membranes from oxidative damage caused by reactive species. These findings position VBI-S as a promising therapeutic agent, offering both nitric oxide regulation and protection against hypotension and toxic free radicals in septic shock patients. Further research is necessary to fully elucidate the molecular pathways and optimize its clinical application.
Collapse
Affiliation(s)
- Ryan Sasse
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.
| | - Nathan Carpenter
- Department of Surgery, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Cuthbert O Simpkins
- Department of Surgery, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| |
Collapse
|
24
|
Lee J, Roh JL. Lipid metabolism in ferroptosis: Unraveling key mechanisms and therapeutic potential in cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189258. [PMID: 39746458 DOI: 10.1016/j.bbcan.2024.189258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Ferroptosis, a form of iron-dependent cell death driven by lipid peroxidation, has emerged as a critical area of research for cancer therapy. This review delves into the intricate relationship between lipid metabolism and ferroptosis, emphasizing the impact of lipidome remodeling on cancer cell susceptibility. We explore key mechanisms, such as the role of polyunsaturated fatty acids and phosphatidylethanolamines in ferroptosis induction, alongside the protective effects of monounsaturated fatty acids and their regulatory enzymes. We also discuss the influence of dietary fatty acids, lipid droplets, and the epithelial-to-mesenchymal transition on ferroptosis and cancer resistance. By integrating current findings on enzymatic regulation, lipid peroxidation pathways, and metabolic adaptations, this review highlights potential therapeutic strategies targeting lipid metabolism to enhance ferroptosis-based cancer treatments. Our goal is to provide a comprehensive overview that underscores the significance of lipid metabolic pathways in ferroptosis and their implications for developing novel cancer therapies.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|
25
|
Fouad AM, Abo-Al-Ela HG, Moneeb RH, Alfons MS, Salah AS, Yusuf S. Impact of Bambusa vulgaris-supplemented diet on Nile tilapia challenged with Pseudomonas putida: Hematological, immune, and oxidative responses. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110102. [PMID: 39732380 DOI: 10.1016/j.fsi.2024.110102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/15/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
This study investigated the effects of bamboo shoot extract (Bambusa vulgaris) as a feed additive on the health profiles and infection resistance of Nile tilapia (Oreochromis niloticus) against Pseudomonas putida. Bamboo shoot extract was added at levels of 0 g, 40 g, and 60 g per 1000 g of diet over a 60-day period. The fish were then challenged with a pathogenic P. putida strain. Chemical analysis of the bamboo shoot extract identified 3,5-dinitrophenol and hydroquinone as the two most abundant compounds. Results showed that fish fed bamboo-enriched diets exhibited significantly enhanced levels of red blood cells, hemoglobin, hematocrit, white blood cells, and platelets, and improved erythrocyte cellular and nuclear morphologies, indicating improved health profiles after the challenge. Liver function indicators, including AST, ALT, and ALP, were notably balanced in fish receiving bamboo shoot extract post-challenge (p < 0.05). Blood levels of K+ were lower in the bamboo-fed groups. Additionally, blood levels of Ca++ and Na+ were reduced in fish fed 40 g and 60 g of bamboo, respectively, compared to the control group (p < 0.01). The bamboo extract also enhanced immune and oxidative capacities, as demonstrated by increased catalase, superoxide dismutase, lysozyme activity, and phagocytic activity, along with reduced malondialdehyde levels and elevated serum immunoglobulin M (p < 0.01). Gene expression analysis revealed significant effects of Bambusa vulgaris extract, Pseudomonas infection, and their interaction on the expression of interleukin-1β, interleukin-10, and NK-lysin genes, with varying expression levels at 1, 3, and 7 days post-challenge (p < 0.05). The liver bacterial load in fish exposed to P. putida significantly decreased in the bamboo-fed groups, with the lowest count observed in the 60 g bamboo group. Additionally, survival rates were markedly higher in the bamboo-fed groups compared to the control, with no significant difference between the two bamboo-fed groups. In conclusion, dietary supplementation with bamboo shoot extract enhances hematological parameters, blood cell and nuclear morphology, and increases survival rates in Nile tilapia following infection.
Collapse
Affiliation(s)
- Alamira Marzouk Fouad
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43221, Egypt.
| | - Rehab H Moneeb
- Zoology Department, Faculty of Science, New Valley University, El Kharga, New Valley, 72511, Egypt
| | - Mariana S Alfons
- Zoology Department, Faculty of Science, New Valley University, El Kharga, New Valley, 72511, Egypt
| | - Abdallah S Salah
- Department of Aquaculture, Faculty of Aquatic and Fishers Sciences, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt
| | - Shaymaa Yusuf
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
26
|
Lv S, Luo C. Ferroptosis in schizophrenia: Mechanisms and therapeutic potentials (Review). Mol Med Rep 2025; 31:37. [PMID: 39611491 PMCID: PMC11613623 DOI: 10.3892/mmr.2024.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Schizophrenia, a complex psychiatric disorder, presents with multifaceted symptoms and important challenges in treatment, primarily due to its pathophysiological complexity, which involves oxidative stress and aberrant iron metabolism. Recent insights into ferroptosis, a unique form of iron‑dependent cell death characterized by lipid peroxidation and antioxidant system failures, open new avenues for understanding the neurobiological foundation of schizophrenia. The present review explores the interplay between ferroptosis and schizophrenia, emphasizing the potential contributions of disrupted iron homeostasis and oxidative mechanisms to the pathology and progression of this disease. The emerging evidence linking ferroptosis with the oxidative stress observed in schizophrenia provides a compelling narrative for re‑evaluating current therapeutic strategies and exploring novel interventions targeting these molecular pathways, such as the glutathione peroxidase 4 pathway and the ferroptosis suppressor protein 1 pathway. By integrating recent advances in ferroptosis research, the current review highlights innovative therapeutic potentials, including N‑acetylcysteine, selenium, omega‑3 fatty acids and iron chelation therapy, which could address the limitations of existing treatments and improve clinical outcomes for individuals with schizophrenia.
Collapse
Affiliation(s)
- Shuang Lv
- Department of Psychiatry, Guangzhou Kangning Hospital (The Psychiatric Hospital of Guangzhou Civil Administration Bureau), Guangzhou, Guangdong 510430, P.R. China
| | - Chunxia Luo
- Department of Psychiatry, Guangzhou Kangning Hospital (The Psychiatric Hospital of Guangzhou Civil Administration Bureau), Guangzhou, Guangdong 510430, P.R. China
| |
Collapse
|
27
|
Guimarães A, Guimarães ATB, de Brito RR, Gomes AR, Freitas ÍN, de Lima Rodrigues AS, Santiago OC, da Luz TM, de Matos LP, de Oliveira RF, Malafaia G. Necroecological Trophic Transfer of Microplastics: Insights into the Ecotoxicity of Petroleum-Derived and Biodegradable Polymers. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 88:210-229. [PMID: 39922933 DOI: 10.1007/s00244-025-01120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
Although the toxicity of petroleum-derived microplastics (MPs) has been widely investigated, the impact of biomicroplastics (BioMPs) remains controversial, and the necroecological trophic transfer of both is still poorly understood. Our study reveals that biomicroplastics may pose ecotoxicological risks comparable to or greater than those of petroleum-derived plastics, a finding that should raise concern. We aimed to evaluate the possible translocation of polystyrene (PS) and polylactic acid (PLA) MPs from mice to the necrophagous fly Synthesiomyia nudiseta and their potential effects on the larval stage. Mice were inoculated intraperitoneally with different doses of MPs [9 (I) and 90 mg/kg (II)] and subjected to the decomposition process (for ten days), allowing colonization by larvae. Our results confirmed the translocation of MPs from mice to S. nudiseta larvae, resulting in a greater accumulation of PLA-MPs compared to PS-MPs. We observed that exposure to MPs significantly influenced biomass accumulation, with larvae from the PS-I and PLA-I groups showing increased biomass. In contrast, those from the PLA-II group exhibited lower biomass. AChE activity was modulated in a concentration-dependent manner, with an increase observed in larvae exposed to PLA-MPs, indicating a potential neurotoxic effect. In addition, there was an increased production of reactive oxygen species (ROS), especially in the groups exposed to higher concentrations of MPs, without a proportional response of antioxidant enzymes, suggesting a redox imbalance and oxidative stress. The elevated serotonin levels and reduced dopamine observed in larvae exposed to MPs indicate a possible redirection of energy resources and changes related to a metabolic adaptation to the stress imposed by MPs. Principal component analysis (PCA) showed that PC1 was strongly influenced by biomarkers such as trypsin, chymotrypsin, AChE, ROS, and dopamine activity, highlighting that PLA-MPs (at the highest concentration) induced more pronounced toxic effects than PS-MPs. This finding was corroborated by discriminant analysis, which revealed a clear separation between the experimental groups, and by multiple regression analysis, which confirmed a strong relationship between MP concentration and larval biomarker responses, indicating that the type and concentration of MPs explained approximately 65% of the variation in the biomarkers evaluated. In conclusion, our study demonstrates for the first time the necroecological trophic translocation of MPs between vertebrates and invertebrates, highlighting the potential risks of biomicroplastics.
Collapse
Affiliation(s)
- Ariane Guimarães
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
| | - Abraão Tiago Batista Guimarães
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
| | - Rafaela Ribeiro de Brito
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Ítalo Nascimento Freitas
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Omar Cruz Santiago
- Department of Environmental Sciences, Division of Life Sciences, Campus Irapuato-Salamanca, Guanajuato University, Irapuato-Guanajuato, Mexico
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Letícia Paiva de Matos
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
| | - Raíssa Ferreira de Oliveira
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 Km, Zona Rural, Urutaí, GO, Brazil.
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil.
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
28
|
Kerr BJ, Wilson VC, von Schamburg PC, Parsons CM. Effects of peroxidized soybean oil on growth and energy digestibility in broilers. Poult Sci 2025; 104:104725. [PMID: 39754928 PMCID: PMC11758531 DOI: 10.1016/j.psj.2024.104725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025] Open
Abstract
Peroxidized lipids have been shown to reduce broiler performance whereupon it was theorized that dietary peroxide value (PV) plus anisidine value (AnV) may be predictive of broiler performance. In experiment (EXP) 1, 64 pens (8 broilers/pen) were fed diets containing 8 levels of peroxidized soybean oil (SO). Broilers were fed diets from 7 to 35 d of age with 8 replications per dietary treatment. Broilers fed diets containing SO processed at 135°C resulted in a reduction in average daily gain (ADG) and average daily feed intake (ADFI, P ≤ 0.05) compared to birds fed diets containing the unheated SO while birds fed diets containing SO processed at 90°C resulted in a reduction in gain to feed (GF, P ≤ 0.05) compared to birds fed diets containing the unheated SO. Summarization of this data with published data resulted in significant (P ≤ 0.01) regression models for relative ADG [ADG, % = 101.9 - (0.05 × PV) - (0.30 × AnV), SE = 4.1, R2 = 0.43], ADFI [ADFI, % = 101.7 - (0.09 × PV) - (0.19 × AnV), SE = 3.3, R2 = 0.32], and GF [GF, % = 100.4 + (0.05 × PV) - (0.14 × AnV), SE = 2.6, R2 = 0.27], albeit PV was not a significant regression parameter (P ≥ 0.36) for any equation. In EXP 2, the TMEn of four different SO was determined using the precision-fed rooster assay. Diets consisted of ground corn with SO added at 0, 7.5 or 15 % of the diet at the expense of ground corn with 4 roosters per treatment. Relative bioavailability (RBV) was determined using slope-ratio methodology where it was determined that the reduction in the RBV of peroxidized SO ranged from 12 to 29 percent compared to the unheated SO sample. These data suggests that bird performance relative to birds consuming unperoxidized lipids can be predicted based on dietary levels of PV and AnV, although the slopes for performance decline are relatively flat with the combination of PV and AnV accounting for 27 to 43 % of the response variable variance.
Collapse
Affiliation(s)
- Brian J Kerr
- USDA-Agricultural Research Service, Ames, IA 50011, USA.
| | - Victoria C Wilson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Carl M Parsons
- Department of Animal Science, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
29
|
Bora B, Yin T, Zhang B, Altan CO, Benjakul S. Comparison between Indian and commercial chamomile essential oils: Chemical compositions, antioxidant activities and preventive effect on oxidation of Asian seabass visceral depot fat oil. Food Chem X 2025; 26:102292. [PMID: 40104615 PMCID: PMC11914187 DOI: 10.1016/j.fochx.2025.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 03/20/2025] Open
Abstract
Antioxidant properties of indigenous Indian (ICO) and commercial (CCO) chamomile essential oils (EOs) and their application in preventing lipid oxidation of fish oil were investigated. Solid-phase micro-extraction gas chromatography-mass spectrometry (SPME-GCMS) revealed dominant compounds to be α-bisabolol and chamazulene in ICO, while α-farnesene and δ-cadinene in CCO. Both EOs exhibited similar 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC) values but ICO showed superior effect in β-carotene/linoleic system. When applied in Asian seabass visceral depot fat oil (SVDFO), ICO (400 mg/L) significantly reduced peroxide values after 15 days (30°C) and slightly lowered thiobarbituric acid reactive substances and anisidine values. ICO (400 mg/L) showed comparable efficacy in preventing the oxidation of polyunsaturated fatty acids (PUFAs) to 200 mg/L butylated hydroxytoluene (BHT) within 0-12 days. Fourier Transform Infrared (FTIR) analysis confirmed preservation of PUFA double bonds by ICO. Therefore, chamomile EOs, especially ICO, could prevent lipid peroxidation in PUFA-rich oils.
Collapse
Affiliation(s)
- Birinchi Bora
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China
| | - Bin Zhang
- College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Can Okan Altan
- Department of Seafood Processing Technology, Faculty of Fisheries, Sinop University, Sinop, 57000, Türkiye
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- b BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
30
|
Stabrauskiene J, Sadauskiene I, Liekis A, Mikniene Z, Bernatoniene J. Naringin vs. Citrus x paradisi L. Peel Extract: An In Vivo Journey into Oxidative Stress Modulation. Antioxidants (Basel) 2025; 14:157. [PMID: 40002344 PMCID: PMC11852006 DOI: 10.3390/antiox14020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Citrus fruits, mainly grapefruit (Citrus x paradisi L.), are rich in bioactive compounds with potential antioxidant properties. This study investigated the antioxidant effects of naringin (NR) and ethanolic Citrus x paradisi L. peel (E) in reducing aluminum chloride (AlCl3)-induced oxidative stress in mice. Quantitative analysis using HPLC identified optimal extraction conditions, combination ultrasound and reflux extraction (UH50), resulting in high concentrations of naringin (49.13 mg/g) and naringenin (63.99 µg/g). Mice were treated with NR and E to evaluate their effects on key markers of oxidative stress: reduced glutathione (GSH), malondialdehyde (MDA), and catalase (CAT). The E effectively reduced MDA levels in blood, brain, and liver tissues, with a more substantial effect on controlling lipid peroxidation. In contrast, NR was more effective in restoring GSH levels and CAT activity, suggesting a broader enhancement of antioxidant defense. These findings provide information about specific mechanisms of NR and E and their therapeutic potential in managing oxidative stress and developing products with synergistic efficacy.
Collapse
Affiliation(s)
- Jolita Stabrauskiene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania;
| | - Ilona Sadauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (I.S.); (A.L.)
| | - Arunas Liekis
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania; (I.S.); (A.L.)
| | - Zoja Mikniene
- Large Animal Clinic, Lithuania University of Health Science, Veterinary Academy, LT-44307 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania;
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Eiveniu St. 4, LT-50161 Kaunas, Lithuania
| |
Collapse
|
31
|
Long Y, Shi H, Ye J, Qi X. Exploring Strategies to Prevent and Treat Ovarian Cancer in Terms of Oxidative Stress and Antioxidants. Antioxidants (Basel) 2025; 14:114. [PMID: 39857448 PMCID: PMC11762571 DOI: 10.3390/antiox14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is a state of imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the antioxidant defence system in the body. Oxidative stress may be associated with a variety of diseases, such as ovarian cancer, diabetes mellitus, and neurodegeneration. The generation of oxidative stress in ovarian cancer, one of the common and refractory malignancies among gynaecological tumours, may be associated with several factors. On the one hand, the increased metabolism of ovarian cancer cells can lead to the increased production of ROS, and on the other hand, the impaired antioxidant defence system of ovarian cancer cells is not able to effectively scavenge the excessive ROS. In addition, chemotherapy and radiotherapy may elevate the oxidative stress in ovarian cancer cells. Oxidative stress can cause oxidative damage, promote the development of ovarian cancer, and even result in drug resistance. Therefore, studying oxidative stress in ovarian cancer is important for the prevention and treatment of ovarian cancer. Antioxidants, important markers of oxidative stress, might serve as one of the strategies for preventing and treating ovarian cancer. In this review, we will discuss the complex relationship between oxidative stress and ovarian cancer, as well as the role and therapeutic potential of antioxidants in ovarian cancer, thus guiding future research and clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Key Laboratory of Birth, Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (H.S.); (J.Y.)
| |
Collapse
|
32
|
Bandaru M, Sultana OF, Islam MA, Rainier A, Reddy PH. Rlip76 in ageing and Alzheimer's disease: Focus on oxidative stress and mitochondrial mechanisms. Ageing Res Rev 2025; 103:102600. [PMID: 39617058 DOI: 10.1016/j.arr.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
RLIP76 (Rlip), a stress-responsive protein, plays a multifaceted role in cellular function. This protein acts primarily as a glutathione-electrophile conjugate (GS-E) transporter, crucial for detoxifying hazardous compounds and converting them into mercapturic acids. RLIP76 also modulates cytoskeletal motility and membrane plasticity through its role in the Ral-signaling pathway, interacting with RalA and RalB, key small GTPases involved in growth and metastasis. Beyond its ATP-dependent transport functions in various tissues, RLIP76 also demonstrates GTPase Activating Protein (GAP) activity towards Rac1 and Cdc42, with a preference for Ral-GTP over Ral-GDP. Its functions span critical physiological processes including membrane dynamics, oxidative stress response, and mitochondrial dynamics. The protein's widespread expression and evolutionary conservation underscore its significance. Our lab discovered that Rlip interacts with Alzheimer's disease (AD) proteins, amyloid beta and phosphorylated and induce oxidative stress, mitochondrial dysfnction and synaptic damage in AD. Our in vitro studies revealed that overexpression of Rlip reduces mitochondrial abnormalities. Further, our in vivo studies (Rlip+/- mice) revealed that a partial reduction of Rlip in mice (Rlip+/-), leads to mitochondrial abnormalities, elevated oxidative stress, and cognitive deficits resembling late-onset AD, emphasizing the protein's crucial role in neuronal health and disease. Finally, we discuss the experimental cross-breedings of overexpression of mice Rlip TG/TG or Rlip + /- mice with Alzheimer's disease models - earlyonset 5XFAD, late-onset APPKI and Tau transgenic mice, providing new insights into RLIP76's role in AD progression and development. This review summarizes RLIP76's structure, function, and cellular pathways, highlighting its implications in AD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alvir Rainier
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
33
|
Gupta M, Dwivedi V, Kumar S, Patel A, Niazi P, Yadav VK. Lead toxicity in plants: mechanistic insights into toxicity, physiological responses of plants and mitigation strategies. PLANT SIGNALING & BEHAVIOR 2024; 19:2365576. [PMID: 38899525 PMCID: PMC11195469 DOI: 10.1080/15592324.2024.2365576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Soil toxicity is a major environmental issue that leads to numerous harmful effects on plants and human beings. Every year a huge amount of Pb is dumped into the environment either from natural sources or anthropogenically. Being a heavy metal it is highly toxic and non-biodegradable but remains in the environment for a long time. It is considered a neurotoxic and exerts harmful effects on living beings. In the present review article, investigators have emphasized the side effects of Pb on the plants. Further, the authors have focused on the various sources of Pb in the environment. Investigators have emphasized the various responses including molecular, biochemical, and morphological of plants to the toxic levels of Pb. Further emphasis was given to the effect of elevated levels of Pb on the microbial population in the rhizospheres. Further, emphasized the various remediation strategies for the Pb removal from the soil and water sources.
Collapse
Affiliation(s)
- Minoti Gupta
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Chandigarh, Punjab, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh, India
| | - Swatantar Kumar
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Chandigarh, Punjab, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Parwiz Niazi
- Department of Biology, Faculty of Education, Kandahar University, Kandahar, Afghanistan
- Department of Plant Protection, Faculty of Agriculture, EGE University, İzmir, Turkey
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
34
|
Latib F, Zafendi MAI, Mohd Lazaldin MA. The use of vitamin E in ocular health: Bridging omics approaches with Tocopherol and Tocotrienol in the management of glaucoma. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100224. [PMID: 39415777 PMCID: PMC11481750 DOI: 10.1016/j.fochms.2024.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Vitamin E, encompassing tocopherols and tocotrienols is celebrated for its powerful antioxidant properties, which help neutralize free radicals and protect cells from oxidative damage. Over the years, research has shown that both tocopherols and tocotrienols offer significant benefits, including protection against radiation damage, cholesterol regulation, cardiovascular health, and neurological disorders. This wide range of benefits highlights the need for further exploration of vitamin E's role in managing various diseases. One particularly promising area is its potential application in treating ocular diseases like glaucoma. Despite advances in treatment, current options have limitations, making the investigation of alternative approaches crucial. Omics technologies, which allow for a detailed examination of biological systems, could provide valuable insights into how tocopherols and tocotrienols work at a molecular level. Their neuroprotective and antioxidative properties make them promising candidates for glaucoma management. Additionally, the sustainability of vitamin E is noteworthy, as by-products from its production can be repurposed into valuable resources for nutraceuticals and pharmaceuticals. As research continues, integrating omics technologies with the study of vitamin E derivatives could unveil new therapeutic possibilities, further enhancing our understanding of its diverse health benefits and its potential role in preventing and managing diseases.
Collapse
Affiliation(s)
- Fazira Latib
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | | | | |
Collapse
|
35
|
Liu Y, Wang C, Li M, Zhu Y, Liu K, Liu Y, Luo M, Zhang C. Natural ingredients in the regulation of abnormal lipid peroxidation: a potential therapy for pulmonary diseases. Front Pharmacol 2024; 15:1507194. [PMID: 39759448 PMCID: PMC11695318 DOI: 10.3389/fphar.2024.1507194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Pulmonary diseases are a major category of diseases that pose a threat to human health. The most common drugs currently used to treat lung diseases are still chemical drugs, but this may lead to drug resistance and damage to healthy organs in the body. Therefore, developing new drugs is an urgent task. Lipid peroxidation is caused by the disruption of redox homeostasis, accumulation of reactive oxygen species (ROS), depletion of glutathione (GSH), and inactivation of glutathione peroxidase 4 (GPX4). Lipid peroxidation is closely related to the occurrence and progression of respiratory diseases, including acute lung injury, asthma, pulmonary fibrosis, pulmonary hypertension, chronic obstructive pulmonary disease, and lung cancer. Natural ingredients have high safety, high availability, and low cost, and can regulate lipid peroxidation through multiple pathways and targets, making them valuable new drugs. This article aims to summarize the pharmacology and mechanism of natural ingredients targeting lipid peroxidation in the treatment of lung diseases. The reviewed data indicate that natural ingredients are a promising anti-lipid peroxidation drug, mainly alleviating lipid peroxidation through the cystine/glutamate antiporter (System Xc -)/GSH/GPX4 axis, Nrf2 pathway, and ROS pathway. In the future, it will still be necessary to further study the mechanisms of natural products in treating pulmonary diseases through lipid peroxidation and conduct multi-center, large-sample clinical trials to promote the development of new drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
36
|
Latif S, Sameeullah M, Abbasi HQ, Masood Z, Demiral Sert T, Aslam N, Pekdemir T, Imren M, Çiftçi V, Saba K, Malik MS, Ijaz F, Batool N, Mirza B, Waheed MT. Broccoli ( Brassica oleracea var. italica) leaves exhibit significant antidiabetic potential in alloxan-induced diabetic rats: the putative role of ABC vacuolar transporter for accumulation of Quercetin and Kaempferol. Front Pharmacol 2024; 15:1421131. [PMID: 39737071 PMCID: PMC11683327 DOI: 10.3389/fphar.2024.1421131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Background The global prevalence of diabetes among adults over 18 years of age is expected to increase from 10.5% to 12.2% (between 2021 and 2045). Plants can be a cost-effective source of flavonoids like quercetin and kaempferol with anti-diabetic properties. Methodology We aimed to assess the antidiabetic potential of leaves of Brassica oleracea cvs. Green Sprout and Marathon. Further, flavonoid contents were measured in broccoli leaves grown under light and dark conditions. The methanolic extracts of Green Sprout (GSL-M) and Marathon (ML-M) were first evaluated in vitro for their α-amylase and α-glucosidase inhibitory potential and then for antidiabetic activity in vivo in alloxan-induced diabetic rat models. Results Treatment with plant extracts promoted the reduced glutathione (GSH) content and CAT, POD, and SOD activities in the pancreas, liver, kidney, heart, and brain of diabetic rats, whereas lowered lipid peroxidation, H2O2, and nitrite concentrations. The histopathological studies revealed the protective effect of plant extracts at high dose (300 mg/kg), which could be due to broccoli's rich content of chlorogenic acid, quercetin, and kaempferol. Strikingly, etiolated leaves of broccoli manifested higher levels of quercetin and kaempferol than green ones. The putative role of an ABC transporter in the accumulation of quercetin and kaempferol in etiolated leaves was observed as evaluated by qRT-PCR and in silico analyses. Conclusion In conclusion, the present study shows a strong link between the antidiabetic potential of broccoli due to the presence of chlorogenic acid, quercetin, and kaempferol and the role of an ABC transporter in their accumulation within the vacuole.
Collapse
Affiliation(s)
- Sara Latif
- Department of Biology, University of Haripur, Haripur, Pakistan
| | - Muhammad Sameeullah
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
- Centre for Innovative Food Technologies Development, Application and Research, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | | | - Zainab Masood
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tijen Demiral Sert
- Department of Biology, Faculty of Engineering and Natural Sciences, Süleyman Demirel University, Isparta, Türkiye
| | - Noreen Aslam
- Department of Biology, Faculty of Science and Literature, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Turgay Pekdemir
- Centre for Innovative Food Technologies Development, Application and Research, Bolu Abant Izzet Baysal University, Bolu, Türkiye
- Department of Chemical Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Mustafa Imren
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Vahdettin Çiftçi
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Kiran Saba
- Department of Biochemistry, Faculty of Life Sciences, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | | | - Fatima Ijaz
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Neelam Batool
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
37
|
Daci M, Berisha L, Mercatante D, Rodriguez-Estrada MT, Jin Z, Huang Y, Amorati R. Advancements in Biosensors for Lipid Peroxidation and Antioxidant Protection in Food: A Critical Review. Antioxidants (Basel) 2024; 13:1484. [PMID: 39765813 PMCID: PMC11672933 DOI: 10.3390/antiox13121484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
This review highlights the progress made in recent years on biosensors aimed at detecting relevant analytes/markers of food peroxidation. Starting from the basic definition of biosensors and the chemical features of peroxidation, here we describe the different approaches that can be used to obtain information about the progress of peroxidation and the efficacy of antioxidants. Aptamers, metal-organic frameworks, nanomaterials, and supported enzymes, in conjunction with electrochemical methods, can provide fast and cost-effective detection of analytes related to peroxidation, like peroxides, aldehydes, and metals. The determination of (poly)phenols concentrations by biosensors, which can be easily obtained by using immobilized enzymes (like laccase), provides an indirect measure of peroxidation. The rationale for developing new biosensors, with a special focus on food applications, is also discussed.
Collapse
Affiliation(s)
- Majlinda Daci
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Pristina, Str. Mother Teresa, 10000 Prishtina, Kosovo;
| | - Liridon Berisha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Pristina, Str. Mother Teresa, 10000 Prishtina, Kosovo;
- NanoAlb, Albanian NanoScience and Nanotechnology Unit, Academy of Sciences of Albania, Shëtitorja Murat Toptani, 1000 Tiranë, Albania
| | - Dario Mercatante
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università di Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Maria Teresa Rodriguez-Estrada
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università di Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Zongxin Jin
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Gobetti 83, 40129 Bologna, Italy; (Z.J.); (Y.H.)
| | - Yeqin Huang
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Gobetti 83, 40129 Bologna, Italy; (Z.J.); (Y.H.)
| | - Riccardo Amorati
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Gobetti 83, 40129 Bologna, Italy; (Z.J.); (Y.H.)
| |
Collapse
|
38
|
Alfutaimani AS, Alharbi NK, S. Alahmari A, A. Alqabbani A, Aldayel AM. Exploring the landscape of Lipid Nanoparticles (LNPs): A comprehensive review of LNPs types and biological sources of lipids. Int J Pharm X 2024; 8:100305. [PMID: 39669003 PMCID: PMC11635012 DOI: 10.1016/j.ijpx.2024.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Lipid nanoparticles (LNPs) have emerged as promising carriers for delivering therapeutic agents, including mRNA-based immunotherapies, in various biomedical applications. The use of LNPs allows for efficient delivery of drugs, resulting in enhanced targeted delivery to specific tissues or cells. These LNPs can be categorized into several types, including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-polymer hybrid nanoparticles. The preparation of LNPs involves the manipulation of their structural, dimensional, compositional, and physical characteristics via the use of different methods in the industry. Lipids used to construct LNPs can also be derived from various biological sources, such as natural lipids extracted from plants, animals, or microorganisms. This review dives into the different types of LNPs and their preparation methods. More importantly, it discusses all possible biological sources that are known to supply lipids for the creation of LNPs. Natural lipid reservoirs have surfaced as promising sources for generating LNPs. The use of LNPs in drug delivery is expected to increase significantly in the coming years. Herein, we suggest some environmentally friendly and biocompatible sources that can produce lipids for future LNPs production.
Collapse
Affiliation(s)
- Alanood S. Alfutaimani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University (PNU), P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Nouf K. Alharbi
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
| | - Amirah S. Alahmari
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University (PNU), P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Almaha A. Alqabbani
- The Ear, Nose, and Throat (ENT) Department at King Salman Hospital, Riyadh 12769, Saudi Arabia
| | - Abdulaziz M. Aldayel
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Riyadh 11426, Saudi Arabia
| |
Collapse
|
39
|
Rowland EC, D’Antuono M, Jermakowicz A, Ayad NG. MAT2a and AHCY inhibition disrupts antioxidant metabolism and reduces glioblastoma cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.23.624981. [PMID: 39605416 PMCID: PMC11601785 DOI: 10.1101/2024.11.23.624981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive primary malignant adult brain tumor that inevitably recurs with a fatal prognosis. This is due in part to metabolic reprogramming that allows tumors to evade treatment. We therefore must uncover the pathways mediating these adaptations to develop novel and effective treatments. We searched for genes that are essential in GBM cells as measured by a whole-genome pan-cancer CRISPR screen available from DepMap and identified the methionine metabolism genes MAT2A and AHCY. We conducted genetic knockdown, evaluated mitochondrial respiration, and performed targeted metabolomics to study the function of these genes in GBM. We demonstrate that MAT2A or AHCY knockdown induces oxidative stress, hinders cellular respiration, and reduces the survival of GBM cells. Furthermore, selective MAT2a or AHCY inhibition reduces GBM cell viability, impairs oxidative metabolism, and changes the metabolic profile of these cells towards oxidative stress and cell death. Mechanistically, MAT2a or AHCY regulates spare respiratory capacity, the redox buffer cystathionine, lipid and amino acid metabolism, and prevents DNA damage in GBM cells. Our results point to the methionine metabolic pathway as a novel vulnerability point in GBM.
Collapse
Affiliation(s)
- Emma C. Rowland
- Georgetown University, Lombardi Comprehensive Cancer Center, 3970 Reservoir Rd NW Washington D.C. 20007, United States of America
| | - Matthew D’Antuono
- Georgetown University, Lombardi Comprehensive Cancer Center, 3970 Reservoir Rd NW Washington D.C. 20007, United States of America
| | - Anna Jermakowicz
- Georgetown University, Lombardi Comprehensive Cancer Center, 3970 Reservoir Rd NW Washington D.C. 20007, United States of America
| | - Nagi G. Ayad
- Georgetown University, Lombardi Comprehensive Cancer Center, 3970 Reservoir Rd NW Washington D.C. 20007, United States of America
| |
Collapse
|
40
|
Cao XY, Li MY, Shao CX, Shi JL, Zhang T, Xie F, Peng T, Li MQ. Fatty Acid Metabolism Disruptions: A Subtle yet Critical Factor in Adverse Pregnancy Outcomes. Int J Biol Sci 2024; 20:6018-6037. [PMID: 39664564 PMCID: PMC11628336 DOI: 10.7150/ijbs.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/26/2024] [Indexed: 12/13/2024] Open
Abstract
The establishment and maintenance of pregnancy encompass a series of complex and high-energy-consuming physiological processes, resulting in a significant energy demand. Fatty acids, one of the most essential nutrients, play a crucial role in energy supply via oxidation and perform critical biological functions such as anti-inflammatory and anti-oxidant effects, which substantially impact human health. Disordered fatty acid metabolism can cause anomalies in fetal growth and development, as well as a range of pregnancy problems, which can influence the health of both the mother and the fetus. In this review, we innovatively explore the relationship between fatty acid metabolism abnormalities and pregnancy complications, emphasizing the potential of dietary interventions with polyunsaturated fatty acids in improving pregnancy outcomes. These findings provide important evidence for clinical interventions and enhance the understanding and practical application of health management during pregnancy.
Collapse
Affiliation(s)
- Xiao-Yan Cao
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Meng-Ying Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Chang-Xiang Shao
- Department of Obstetrics and Gynecology, Shanghai Changning Maternity & Infant Health Hospital, East China Normal University, Shanghai 200051, People's Republic of China
| | - Jia-Lu Shi
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Feng Xie
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Ting Peng
- Department of Obstetrics and Gynecology, Shanghai Changning Maternity & Infant Health Hospital, East China Normal University, Shanghai 200051, People's Republic of China
| | - Ming-Qing Li
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, People's Republic of China
| |
Collapse
|
41
|
Porras-Rivera G, Górski K, Colin N. Behavioral biomarkers in fishes: A non-lethal approach to assess the effects of chemical pollution on freshwater ecosystems. ENVIRONMENTAL RESEARCH 2024; 260:119607. [PMID: 39002628 DOI: 10.1016/j.envres.2024.119607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The expansion of the human population and the escalating use of chemical products pose a considerable threat to aquatic biodiversity. Consequently, there is an imperative need for the implementation of non-lethal, cost-effective, and easily deployable biomonitoring tools. In this context, fish and their behavior as biomarkers have gained prominence in monitoring of freshwater ecosystems. The aim of this study was to assess the state of art in the use of behavioral biomarkers in ecotoxicology, emphasizing their role as informative tools for global environmental monitoring. Through a systematic literature search, ninety-two articles focusing on the evaluation of behavioral changes in freshwater fish in response to pollution were identified. The most prevalent keywords were "behavior" (7%) and "zebrafish" (6%). Experiments were conducted in countries with expansive territories, such as the United States (18%) and Brazil (17%). Exotic species were primarily employed (58%), with Danio rerio (26%) being the most frequently studied species. Among pollutants, pesticides (32%) and medicines (25%) were the most frequently studied, while locomotion (38%) and social behaviors (18%) were the most frequently evaluated behaviors. Across these studies, authors consistently reported significant changes in the behavior of fish exposed to contaminants, including decreased swimming speed and compromised feeding efficiency. The review findings affirm that evaluating behavioral biomarkers in freshwater fish offers an informative, non-lethal, cost-effective, and easily implementable approach to understanding pollution impacts on freshwater ecosystems. Although few studies on behavioral biomarkers were available to date, the number has rapidly increased in recent years. Furthermore, a variety of novel approaches and study models are being included. Research into behavioral biomarkers is crucial for understanding and managing environmental risks in freshwater ecosystems. Nevertheless, further studies are needed to enhance our understanding of behavioral toxicity indicators, considering factors such as life stage, sex, and breeding season in the tested species.
Collapse
Affiliation(s)
- Geraldine Porras-Rivera
- Doctorado en Ciencias Mención Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Konrad Górski
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Facultad de Ciencias, Universidad Católica de La Santísima Concepción, Concepción, 4030000, Chile
| | - Nicole Colin
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile; Programa Austral Patagonia, Universidad Austral de Chile, Valdivia, 5090000, Chile.
| |
Collapse
|
42
|
Pan W, Velasco Abadia A, Guo Y, Gabbanini S, Baschieri A, Amorati R, Valgimigli L. Peroxyl Radical Trapping Antioxidant Activity of Essential Oils and Their Phenolic Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23832-23843. [PMID: 39433300 DOI: 10.1021/acs.jafc.4c04580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Essential oils (EOs) are gaining importance as sustainable food antioxidants, but kinetic data on peroxyl radical trapping are missing. Thirteen EOs from 11 botanical species were studied in the inhibited autoxidation of cumene by oxygen-uptake kinetics. EOs of Juniperus oxycedrus, Syzygium aromaticum, Thymus vulgaris, Thymbra capitata, Betula alba, Pimenta racemosa, and Satureja montana, containing 23-86% phenolic components by gas chromatography/mass spectrometry (GC-MS) analysis, afforded inhibition rate constants kinh in the order of 104 M-1 s-1 at 30 °C similar to reference butylhydroxytoluene (2,6-di-tert-butyl-4-methylphenol) (BHT). They matched or outperformed BHT in the protection of olive oil. The EOs Daucus carota and Cedrus atlantica with <1% phenols and those of Apium graveolens and Tagetes minuta with no phenolics had no chain-breaking activity. Key components carvacrol, thymol, eugenol, dihydroeugenol, umbelliferone, conyferyl alcohol, o-cresol, m-cresol, p-cresol, 4-allylphenol, 2,3-xylenol, 2,4-xylenol, and phenol had kinh in the range of 103-104 M-1 s-1 and, along with EOs containing them, could potentially replace BHT in the protection of food products.
Collapse
Affiliation(s)
- Wenkai Pan
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Albert Velasco Abadia
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Yafang Guo
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Simone Gabbanini
- R&D Division, BeC s.r.l., Via C. Monteverdi 49, 47122 Forlì, Italy
| | - Andrea Baschieri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
- Tecnopolo di Rimini, Via D. Campana 71, 47922 Rimini, Italy
| |
Collapse
|
43
|
Suhag R, Razem M, Ferrentino G, Morozova K, Zatelli D, Scampicchio M. Real-time monitoring of vegetable oils photo-oxidation kinetics using differential photocalorimetry. Food Chem 2024; 456:140011. [PMID: 38876065 DOI: 10.1016/j.foodchem.2024.140011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
This study introduced differential photocalorimetry (DPC) as a method for real-time monitoring of the photo-oxidation kinetics of vegetable oils. DPC measures the heat flow generated during the oxidation of oils upon light exposure. Experiments conducted with stripped linseed oil (SLSO), an oil depleted from its natural antioxidants, showed no induction time (τ). Conversely, spiking SLSO with increasing concentrations of trans-ferulic acid resulted in an induction time (τ) proportional to the antioxidant concentration (R2 = 0.99). A comparative study among different vegetable oils revealed that rice bran oil exhibited the highest resistant to photo-oxidation, followed by corn, soybean, and sunflower oils. The results are discussed in terms of sample oxidizability and antioxidant efficiency (A.E.), and validated through high-performance liquid chromatography with diode array detection (HPLC-DAD). Furthermore, the measured heat flow enabled the determination of the rates of inhibited (Rinh) and uninhibited (Runi) periods, as well as the rate constant of propagation (kp) and inhibition (kinh) reactions.
Collapse
Affiliation(s)
- Rajat Suhag
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| | - Mutasem Razem
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| | - Giovanna Ferrentino
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy.
| | - Ksenia Morozova
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| | | | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, 1, Bolzano 39100, Italy
| |
Collapse
|
44
|
Dibwe DF, Oba S, Monde S, Hui SP. Inhibition of Accumulation of Neutral Lipids and Their Hydroperoxide Species in Hepatocytes by Bioactive Allium sativum Extract. Antioxidants (Basel) 2024; 13:1310. [PMID: 39594452 PMCID: PMC11591070 DOI: 10.3390/antiox13111310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Our ongoing research suggests that extracts from plant-based foods inhibit the accumulation of lipid droplets (LDs) and oxidized lipid droplets (oxLDs) in liver cells. These findings suggest their potential use in the alleviation of metabolic dysfunction-associated fatty liver disease (MAFLD) and its most severe manifestation, metabolic dysfunction-associated steatohepatitis (MASH). Allium extracts (ALs: AL1-AL9) were used to assess their ability to reduce lipid droplet accumulation (LDA) and oxidized lipid droplet accumulation (oxLDA) by inhibiting neutral lipid accumulation and oxidation in LD. Among the tested Allium extracts, AL1, AL3, and AL6 demonstrated substantial inhibitory effects on the LDA. Furthermore, AL1 extract showed real-time inhibition of LDA in HepG2 cells in DMEM supplemented with oleic acid (OA) within 12 h of treatment. Our lipidomic approach was used to quantify the accumulation and inhibition of intracellular triacylglycerol (TAG) and oxidized TAG hydroperoxide [TG (OOH) n = 3] species in hepatocytes under OA and linoleic acid loading conditions. These results suggest that Allium-based foods inhibit LD accumulation by decreasing intracellular lipids and lipid hydroperoxides in the hepatocytes. The metabolomic analysis of AL1-the bioactive LDAI extract-using both LC-MS/MS and 1D-NMR [1H, 13C, and Dept (135 and 90)] approaches revealed that AL1 contains mainly carbohydrates and glucoside metabolites, including iridoid glucosides, as well as minor amino acids, organosulfur compounds, and organic acids such as the antioxidant ascorbic acid (KA2 = S13), and their derivatives, suggesting that AL1 could be a potential resource for the development of functional foods and in drug discovery targeting MAFLD/MASH and other related diseases.
Collapse
Affiliation(s)
- Dya Fita Dibwe
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan;
| | - Saki Oba
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (S.O.); (S.M.)
| | - Satomi Monde
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (S.O.); (S.M.)
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan;
| |
Collapse
|
45
|
Xiao Z, Zhou J, Chen H, Chen X, Wang L, Liu D, Kang X. Synthesis, characterization and MAFLD prevention potential of Ganoderma lucidum spore polysaccharide-stabilized selenium nanoparticles. Int J Biol Macromol 2024; 282:136962. [PMID: 39490485 DOI: 10.1016/j.ijbiomac.2024.136962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The unstability of selenium nanoparticles (SeNPs) results in decreased activity which limits its therapeutic potential. In this study, we utilized Ganoderma lucidum spore polysaccharide (GLP, Mw = 983.96 kDa) as a novel stabilizer to synthesize GLP-SeNPs. GLP-SeNPs (Se/GLP = 1/3) with an average diameter of 149 nm were successfully prepared and it was stable for at least 30 days at 4 °C. It exhibited an orange-red color, zero valence state, amorphous structure, selenium uniform distribution, a zeta potential of -29.73 mV, selenium content of 16.04 %. GLP-SeNPs pretreatment decreased lipid accumulation, reduced ROS content and enhanced SOD and CAT activity in HepG2 cells. Fe2+ and MDA contents were decreased, while GPX4 and GSH activities were increased. All these ameliorated effects could be abolished by NRF2 antagonist ML385. The expression of anti-oxidant genes and iron exporter was up-regulated, while that of pro-oxidant and lipid biosynthesis gene was down-regulated. The GPX4 activity could be reduced by ML385 addition. In conclusion, GLP-SeNPs was successfully constructed at the ratio of 1/3 (Se/GLP). It prevents MAFLD by targeting ferroptosis, including lowering iron overload, inhibiting lipid accumulation and attenuating oxidative stress. The improvement was conducted via activating SLC40A1-mediated iron pathway, ACSL4-mediated lipid metabolism and NRF2-mediated GSH-GPX4 pathway. Therefore, GLP-SeNPs can be used as potential selenium nutritional supplements or adjuvants for MAFLD prevention.
Collapse
Affiliation(s)
- Zhengpeng Xiao
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China
| | - Jiali Zhou
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China
| | - Hanqi Chen
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China
| | - Xuan Chen
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China; Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha, Hunan, PR China; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, PR China
| | - Lei Wang
- State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China; Changsha Nengfeng Biotechnology Co., Ltd, Changsha, Hunan, PR China
| | - Dongbo Liu
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China; Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha, Hunan, PR China; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, PR China.
| | - Xincong Kang
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China; Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha, Hunan, PR China; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, PR China.
| |
Collapse
|
46
|
Robert G, Wagner JR. Scavenging of Alkylperoxyl Radicals by Addition to Ascorbate: An Alternative Mechanism to Electron Transfer. Antioxidants (Basel) 2024; 13:1194. [PMID: 39456448 PMCID: PMC11504153 DOI: 10.3390/antiox13101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Vitamin C (ascorbate; Asc) is a biologically important antioxidant that scavenges reactive oxygen species such as deleterious alkylperoxyl radicals (ROO•), which are generated by radical-mediated oxidation of biomolecules in the presence of oxygen. The radical trapping proprieties of Asc are conventionally attributed to its ability to undergo single-electron transfers with reactive species. According to this mechanism, the reaction between Asc and ROO• results in the formation of dehydroascorbate (DHA) and the corresponding hydroperoxides (ROOH). When studying the reactivity of DNA 5-(2'-deoxyuridinyl)methylperoxyl radicals, we discovered a novel pathway of ROO• scavenging by Asc. The purpose of this study is to elucidate the underlying mechanism of this reaction with emphasis on the characterization of intermediate and final decomposition products. We show that the trapping of ROO• by Asc leads to the formation of an alcohol (ROH) together with an unstable cyclic oxalyl-l-threonate intermediate (cOxa-Thr), which readily undergoes hydrolysis into a series of open-chain oxalyl-l-threonic acid regioisomers. The structure of products was determined by detailed MS and NMR analyses. The above transformation can be explained by initial peroxyl radical addition (PRA) onto the C2=C3 enediol portion of Asc. Following oxidation of the resulting adduct radical, the product subsequently undergoes Baeyer-Villiger rearrangement, which releases ROH and generates the ring expansion product cOxa-Thr. The present investigation provides robust clarifications of the peroxide-mediated oxidation chemistry of Asc and DHA that has largely been obscured in the past by interference with autooxidation reactions and difficulties in analyzing and characterizing oxidation products. Scavenging of ROO• by PRA onto Asc may have beneficial consequences since it directly converts ROO• into ROH, which prevents the formation of potentially deleterious ROOH, although it induces the breakdown of Asc into fragments of oxalyl-l-threonic acid.
Collapse
Affiliation(s)
- Gabriel Robert
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
| | - J. Richard Wagner
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
47
|
Sharova EI, Medvedev SS. Reactive Byproducts of Plant Redox Metabolism and Protein Functions. Acta Naturae 2024; 16:48-61. [PMID: 39877007 PMCID: PMC11771839 DOI: 10.32607/actanaturae.27477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/18/2024] [Indexed: 01/31/2025] Open
Abstract
Living organisms exhibit an impressive ability to expand the basic information encoded in their genome, specifically regarding the structure and function of protein. Two basic strategies are employed to increase protein diversity and functionality: alternative mRNA splicing and post-translational protein modifications (PTMs). Enzymatic regulation is responsible for the majority of the chemical reactions occurring within living cells. However, plants redox metabolism perpetually generates reactive byproducts that spontaneously interact with and modify biomolecules, including proteins. Reactive carbonyls resulted from the oxidative metabolism of carbohydrates and lipids carbonylate proteins, leading to the latter inactivation and deposition in the form of glycation and lipoxidation end products. The protein nitrosylation caused by reactive nitrogen species plays a crucial role in plant morphogenesis and stress reactions. The redox state of protein thiol groups modified by reactive oxygen species is regulated through the interplay of thioredoxins and glutaredoxins, thereby influencing processes such as protein folding, enzyme activity, and calcium and hormone signaling. This review provides a summary of the PTMs caused by chemically active metabolites and explores their functional consequences in plant proteins.
Collapse
Affiliation(s)
- E. I. Sharova
- St Petersburg University, St. Petersburg, 199034 Russian Federation
| | - S. S. Medvedev
- St Petersburg University, St. Petersburg, 199034 Russian Federation
| |
Collapse
|
48
|
Guo Y, Pina A, Gabbanini S, Valgimigli L. Absolute kinetics of peroxidation and antioxidant protection of intact triglyceride vegetable oils. Food Chem 2024; 452:139289. [PMID: 38713979 DOI: 10.1016/j.foodchem.2024.139289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 05/09/2024]
Abstract
To verfy their difference from isolated fatty acids, the absolute kinetics of peroxidation was studied for seven triglyceride-based oils of olive (OLI-1, OLI-2), high-oleic sunflower (SUN-HO), high-oleic and high-linoleic safflower (SAF-HO, SAF-HL) grapeseed (GRA) and borage (BOR), by oxygen uptake monitoring, using 2,6-di-tert-butyl-4-methoxyphenol and 2,2,5,7,8-pentamethyl-6-chromanol as reference inhibitors. Propagation constants (kp/M-1 s-1 at 303 K in PhCl) were respectively 34.8 ± 2.3, 35.1 ± 1.8, 40.6 ± 5.5, 36.0 ± 7.7, 160.8 ± 5.1, 145.1 ± 24.5, 275.1 ± 63.8, while oxidizability responded to empirical equation kp(2kt)-½/M-½s-½ = 1.63 × 10-3[allyl >CH2/M] + 1.82 × 10-2[bisallyl >CH2/M], based on fatty acids residues assessed by GC-MS. Peroxidation kinetics was markedly different from that of isolated fatty acids. The H-bond basicity of all oils was measured by FT-IR affording Abraham's βH2 values in the range 0.55 ± 0.03. H-bonding explained the protection of oils measured for seven reference phenolic antioxidants, except for the catechols quercetin and caffeic acid phenethyl ester, which were 2-to-4-folds more effective than expected, supporting a proposed different mechanism.
Collapse
Affiliation(s)
- Yafang Guo
- University of Bologna, Department of Chemistry "G. Ciamician", Via P. Gobetti 85, 40129 Bologna, Italy
| | - Albert Pina
- University of Bologna, Department of Chemistry "G. Ciamician", Via P. Gobetti 85, 40129 Bologna, Italy
| | - Simone Gabbanini
- BeC s.r.l., R&D Division, Via C. Monteverdi 49, 47122 Forlì, Italy
| | - Luca Valgimigli
- University of Bologna, Department of Chemistry "G. Ciamician", Via P. Gobetti 85, 40129 Bologna, Italy; Tecnopolo di Rimini, Via Dario Campana 71, 47922 Rimini, Italy.
| |
Collapse
|
49
|
Ullah S, Zuberi A, Ullah I, Azzam MM. Ameliorative Role of Vitamin C against Cypermethrin Induced Oxidative Stress and DNA Damage in Labeo rohita (Hamilton, 1822) Using Single Cell Gel Electrophoresis. TOXICS 2024; 12:664. [PMID: 39330592 PMCID: PMC11435545 DOI: 10.3390/toxics12090664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
The present study was undertaken to evaluate cypermethrin (CYP)-induced oxidative stress [reactive oxygen species (ROS) and lipid peroxidation (LPO) in gills, muscles, brain, and liver tissues] and DNA damage/genotoxicity (peripheral blood erythrocytes) in a freshwater teleost rohu (Labeo rohita) and the protective role of vitamin C. The LC50 of CYP against rohu was found to be 4.5 µg/L in a semi-static culture system through probit analysis. Fingerlings of rohu were distributed into four groups (Group 1st served as a control, fed 35% protein basal diet and was not exposed to CYP; Group 2nd was fed a basal diet and exposed to CYP; Group 3rd and Group 4th were fed diets supplemented with vitamin C at the rate of 100 and 200 mg/kg diet, respectively, and exposed to CYP). Fingerlings were reared on a basal and vitamin C-supplemented diet for 28 days prior to exposure to CYP. The results indicate a time-dependent significant increase in ROS and LPO (indicated by time course increase in TBARS level) as well as DNA damage in terms of number of comets, % DNA in tail, tail moment, tail length, and olive tail moment after exposure to LC50 of CYP. However, statistically comparable results in both Groups 1st and 4th indicate the protective role of vitamin C. The results reveal the effectiveness of vitamin C as a feed additive for countering pesticides toxicity in Labeo rohita. The current study indicates CYP as a potential genotoxicant for fish and classifies SCGE as a reliable and sensitive tool for assessing DNA damage.
Collapse
Affiliation(s)
- Sana Ullah
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Zoology, Division of Science and Technology, University of Education, Lahore 54000, Pakistan
| | - Amina Zuberi
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Imdad Ullah
- Department of Biosciences, Durham University, D86, Durham DH1 3LB, UK;
- Durham Genome Center, Lanchester DH7 0EX, UK
| | - Mahmoud M. Azzam
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
50
|
Zhang M, Li J, Hu W. The complex interplay between ferroptosis and atherosclerosis. Biomed Pharmacother 2024; 178:117183. [PMID: 39079265 DOI: 10.1016/j.biopha.2024.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024] Open
Abstract
Atherosclerosis, characterized by the accumulation of plaque within the arterial walls, is an intricate cardiovascular disease that often results in severe health issues. Recent studies have emphasized the importance of ferroptosis, a controlled type of cell death dependent on iron, as a critical factor in this disease state. Ferroptosis, distinguished by its reliance on iron and the accumulation of lipid hydroperoxides, offers a unique insight into the pathology of atherosclerotic lesions. This summary encapsulates the current knowledge of the intricate role ferroptosis plays in the onset and progression of atherosclerosis. It explores the molecular processes through which lipid peroxidation and iron metabolism contribute to the development of atheromatous plaques and evaluates the possibility of utilizing ferroptosis as a novel treatment approach for atherosclerosis. By illuminating the intricate relationship between ferroptosis-related processes and atherosclerosis, this review paves the way for future clinical applications and personalized medicine approaches aimed at alleviating the effects of atherosclerosis.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Vascular Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangping Li
- Department of Oncological Radiotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Hu
- Department of Vascular Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|