1
|
Fayed B. Nanoparticles in the battle against Candida auris biofilms: current advances and future prospects. Drug Deliv Transl Res 2025; 15:1496-1512. [PMID: 39589626 PMCID: PMC11968567 DOI: 10.1007/s13346-024-01749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Candida auris has emerged as a significant global health threat due to its multidrug resistance and ability to form robust biofilms, particularly on medical devices and hospital surfaces. Biofilms protect C. auris from antifungal treatments and the host immune response, making infections persistent and difficult to control. This review explores the potential of nanoparticles to overcome the limitations of traditional antifungal therapies in combating C. auris biofilms. Nanoparticles, with their unique physicochemical properties, offer promising strategies to penetrate biofilm matrices, deliver antifungal agents, and disrupt biofilm structure. Various types of nanoparticles, including metallic, polymeric, lipid-based, and cyclodextrin-based, demonstrate enhanced biofilm penetration and antifungal activity. Their ability to generate reactive oxygen species, disrupt cell adhesion, and release antifungals in a controlled manner makes them ideal candidates for biofilm-targeted therapies. This review presents the current advancements in nanoparticle-based solutions, emphasizing the need for further research into their mechanisms of action, safety, and clinical application. By addressing the challenge of C. auris biofilms specifically, this review provides a critical synthesis of existing knowledge and identifies future directions for developing effective antifungal therapies using nanotechnology.
Collapse
Affiliation(s)
- Bahgat Fayed
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth Street, P.O. Box 12622, Dokki, Giza, Egypt.
| |
Collapse
|
2
|
Sokač K, Vrban L, Liović M, Škorić I, Vianello R, Bregović N, Žižek K. Controlled release of dasatinib from cyclodextrin-based inclusion complexes by mechanochemistry: A computational and experimental study. Int J Pharm 2025; 675:125552. [PMID: 40187706 DOI: 10.1016/j.ijpharm.2025.125552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Dasatinib, a potent tyrosine kinase inhibitor, is widely used to treat chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. However, its poor aqueous solubility and high first-pass metabolism result in limited oral bioavailability and potentially severe side effects, such as cardiotoxicity, hepatotoxicity, and pulmonary complications, which are intensified by rapid concentration peaks in the bloodstream. To address these challenges, this study examines the development of a controlled-release formulation of dasatinib using cyclodextrins as macrocyclic receptors to form inclusion complexes. Cyclodextrins, known for their ability to form host-guest complexes, enhance drug solubility and stability while enabling controlled drug release and aligning with green chemistry principles when synthesized mechanochemically. Different solid-state and solution-based characterization methods confirmed successful complexation and drug amorphization. Additionally, molecular dynamics simulations provided valuable insights into the binding interactions between dasatinib and cyclodextrins in both gas-phase and aqueous medium, simulating experimental conditions in the absence of a solvent and a physiological environment. Formulated tablets exhibited enhanced solubility and improved in vitro release profiles, suggesting a potential reduction in adverse side effects and improved patient compliance. The results demonstrate the efficacy of cyclodextrins as carriers for dasatinib, highlighting their potential to improve the drug's therapeutic profile in leukemia treatment by facilitating a steady, controlled release and minimizing toxicity.
Collapse
Affiliation(s)
- Katarina Sokač
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Mechanical and Thermal Process Engineering, Trg Marka Marulića 19, 10 000 Zagreb, Croatia
| | - Lucija Vrban
- Laboratory for the Computational Design and Synthesis of Functional Materials, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Marin Liović
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Irena Škorić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, Trg Marka Marulića 19, 10 000 Zagreb, Croatia
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Nikola Bregović
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Krunoslav Žižek
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Mechanical and Thermal Process Engineering, Trg Marka Marulića 19, 10 000 Zagreb, Croatia.
| |
Collapse
|
3
|
Tang Y, Guo T, Wang X, Li C, Zhang X, Zhang J. Cyclodextrin-Derived Macromolecular Therapies for Inflammatory Diseases. Macromol Biosci 2025:e2400637. [PMID: 40271896 DOI: 10.1002/mabi.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Inflammation is an essential physiological defense mechanism against harmful stimuli, yet dysregulated inflammatory responses are closely associated with the pathogenesis of numerous acute and chronic diseases. Recent advances highlight the remarkable anti-inflammatory potential of bioactive macromolecules, particularly cyclodextrins (CDs) and their engineered derivatives, which are emerging as promising therapeutic agents. This review systematically introduces different CDs and CD-derived macromolecules that demonstrate anti-inflammatory properties, with emphasis on their molecular mechanisms of action. Native CDs exhibit direct therapeutic effects through host-guest interactions, enabling selective sequestration of pathogenic components such as cholesterol crystals and proteins that drive inflammatory cascades. Moreover, chemically modified CD derivatives incorporating functional groups demonstrate enhanced capabilities in neutralizing inflammatory mediators and modulating immune cell responses. This work further discusses the expanding therapeutic applications of these macromolecules across diverse inflammatory conditions, ranging from acute tissue injuries to chronic autoimmune disorders. Finally, this work critically analyzes the crucial challenges and emerging opportunities in translating CD-based macromolecular therapies into clinical practice, addressing key considerations in biocompatibility, targeted delivery, and therapeutic efficacy optimization.
Collapse
Affiliation(s)
- Yige Tang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- International Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Tao Guo
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xuanran Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiangjun Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Yu-Yue Pathology Scientific Research Center, 313 Gaoteng Avenue, Jiulongpo District, Chongqing, 400039, China
| |
Collapse
|
4
|
Armstrong DW, Aslani S, Nafie J, Wu Y, Stoddart JF. Actions and Interactions of Mirror-Image Cyclodextrins. JACS AU 2025; 5:693-701. [PMID: 40017754 PMCID: PMC11863152 DOI: 10.1021/jacsau.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 03/01/2025]
Abstract
Cyclodextrins (CDs) were the first identified molecules and arguably the most consequential molecules in the areas of macrocyclic science and technology. As carbohydrates, their intrinsic architecture and chirality have played a fundamental role in their response to and effect on guest molecules. Indeed, the nature of inclusion complexation was formalized with CD-based hosts. A recent report on the first synthesis of unnatural mirror-image l-cyclodextrins foreshadows a new era of stereochemical research involving macrocyclic entities. Here, we show the inherently difficult, but rapid and sensitive, separation of enantiomeric CDs. The absolute configurations of CD antipodes have been investigated and distinguished by vibrational circular dichroism (VCD). Results indicated that the most intense VCD band at 1150 cm-1 arises from the C-O stretching of the glucosidic bonds lining the CD torus. It follows that chiroptical radiation can excite either d- or l-CD selectively. The enzymatic susceptibilities of mirror-image CDs are vastly different, suggesting the possibility of different biochemical and medicinal uses. The electrophoretic migration of small chiral molecules, e.g., amino acids is easily and predictably reversed with d- and l-CDs.
Collapse
Affiliation(s)
- Daniel W. Armstrong
- University
of Texas at Arlington, Arlington, Texas 76019, United States
- AZYP, LLC, Arlington, Texas 76019, United States
| | - Saba Aslani
- University
of Texas at Arlington, Arlington, Texas 76019, United States
- AZYP, LLC, Arlington, Texas 76019, United States
| | | | - Yong Wu
- Department
of Chemistry, The University of Hong Kong, Hong Kong, SAR 999077, China
| | - J. Fraser Stoddart
- Department
of Chemistry, The University of Hong Kong, Hong Kong, SAR 999077, China
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center
for
Regenerative Nanomedicine, Northwestern
University, Chicago, Illinois 60611, United States
- School
of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Stoddart
Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China
| |
Collapse
|
5
|
Szakály P, Papp D, Steckel A, Varga E, Schlosser G. Characterization of Sugammadex-Related Isomeric Cyclodextrin Impurities Using Cyclic Ion Mobility High-Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:258-264. [PMID: 39855639 PMCID: PMC11808773 DOI: 10.1021/jasms.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/27/2025]
Abstract
Cyclic ion mobility-mass spectrometry (cIM-MS) is a powerful technique for separating and identifying isomeric mixtures of compounds. When coupled with chromatography, cIM-MS creates a multidimensional separation system, with high resolving power and peak capacity. In this study, we report the cyclic ion mobility separation and high-resolution mass spectrometry identification of four regioisomers of a Sugammadex-related impurity, abbreviated as Di-OH-SGM. Separation using multipass cyclic ion mobility was achieved by selecting the [M + 2Na]2+ ion, while other adducts, such as [M + Na]+, [M + 2H]2+, [M + H + Na]2+, and [M - 2H]2- did not yield isomer separation. Two methods were developed for ion mobility separation of the isomers: a conventional multipass method and a slicing method. Isomer assignment was based on the characteristic fragment ions. The collision cross section values (cTWCCSN2) of the resolved cyclodextrin isomers were also determined. Ion mobility separation of structurally different fragment ions was demonstrated. Additionally, by coupling cIM-MS with reversed-phase liquid chromatography (HPLC-cIM-MS), two-dimensional separation of the isomers was achieved. The isomers, separated using HPLC-cIM-MS, were identified with the same approach as with cIM-MS alone, and their elution order provided insights into their relative hydrophobicity.
Collapse
Affiliation(s)
- Péter
S. Szakály
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Institute of Chemistry, Pázmány Péter
sétány 1/A, H-1117 Budapest, Hungary
- CycloLab
Cyclodextrin Research and Development Laboratory, Ltd., Illatos út 7, H-1097 Budapest, Hungary
- MTA-ELTE
Lendület (Momentum) Ion Mobility Mass Spectrometry Research
Group, ELTE Eötvös Loránd University, Institute of Chemistry, Department of Analytical Chemistry, Pázmány Péter
sétány 1/A, H-1117 Budapest, Hungary
| | - Dávid Papp
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Institute of Chemistry, Pázmány Péter
sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE
Lendület (Momentum) Ion Mobility Mass Spectrometry Research
Group, ELTE Eötvös Loránd University, Institute of Chemistry, Department of Analytical Chemistry, Pázmány Péter
sétány 1/A, H-1117 Budapest, Hungary
| | - Arnold Steckel
- MTA-ELTE
Lendület (Momentum) Ion Mobility Mass Spectrometry Research
Group, ELTE Eötvös Loránd University, Institute of Chemistry, Department of Analytical Chemistry, Pázmány Péter
sétány 1/A, H-1117 Budapest, Hungary
| | - Erzsébet Varga
- CycloLab
Cyclodextrin Research and Development Laboratory, Ltd., Illatos út 7, H-1097 Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE
Lendület (Momentum) Ion Mobility Mass Spectrometry Research
Group, ELTE Eötvös Loránd University, Institute of Chemistry, Department of Analytical Chemistry, Pázmány Péter
sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
6
|
Kamath AJ, Donadkar AD, Nair B, Kumar AR, Sabitha M, Sethi G, Chauhan AS, Nath LR. Smart Polymer-Based Delivery Systems for Curcumin in Colon Cancer Therapy: A Review. Phytother Res 2025; 39:698-713. [PMID: 39661005 DOI: 10.1002/ptr.8394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/29/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024]
Abstract
Curcumin, a well-known bioactive component, has profound effects against colon cancer. However, the limitations are poor systemic absorption, off-target distribution, chemical instability, short half-life, and less concentration reaching tumor tissues. Several drug delivery systems have been evaluated so far to deliver effective concentrations of curcumin to the malignant tissues. This review aims to explore the role of smart polymers in overcoming limitations in curcumin delivery against colon cancer. Literature of the past 10 years was collected from Scopus, PubMed/Medline, Google Scholar, and Science Direct using specific keywords. Several preclinical and clinical studies of curcumin against colon cancer with the inclusion of smart polymers were screened using keywords like "FDA-approved biomaterials," "stimuli-responsive polymer," "smart biomaterial," and so forth. Smart polymer phrase is used to describe all the mentioned polymers in the manuscript. Stimuli-responsive polymers, including poly-lactic-co-glycolic acid (PLGA), polyethylene glycol (PEG), Eudragit, cyclodextrin, and chitosan, have emerged as promising candidates for curcumin delivery against colon cancer. These polymers facilitate controlled drug release in response to stimuli such as temperature, pH, and enzymes, while offering biocompatibility, biodegradability, and safety. The five selected FDA-approved smart polymers exhibit the potential for enhancing curcumin delivery against colon cancer.
Collapse
Affiliation(s)
- Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Asawari Dilip Donadkar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - M Sabitha
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abhay Singh Chauhan
- Biopharmaceutical Science Department, School of Pharmacy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
7
|
Hewitt CR, Wixon NJ, Gallegos A, Zhou Y, Huber VC, Killian MS. Inactivation of Zika Virus with Hydroxypropyl-Beta-Cyclodextrin. Vaccines (Basel) 2025; 13:79. [PMID: 39852858 PMCID: PMC11769224 DOI: 10.3390/vaccines13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Zika virus (ZIKV) infection is associated with life-threatening diseases in humans. To date, there are no available FDA-approved therapies or vaccines for the specific treatment or prevention of ZIKV infection. Variation in the ZIKV envelope protein (Env), along with its complex quaternary structure, presents challenges to synthetic approaches for developing an effective vaccine and broadly neutralizing antibodies (bnAbs). We hypothesized that beta-cyclodextrin (BCD) could be used to uniquely inactivate infectious ZIKV without disruption of Env. Methods: ZIKV was propagated in Vero cells and admixed with BCD. The BCD-treated ZIKV was evaluated for infectivity using immunofluorescence and quantitative RT-PCR (qRT-PCR) assays, for immunoreactivity in Western blots, structural integrity by electron microscopy, and immunogenicity in mice. Results: Here, we show that 200 mM BCD-treated ZIKV is non-infectious in cell culture, remains immunoreactive with an Env-specific antibody, retains its virion shape and size, and elicits the production of immunogen-specific antibodies in immunized mice. Conclusions: These results indicate that BCD can be used to safely inactivate ZIKV, and they provide insights for vaccine and antibody development.
Collapse
Affiliation(s)
- Cory R. Hewitt
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (C.R.H.); (V.C.H.)
| | - Nicholas J. Wixon
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (C.R.H.); (V.C.H.)
| | - Arthur Gallegos
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (C.R.H.); (V.C.H.)
| | - You Zhou
- Microscopy Core Research Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Victor C. Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (C.R.H.); (V.C.H.)
| | - M. Scott Killian
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (C.R.H.); (V.C.H.)
- Department of Public Health, School of Health Sciences, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
8
|
Saffarionpour S, Diosady LL. Cyclodextrins and their potential applications for delivering vitamins, iron, and iodine for improving micronutrient status. Drug Deliv Transl Res 2025; 15:26-65. [PMID: 38671315 DOI: 10.1007/s13346-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Cyclodextrins (CDs) have been investigated as potential biopolymeric carriers that can form inclusion complexes with numerous bioactive ingredients. The inclusion of micronutrients (e.g. vitamins or minerals) into cyclodextrins can enhance their solubility and provide oxidative or thermal stability. It also enables the formulation of products with extended shelf-life. The designed delivery systems with CDs and their inclusion complexes including electrospun nanofibers, emulsions, liposomes, and hydrogels, show potential in enhancing the solubility and oxidative stability of micronutrients while enabling their controlled and sustained release in applications including food packaging, fortified foods and dietary supplements. Nano or micrometer-sized delivery systems capable of controlling burst release and permeation, or moderating skin hydration have been reported, which can facilitate the formulation of several personal and skin care products for topical or transdermal delivery of micronutrients. This review highlights recent developments in the application of CDs for the delivery of micronutrients, i.e. vitamins, iron, and iodine, which play key roles in the human body, emphasizing their existing and potential applications in the food, pharmaceuticals, and cosmeceuticals industries.
Collapse
Affiliation(s)
| | - Levente L Diosady
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Brettner FEB, Gier S, Haessler A, Schreiner J, Vogel-Kindgen S, Windbergs M. Anti-inflammatory effects of cyclodextrin nanoparticles enable macrophage repolarization and reduce inflammation. DISCOVER NANO 2024; 19:211. [PMID: 39707045 DOI: 10.1186/s11671-024-04175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Inflammation plays a critical role in the pathophysiology of many diseases, and dysregulation of the involved signaling cascades often culminates in uncontrollable disease progression and, ultimately, chronic manifestation. Addressing these disorders requires balancing inflammation control while preserving essential immune functions. Cyclodextrins (CDs), particularly β-CD, have gained attention as biocompatible biomaterials with intrinsic anti-inflammatory properties, and chemical modification of their backbone offers a promising strategy to enhance their physicochemical properties, adaptability, and therapeutic potential. This study evaluated and characterized the immunomodulatory effects of amphiphilic CD derivatives, which self-assemble into nanoparticles, compared to soluble parent β-CD. In a human macrophage model, CD nanoparticles demonstrated superior anti-inflammatory activity, with derivative-specific effects tied to their physicochemical properties, surpassing the soluble β-CD control. Alongside the downregulation of key pro-inflammatory markers, significant reductions in inflammasome activation and changes in lipid profiles were observed. The findings of this study underscore the potential of cyclodextrin-based nanoparticles as versatile biomaterials for treating the complex pathophysiology of various acute and chronic inflammation-associated disorders.
Collapse
Affiliation(s)
- Felix E B Brettner
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Stefanie Gier
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Annika Haessler
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Jonas Schreiner
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Man DE, Nițu ET, Temereancă C, Sbârcea L, Ledeți A, Ivan D, Ridichie A, Andor M, Jîjie AR, Barvinschi P, Rusu G, Văruţ RM, Ledeți I. Host-Guest Complexation of Olmesartan Medoxomil by Heptakis(2,6-di-O-methyl)-β-cyclodextrin: Compatibility Study with Excipients. Pharmaceutics 2024; 16:1557. [PMID: 39771536 PMCID: PMC11677897 DOI: 10.3390/pharmaceutics16121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Olmesartan medoxomil (OLM) is the prodrug of olmesartan, an angiotensin II type 1 receptor blocker that has antihypertensive and antioxidant activities and renal protective properties. It exhibits low water solubility, which leads to poor bioavailability and limits its clinical potential. To improve the solubility of OLM, a host-guest inclusion complex (IC) between heptakis(2,6-di-O-methyl)-β-cyclodextrin (DMβCD) and the drug substance was obtained. Along with active substances, excipients play a crucial role in the quality, safety, and efficacy of pharmaceutical formulations. Therefore, the compatibility of OLM/DMβCD IC with several pharmaceutical excipients was evaluated. Methods: IC was characterized in both solid and liquid states, employing thermoanalytical techniques, universal-attenuated total reflectance Fourier-transform infrared spectroscopy, powder X-ray diffractometry, UV spectroscopy, and saturation solubility studies. Compatibility studies were carried out using thermal and spectroscopic methods to assess potential physical and chemical interactions. Results: The 1:1 OLM:DMβCD stoichiometry ratio and the value of the apparent stability constant were determined by means of the phase solubility method that revealed an AL-type diagram. The binary system showed different physicochemical characteristics from those of the parent entities, supporting IC formation. The geometry of the IC was thoroughly investigated using molecular modeling. Compatibility studies revealed a lack of interaction between the IC and all studied excipients at ambient conditions and the thermally induced incompatibility of IC with magnesium stearate and α-lactose monohydrate. Conclusions: The results of this study emphasize that OLM/DMβCD IC stands out as a valuable candidate for future research in the development of new pharmaceutical formulations, in which precautions should be considered in choosing magnesium stearate and α-lactose monohydrate as excipients if the manufacture stage requires temperatures above 100 °C.
Collapse
Affiliation(s)
- Dana Emilia Man
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (D.E.M.); (M.A.)
| | - Ema-Teodora Nițu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Claudia Temereancă
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (G.R.)
| | - Laura Sbârcea
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Adriana Ledeți
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Denisa Ivan
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Amalia Ridichie
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (G.R.)
| | - Minodora Andor
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (D.E.M.); (M.A.)
| | - Alex-Robert Jîjie
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
| | - Paul Barvinschi
- Faculty of Physics, West University of Timisoara, 4 Vasile Parvan Blvd, 300223 Timisoara, Romania;
| | - Gerlinde Rusu
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (G.R.)
| | - Renata-Maria Văruţ
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2-4 Petru Rares Str., 200349 Craiova, Romania;
| | - Ionuț Ledeți
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (G.R.)
| |
Collapse
|
11
|
Sevim S, Sanlier N. Cyclodextrin as a singular oligosaccharide: Recent advances of health benefit and in food applications. J Food Sci 2024; 89:8215-8230. [PMID: 39581621 DOI: 10.1111/1750-3841.17527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides derived from the enzymatic degradation of starch. Their distinct molecular shape, which resembles a truncated cone with a hydrophobic interior and a hydrophilic outer surface, enables the formation of inclusion complexes via host-guest interactions. These complexes facilitate beneficial modifications such as enhancing the solubility and stabilizing unstable guest molecules. By forming inclusion complexes with bioactive components and drugs, CDs can increase the bioavailability of these compounds, providing benefits in the treatment of various diseases. Particularly, β-CD can form complexes by trapping hydrophobic molecules such as cholesterol in its hydrophobic cavity. Moreover, CDs are considered significant soluble dietary fibers due to their resistance against human digestive enzymes and their utilization by intestinal microbiota. All these features suggest that CDs could encapsulate phospholipids and food components, potentially improving or preventing metabolic diseases such as cardiovascular diseases, diabetes, and neurological disorders by blocking the absorption of carbohydrates, fats, and cholesterol. This review seeks to investigate the clinical effects and mechanisms of action considering all their potential properties and their relevance to health by utilizing in vivo, in vitro, animal, and human studies.
Collapse
Affiliation(s)
- Sumeyra Sevim
- Department of Nutrition and Dietetics Ankara, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics Ankara, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
12
|
Smits MM, von Voss L, Drzazga AK, Beaman EE, Brethvad AO, Holst JJ, Rosenkilde MM. Alpha-cyclodextrin increases glucagon-like peptide-1 secretion in multiple models and improves metabolic status in mice. Food Chem 2024; 460:140759. [PMID: 39142205 DOI: 10.1016/j.foodchem.2024.140759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Alpha-cyclodextrin (α-CD) is a non-absorbable and soluble fiber that causes weight loss. We studied whether this is due to an effect on GLP-1 secretion. In GLUTag cells, α-CD increased GLP-1 secretion up to 170% via adenylyl cyclase, phospholipase C, and L-type calcium channels dependent processes. In rat isolated colon perfusions, luminal α-CD increased GLP-1 secretion with 20%. In lean mice, once daily α-CD versus saline caused weight loss and lowered the peak in glucose after an oral glucose tolerance test (OGTT). In obese mice, α-CD added to high-fat diet caused weight loss similar to the control group (receiving cellulose). However, compared to cellulose, the α-CD group ate less. During an OGTT, no differences were observed in glucose, insulin and GLP-1. Thus, α-CD increases GLP-1 secretion in a dose-dependent manner and could be a safe and easy addition to food products to help reduce body weight.
Collapse
Affiliation(s)
- Mark M Smits
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Liv von Voss
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Katarzyna Drzazga
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland.
| | - Emily Eufaula Beaman
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
13
|
Gościniak A, Lainé E, Cielecka-Piontek J. How Do Cyclodextrins and Dextrans Affect the Gut Microbiome? Review of Prebiotic Activity. Molecules 2024; 29:5316. [PMID: 39598705 PMCID: PMC11596334 DOI: 10.3390/molecules29225316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
The modulation of the gut microbiome through dietary components has garnered significant attention for its potential health benefits. Prebiotics, non-digestible food ingredients that promote the growth of beneficial gut bacteria, play a crucial role in maintaining gut health, enhancing immune function, and potentially preventing various metabolic and inflammatory disorders. This review explores the prebiotic activity of cyclodextrins and dextrans, focusing on their ability to influence gut microbiota composition and function. Both cyclodextrins and dextrans have demonstrated the capacity to promote the growth of beneficial bacterial populations, while also impacting short-chain fatty acid production, crucial for gut health.
Collapse
Affiliation(s)
- Anna Gościniak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Emmanuelle Lainé
- UMR 454 INRAe-UCA, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
14
|
Kumar P, Bhardwaj VK, Shende P, Purohit R. Computational and experimental analysis of Luteolin-β-cyclodextrin supramolecular complexes: Insights into conformational dynamics and phase solubility. Eur J Pharm Biopharm 2024; 205:114569. [PMID: 39481614 DOI: 10.1016/j.ejpb.2024.114569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Investigating the structural stability of poorly-soluble luteolin (LuT) after encapsulation within cyclodextrins (CDs) is crucial for unlocking the therapeutic potential of LuT bioactive molecule. Herein, native and modified β-CD were employed to investigate LuT inclusion complex formation. Molecular mechanics (MM) and quantum mechanics (QM) were utilized for structural dynamics analysis. Microsecond timescale MD simulations yielded insights into LuT-CD interactions. The binding affinity between LuT and selected β-CDs was assessed by calculating the binding free energy using MM-PBSA and umbrella sampling simulations. The MM-PBSA results indicated that Heptakis-O-(2-hydroxypropyl)-β-CD (HP-β-CD) (-82.59+/-11.67 kJ/mol) and Di-O-methyl-β-CD (DM-β-CD) (-54.01+/-11.07 kJ/mol) exhibited good binding affinity for LuT. Subsequently, derivative screening of HP-β-CD revealed that only 2-HP-β-CD (HP-β-CD-1)/LuT (-21.38 kJ/mol) displayed a superior binding free energy (obtained from umbrella sampling) than HP-β-CD/LuT (-19.15 kJ/mol) inclusion complex. We conducted QM calculations on the top three complexes namelly HP-β-CD, DM-β-CD, and HP-β-CD-1 employing wB97X-D/6-311 + G(d,p) model chemistry to strengthen the MM results. The computational analysis aligns with experimental findings (phase solubility analysis), validating HP-β-CD-1 as most effective cavitand molecule for improving the solubility of LuT. This study offers critical structural insights for developing novel HP-β-CD derivatives with enhanced host capacity to encapsulate guest molecules efficiently.
Collapse
Affiliation(s)
- Pramod Kumar
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
15
|
Okeke KI, Ahamefule CS, Nnabuife OO, Orabueze IN, Iroegbu CU, Egbe KA, Ike AC. Antiseptics: An expeditious third force in the prevention and management of coronavirus diseases. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100293. [PMID: 39497935 PMCID: PMC11532748 DOI: 10.1016/j.crmicr.2024.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Notably, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and coronavirus disease 2019 (COVID-19) have all had significant negative impact on global health and economy. COVID-19 alone, has resulted to millions of deaths with new cases and mortality still being reported in its various waves. The development and use of vaccines have not stopped the transmission of SARS coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, even among vaccinated individuals. The use of vaccines and curative drugs should be supplemented with adoption of simple hygiene preventive measures in the fight against the spread of the virus, especially for healthcare workers. Several virucidal topical antiseptics, such as povidone-iodine (PVP-I), citrox, cyclodextrins among others, have been demonstrated to be efficacious in the inactivation of SARS-CoV-2 and other coronaviruses in both in vitro and in vivo studies. The strategic application of these virucidal formulations could provide the additional impetus needed to effectively control the spread of the virus. We have here presented a simple dimension towards curtailing the dissemination of COVID-19, and other coronaviruses, through the application of effective oral, nasal and eye antiseptics among patients and medical personnel. We have further discussed the mechanism of action of some of these commonly available virucidal solutions while also highlighting some essential controversies in their use.
Collapse
Affiliation(s)
- Kizito I. Okeke
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Chukwuemeka Samson Ahamefule
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Obianuju O. Nnabuife
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Ibuchukwu N. Orabueze
- Department of Medical Microbiology, University of Nigeria Teaching Hospital Enugu, Enugu State, Nigeria
| | - Christian U. Iroegbu
- Department of Microbiology, Cross River University of Technology, Calabar, Cross River State, Nigeria
| | - Kingsley A. Egbe
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Anthony C. Ike
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| |
Collapse
|
16
|
Kim M, Hwang JE, Lee JS, Park J, Oh C, Lee S, Yu J, Zhang W, Im HJ. Development of Indocyanine Green/Methyl-β-cyclodextrin Complex-Loaded Liposomes for Enhanced Photothermal Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32945-32956. [PMID: 38912948 DOI: 10.1021/acsami.4c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Photothermal therapy (PTT) is a promising cancer therapeutic approach due to its spatial selectivity and high potency. Indocyanine green (ICG) has been considered a biocompatible PTT agent. However, ICG has several challenges to hinder its clinical use including rapid blood clearance and instability to heat, light, and solvent, leading to a loss of photoactivation property and PTT efficacy. Herein, we leveraged stabilizing components, methyl-β-cyclodextrin and liposomes, in one nanoplatform (ICD lipo) to enhance ICG stability and the photothermal therapeutic effect against cancer. Compared to ICG, ICD lipo displayed a 4.8-fold reduction in degradation in PBS solvent after 30 days and a 3.4-fold reduction in photobleaching after near-infrared laser irradiation. Moreover, in tumor-bearing mice, ICD lipo presented a 2.7-fold increase in tumor targetability and inhibited tumor growth 9.6 times more effectively than did ICG without any serious toxicity. We believe that ICD lipo could be a potential PTT agent for cancer therapeutics.
Collapse
Affiliation(s)
- MinKyu Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jee-Eun Hwang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Seob Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiwoo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Chiwoo Oh
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Subin Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyeon Yu
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Wang Zhang
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
17
|
Wang W, Li X, Wu H, Shi F, Zhang Z, Lv H. Explore the underlying oral efficacy of α-, β-, γ-Cyclodextrin against the ulcerative colitis using in vitro and in vivo studies assisted by network pharmacology. J Biomol Struct Dyn 2024; 42:4985-5000. [PMID: 37517028 DOI: 10.1080/07391102.2023.2239901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/05/2023] [Indexed: 08/01/2023]
Abstract
The incidence of ulcerative colitis (UC) is rising worldwide. As a refractory and recurrent disease, UC could seriously affect the patients' quality of life. However, current clinical medical treatments for UC are accompanied by various side effects, especially for long-term applications. Here, the underlying efficacy of cyclodextrins (CDs) was studied. As common excipients, CDs endow proven safety for long-term applications. Results of predictive methods derived from network pharmacology prompted the potential anti-inflammatory effects of CDs by oral administration. RAW264.7 cell experiments verified that CDs could inhibit the excessive secretion of TNF-α (β-CD > α-CD ≈ γ-CD), IL-6, and NO (α-CD > β-CD ≈ γ-CD) as predicted. In mice with DSS-induced acute UC, oral administration of CDs could effectively mitigate the pathological damage of colon tissue and reduce the level of inflammatory mediators. Moreover, 16S rRNA sequencing displayed that gut microbes disturbed by DSS were significantly regulated by CDs. Conclusively, the study showed the therapeutic application prospects of CDs in UC treatment and indicated the feasibility and advantages of developing 'new' therapeutic activities of 'old' ingredients.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Weiqin Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuefeng Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hangyi Wu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fanli Shi
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Huixia Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Radeva L, Yordanov Y, Spassova I, Kovacheva D, Tibi IPE, Zaharieva MM, Kaleva M, Najdenski H, Petrov PD, Tzankova V, Yoncheva K. Incorporation of Resveratrol-Hydroxypropyl-β-Cyclodextrin Complexes into Hydrogel Formulation for Wound Treatment. Gels 2024; 10:346. [PMID: 38786263 PMCID: PMC11121020 DOI: 10.3390/gels10050346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Resveratrol could be applied in wound healing therapies because of its antioxidant, anti-inflammatory and antibacterial effects. However, the main limitation of resveratrol is its low aqueous solubility. In this study, resveratrol was included in hydroxypropyl-β-cyclodextrin complexes and further formulated in Pluronic F-127 hydrogels for wound treatment therapy. IR-spectroscopy and XRD analysis confirmed the successful incorporation of resveratrol into complexes. The wound-healing ability of these complexes was estimated by a scratch assay on fibroblasts, which showed a tendency for improvement of the effect of resveratrol after complexation. The antimicrobial activity of resveratrol in aqueous dispersion and in the complexes was evaluated on methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Candida albicans strains. The results revealed a twofold decrease in the MIC and stronger inhibition of the metabolic activity of MRSA after treatment with resveratrol in the complexes compared to the suspended drug. Furthermore, the complexes were included in Pluronic hydrogel, which provided efficient drug release and appropriate viscoelastic properties. The formulated hydrogel showed excellent biocompatibility which was confirmed via skin irritation test on rabbits. In conclusion, Pluronic hydrogel containing resveratrol included in hydroxypropyl-β-cyclodextrin complexes is a promising topical formulation for further studies directed at wound therapy.
Collapse
Affiliation(s)
- Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Yordan Yordanov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Maya M. Zaharieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Mila Kaleva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Virginia Tzankova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | | |
Collapse
|
19
|
Andor M, Temereancă C, Sbârcea L, Ledeți A, Man DE, Mornoș C, Ridichie A, Cîrcioban D, Vlase G, Barvinschi P, Caunii A, Văruţ RM, Trandafirescu CM, Buda V, Ledeți I, Rădulescu M. Host-Guest Interaction Study of Olmesartan Medoxomil with β-Cyclodextrin Derivatives. Molecules 2024; 29:2209. [PMID: 38792072 PMCID: PMC11123892 DOI: 10.3390/molecules29102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Olmesartan medoxomil (OLM) is a selective angiotensin II receptor antagonist used in the treatment of hypertension. Its therapeutic potential is limited by its poor water solubility, leading to poor bioavailability. Encapsulation of the drug substance by two methylated cyclodextrins, namely randomly methylated β-cyclodextrin (RM-β-CD) and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD), was carried out to overcome the limitation related to OLM solubility, which, in turn, is expected to result in an improved biopharmaceutical profile. Supramolecular entities were evaluated by means of thermoanalytical techniques (TG-thermogravimetry; DTG-derivative thermogravimetry), spectroscopic methods including powder X-ray diffractometry (PXRD), universal-attenuated total reflectance Fourier-transform infrared (UATR-FTIR) and UV spectroscopy, saturation solubility studies, and by a theoretical approach using molecular modeling. The phase solubility method reveals an AL-type diagram for both inclusion complexes, indicating a stoichiometry ratio of 1:1. The values of the apparent stability constant indicate the higher stability of the host-guest system OLM/RM-β-CD. The physicochemical properties of the binary systems are different from those of the parent compounds, emphasizing the formation of inclusion complexes between the drug and CDs when the kneading method was used. The molecular encapsulation of OLM in RM-β-CD led to an increase in drug solubility, thus the supramolecular adduct can be the subject of further research to design a new pharmaceutical formulation containing OLM, with improved bioavailability.
Collapse
Affiliation(s)
- Minodora Andor
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (M.A.); (D.E.M.); (C.M.); (M.R.)
| | - Claudia Temereancă
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (I.L.)
| | - Laura Sbârcea
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Adriana Ledeți
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Dana Emilia Man
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (M.A.); (D.E.M.); (C.M.); (M.R.)
| | - Cristian Mornoș
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (M.A.); (D.E.M.); (C.M.); (M.R.)
| | - Amalia Ridichie
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Denisa Cîrcioban
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Gabriela Vlase
- Research Centre for Thermal Analysis in Environmental Problems, West University of Timisoara, Pestalozzi Street 16, 300115 Timisoara, Romania;
| | - Paul Barvinschi
- Faculty of Physics, West University of Timisoara, 4 Vasile Parvan Blvd, 300223 Timisoara, Romania;
| | - Angela Caunii
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Renata-Maria Văruţ
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania;
| | - Cristina Maria Trandafirescu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
| | - Valentina Buda
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
| | - Ionuț Ledeți
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (I.L.)
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (L.S.); (A.R.); (D.C.); (A.C.); (C.M.T.); (V.B.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Matilda Rădulescu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (M.A.); (D.E.M.); (C.M.); (M.R.)
| |
Collapse
|
20
|
Guidolin LS, Caillava AJ, Landoni M, Couto AS, Comerci DJ, Ciocchini AE. Development of a scalable recombinant system for cyclic beta-1,2-glucans production. Microb Cell Fact 2024; 23:130. [PMID: 38711033 DOI: 10.1186/s12934-024-02407-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Cyclic β-1,2-glucans (CβG) are bacterial cyclic homopolysaccharides with interesting biotechnological applications. These ring-shaped molecules have a hydrophilic surface that confers high solubility and a hydrophobic cavity able to include poorly soluble molecules. Several studies demonstrate that CβG and many derivatives can be applied in drug solubilization and stabilization, enantiomer separation, catalysis, synthesis of nanomaterials and even as immunomodulators, suggesting these molecules have great potential for their industrial and commercial exploitation. Nowadays, there is no method to produce CβG by chemical synthesis and bacteria that synthesize them are slow-growing or even pathogenic, which makes the scaling up of the process difficult and expensive. Therefore, scalable production and purification methods are needed to afford the demand and expand the repertoire of applications of CβG. RESULTS We present the production of CβG in specially designed E. coli strains by means of the deletion of intrinsic polysaccharide biosynthetic genes and the heterologous expression of enzymes involved in CβG synthesis, transport and succinilation. These strains produce different types of CβG: unsubstituted CβG, anionic CβG and CβG of high size. Unsubstituted CβG with a degree of polymerization of 17 to 24 glucoses were produced and secreted to the culture medium by one of the strains. Through high cell density culture (HCDC) of that strain we were able to produce 4,5 g of pure unsubstituted CβG /L in culture medium within 48 h culture. CONCLUSIONS We have developed a new recombinant bacterial system for the synthesis of cyclic β-1,2-glucans, expanding the use of bacteria as a platform for the production of new polysaccharides with biotechnological applications. This new approach allowed us to produce CβG in E. coli with high yields and the highest volumetric productivity reported to date. We expect this new highly scalable system facilitates CβG availability for further research and the widespread use of these promising molecules across many application fields.
Collapse
Affiliation(s)
- L Soledad Guidolin
- Instituto de Investigaciones Biotecnológicas, Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| | - A Josefina Caillava
- Instituto de Investigaciones Biotecnológicas, Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Malena Landoni
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR)- CONICET, Departamento de Química Orgánica, FCEN- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, Buenos Aires, Argentina
| | - Alicia S Couto
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR)- CONICET, Departamento de Química Orgánica, FCEN- Universidad de Buenos Aires (UBA), Pab. II, Ciudad Universitaria, Buenos Aires, Argentina
| | - Diego J Comerci
- Instituto de Investigaciones Biotecnológicas, Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Andrés E Ciocchini
- Instituto de Investigaciones Biotecnológicas, Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Huang J, Hong S, Goh LYH, Zhang H, Peng T, Chow KT, Gokhale R, Tuliani V. Investigation on the Combined Effect of Hydroxypropyl Beta-Cyclodextrin (HPβCD) and Polysorbate in Monoclonal Antibody Formulation. Pharmaceuticals (Basel) 2024; 17:528. [PMID: 38675488 PMCID: PMC11054243 DOI: 10.3390/ph17040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Monoclonal antibodies require careful formulation due to their inherent stability limitations. Polysorbates are commonly used to stabilize mAbs, but they are prone to degradation, which results in unwanted impurities. KLEPTOSE® HPβCD (hydroxypropyl beta-cyclodextrin) has functioned as a stable stabilizer for protein formulations in our previous research. The current study investigates the collaborative impact of combining polysorbates and HPβCD as excipients in protein formulations. The introduction of HPβCD in formulations showed it considerably reduced aggregation in two model proteins, bevacizumab and ipilimumab, following exposure to various stress conditions. The diffusion interaction parameter revealed a reduction in protein-protein interactions by HPβCD. In bevacizumab formulations, the subvisible particle counts per 0.4 mL of samples in commercial formulations vs. formulations containing both HPβCD and polysorbates subjected to distinct stressors were as follows: agitation, 87,308 particles vs. 15,350 particles; light, 25,492 particles vs. 6765 particles; and heat, 1775 particles vs. 460 particles. Isothermal titration calorimetry (ITC) measurement indicated a weak interaction between PS 80 and HPβCD, with a KD value of 74.7 ± 7.5 µM and binding sites of 5 × 10-3. Surface tension measurements illustrated that HPβCD enhanced the surface activity of polysorbates. The study suggests that combining these excipients can improve mAb stability in formulations, offering an alternative for the biopharmaceutical industry.
Collapse
Affiliation(s)
- Jiayi Huang
- Pharma Applied Sciences, Roquette Asia Pacific Pte Ltd., Singapore 138588, Singapore; (J.H.); (S.H.); (L.Y.H.G.); (H.Z.); (K.T.C.)
| | - Shiqi Hong
- Pharma Applied Sciences, Roquette Asia Pacific Pte Ltd., Singapore 138588, Singapore; (J.H.); (S.H.); (L.Y.H.G.); (H.Z.); (K.T.C.)
| | - Lucas Yuan Hao Goh
- Pharma Applied Sciences, Roquette Asia Pacific Pte Ltd., Singapore 138588, Singapore; (J.H.); (S.H.); (L.Y.H.G.); (H.Z.); (K.T.C.)
| | - Hailong Zhang
- Pharma Applied Sciences, Roquette Asia Pacific Pte Ltd., Singapore 138588, Singapore; (J.H.); (S.H.); (L.Y.H.G.); (H.Z.); (K.T.C.)
| | - Tao Peng
- Pharma Applied Sciences, Roquette Asia Pacific Pte Ltd., Singapore 138588, Singapore; (J.H.); (S.H.); (L.Y.H.G.); (H.Z.); (K.T.C.)
| | - Keat Theng Chow
- Pharma Applied Sciences, Roquette Asia Pacific Pte Ltd., Singapore 138588, Singapore; (J.H.); (S.H.); (L.Y.H.G.); (H.Z.); (K.T.C.)
| | - Rajeev Gokhale
- Global Pharmaceutical Sciences, Roquette America Inc., 2211 Innovation Drive, Geneva, IL 60134, USA;
| | - Vinod Tuliani
- Roquette Pharmaceutical Innovation Center, Lower Gwynedd Township, PA 19002, USA;
| |
Collapse
|
22
|
Fangaia SIG, Silva DSA, Messias A, Nicolau PMG, Valente AJM, Rodrigo MM, Ribeiro ACF. Transport Properties in Multicomponent Systems Containing Cyclodextrins and Nickel Ions. Int J Mol Sci 2024; 25:4328. [PMID: 38673912 PMCID: PMC11050376 DOI: 10.3390/ijms25084328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In this work, we propose a comprehensive experimental study of the diffusion of nickel ions in combination with different cyclodextrins as carrier molecules for enhanced solubility and facilitated transport. For this, ternary mutual diffusion coefficients measured by Taylor dispersion method are reported for aqueous solutions containing nickel salts and different cyclodextrins (that is, α-CD, β-CD, and γ-CD) at 298.15 K. A combination of Taylor dispersion and other methods, such as UV-vis spectroscopy, will be used to obtain complementary information on these systems. The determination of the physicochemical properties of these salts with CDs in aqueous solution provides information that allows us to understand solute-solvent interactions, and gives a significant contribution to understanding the mechanisms underlying diffusional transport in aqueous solutions, and, consequently, to mitigating the potential toxicity associated with these metal ions. For example, using mutual diffusion data, it is possible to estimate the number of moles of each ion transported per mole of the cyclodextrin driven by its own concentration gradient.
Collapse
Affiliation(s)
- Sónia I. G. Fangaia
- Faculty of Medicine, Institute of Implantology and Prosthodontics, University of Coimbra, 3000-075 Coimbra, Portugal; (S.I.G.F.); (A.M.); (P.M.G.N.)
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.S.A.S.); (A.J.M.V.)
| | - Daniela S. A. Silva
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.S.A.S.); (A.J.M.V.)
| | - Ana Messias
- Faculty of Medicine, Institute of Implantology and Prosthodontics, University of Coimbra, 3000-075 Coimbra, Portugal; (S.I.G.F.); (A.M.); (P.M.G.N.)
- Center of Mechanical Engineering Materials and Processes (CEMMPRE), Departamento de Engenharia Mecânica, University of Coimbra, 3030-788 Coimbra, Portugal
| | - Pedro M. G. Nicolau
- Faculty of Medicine, Institute of Implantology and Prosthodontics, University of Coimbra, 3000-075 Coimbra, Portugal; (S.I.G.F.); (A.M.); (P.M.G.N.)
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Artur J. M. Valente
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.S.A.S.); (A.J.M.V.)
| | - M. Melia Rodrigo
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, 28805 Alcalá de Henares, Spain;
| | - Ana C. F. Ribeiro
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (D.S.A.S.); (A.J.M.V.)
| |
Collapse
|
23
|
Devi LS, Casadidio C, Gigliobianco MR, Di Martino P, Censi R. Multifunctionality of cyclodextrin-based polymeric nanoparticulate delivery systems for chemotherapeutics, combination therapy, and theranostics. Int J Pharm 2024; 654:123976. [PMID: 38452831 DOI: 10.1016/j.ijpharm.2024.123976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
As cancer being the most difficult disease to treat, different kinds of medications and therapeutic approaches have been prominently developed by scientists. For certain families of drugs, such as immuno-therapeutics or antibody-drug conjugates, efficient delivery systems are required during administration to protect the drugs from chemical degradation or biological inactivation. Delivery systems with the ability to carry different therapeutics or diagnostic agents or both, hold promising potential to tackle the abnormalities behind cancer. In this context, this review provides updated insights on how cyclodextrin-based polymeric nanosystems have become an effective treatment approach against cancer. Cyclodextrins (CDs) are natural oligosaccharides that are famously exploited in pharmaceutical research due to their exceptional quality of entrapping water-insoluble molecules inside their hydrophobic core and providing enhanced solubility with the help of their hydrophilic exterior. Combining the properties of CDs with polymeric nanoparticles (PNPs) brings out excellent versatile and tunable profiles, thanks to the submicron-sized PNPs. By introducing the significance of CD as a delivery system, a collective discussion on different binding approaches and release mechanisms of CD-drug complexation, followed by their characterization studies has been done in this review. Further, in light of recent studies, the article majorly focuses on conveying how promoting CD to a polymeric and nanoscale elevates the multifunctional advantages against cancer that can be successfully applied in combination therapy and theranostics. Moreover, CD-based delivery systems including CALAA-01, CRLX101, and CRLX301, have demonstrated improved tumor targeting, reduced side effects, and prolonged drug release in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Lakshmi Sathi Devi
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy
| | - Cristina Casadidio
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy; Department of Pharmaceutical Sciences, Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University 99, 3508 TB Utrecht, the Netherlands.
| | - Maria Rosa Gigliobianco
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy.
| | - Piera Di Martino
- Department of Pharmacy, Università "G. d'Annunzio" di Chieti e Pescara, Via dei Vestini 1, 66100 Chieti, (CH), Italy
| | - Roberta Censi
- School of Pharmacy, Drug Delivery Division, University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, (MC), Italy
| |
Collapse
|
24
|
Alabrahim OA, Azzazy HMES. Antimicrobial Activities of Pistacia lentiscus Essential Oils Nanoencapsulated into Hydroxypropyl-beta-cyclodextrins. ACS OMEGA 2024; 9:12622-12634. [PMID: 38524461 PMCID: PMC10955754 DOI: 10.1021/acsomega.3c07413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 03/26/2024]
Abstract
The rising risks of food microbial contamination and foodborne pathogens resistance have prompted an increasing interest in natural antimicrobials as promising alternatives to synthetic antimicrobials. Essential oils (EOs) obtained from natural sources have shown promising anticancer, antimicrobial, and antioxidant activities. EOs extracted from the resins of Pistacia lentiscus var. Chia are widely utilized for the treatment of skin inflammations, gastrointestinal disorders, respiratory infections, wound healing, and cancers. The therapeutic benefits of P. lentiscusessential oils (PO) are limited by their low solubility, poor bioavailability, and high volatility. Nanoencapsulation of PO can improve their physicochemical properties and consequently their therapeutic efficacy while overcoming their undesirable side effects. Hence, PO was extracted from the resins of P. lentiscusvia hydrodistillation. Then, PO was encapsulated into (2-hydroxypropyl)-beta-cyclodextrin (HPβCD) via freeze-drying. The obtained inclusion complexes (PO-ICs) appeared as round vesicles (22.62 to 63.19 nm) forming several agglomerations (180 to 350 nm), as detected by UHR-TEM, with remarkable entrapment efficiency (89.59 ± 1.47%) and a PDI of 0.1475 ± 0.0005. Furthermore, the encapsulation and stability of PO-ICs were confirmed via FE-SEM, 1H NMR, 2D HNMR (NOESY), FT-IR, UHR-TEM, and DSC. DSC revealed a higher thermal stability of the PO-ICs, reaching 351.0 °C. PO-ICs exerted substantial antibacterial activity against Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli as compared to free PO. PO-ICs showed significant enhancement in the antibacterial activity of the encapsulated PO against S. aureus with an MIC90 of 2.84 mg/mL and against P. aeruginosa with MIC90 of 3.62 mg/mL and MIC50 of 0.56 mg/mL. In addition, PO-ICs showed greater antimicrobial activity against E. coli by 6-fold with an MIC90 of 0.89 mg/mL, compared to free PO, which showed an MIC90 of 5.38 mg/mL. In conclusion, the encapsulation of PO into HPβCD enhanced its aqueous solubility, stability, and penetration ability, resulting in a significantly higher antibacterial activity.
Collapse
Affiliation(s)
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute of
Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| |
Collapse
|
25
|
Khatoon H, Malek EA. A Focussed Analysis of β-cyclodextrins for Quinoxaline Derivatives Synthesis. CURR ORG CHEM 2024; 28:368-374. [DOI: 10.2174/0113852728295463240216074814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 08/18/2024]
Abstract
Abstract:
Cyclodextrins (CDs), which are a type of cyclic oligosaccharides, are widely used
in supramolecular chemistry. For example, they can be used to encapsulate volatile compounds,
such as drugs, within their hydrophobic cavity. This encapsulation reduces the volatility
of the compounds and helps to retain their desired properties. Due to its extraordinary
properties, cyclodextrins have been utilized as catalysts in numerous organic synthesis processes.
An intrinsic objective of organic chemists is to optimize the efficacy of organic synthesis
through the mitigation of chemical waste and energy expenditure. Utilizing water as a
green solvent is, therefore, economical, environmentally sustainable, and secure. It appears
that employing water in conjunction with a recyclable catalyst is the most effective method
for supramolecular catalysis. As a consequence, we focused this review on the use of water
as a solvent and cyclodextrin as a polymer catalyst to produce quinoxaline derivatives in an environmentally
friendly and sustainable manner.
Collapse
Affiliation(s)
- Hena Khatoon
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Emilia Abdul Malek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Integrated Chemical
BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
26
|
Zhang S, Tamura A, Yui N. Enhanced Tumor Targeting and Antitumor Activity of Methylated β-Cyclodextrin-Threaded Polyrotaxanes by Conjugating Cyclic RGD Peptides. Biomolecules 2024; 14:223. [PMID: 38397461 PMCID: PMC10886891 DOI: 10.3390/biom14020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
We previously reported that acid-degradable methylated β-cyclodextrins (Me-β-CDs)-threaded polyrotaxanes (Me-PRXs) can induce autophagic cell death through endoplasmic reticulum (ER) stress-related autophagy, even in apoptosis-resistant cells. Hence, Me-PRXs show great potential as anticancer therapeutics. In this study, peptide-supermolecule conjugates were designed to achieve the targeted delivery of Me-PRX to malignant tumors. Arg-Gly-Asp peptides are well-known binding motifs of integrin αvβ3, which is overexpressed on angiogenic sites and many malignant tumors. The tumor-targeted cyclic Arg-Gly-Asp (cRGD) peptide was orthogonally post-modified to Me-PRX via click chemistry. Surface plasmon resonance (SPR) results indicated that cRGD-Me-PRX strongly binds to integrin αvβ3, whereas non-targeted cyclic Arg-Ala-Glu (cRGE) peptide conjugated to Me-PRX (cRGE-Me-PRX) failed to interact with integrins αvβ3. In vitro, cRGD-Me-PRX demonstrated enhanced cellular internalization and antitumor activity in 4T1 cells than that of unmodified Me-PRX and non-targeted cRGE-Me-PRX, due to its ability to recognize integrin αvβ3. Furthermore, cRGD-Me-PRX accumulated effectively in tumors, leading to antitumor effects, and exhibited excellent biocompatibility and safety in vivo. Therefore, cRGD conjugation to enhance selectivity for integrin αvβ3-positive cancer cells is a promising design strategy for Me-PRXs in antitumor therapy.
Collapse
Affiliation(s)
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | | |
Collapse
|
27
|
Wu H, Jiang X, Dong Z, Fan Q, Huang J, Liu H, Chen L, Li Z, Ming L. New insights into the influence of encapsulation materials on the feasibility of ultrasonic-assisted encapsulation of Mosla chinensis essential oil. ULTRASONICS SONOCHEMISTRY 2024; 103:106787. [PMID: 38310739 PMCID: PMC10862064 DOI: 10.1016/j.ultsonch.2024.106787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
The study aimed to estimate the feasibility of α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), and γ-cyclodextrin (γ-CD) to encapsulate Mosla chinensis essential oil (EO) by ultrasonic-assisted method. The physical properties variations, stabilization mechanisms, and formation processes of the inclusion complexes (ICs) were investigated using experimental methods, molecular docking, and molecular dynamics (MD) simulation. Scanning electron microscopy, fourier transform infrared spectroscopy, thermogravimetric analysis, and gas chromatography-mass spectrometry showed that the ICs were successfully prepared, which differentially improved the thermal stability and retained the chemical composition of EO. The dissolution profile showed that the Peppas model can be used to describe the diffuse release mechanism of EO. Finally, molecular docking and MD simulation theoretically confirmed the interaction and conformational changes of carvacrol (the main active component of Mosla chinensis EO) inside the cavity of CDs. The results indicate that hydrogen bonding was the primary driving force for the carvacrol spontaneous access to the cavity. Further, a binding dynamic balance occurs between carvacrol and β-CD, whereas a bind and away dynamic balance occurs in the IC between carvacrol and α-CD, γ-CD. The comprehensive results show that the medium cavity size of β-CD is a suitable host molecule for Mosla chinensis EO of encapsulation, release, and stabilization. A combination of experimental and theoretical calculations is useful for the pinpoint targeted design and optimization of CD molecular encapsulation of small entity molecules. β-CD was rationally screened as a better candidate for stabilizing EO, which provides an option for a meaningful path to realistic EO applications.
Collapse
Affiliation(s)
- Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China
| | - Xiaoxia Jiang
- Department of Pharmacy, Jiangxi Provincial People's Hospital, Jiangxi Nanchang, 330006, China
| | - Zishu Dong
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China
| | - Jia Huang
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China
| | - Lihua Chen
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China; Department of Pharmacy, Jiangxi Provincial People's Hospital, Jiangxi Nanchang, 330006, China
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China.
| | - Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi Nanchang, 330004, China.
| |
Collapse
|
28
|
Alabrahim OAA, Alwahibi S, Azzazy HMES. Improved antimicrobial activities of Boswellia sacra essential oils nanoencapsulated into hydroxypropyl-beta-cyclodextrins. NANOSCALE ADVANCES 2024; 6:910-924. [PMID: 38298595 PMCID: PMC10825941 DOI: 10.1039/d3na00882g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024]
Abstract
Natural antimicrobials have recently gained increasing interest over synthetic antimicrobials to overcome foodborne pathogens and food microbial contamination. Essential oils (EOs) obtained from Boswellia sacra resins (BO) were utilized for respiratory disorders, rheumatoid arthritis, malignant tumors, and viral infections. Like other EOs, the therapeutic potential of BO is hindered by its low solubility and bioavailability, poor stability, and high volatility. Several studies have shown excellent physicochemical properties and outstanding therapeutic capabilities of EOs encapsulated into various nanocarriers. This study extracted BO from B. sacra resins via hydrodistillation and encapsulated it into hydroxypropyl-beta-cyclodextrins (HPβCD) using the freeze-drying method. The developed inclusion complexes of BO (BO-ICs) had high encapsulation efficiency (96.79 ± 1.17%) and a polydispersity index of 0.1045 ± 0.0006. BO-ICs showed presumably spherical vesicles (38.5 to 59.9 nm) forming multiple agglomerations (136.9 to 336.8 nm), as determined by UHR-TEM. Also, the formation and stability of BO-ICs were investigated using DSC, FTIR, FE-SEM, UHR-TEM, 1H NMR, and 2D HNMR (NOESY). BO-ICs showed greater thermal stability (362.7 °C). Moreover, compared to free BO, a remarkable enhancement in the antimicrobial activities of BO-ICs was shown against three different bacteria: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. BO-ICs displayed significant antibacterial activity against Pseudomonas aeruginosa with an MIC90 of 3.93 mg mL-1 and an MIC50 of 0.57 mg mL-1. Also, BO-ICs showed an increase in BO activity against Escherichia coli with an MIC95 of 3.97 mg mL-1, compared to free BO, which failed to show an MIC95. Additionally, BO-ICs showed a more significant activity against Staphylococcus aureus with an MIC95 of 3.92 mg mL-1. BO encapsulation showed significantly improved antimicrobial activities owing to the better stability, bioavailability, and penetration ability imparted by encapsulation into HPβCD.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt +20 02 2615 2559
| | | | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt +20 02 2615 2559
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Jena Germany
| |
Collapse
|
29
|
Reddy DS. Neurosteroids as Novel Anticonvulsants for Refractory Status Epilepticus and Medical Countermeasures for Nerve Agents: A 15-Year Journey to Bring Ganaxolone from Bench to Clinic. J Pharmacol Exp Ther 2024; 388:273-300. [PMID: 37977814 PMCID: PMC10801762 DOI: 10.1124/jpet.123.001816] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
This article describes recent advances in the use of neurosteroids as novel anticonvulsants for refractory status epilepticus (RSE) and as medical countermeasures (MCs) for organophosphates and chemical nerve agents (OPNAs). We highlight a comprehensive 15-year journey to bring the synthetic neurosteroid ganaxolone (GX) from bench to clinic. RSE, including when caused by nerve agents, is associated with devastating morbidity and permanent long-term neurologic dysfunction. Although recent approval of benzodiazepines such as intranasal midazolam and intranasal midazolam offers improved control of acute seizures, novel anticonvulsants are needed to suppress RSE and improve neurologic function outcomes. Currently, few anticonvulsant MCs exist for victims of OPNA exposure and RSE. Standard-of-care MCs for postexposure treatment include benzodiazepines, which do not effectively prevent or mitigate seizures resulting from nerve agent intoxication, leaving an urgent unmet medical need for new anticonvulsants for RSE. Recently, we pioneered neurosteroids as next-generation anticonvulsants that are superior to benzodiazepines for treatment of OPNA intoxication and RSE. Because GX and related neurosteroids that activate extrasynaptic GABA-A receptors rapidly control seizures and offer robust neuroprotection by reducing neuronal damage and neuroinflammation, they effectively improve neurologic outcomes after acute OPNA exposure and RSE. GX has been selected for advanced, Biomedical Advanced Research and Development Authority-supported phase 3 trials of RSE and nerve agent seizures. In addition, in mechanistic studies of neurosteroids at extrasynaptic receptors, we identified novel synthetic analogs with features that are superior to GX for current medical needs. Development of new MCs for RSE is complex, tedious, and uncertain due to scientific and regulatory challenges. Thus, further research will be critical to fill key gaps in evaluating RSE and anticonvulsants in vulnerable (pediatric and geriatric) populations and military persons. SIGNIFICANCE STATEMENT: Following organophosphate and nerve agent intoxication, refractory status epilepticus (RSE) occurs despite benzodiazepine treatment. RSE occurs in 40% of status epilepticus patients, with a 35% mortality rate and significant neurological morbidity in survivors. To treat RSE, neurosteroids are better anticonvulsants than benzodiazepines. Our pioneering use of neurosteroids for RSE and nerve agents led us to develop ganaxolone as a novel anticonvulsant and neuroprotectant with significantly improved neurological outcomes. This article describes the bench-to-bedside journey of bringing neurosteroid therapy to patients, with ganaxolone leading the way.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, Texas and Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
30
|
Mouithys-Mickalad A, Etsè KS, Franck T, Ceusters J, Niesten A, Graide H, Deby-Dupont G, Sandersen C, Serteyn D. Free Radical Inhibition Using a Water-Soluble Curcumin Complex, NDS27: Mechanism Study Using EPR, Chemiluminescence, and Docking. Antioxidants (Basel) 2024; 13:80. [PMID: 38247504 PMCID: PMC10812671 DOI: 10.3390/antiox13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
There is a growing interest in the use of natural compounds to tackle inflammatory diseases and cancers. However, most of them face the bioavailability and solubility challenges to reaching cellular compartments and exert their potential biological effects. Polyphenols belong to that class of molecules, and numerous efforts have been made to improve and overcome these problems. Curcumin is widely studied for its antioxidant and anti-inflammatory properties as well as its use as an anticancer agent. However, its poor solubility and bioavailability are often a source of concern with disappointing or unexpected results in cellular models or in vivo, which limits the clinical use of curcumin as such. Beside nanoparticles and liposomes, cyclodextrins are one of the best candidates to improve the solubility of these molecules. We have used lysine and cyclodextrin to form a water-soluble curcumin complex, named NDS27, in which potential anti-inflammatory effects were demonstrated in cellular and in vivo models. Herein, we investigated for the first time its direct free radicals scavenging activity on DPPH/ABTS assays as well as on hydroxyl, superoxide anion, and peroxyl radical species. The ability of NDS27 to quench singlet oxygen, produced by rose bengal photosensitization, was studied, as was the inhibiting effect on the enzyme-catalyzed oxidation of the co-substrate, luminol analog (L012), using horseradish peroxidase (HRP)/hydrogen peroxide (H2O2) system. Finally, docking was performed to study the behavior of NDS27 in the active site of the peroxidase enzyme.
Collapse
Affiliation(s)
- Ange Mouithys-Mickalad
- Centre for Oxygen R&D (CORD)-CIRM, Institute of Chemistry, University of Liège, Allée de la Chimie, 3, 4000 Liège, Belgium; (T.F.); (J.C.); (A.N.); (G.D.-D.); (D.S.)
| | - Koffi Senam Etsè
- Laboratory of Medicinal Analytic (CIRM), University of Liège, Hospital Quarter, 15 Hospital Avenue, 4000 Liège, Belgium;
| | - Thierry Franck
- Centre for Oxygen R&D (CORD)-CIRM, Institute of Chemistry, University of Liège, Allée de la Chimie, 3, 4000 Liège, Belgium; (T.F.); (J.C.); (A.N.); (G.D.-D.); (D.S.)
- Veterinary Clinic, Large Animal Surgery, B32, Boulevard du Rectorat, 4000 Liège, Belgium;
| | - Justine Ceusters
- Centre for Oxygen R&D (CORD)-CIRM, Institute of Chemistry, University of Liège, Allée de la Chimie, 3, 4000 Liège, Belgium; (T.F.); (J.C.); (A.N.); (G.D.-D.); (D.S.)
| | - Ariane Niesten
- Centre for Oxygen R&D (CORD)-CIRM, Institute of Chemistry, University of Liège, Allée de la Chimie, 3, 4000 Liège, Belgium; (T.F.); (J.C.); (A.N.); (G.D.-D.); (D.S.)
| | - Hélène Graide
- Centre for Oxygen R&D (CORD)-CIRM, Institute of Chemistry, University of Liège, Allée de la Chimie, 3, 4000 Liège, Belgium; (T.F.); (J.C.); (A.N.); (G.D.-D.); (D.S.)
| | - Ginette Deby-Dupont
- Centre for Oxygen R&D (CORD)-CIRM, Institute of Chemistry, University of Liège, Allée de la Chimie, 3, 4000 Liège, Belgium; (T.F.); (J.C.); (A.N.); (G.D.-D.); (D.S.)
| | - Charlotte Sandersen
- Veterinary Clinic, Large Animal Surgery, B32, Boulevard du Rectorat, 4000 Liège, Belgium;
| | - Didier Serteyn
- Centre for Oxygen R&D (CORD)-CIRM, Institute of Chemistry, University of Liège, Allée de la Chimie, 3, 4000 Liège, Belgium; (T.F.); (J.C.); (A.N.); (G.D.-D.); (D.S.)
- Veterinary Clinic, Large Animal Surgery, B32, Boulevard du Rectorat, 4000 Liège, Belgium;
| |
Collapse
|
31
|
Brettner FEB, Schreiner J, Vogel-Kindgen S, Windbergs M. Engineered Self-Assembly of Amphiphilic Cyclodextrin Conjugates for Drug Encapsulation. ACS Biomater Sci Eng 2024; 10:115-128. [PMID: 36562386 DOI: 10.1021/acsbiomaterials.2c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cyclodextrins are a group of naturally occurring oligosaccharides that have widely been studied and applied in pharmaceutical formulations forming inclusion complexes with a broad variety of drugs exhibiting different hydrophilicity as well as molecular weights. Grafting aliphatic chains onto native cyclodextrins renders them amphiphilic and enables self-assembly into supramolecular structures that have already been explored for drug delivery. Based on the possibility of controlling the inherent physicochemical properties by modifying their chemical structure, amphiphilic cyclodextrin conjugates hold a great potential to become a drug delivery platform adaptable to the individual needs of specific active drug molecules. In this work, a library of amphiphilic cyclodextrin derivatives was synthesized by conjugating aliphatic chains of different lengths to native β-cyclodextrin via thioether or ester bonds. Upon nanoprecipitation, the synthesized amphiphilic cyclodextrin derivatives spontaneously self-assembled into nanosized supramolecular structures with a monodisperse size distribution. We systematically investigated the relationship between the molecular structure of the amphiphilic cyclodextrin derivatives and the corresponding self-assembly into nanosystems as well as the encapsulation of model drugs with different physicochemical properties. Encapsulation efficiencies up to 97% and pH-dependent release profiles were achieved. We found that both the aliphatic chain length and the linker molecule determine the respective self-assembly and drug encapsulation mechanism of the individual system. The colloidal stability and biocompatibility with human cells of all derivatives were proven. Consequently, amphiphilic cyclodextrin conjugates provide a drug delivery platform with tailor-made control over physicochemical properties and high drug encapsulation efficiency for a broad range of drug molecules, thus offering great potential for the development of future therapeutics with improved therapeutic efficiency.
Collapse
Affiliation(s)
- Felix E B Brettner
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, 60438Frankfurt am Main, Germany
| | - Jonas Schreiner
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, 60438Frankfurt am Main, Germany
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, 60438Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, 60438Frankfurt am Main, Germany
| |
Collapse
|
32
|
Leon MM, Maștaleru A, Oancea A, Alexa-Stratulat T, Peptu CA, Tamba BI, Harabagiu V, Grosu C, Alexa AI, Cojocaru E. Lidocaine-Liposomes-A Promising Frontier for Transdermal Pain Management. J Clin Med 2024; 13:271. [PMID: 38202278 PMCID: PMC10779996 DOI: 10.3390/jcm13010271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: We aim to develop novel gel formulations for transdermal drug delivery systems in acute and inflammatory pain therapy. (2) Methods: We induced inflammation by the injection of λ-carrageenan on the hind paw of 80 Wistar male rats. The animals were randomized into eight groups of 10 rats each: C (placebo gel), E (EMLATM), L (lidocaine 2%), L-CD (lidocaine + cyclodextrin 2.5%), L-LP (lidocaine + liposomes 1.7%), L-CS (lidocaine + chitosan 4%), L-CSh (lidocaine + chitosan hydrochloride), and L-CS-LP (lidocaine + chitosan + liposomes). The behavior response was determined with a hot plate, cold plate, and algesimeter, each being performed at 30, 60, 120, 180, and 240 min after pain induction. At the end of the experiment, tissue samples were collected for histological assessment. (3) Results: L-LP had the greatest anesthetic effects, which was proven on the cold plate test compared to placebo and EMLATM (all p ≤ 0.001). L-CS-LP had a significant effect on cold plate evaluation compared to placebo (p ≤ 0.001) and on hot plate evaluation compared to EMLATM (p = 0.018). (4) Conclusions: L-LP is a new substance with a substantial analgesic effect demonstrated by the cold plate in the first 120 min. Further studies with more animals are needed to determine the maximum doses that can be applied for a better analgesia with minimum side effects.
Collapse
Affiliation(s)
- Maria Magdalena Leon
- Department of Medical Specialties I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania;
| | - Alexandra Maștaleru
- Department of Medical Specialties I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania;
| | - Andra Oancea
- Department of Medical Specialties I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania;
| | - Teodora Alexa-Stratulat
- Department of Medical Oncology–Radiotherapy, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania;
| | - Cătălina Anișoara Peptu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Bogdan-Ionel Tamba
- CEMEX Laboratory, “Grigore T. Popa” University of Medicine and Pharmacy, 700259 Iaşi, Romania;
| | - Valeria Harabagiu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iaşi, Romania;
| | - Cristina Grosu
- Department of Medical Specialties III, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania;
| | - Anisia Iuliana Alexa
- Department of Surgery II, Discipline of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania;
| |
Collapse
|
33
|
Nakamura T, Okumura M, Takamune N, Hirotsu T, Sugiura M, Yasunaga J, Nakata H. Conversion of raltegravir carrying a 1,3,4-oxadiazole ring to a hydrolysis product upon pH changes decreases its antiviral activity. PNAS NEXUS 2024; 3:pgad446. [PMID: 38170115 PMCID: PMC10758923 DOI: 10.1093/pnasnexus/pgad446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Raltegravir (RAL), a human immunodeficiency virus (HIV)-1 integrase inhibitor, has been administered as part of antiretroviral therapy. Studies in patients with HIV-1 have shown high variability in the pharmacokinetics of RAL, and in healthy volunteers, coadministration of proton-pump inhibitors has been shown to increase the plasma RAL concentrations. Here, we found that RAL containing a 1,3,4-oxadiazole ring is converted to a hydrolysis product (H-RAL) with a cleaved 1,3,4-oxadiazole ring at pH 1.0 and 13.0 conditions in vitro, thereby reducing the anti-HIV activity of the drug. The inclusion of cyclodextrins (beta-cyclodextrin [βCD], random methyl-βCD [RAM-βCD], and hydroxypropyl-βCD [HP-βCD]) can protect RAL from pH-induced changes. The conversion of RAL to H-RAL was detected by using various mass spectrometry analyses. The chromatogram of H-RAL increased in a time-dependent manner similar to another 1,3,4-oxadiazole-containing drug, zibotentan, using high-performance liquid chromatography. Oral bioavailability and target protein interactions of H-RAL were predicted to be lower than those of RAL. Moreover, H-RAL exhibited significantly reduced anti-HIV-1 activity, whereas combinations with βCD, RAM-βCD, and HP-βCD attenuated this effect in cell-based assays. These findings suggest that βCDs can potentially protect against the conversion of RAL to H-RAL under acidic conditions in the stomach, thereby preserving the anti-HIV-1 effect of RAL. Although clinical trials are needed for evaluation, we anticipate that protective devices such as βCDs may improve the pharmacokinetics of RAL, leading to better treatment outcomes, including reduced dosing, long-term anti-HIV-1 activity, and deeper HIV-1 suppression.
Collapse
Affiliation(s)
- Tomofumi Nakamura
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Honjyo 1-1-1, Chuo-ku, Kumamoto 860-8556, Japan
- Department of Laboratory Medicine, Kumamoto University Hospital, Honjyo 1-1-1, Chuo-ku, Kumamoto 860-8556, Japan
| | - Mayu Okumura
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Honjyo 1-1-1, Chuo-ku, Kumamoto 860-8556, Japan
| | - Nobutoki Takamune
- Kumamoto Innovative Development Organization, Kumamoto University, Kurokami 2-39-1, Chuo-ku, Kumamoto 860-0862, Japan
| | - Tatsunori Hirotsu
- CyDing Company Limited, Oehonmachi 5-1, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masaharu Sugiura
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan
| | - Junichiro Yasunaga
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Honjyo 1-1-1, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hirotomo Nakata
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Honjyo 1-1-1, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
34
|
Kumar P, Bhardwaj VK, Purohit R. Highly robust quantum mechanics and umbrella sampling studies on inclusion complexes of curcumin and β-cyclodextrin. Carbohydr Polym 2024; 323:121432. [PMID: 37940299 DOI: 10.1016/j.carbpol.2023.121432] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 11/10/2023]
Abstract
The poor aqueous solubility of curcumin (CUR) obstructs its wide utilization in nutraceuticals, cosmetics, and pharmaceutical companies. This study is dedicated to investigate the stability of CUR inside the hydrophobic pocket of β-cyclodextrin (β-CD), hydroxypropyl-β-CD (HP-β-CD), and 2,6-Di-O-methyl-β-CD (DM-β-CD). Initially, molecular mechanics (MM) calculations and subsequently quantum mechanical (QM) calculations were performed on inclusion complexes to strengthen the MM results. We performed microsecond timescale MD simulations to observe the structural dynamics of CUR inside the cavity of CDs. We elucidated the most stable binding orientations of CUR inside the cavity of CDs based on binding free energy obtained from the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) and umbrella sampling simulations. Furthermore, the two-layered ONIOM (B3LYP/6-311+G(2d,p):PM7) method with CPCM implicit water model was used to derive the complete energetics and thermodynamics of inclusion complexes at 1:1 stoichiometry. Each inclusion reaction was exothermic and spontaneous. The chemical reactivity and kinetic stability of inclusion complexes were described by HOMO-LUMO molecular orbital energies. In conclusion, our studies revealed that HP-β-CD had the highest binding affinity for CUR with the most negative complexation energy (-6520.69 kJ/mol) and Gibb's free energy change (-6448.20 kJ/mol). The atomic-level investigation of noncovalent interactions between CUR and the hydroxypropyl groups in HP-β-CD/CUR complex may be helpful to drive new derivatives of HP-β-CD with better host capacity. The computational strategy adopted here might serve as a benchmark for increasing the solubility of numerous clinically significant molecules.
Collapse
Affiliation(s)
- Pramod Kumar
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
35
|
Christaki S, Spanidi E, Panagiotidou E, Athanasopoulou S, Kyriakoudi A, Mourtzinos I, Gardikis K. Cyclodextrins for the Delivery of Bioactive Compounds from Natural Sources: Medicinal, Food and Cosmetics Applications. Pharmaceuticals (Basel) 2023; 16:1274. [PMID: 37765082 PMCID: PMC10535610 DOI: 10.3390/ph16091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclodextrins have gained significant and established attention as versatile carriers for the delivery of bioactive compounds derived from natural sources in various applications, including medicine, food and cosmetics. Their toroidal structure and hydrophobic cavity render them ideal candidates for encapsulating and solubilizing hydrophobic and poorly soluble compounds. Most medicinal, food and cosmetic ingredients share the challenges of hydrophobicity and degradation that can be effectively addressed by various cyclodextrin types. Though not new or novel-their first applications appeared in the market in the 1970s-their versatility has inspired numerous developments, either on the academic or industrial level. This review article provides an overview of the ever-growing applications of cyclodextrins in the delivery of bioactive compounds from natural sources and their potential application benefits.
Collapse
Affiliation(s)
- Stamatia Christaki
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (S.C.); (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| | - Eleni Panagiotidou
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| | - Sophia Athanasopoulou
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| | - Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (S.C.); (A.K.); (I.M.)
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (S.C.); (A.K.); (I.M.)
| | - Konstantinos Gardikis
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece; (E.S.); (E.P.); (S.A.)
| |
Collapse
|
36
|
Agrawal G, Aswath S, Laha A, Ramakrishna S. Electrospun Nanofiber-Based Drug Carrier to Manage Inflammation. Adv Wound Care (New Rochelle) 2023; 12:529-543. [PMID: 36680757 DOI: 10.1089/wound.2022.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Significance: Nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most widely prescribed drugs to treat inflammation and related ailments. In recent years, loading these drugs onto nanodevices like nanoparticles, nanofibers, etc. as a drug delivery system has gained momentum due to its desirable properties and advantages. The purpose of this review is to examine the existing research on the potential and novel use of nanofiber-assisted delivery of NSAIDs. Recent Advances: Electrospun nanofibers have recently garnered considerable attention from researchers in a variety of sectors. They have proved to be promising vehicles for drug delivery systems because of their exceptional and favorable features like prolonged drug release, controllable porosity, and high surface area. In this article, various polymers and even combinations of polymers loaded with single or multiple drugs were analyzed to achieve the desired drug release rates (burst, sustained, and biphasic) from the electrospun nanofibers. Critical Issues: The administration of these medications can induce major adverse effects, causing patients discomfort. Thus, encapsulating these drugs within electrospun nanofibers helps to reduce the severity of side effects while also providing additional benefits such as targeted and controlled drug release, reduced toxicity, and long-lasting effects of the drug with lower amounts of administration. Future Directions: This review covers previous research on the delivery of NSAIDs using electrospun nanofibers as the matrix. Also, this study intends to aid in the development of enhanced drug delivery systems for the treatment of inflammation and related issues.
Collapse
Affiliation(s)
- Gaurav Agrawal
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Surabhi Aswath
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Anindita Laha
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, India
- Department of Chemical Engineering, Calcutta Institute of Technology, Howrah, India
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
37
|
Aiassa V, Garnero C, Zoppi A, Longhi MR. Cyclodextrins and Their Derivatives as Drug Stability Modifiers. Pharmaceuticals (Basel) 2023; 16:1074. [PMID: 37630988 PMCID: PMC10459549 DOI: 10.3390/ph16081074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides that contain a relatively hydrophobic central cavity and a hydrophilic outer surface. They are widely used to form non-covalent inclusion complexes with many substances. Although such inclusion complexes typically exhibit higher aqueous solubility and chemical stability than pure drugs, it has been shown that CDs can promote the degradation of some drugs. This property of stabilizing certain drugs while destabilizing others can be explained by the type of CD used and the structure of the inclusion complex formed. In addition, the ability to form complexes of CDs can be improved through the addition of suitable auxiliary substances, forming multicomponent complexes. Therefore, it is important to evaluate the effect that binary and multicomponent complexes have on the chemical and physical stability of complexed drugs. The objective of this review is to summarize the studies on the stabilizing and destabilizing effects of complexes with CDs on drugs that exhibit stability problems.
Collapse
|
38
|
Di Nunzio MR, Douhal A. Robust Inclusion Complex of Topotecan Comprised within a Rhodamine-Labeled β-Cyclodextrin: Competing Proton and Energy Transfer Processes. Pharmaceutics 2023; 15:1620. [PMID: 37376069 DOI: 10.3390/pharmaceutics15061620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Monitoring the biological fate of medicaments within the environments of cancer cells is an important challenge which is nowadays the object of intensive studies. In this regard, rhodamine-based supramolecular systems are one of the most suitable probes used in drug delivery thanks to their high emission quantum yield and sensitivity to the environment which helps to track the medicament in real time. In this work, we used steady-state and time-resolved spectroscopy techniques to investigate the dynamics of the anticancer drug, topotecan (TPT), in water (pH ~6.2) in the presence of a rhodamine-labeled methylated β-cyclodextrin (RB-RM-βCD). A stable complex of 1:1 stoichiometry is formed with a Keq value of ~4 × 104 M-1 at room temperature. The fluorescence signal of the caged TPT is reduced due to: (1) the CD confinement effect; and (2) a Förster resonance energy transfer (FRET) process from the trapped drug to the RB-RM-βCD occurring in ~43 ps with 40% efficiency. These findings provide additional knowledge about the spectroscopic and photodynamic interactions between drugs and fluorescent functionalized CDs, and may lead to the design of new fluorescent CD-based host-guest nanosystems with efficient FRET to be used in bioimaging for drug delivery monitoring.
Collapse
Affiliation(s)
- Maria Rosaria Di Nunzio
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica and INAMOL, Universidad de Castilla-La Mancha, Av. Carlos III, s/n, 45071 Toledo, Spain
| |
Collapse
|
39
|
Saha ST, Abdulla N, Zininga T, Shonhai A, Wadee R, Kaur M. 2-Hydroxypropyl-β-cyclodextrin (HPβCD) as a Potential Therapeutic Agent for Breast Cancer. Cancers (Basel) 2023; 15:2828. [PMID: 37345165 PMCID: PMC10216648 DOI: 10.3390/cancers15102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Cholesterol accumulation is documented in various malignancies including breast cancer. Consequently, depleting cholesterol in cancer cells can serve as a viable treatment strategy. We identified the potency of 2-hydroxypropyl-β-cyclodextrin (HPβCD), a cholesterol-depletor in vitro against two breast cancer cell lines: MCF-7 (Oestrogen-receptor positive, ER+) and MDA-MB-231 (Triple negative breast cancer (TNBC)). The results were then compared against two non-cancerous cell lines using cytotoxic-, apoptosis-, and cholesterol-based assays. Treatment with HPβCD showed preferential and significant cytotoxic potential in cancer cells, inducing apoptosis in both cancer cell lines (p < 0.001). This was mediated due to significant depletion of cholesterol (p < 0.001). We further tested HPβCD in a MF-1 mice (n = 14) xenograft model and obtained 73.9%, 94% and 100% reduction in tumour size for late-, intermediate-, and early-stage TNBC, respectively. We also detected molecular-level perturbations in the expression patterns of several genes linked to breast cancer and cholesterol signalling pathways using RT2-PCR arrays and have identified SFRP1 as a direct binding partner to HPβCD through SPR drug interaction analysis. This work unravels mechanistic insights into HPβCD-induced cholesterol depletion, which leads to intrinsic apoptosis induction. Results from this study potentiate employing cholesterol depletion as a promising unconventional anticancer therapeutic strategy, which warrants future clinical investigations.
Collapse
Affiliation(s)
- Sourav Taru Saha
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS-2050, Johannesburg 2050, South Africa
| | - Naaziyah Abdulla
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS-2050, Johannesburg 2050, South Africa
| | - Tawanda Zininga
- Department of Biochemistry and Microbiology, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Reubina Wadee
- Department of Anatomical Pathology, School of Pathology, University of the Witwatersrand/National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS-2050, Johannesburg 2050, South Africa
| |
Collapse
|
40
|
Changsan N, Sawatdee S, Suedee R, Chunhachaichana C, Srichana T. Aqueous cannabidiol β-cyclodextrin complexed polymeric micelle nasal spray to attenuate in vitro and ex-vivo SARS-CoV-2-induced cytokine storms. Int J Pharm 2023; 640:123035. [PMID: 37182795 PMCID: PMC10181874 DOI: 10.1016/j.ijpharm.2023.123035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/23/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Cannabidiol (CBD) has a number of biological effects by acting on the cannabinoid receptors CB1 and CB2. CBD may be involved in anti-inflammatory processes via CB1 and CB2 receptors, resulting in a decrease of pro-inflammatory cytokines. However, CBD's poor aqueous solubility is a major issue in pharmaceutical applications. The aim of the present study was to develop and evaluate a CBD nasal spray solution. A water-soluble CBD was prepared by complexation with β-cyclodextrin (β-CD) at a stoichiometric ratio of 1:1 and forming polymeric micelles using poloxamer 407. The mixture was then lyophilized and characterized using FT-IR, DSC, and TGA. CBD-β-CD complex-polymeric micelles were formulated for nasal spray drug delivery. The physicochemical properties of the CBD-β-CD complex-polymeric micelle nasal spray solution (CBD-β-CDPM-NS) were assessed. The results showed that the CBD content in the CBD-β-CD complex polymeric micelle powder was 102.1 ± 0.5%. The CBD-β-CDPM-NS was a clear colorless isotonic solution. The particle size, zeta potential, pH value, and viscosity were 111.9 ± 0.7 nm, 0.8 ± 0.1 mV, 6.02 ± 0.02, and 12.04 ± 2.64 cP, respectively. This formulation was stable over six months at ambient temperature. The CBD from CBD-β-CDPM-NS rapidly released to 100% within 1 min. Ex-vivo permeation studies of CBD-β-CDPM-NS through porcine nasal mucosa revealed a permeation rate of 4.8 μg/cm2/min, which indicated that CBD was effective in penetrating nasal epithelial cells. CBD-β-CDPM-NS was tested for its efficacy and safety in terms of cytokine production from nasal immune cells and toxicity to nasal epithelial cells. The CBD-β-CDPM-NS was not toxic to nasal epithelial at the concentration of CBD equivalent to 3.125-50 μg/mL. When the formulation was subjected to bioactivity testing against monocyte-like macrophage cells, it proved that the CBD-β-CDPM-NS has the potential to inhibit inflammatory cytokines. CBD-β-CDPM-NS demonstrated the formulation's ability to reduce the cytokine produced by S-RBD stimulation in ex vivo porcine nasal mucosa in both preventative and therapeutic modes.
Collapse
Affiliation(s)
- Narumon Changsan
- College of Pharmacy, Rangsit University, Pathumtani 12000, Thailand
| | - Somchai Sawatdee
- Drug and Cosmetics Excellence Center and School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Roongnapa Suedee
- Molecular Recognition Materials Research Unit, Nanotec-PSU Center of Excellence on Drug Delivery System Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University Hat Yai, Songkhla 90112, Thailand
| | - Charisopon Chunhachaichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
41
|
Braga SS. Molecular Mind Games: The Medicinal Action of Cyclodextrins in Neurodegenerative Diseases. Biomolecules 2023; 13:biom13040666. [PMID: 37189413 DOI: 10.3390/biom13040666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Cyclodextrins are often used as molecular carriers for small active ingredients in medicine. Recently, the intrinsic medicinal activity of some of these compounds has been under investigation, mainly related to their ability to interfere with cholesterol and, therefore, prevent and treat cholesterol-related diseases such as cardiovascular disease and neuronal diseases arising from altered cholesterol and lipid metabolism. One of the most promising compounds within the cyclodextrin family is 2-hydroxypropyl-β-cyclodextrin (HPβCD), owing to its superior biocompatibility profile. This work presents the most recent advances in the research and clinical use of HPβCD against Niemann-Pick disease, a congenital condition involving cholesterol accumulation inside lysosomes in brain cells, Alzheimer's and Parkinson's. HPβCD plays a complex role in each of these ailments, going beyond the mere sequestering of cholesterol molecules and involving an overall regulation of protein expression that helps restore the normal functioning of the organism.
Collapse
Affiliation(s)
- Susana Santos Braga
- LAQV-REQUIMTE (Associated Laboratory for Green Chemistry), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
42
|
Ohashi M, Tamura A, Yui N. Exploring Receptor Binding Affinities and Hepatic Cell Association of N-Acetyl-d-Galactosamine-Modified β-Cyclodextrin-Based Polyrotaxanes for Liver-Targeted Therapies. Biomacromolecules 2023; 24:2327-2341. [PMID: 37036902 DOI: 10.1021/acs.biomac.3c00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Acid-degradable polyrotaxanes (PRXs) containing threading β-cyclodextrins (β-CDs) are promising candidates for therapeutic applications of β-CDs in metabolic diseases with cholesterol overload or imbalance. To improve cellular uptake specificity and efficiency of PRXs in hepatocytes, N-acetyl-d-galactosamine (GalNAc)-modified PRXs were developed to facilitate asialoglycoprotein receptor (ASGR)-mediated endocytosis. Binding affinity studies revealed that the dissociation constant (KD) values between recombinant ASGR and GalNAc-PRXs decreased with an increase in the number of modified GalNAc units. Additionally, the KD values for GalNAc-PRXs were smaller than those for GalNAc-modified β-CD and amylose, suggesting that the PRX backbone structure improves the binding affinity with ASGR. However, the intracellular uptake levels of GalNAc-PRXs in HepG2 cells increased with a decrease in the number of modified GalNAc units, which was opposite to the trend observed in the binding affinity study. We found that GalNAc-PRXs had a large number of GalNAc units localized in recycling endosomes, resulting in the low intracellular uptake. The cholesterol-reducing abilities of GalNAc-PRXs were assessed using cholesterol-overloaded HepG2 cells. GalNAc-PRXs with a small number of GalNAc units were demonstrated to show superior cholesterol-reducing effects compared to previously designed acid-degradable PRX and clinically tested β-CD derivatives. Thus, we conclude that GalNAc modification is a promising molecular design for the therapeutic application of β-CD-threaded PRXs in various metabolic diseases with cholesterol overload or imbalance in the liver.
Collapse
Affiliation(s)
- Moe Ohashi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
43
|
Cala Peralta A, Mejías FJR, Ayuso J, Rial C, Molinillo JMG, Álvarez JA, Schwaiger S, Macías FA. Host-guest complexation of phthalimide-derived strigolactone mimics with cyclodextrins. Application in agriculture against parasitic weeds. Org Biomol Chem 2023; 21:3214-3225. [PMID: 36988070 DOI: 10.1039/d3ob00229b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Parasitic weeds are noxious plants that damage crops of economic relevance, especially in Mediterranean and African countries. The strategy of suicidal germination was proposed to deal with this plague by using seed germination inducers that work as a pre-emergence herbicide and reduce the parasitic seed load before sowing. N-Substituted phthalimides with a furanone ring were found to be efficient in inducing the germination of Phelipanche ramosa and Orobanche cumana, two of the most problematic parasitic weeds of crops. However, the solubility of these compounds in water is low. A strategy for enhancing their aqueous solubility is the synthesis of host-guest complexes with cyclodextrins. Three bioactive phthalimide-lactones (PL01, PL04, and PL07) were selected and studied to form complexes of increased water solubility with α-, β-, HP-β-, and γ-cyclodextrin. The complexes obtained by the coprecipitation method, with increased aqueous solubility (up to 3.8 times), were studied for their bioactivity and they showed similar or slightly higher bioactivity than free phthalimide-lactones, even without the addition of organic solvents. A theoretical study using semiempirical calculations of molecular models including a solvation system confirmed the physicochemical empirical results. These results demonstrated that cyclodextrins can be used to improve the physicochemical and biological properties of parasitic seed germination inducers.
Collapse
Affiliation(s)
- Antonio Cala Peralta
- Department of Organic Chemistry, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain.
| | - Francisco J R Mejías
- Department of Organic Chemistry, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain.
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck CMBI, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Jesús Ayuso
- Physical Chemistry Department, Institute of Biomolecules (INBIO), Campus CEIA3, School of Science, University of Cadiz, C/Republica Saharaui 7, Puerto Real, Cádiz, 11510, Spain
| | - Carlos Rial
- Department of Organic Chemistry, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain.
| | - José M G Molinillo
- Department of Organic Chemistry, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain.
| | - José A Álvarez
- Physical Chemistry Department, Institute of Biomolecules (INBIO), Campus CEIA3, School of Science, University of Cadiz, C/Republica Saharaui 7, Puerto Real, Cádiz, 11510, Spain
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck CMBI, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Francisco A Macías
- Department of Organic Chemistry, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
44
|
Influence of β-Cyclodextrin Methylation on Host-Guest Complex Stability: A Theoretical Study of Intra- and Intermolecular Interactions as Well as Host Dimer Formation. Molecules 2023; 28:molecules28062625. [PMID: 36985598 PMCID: PMC10054123 DOI: 10.3390/molecules28062625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Understanding the non-covalent interactions in host-guest complexes is crucial to their stability, design and applications. Here, we use density functional theory to compare the ability of β-cyclodextrin (β-CD) and heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) to encapsulate the model guest phenol. For both macrocycles, we quantify the intramolecular interactions before and after the formation of the complex, as well as the intermolecular host-guest and host-host dimer interactions. These are individually classified as van der Waals interactions or hydrogen bonds, respectively. The results show a stronger intramolecular binding energy of β-CD, with the absolute difference being −5.53 kcal/mol relative to DM-β-CD. Consequently, the intermolecular interactions of both cyclodextrins with phenol are affected, such that the free binding energy calculated for the DM-β-CD/phenol complex (−5.23 kcal/mol) is ≈50% more negative than for the complex with β-CD (−2.62 kcal/mol). The latter is in excellent agreement with the experimental data (−2.69 kcal/mol), which validates the level of theory (B97-3c) used. Taken together, the methylation of β-CD increases the stability of the host-guest complex with the here studied guest phenol through stronger van der Waals interactions and hydrogen bonds. We attribute this to the disruption of the hydrogen bond network in the primary face of β-CD upon methylation, which influences the flexibility of the host toward the guest as well as the strength of the intermolecular interactions. Our work provides fundamental insights into the impact of different non-covalent interactions on host-guest stability, and we suggest that this theoretical framework can be adapted to other host-guest complexes to evaluate and quantify their non-covalent interactions.
Collapse
|
45
|
Fatmi S, Taouzinet L, Skiba M, Iguer-Ouada M. Camptothecin: Solubility, In-Vitro Drug Release, and Effect on Human Red Blood Cells and Sperm Cold Preservation. CRYOLETTERS 2023. [DOI: 10.54680/fr23210110712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND: Camptothecin (CPT) is an anticancer drug, and is not employed in the clinic because of its high hydrophobicity and low active form stability. CPT may also have potential for use in cold preservation. OBJECTIVE : To overcome these drawbacks, CPT solubility variations
in the presence of cyclodextrins (CDs) and polyethylene glycol (PEG) were evaluated by Higuchi solubility experiments. MATERIALS AND METHODS: CPT was encapsulated in different cyclodextrins and polyethylene glycol using a co-evaporation method. The CPT interactions with CDs and PEG
6000 were investigated by Fourier-transformed infrared spectroscopy (FT-IR), and X-ray powder diffraction (XRPD). Then, CPT complexes were evaluated for in-vitro drug release. To evaluate the potential anticancer efficacy of the CPT complexes system, in-vitro cytotoxicity studies on human
red blood cells were carried out using UV assay. The impact of the CPT complex systems on sperm motility protection during cold preservation at 4°C was studied using CASA. RESULTS: The dissolution profile of these preparations shows the improvement of the dissolution of the CPT
following a fickien diffusion. The CPT solubility and stability improvement were the cause of the cytotoxicity on the red blood cells test. However, CPT alone, encapsulated, dispersed, and chemically modified protected spermatozoids during cold preservation. CONCLUSION: We confirm the
interest in CPT encapsulated and dispersed in anticancer treatments. We also found that CPT encapsulated or dispersed could protect sperm against oxidative damage and improve the membrane integrity of human sperm. Consequently, CPT encapsulated our dispersed could eventually be beneficial
for infertility therapy.
Collapse
Affiliation(s)
- Sofiane Fatmi
- Technology Pharmaceutical Laboratory, Department of Processes Engineering, Faculty of Technology, Université de Bejaia, 06000 Bejaia, Algeria
| | - Lamia Taouzinet
- Associated Laboratory in Marine Ecosystems and Aquaculture, Faculty of Nature and Life Sciences, Université de Bejaia, 06000 Bejaia, Algeria
| | - Mohamed Skiba
- Technology Pharmaceutical and Bio pharmaceutics Laboratory, UFR Medicine and Pharmacy, Rouen University, 22 Blvd. Gambetta, 76183, Rouen, France
| | - Mokrane Iguer-Ouada
- Associated Laboratory in Marine Ecosystems and Aquaculture, Faculty of Nature and Life Sciences, Université de Bejaia, 06000 Bejaia, Algeria
| |
Collapse
|
46
|
Mayer BP, Kennedy DJ, Lau EY, Valdez CA. Evaluation of polyanionic cyclodextrins as high affinity binding scaffolds for fentanyl. Sci Rep 2023; 13:2680. [PMID: 36792632 PMCID: PMC9932099 DOI: 10.1038/s41598-023-29662-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Cyclodextrins (CDs) have been previously shown to display modest equilibrium binding affinities (Ka ~ 100-200 M-1) for the synthetic opioid analgesic fentanyl. In this work, we describe the synthesis of new CDs possessing extended thioalkylcarboxyl or thioalkylhydroxyl moieties and assess their binding affinity towards fentanyl hydrochloride. The optimal CD studied displays a remarkable affinity for the opioid of Ka = 66,500 M-1, the largest value reported for such an inclusion complex to date. One dimensional 1H Nuclear Magnetic Resonance (NMR) as well as Rotational Frame Overhauser Spectroscopy (2D-ROESY) experiments supported by molecular dynamics (MD) simulations suggest an unexpected binding behavior, with fentanyl able to bind the CD interior in one of two distinct orientations. Binding energies derived from the MD simulations work correlate strongly with NMR-derived affinities highlighting its utility as a predictive tool for CD candidate optimization. The performance of these host molecules portends their utility as platforms for medical countermeasures for opioid exposure, as biosensors, and in other forensic science applications.
Collapse
Affiliation(s)
- Brian P. Mayer
- grid.250008.f0000 0001 2160 9702Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 USA ,grid.250008.f0000 0001 2160 9702Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA L-090 94550 USA ,grid.250008.f0000 0001 2160 9702Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - Daniel J. Kennedy
- grid.250008.f0000 0001 2160 9702Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 USA ,grid.250008.f0000 0001 2160 9702Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA L-090 94550 USA ,grid.250008.f0000 0001 2160 9702Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - Edmond Y. Lau
- grid.250008.f0000 0001 2160 9702Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 USA ,grid.250008.f0000 0001 2160 9702Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA L-090 94550 USA ,grid.250008.f0000 0001 2160 9702Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - Carlos A. Valdez
- grid.250008.f0000 0001 2160 9702Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 USA ,grid.250008.f0000 0001 2160 9702Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA L-090 94550 USA ,grid.250008.f0000 0001 2160 9702Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| |
Collapse
|
47
|
Development and validation of a spectrophotometric method for quantification of residual cyclodextrin (DIMEB; Heptakis) in pertussis antigens. Biologicals 2023; 81:101663. [PMID: 36791626 DOI: 10.1016/j.biologicals.2023.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/24/2022] [Accepted: 01/14/2023] [Indexed: 02/15/2023] Open
Abstract
Methylated derivatives of cyclodextrins such as DIMEB (2,6-di-O-methyl)-β-cyclodextrin or Heptakis is commonly used as culture medium modifier in manufacturing of pertussis antigens for promoting the growth of bacteria. We report here development and validation of a spectrophotometric method for estimation of DIMEB in different product matrices of pertussis vaccine antigens i.e. Filamentous haemagglutinin (FHA), Pertactin (PRN) and Pertussis toxin (PT). The detection is based on characteristic reaction of hydrolyzed sugars derivatives from DIMEB i.e., furfural derivatives with anthrone reagent to form colored complexes which could be quantified at 625 nm. Method showed excellent linearity with correlation coefficient (R2) > 0.995 over the concentration of 5.0-80.0 μg. LOD and LOQ of 1.47 μg and 4.46 μg respectively was reported. The overall precision (repeatability and intermediate precision) showed % RSD for DIMEB content <10.0% for all the matrices. % Recoveries for DIMEB after three different spike levels (low, middle and high) were within 90%-113%. The method was successfully applied for determination of residual DIMEB in different product matrices of FHA, PRN and PT protein antigens. This can be used to monitor residual DIMEB levels during manufacturing of acellular pertussis antigens.
Collapse
|
48
|
Almeida B, Domingues C, Mascarenhas-Melo F, Silva I, Jarak I, Veiga F, Figueiras A. The Role of Cyclodextrins in COVID-19 Therapy-A Literature Review. Int J Mol Sci 2023; 24:2974. [PMID: 36769299 PMCID: PMC9918006 DOI: 10.3390/ijms24032974] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) emerged in December 2019 and quickly spread, giving rise to a pandemic crisis. Therefore, it triggered tireless efforts to identify the mechanisms of the disease, how to prevent and treat it, and to limit and hamper its global dissemination. Considering the above, the search for prophylactic approaches has led to a revolution in the reglementary pharmaceutical pipeline, with the approval of vaccines against COVID-19 in an unprecedented way. Moreover, a drug repurposing scheme using regulatory-approved antiretroviral agents is also being pursued. However, their physicochemical characteristics or reported adverse events have sometimes limited their use. Hence, nanotechnology has been employed to potentially overcome some of these challenges, particularly cyclodextrins. Cyclodextrins are cyclic oligosaccharides that present hydrophobic cavities suitable for complexing several drugs. This review, besides presenting studies on the inclusion of antiviral drugs in cyclodextrins, aims to summarize some currently available prophylactic and therapeutic schemes against COVID-19, highlighting those that already make use of cyclodextrins for their complexation. In addition, some new therapeutic approaches are underscored, and the potential application of cyclodextrins to increase their promising application against COVID-19 will be addressed. This review describes the instances in which the use of cyclodextrins promotes increased bioavailability, antiviral action, and the solubility of the drugs under analysis. The potential use of cyclodextrins as an active ingredient is also covered. Finally, toxicity and regulatory issues as well as future perspectives regarding the use of cyclodextrins in COVID-19 therapy will be provided.
Collapse
Affiliation(s)
- Beatriz Almeida
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cátia Domingues
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Silva
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ivana Jarak
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
49
|
Wang Q, Zhang A, Zhu L, Yang X, Fang G, Tang B. Cyclodextrin-based ocular drug delivery systems: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Khan SM, Witola WH. Past, current, and potential treatments for cryptosporidiosis in humans and farm animals: A comprehensive review. Front Cell Infect Microbiol 2023; 13:1115522. [PMID: 36761902 PMCID: PMC9902888 DOI: 10.3389/fcimb.2023.1115522] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
The intracellular protozoan parasite of the genus Cryptosporidium is among the leading causes of waterborne diarrheal disease outbreaks throughout the world. The parasite is transmitted by ingestion of infective oocysts that are highly stable in the environment and resistant to almost all conventional disinfection methods and water treatments. Control of the parasite infection is exceedingly difficult due to the excretion of large numbers of oocysts in the feces of infected individuals that contaminate the environment and serve as a source of infection for susceptible hosts including humans and animals. Drug development against the parasite is challenging owing to its limited genetic tractability, absence of conventional drug targets, unique intracellular location within the host, and the paucity of robust cell culture platforms for continuous parasite propagation. Despite the high prevalence of the parasite, the only US Food and Drug Administration (FDA)-approved treatment of Cryptosporidium infections is nitazoxanide, which has shown moderate efficacy in immunocompetent patients. More importantly, no effective therapeutic drugs are available for treating severe, potentially life-threatening cryptosporidiosis in immunodeficient patients, young children, and neonatal livestock. Thus, safe, inexpensive, and efficacious drugs are urgently required to reduce the ever-increasing global cryptosporidiosis burden especially in low-resource countries. Several compounds have been tested for both in vitro and in vivo efficacy against the disease. However, to date, only a few experimental compounds have been subjected to clinical trials in natural hosts, and among those none have proven efficacious. This review provides an overview of the past and present anti-Cryptosporidium pharmacotherapy in humans and agricultural animals. Herein, we also highlight the progress made in the field over the last few years and discuss the different strategies employed for discovery and development of effective prospective treatments for cryptosporidiosis.
Collapse
|