1
|
Song K, Lee E, Lee HS, Lee H, Lee JW, Chae HW, Kwon YJ. Comparison of SPISE and METS-IR and Other Markers to Predict Insulin Resistance and Elevated Liver Transaminases in Children and Adolescents. Diabetes Metab J 2025; 49:264-274. [PMID: 39532082 PMCID: PMC11960208 DOI: 10.4093/dmj.2024.0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGRUOUND Studies on predictive markers of insulin resistance (IR) and elevated liver transaminases in children and adolescents are limited. We evaluated the predictive capabilities of the single-point insulin sensitivity estimator (SPISE) index, metabolic score for insulin resistance (METS-IR), homeostasis model assessment of insulin resistance (HOMA-IR), the triglyceride (TG)/ high-density lipoprotein cholesterol (HDL-C) ratio, and the triglyceride-glucose index (TyG) for IR and alanine aminotransferase (ALT) elevation in this population. METHODS Data from 1,593 participants aged 10 to 18 years were analyzed using a nationwide survey. Logistic regression analysis was performed with IR and ALT elevation as dependent variables. Receiver operating characteristic (ROC) curves were generated to assess predictive capability. Proportions of IR and ALT elevation were compared after dividing participants based on parameter cutoff points. RESULTS All parameters were significantly associated with IR and ALT elevation, even after adjusting for age and sex, and predicted IR and ALT elevation in ROC curves (all P<0.001). The areas under the ROC curve of SPISE and METS-IR were higher than those of TyG and TG/HDL-C for predicting IR and were higher than those of HOMA-IR, TyG, and TG/HDL-C for predicting ALT elevation. The proportions of individuals with IR and ALT elevation were higher among those with METS-IR, TyG, and TG/ HDL-C values higher than the cutoff points, whereas they were lower among those with SPISE higher than the cutoff point. CONCLUSION SPISE and METS-IR are superior to TG/HDL-C and TyG in predicting IR and ALT elevation. Thus, this study identified valuable predictive markers for young individuals.
Collapse
Affiliation(s)
- Kyungchul Song
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eunju Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Hana Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ji-Won Lee
- Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Korea
| | - Hyun Wook Chae
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| |
Collapse
|
2
|
Sohn W, Lee YS, Kim SS, Kim JH, Jin YJ, Kim GA, Sung PS, Yoo JJ, Chang Y, Lee EJ, Lee HW, Choi M, Yu SJ, Jung YK, Jang BK. KASL clinical practice guidelines for the management of metabolic dysfunction-associated steatotic liver disease 2025. Clin Mol Hepatol 2025; 31:S1-S31. [PMID: 39967303 PMCID: PMC11925433 DOI: 10.3350/cmh.2025.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 02/20/2025] Open
Affiliation(s)
- Won Sohn
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Soon Sun Kim
- Department of Internal Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Hwaseong, Korea
| | - Young-Joo Jin
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Gi-Ae Kim
- Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Korea
| | - Pil Soo Sung
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Young Chang
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Eun Joo Lee
- Department of Pediatrics, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Won Lee
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Miyoung Choi
- Clinical Evidence Research, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Young Kul Jung
- Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Byoung Kuk Jang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
3
|
Song K, Seol EG, Lee E, Lee HS, Lee H, Chae HW, Shin HJ. Association between Bioelectrical Impedance Parameters, Magnetic Resonance Imaging Muscle Parameters, and Fatty Liver Severity in Children and Adolescents. Gut Liver 2025; 19:108-115. [PMID: 39748652 PMCID: PMC11736317 DOI: 10.5009/gnl240342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 01/04/2025] Open
Abstract
Background/Aims To evaluate the associations between pediatric fatty liver severity, bioelectrical impedance analysis (BIA), and magnetic resonance imaging parameters, including total psoas muscle surface area (tPMSA) and paraspinal muscle fat (PMF). Methods Children and adolescents who underwent BIA and liver magnetic resonance imaging between September 2022 and November 2023 were included. Linear regression analyses identified predictors of liver proton density fat fraction (PDFF) including BIA parameters, tPMSA, and PMF. Ordinal logistic regression analysis identified the association between these parameters and fatty liver grades. Pearson's correlation coefficients were used to evaluate the relationships between tPMSA and muscle-related BIA parameters, and between PMF and fat-related BIA parameters. Results Overall, 74 participants aged 8 to 16 years were included in the study. In the linear regression analyses, the percentage of body fat was positively associated with PDFF in all participants, whereas muscle-related BIA parameters were negatively associated with PDFF in participants with obesity. PMF and the PMF index were positively associated with PDFF in normalweight and overweight participants. In the ordinal logistic regression, percentage of body fat was positively associated with fatty liver grade in normal-weight and overweight participants and those with obesity, whereas muscle-related BIA parameters were negatively associated with fatty liver grade in participants with obesity. The PMF index was positively associated with fatty liver grade in normal/overweight participants. In the Pearson correlation analysis, muscle-related BIA parameters were correlated with tPMSA, and the fat-related BIA parameters were correlated with PMF. Conclusions BIA parameters and PMF are potential screening tools for assessing fatty liver in children.
Collapse
Affiliation(s)
- Kyungchul Song
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Gyung Seol
- Department of Pediatrics, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Eunju Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Hana Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Wook Chae
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Joo Shin
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| |
Collapse
|
4
|
Choi Y, Yang H, Jeon S, Cho KW, Kim SJ, Kim S, Lee M, Suh J, Chae HW, Kim HS, Song K. Prediction of insulin resistance and elevated liver transaminases using serum uric acid and derived markers in children and adolescents. Eur J Clin Nutr 2024; 78:864-871. [PMID: 39060541 DOI: 10.1038/s41430-024-01475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE To investigate the relationship of serum uric acid (Uacid) and derived parameters as predictors of insulin resistance (IR) and elevated liver transaminases in children and adolescents METHODS: Data of 1648 participants aged 10-18 years was analyzed using nationwide survey. Logistic regression analysis was performed with IR and elevated liver transaminases as dependent variables, and odds ratios (ORs) and 95% confidence intervals (CIs) for tertiles 2 and 3 of each parameter in comparison to tertile 1, which served as the reference. Receiver operating characteristic (ROC) curves were generated to assess predictability of the parameters for IR and elevated liver transaminases. RESULTS Hyperuricemia, IR, and elevated liver transaminases were significantly associated with each other. All Uacid and derived markers showed continuous increase in ORs and 95% CIs for IR and elevated liver transaminases across the tertiles of several biochemical and metabolic variables of interest (all p < 0.001), and were also significantly predictive in ROC curve. Overall, Uacid combined with obesity indices showed higher ORs and area under the curve (AUC) compared to Uacid alone. Uacid-body mass index (BMI) standard deviation score presented the largest AUC for IR. For elevated liver transaminases, Uacid-BMI and Uacid-waist-to-height ratio showed the largest AUC. CONCLUSIONS Uacid combined with obesity indices are robust markers for prediction of IR and elevated liver transaminases in children and adolescents. Uacid and derived markers have potential as simple markers which do not require fasting for screening of IR and elevated liver transaminases in children and adolescents.
Collapse
Affiliation(s)
- Youngha Choi
- Department of Pediatrics, Kangwon National University Hospital, Chuncheon, Republic of Korea
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyejin Yang
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soyoung Jeon
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Won Cho
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Jung Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sujin Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myeongseob Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junghwan Suh
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Wook Chae
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ho-Seong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyungchul Song
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Kim B, Jin HY, Yoon JS, Noh ES, Hwang IT. Triglyceride Glucose Index is Associated with Ultrasonographic Fatty Liver Indicator in Children and Adolescents with Non-alcoholic Fatty Liver Disease. J Clin Res Pediatr Endocrinol 2024; 16:306-313. [PMID: 38664989 PMCID: PMC11590764 DOI: 10.4274/jcrpe.galenos.2024.2024-2-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/25/2024] [Indexed: 09/06/2024] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is defined as chronic hepatic steatosis and is becoming prevalent, along with the increasing trend for obesity in children and adolescents. A non-invasive and reliable tool is needed to differentiate non-alcoholic steatohepatitis from simple steatosis. This study evaluated the association between the triglyceride glucose (TyG) index and the ultrasonographic fatty liver indicator (US-FLI), and the possibility of using the TyG index for prediction of severity of pediatric NAFLD. Methods One hundred and twenty one patients who were diagnosed with NAFLD by ultrasonography were included. They were categorized into three groups according to body mass index (BMI). Ninety-two were obese, and 19 and 10 were overweight and normal weight, respectively. Results The homeostatic model assessment for insulin resistance (HOMA-IR) was highest in the group with obesity (p=0.044). The TyG index and US-FLI did not differ significantly among the three BMI groups (p=0.186). Fourteen (11.6%) of the 121 patients had US-FLI ≥6, in whom the BMI-SDS and TyG index were higher (p=0.017, p=0.004), whereas HOMA-IR did not differ significantly from the group with US-FLI <6 (p=0.366). US-FLI was associated with BMI-SDS and the TyG index. TyG index was significantly associated with US-FLI after adjustment for BMI-SDS. The cut-off value for the TyG index for predicting US-FLI ≥6 was 8.91, with an area under the curve of 0.785. Conclusion TyG index was associated with the degree of hepatic steatosis, suggesting that it might be a useful tool for predicting the severity of pediatric NAFLD.
Collapse
Affiliation(s)
- Bitgyeol Kim
- Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Clinic of Pediatrics, Seoul, Korea
| | - Hye Young Jin
- Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Clinic of Pediatrics, Seoul, Korea
| | - Jong Seo Yoon
- Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Clinic of Pediatrics, Seoul, Korea
| | - Eu Seon Noh
- Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Clinic of Pediatrics, Seoul, Korea
| | - Il Tae Hwang
- Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Clinic of Pediatrics, Seoul, Korea
| |
Collapse
|
6
|
Zhang L, El-Shabrawi M, Baur LA, Byrne CD, Targher G, Kehar M, Porta G, Lee WS, Lefere S, Turan S, Alisi A, Weiss R, Faienza MF, Ashraf A, Sundaram SS, Srivastava A, De Bruyne R, Kang Y, Bacopoulou F, Zhou YH, Darma A, Lupsor-Platon M, Hamaguchi M, Misra A, Méndez-Sánchez N, Ng NBH, Marcus C, Staiano AE, Waheed N, Alqahtani SA, Giannini C, Ocama P, Nguyen MH, Arias-Loste MT, Ahmed MR, Sebastiani G, Poovorawan Y, Al Mahtab M, Pericàs JM, Reverbel da Silveira T, Hegyi P, Azaz A, Isa HM, Lertudomphonwanit C, Farrag MI, Nugud AAA, Du HW, Qi KM, Mouane N, Cheng XR, Al Lawati T, Fagundes EDT, Ghazinyan H, Hadjipanayis A, Fan JG, Gimiga N, Kamal NM, Ștefănescu G, Hong L, Diaconescu S, Li M, George J, Zheng MH. An international multidisciplinary consensus on pediatric metabolic dysfunction-associated fatty liver disease. MED 2024; 5:797-815.e2. [PMID: 38677287 DOI: 10.1016/j.medj.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is highly prevalent in children and adolescents, particularly those with obesity. NAFLD is considered a hepatic manifestation of the metabolic syndrome due to its close associations with abdominal obesity, insulin resistance, and atherogenic dyslipidemia. Experts have proposed an alternative terminology, metabolic dysfunction-associated fatty liver disease (MAFLD), to better reflect its pathophysiology. This study aimed to develop consensus statements and recommendations for pediatric MAFLD through collaboration among international experts. METHODS A group of 65 experts from 35 countries and six continents, including pediatricians, hepatologists, and endocrinologists, participated in a consensus development process. The process encompassed various aspects of pediatric MAFLD, including epidemiology, mechanisms, screening, and management. FINDINGS In round 1, we received 65 surveys from 35 countries and analyzed these results, which informed us that 73.3% of respondents agreed with 20 draft statements while 23.8% agreed somewhat. The mean percentage of agreement or somewhat agreement increased to 80.85% and 15.75%, respectively, in round 2. The final statements covered a wide range of topics related to epidemiology, pathophysiology, and strategies for screening and managing pediatric MAFLD. CONCLUSIONS The consensus statements and recommendations developed by an international expert panel serve to optimize clinical outcomes and improve the quality of life for children and adolescents with MAFLD. These findings emphasize the need for standardized approaches in diagnosing and treating pediatric MAFLD. FUNDING This work was funded by the National Natural Science Foundation of China (82070588, 82370577), the National Key R&D Program of China (2023YFA1800801), National High Level Hospital Clinical Research Funding (2022-PUMCH-C-014), the Wuxi Taihu Talent Plan (DJTD202106), and the Medical Key Discipline Program of Wuxi Health Commission (ZDXK2021007).
Collapse
Affiliation(s)
- Le Zhang
- Department of Paediatrics, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Mortada El-Shabrawi
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Louise A Baur
- Children's Hospital Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Mohit Kehar
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Eastern Ontario, Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Gilda Porta
- Pediatric Hepatology, Transplant Unit, Hospital Sírio-Libanês, Hospital Municipal Infantil Menino Jesus, Sau Paulo, Brazil
| | - Way Seah Lee
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Sander Lefere
- Hepatology Research Unit, Department Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Serap Turan
- Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ram Weiss
- Department of Pediatrics, Ruth Children's Hospital, Rambam Medical Center and the Bruce Rappaport School of Medicine, Technion, Haifa, Israel
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
| | - Ambika Ashraf
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shikha S Sundaram
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Pediatric Liver Center, Children's Hospital Colorado, University of Colorado School of Medicine and Anschutz Medical Campus, Aurora, CO, USA
| | - Anshu Srivastava
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ruth De Bruyne
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Ghent University Hospital, Ghent, Belgium
| | - Yunkoo Kang
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, Aghia Sophia Children's Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; University Research Institute of Maternal and Child Health & Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yong-Hai Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andy Darma
- Department of Pediatrics, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Monica Lupsor-Platon
- Department of Medical Imaging, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; "Prof. Dr. O. Fodor" Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Anoop Misra
- Fortis-C-DOC Centre of Excellence for Diabetes, Metabolic Diseases and Endocrinology, New Delhi, India; National Diabetes, Obesity and Cholesterol Foundation (N-DOC), New Delhi, India; Diabetes Foundation, New Delhi, India
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic and Foundation and Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Nicholas Beng Hui Ng
- Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Claude Marcus
- Department of Clinical Science, Intervention and Technology, Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| | | | - Nadia Waheed
- Department of Pediatrics, Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Saleh A Alqahtani
- Organ Transplantation Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Ponsiano Ocama
- Department of Internal Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University Medical Center, Palo Alto, CA, USA; Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Maria Teresa Arias-Loste
- Hospital Universitario Marqués de Valdecilla, Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Mohamed Rabea Ahmed
- Department of Pediatrics, Jahra Hospital, Kuwait and Department of Pediatrics, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Cairo, Egypt
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology and Division of Infectious Diseases, McGill University Health Centre, Montreal, QC, Canada
| | - Yong Poovorawan
- Centre of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Juan M Pericàs
- Liver Unit, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Centros de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Amer Azaz
- Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Hasan M Isa
- Pediatric Department, Salmaniya Medical Complex and Pediatric Department, Arabian Gulf University, Manama, Bahrain
| | - Chatmanee Lertudomphonwanit
- Division of Gastroenterology, Department of Paediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Mona Issa Farrag
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Abd Alwahab Nugud
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hong-Wei Du
- Department of Paediatrics, First Hospital of Jilin University, Changchun, China
| | - Ke-Min Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Nezha Mouane
- Department of Pediatric Gastroenterology Hepatology and Nutrition, Academic Children's Hospital Ibn Sina, Mohammed V University, Rabat, Morocco
| | - Xin-Ran Cheng
- Department of Paediatric Genetics, Endocrinology and Metabolism, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Eleonora D T Fagundes
- Department of Pediatrics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Hasmik Ghazinyan
- Department of Hepatology, Nikomed Medical Center, Yerevan, Armenia
| | | | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Nicoleta Gimiga
- Clinical Department of Pediatric Gastroenterology, "St. Mary" Emergency Children's Hospital, Iași, Romania; Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Naglaa M Kamal
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt; Pediatric Hepatology and Gastroenterology, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Gabriela Ștefănescu
- Department of Gastroenterology, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Li Hong
- Department of Clinical Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Smaranda Diaconescu
- Medical-Surgical Department, Faculty of Medicine, University "Titu Maiorescu", Bucuresti, Romania
| | - Ming Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Sydney, NSW, Australia.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
7
|
Lee C, Schwimmer JB, Gunderson EP, Goyal NP, Darbinian JA, Greenspan LC, Lo JC. Alanine aminotransferase elevation varies by ethnicity among Asian and Pacific Islander children with overweight or obesity. Pediatr Obes 2024; 19:e13110. [PMID: 38444225 DOI: 10.1111/ijpo.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Limited research on alanine aminotransferase (ALT) screening for metabolic dysfunction-associated steatotic liver disease (MASLD) among US Asian/Pacific Islander (PI) children necessitates investigation in this heterogeneous population. OBJECTIVE Examine ALT elevation among Asian/PI children with overweight or obesity. METHODS Elevated ALT prevalence (clinical threshold) and association with body mass index ≥85th percentile were compared among 18 402 Asian/PI and 25 376 non-Hispanic White (NHW) children aged 9-17 years using logistic regression. RESULTS ALT elevation was more prevalent among Asian/PI (vs. NHW) males with overweight (4.0% vs. 2.7%), moderate (7.8% vs. 5.3%) and severe obesity (16.6% vs. 11.5%), and females with moderate (5.1% vs. 3.0%) and severe obesity (10.2% vs. 5.2%). Adjusted odds of elevated ALT were 1.6-fold and ~2-fold higher for Asian/PI (vs. NHW) males and females (with obesity), respectively. Filipino, Chinese and Southeast Asian males had 1.7-2.1-fold higher odds, but Native Hawaiian/PI (NHPI) and South Asian males did not significantly differ (vs. NHW). Filipina and Chinese females with obesity had >2-fold higher odds, Southeast and South Asian females did not differ and NHPI findings were mixed (vs. NHW). CONCLUSION High elevated ALT prevalence among Asian/PI children with overweight and obesity emphasizes the need for MASLD risk assessment and examination of ethnic subgroups.
Collapse
Affiliation(s)
- Catherine Lee
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California, USA
| | - Jeffrey B Schwimmer
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Diego School of Medicine, San Diego, California, USA
- Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| | - Erica P Gunderson
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California, USA
| | - Nidhi P Goyal
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California San Diego School of Medicine, San Diego, California, USA
- Department of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| | - Jeanne A Darbinian
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Louise C Greenspan
- The Permanente Medical Group, Oakland, California, USA
- Department of Pediatrics, Division of Pediatric Endocrinology, Kaiser Permanente San Francisco Medical Center, San Francisco, California, USA
| | - Joan C Lo
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California, USA
- The Permanente Medical Group, Oakland, California, USA
| |
Collapse
|
8
|
Song K, Seol EG, Yang H, Jeon S, Shin HJ, Chae HW, Kim EK, Kwon YJ, Lee JW. Bioelectrical impedance parameters add incremental value to waist-to-hip ratio for prediction of metabolic dysfunction associated steatotic liver disease in youth with overweight and obesity. Front Endocrinol (Lausanne) 2024; 15:1385002. [PMID: 38883602 PMCID: PMC11177119 DOI: 10.3389/fendo.2024.1385002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD) presents a growing health concern in pediatric populations due to its association with obesity and metabolic syndrome. Bioelectrical impedance analysis (BIA) offers a non-invasive and potentially effective alternative for identifying MASLD risk in youth with overweight or obesity. Therefore, this study aimed to assess the utility of BIA for screening for MASLD in the youth. Method This retrospective, cross-sectional study included 206 children and adolescents aged <20 years who were overweight and obese. The correlations between anthropometric measurements and BIA parameters and alanine aminotransferase (ALT) levels were assessed using Pearson's correlation analysis. Logistic regression analysis was performed to examine the associations between these parameters and ALT level elevation and MASLD score. Receiver operating characteristic (ROC) curves were generated to assess the predictive ability of the parameters for MASLD. Results Pearson's correlation analysis revealed that waist-to-hip ratio (WHR), percentage body fat (PBF), and BIA parameters combined with anthropometric measurements were correlated with ALT level. Logistic regression revealed that WHR, skeletal muscle mass/WHR, PBF-WHR, fat-free mass/WHR, and appendicular skeletal muscle mass/WHR were correlated with ALT level elevation after adjusting for age, sex, and puberty. WHR, PBF-WHR, and visceral fat area (VFA)-WHR were positively correlated with the MASLD score in the total population after adjusting for age, sex, and puberty. PBF-WHR and VFA-WHR were correlated with the MASLD score even in youth with a normal ALT level. The cutoff points and area under the ROC curves were 34.6 and 0.69 for PBF-WHR, respectively, and 86.6 and 0.79 for VFA-WHR, respectively. Discussion This study highlights the utility of combining BIA parameters and WHR in identifying the risk of MASLD in overweight and obese youth, even in those with a normal ALT level. BIA-based screening offers a less burdensome and more efficient alternative to conventional MASLD screening methods, facilitating early detection and intervention in youth at risk of MASLD.
Collapse
Affiliation(s)
- Kyungchul Song
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Gyung Seol
- Department of Pediatrics, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Republic of Korea
| | - Hyejin Yang
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soyoung Jeon
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Joo Shin
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Republic of Korea
| | - Hyun Wook Chae
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun-Kyung Kim
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Republic of Korea
| | - Yu-Jin Kwon
- Department of Family Medicine, Yonsei University College of Medicine, Yongin Severance Hospital, Yongin-si, Republic of Korea
| | - Ji-Won Lee
- Department of Family Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Liu H, Chen J, Qin Q, Yan S, Wang Y, Li J, Ding S. Association between TyG index trajectory and new-onset lean NAFLD: a longitudinal study. Front Endocrinol (Lausanne) 2024; 15:1321922. [PMID: 38476672 PMCID: PMC10927994 DOI: 10.3389/fendo.2024.1321922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
OBJECTIVE The purpose of this manuscript is to identify longitudinal trajectories of changes in triglyceride glucose (TyG) index and investigate the association of TyG index trajectories with risk of lean nonalcoholic fatty liver disease (NAFLD). METHODS Using data from 1,109 participants in the Health Management Cohort longitudinal study, we used Latent Class Growth Modeling (LCGM) to develop TyG index trajectories. Using a Cox proportional hazard model, the relationship between TyG index trajectories and incident lean NAFLD was analyzed. Restricted cubic splines (RCS) were used to visually display the dose-response association between TyG index and lean NAFLD. We also deployed machine learning (ML) via Light Gradient Boosting Machine (LightGBM) to predict lean NAFLD, validated by receiver operating characteristic curves (ROCs). The LightGBM model was used to create an online tool for medical use. In addition, NAFLD was assessed by abdominal ultrasound after excluding other liver fat causes. RESULTS The median age of the population was 46.6 years, and 440 (39.68%) of the participants were men. Three distinct TyG index trajectories were identified: "low stable" (TyG index ranged from 7.66 to 7.71, n=206, 18.5%), "moderate stable" (TyG index ranged from 8.11 to 8.15, n=542, 48.8%), and "high stable" (TyG index ranged from 8.61 to 8.67, n=363, 32.7%). Using a "low stable" trajectory as a reference, a "high stable" trajectory was associated with an increased risk of lean-NAFLD (HR: 2.668, 95% CI: 1.098-6.484). After adjusting for baseline age, WC, SBP, BMI, and ALT, HR increased slightly in "moderate stable" and "high stable" trajectories to 1.767 (95% CI:0.730-4.275) and 2.668 (95% CI:1.098-6.484), respectively. RCS analysis showed a significant nonlinear dose-response relationship between TyG index and lean NAFLD risk (χ2 = 11.5, P=0.003). The LightGBM model demonstrated high accuracy (Train AUC 0.870, Test AUC 0.766). An online tool based on our model was developed to assist clinicians in assessing lean NAFLD risk. CONCLUSION The TyG index serves as a promising noninvasive marker for lean NAFLD, with significant implications for clinical practice and public health policy.
Collapse
Affiliation(s)
- Haoshuang Liu
- Health Management Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jingfeng Chen
- Health Management Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qian Qin
- Health Management Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su Yan
- Health Management Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youxiang Wang
- Health Management Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jiaoyan Li
- Health Management Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Suying Ding
- Health Management Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Oh KE, Kim YJ, Oh YR, Kang E, Nam HK, Rhie YJ, Lee KH. Glycemic control and complications of type 2 diabetes mellitus in children and adolescents during the COVID-19 outbreak. Ann Pediatr Endocrinol Metab 2023; 28:275-282. [PMID: 40176278 PMCID: PMC10765022 DOI: 10.6065/apem.2244214.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/10/2022] [Accepted: 02/16/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE This study aimed to investigate the impact of coronavirus disease 2019 (COVID-19) on type 2 diabetes mellitus (T2DM) in children and adolescents. METHODS Children and adolescents diagnosed with T2DM who visited the Korea University Hospital in 2019 and 2020 were retrospectively analyzed, including changes in body mass index (BMI)-standard deviation score (SDS), glycated hemoglobin (HbA1c), diabetes complications, and diabetes management from 2019 to 2020. RESULTS Patient mean age and disease duration were 15.48±2.15 and 2.56±1.51 years, respectively. Obese patients accounted for 70.6% of the study population. From 2019 to 2020, mean BMI-SDS (2.21±1.25 vs. 2.35±1.43, P=0.044), HbA1c level (6.5%±2.72% vs. 7.3%±3.70%, P<0.001), blood pressure (BP), total cholesterol, and non-high-density lipoprotein cholesterol level in all patients increased significantly. Obesity was an independent predictor of increased HbA1c (95% confidence interval, 1.071-50.384; P=0.042). HbA1c levels did not increase significantly in nonobese patients, whereas HbA1c (6.45%±2.30% vs. 7.20%±3.05%, P<0.001), BMI-SDS (2.88±0.75 vs. 3.08±0.98, P=0.045), diastolic BP (P=0.037), and total cholesterol values (P=0.019) increased in obese patients in 2020 compared to 2019. CONCLUSION During the COVID-19 outbreak, glycemic control and diabetic complications worsened in children and adolescents with T2DM, particularly in obese patients. Close monitoring for glycemic control and diabetic complications is necessary in children and adolescents with T2DM, especially those with obesity.
Collapse
Affiliation(s)
- Kyeong Eun Oh
- Department of Pediatrics, Woori Children’s Hospital, Seoul, Korea
| | - Yu Jin Kim
- Department of Pediatrics, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Ye Rim Oh
- Department of Pediatrics, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Eungu Kang
- Department of Pediatrics, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Hyo-Kyoung Nam
- Department of Pediatrics, Korea University Kuro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Young-Jun Rhie
- Department of Pediatrics, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Kee-Hyoung Lee
- Department of Pediatrics, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Song K, Kim HS, Chae HW. Nonalcoholic fatty liver disease and insulin resistance in children. Clin Exp Pediatr 2023; 66:512-519. [PMID: 36634667 PMCID: PMC10694550 DOI: 10.3345/cep.2022.01312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a spectrum of liver diseases characterized by excessive fat accumulation, is the leading cause of chronic liver disease. The global prevalence of NAFLD is increasing in both adults and children. In Korea, the prevalence of pediatric NAFLD increased from 8.2% in 2009 to 12.1% in 2018 according to a national surveillance study. For early screening of pediatric NAFLD, laboratory tests including aspartate aminotransferase and alanine aminotransferase; biomarkers including hepatic steatosis index, triglyceride glucose index, and fibrosis-4 index; and imaging studies including ultrasonography and magnetic resonance imaging are required. Insulin resistance plays a major role in the pathogenesis of NAFLD, which promotes insulin resistance. Thus, the association between NAFLD and insulin resistance, diabetes mellitus, and metabolic syndrome has been reported in many studies. This review addresses issues related to the epidemiology and investigation of NAFLD as well as the association between NAFLD and insulin resistance and metabolic syndrome with focus on pediatric NAFLD.
Collapse
Affiliation(s)
- Kyungchul Song
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Ho-Seong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Wook Chae
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Xing Y, Zhang P, Li X, Jin S, Xu M, Jia J, Wang HJ, Li L, Wang H. New predictive models and indices for screening MAFLD in school-aged overweight/obese children. Eur J Pediatr 2023; 182:5025-5036. [PMID: 37648793 DOI: 10.1007/s00431-023-05175-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Currently, most predictions of metabolic-associated fatty liver disease (MAFLD) in school-aged children utilize indicators that usually predict nonalcoholic fatty liver disease (NAFLD). The present study aimed to develop new predictive models and predictors for children with MAFLD, which could enhance the feasibility of MAFLD screening programs in the future. A total of 331 school-aged overweight/obese children were recruited from six primary schools in Ningbo city, China. Hepatic steatosis and fibrosis were detected with controlled attenuation parameter (CAP) and liver stiffness measurement (LSM), respectively. Machine learning methods were adapted to build a set of variables to predict MAFLD in children. Then, the area under the curve (AUC) of multiple models and indices was compared to predict pediatric MAFLD. Compared with non-MAFLD children, children with MAFLD had more obvious metabolic disturbances, as they had higher anthropometric indicators, alanine aminotransferase, fasting plasma glucose, and inflammation indicators (white blood cell count, hemoglobin, neutrophil count) (all P < 0.05). The optimal variables for all subjects selected by random forest (RF) were alanine aminotransferase, uric acid, insulin, and BMI. The logistic regression (LR) model performed best, with AUC values of 0.758 for males and 0.642 for females in predicting MAFLD. LnAI-BMI, LnAI, and LnAL-WHtR were approving indices for predicting pediatric MAFLD in all participants, boys and girls individually. CONCLUSIONS This study developed LR models and sex-specific indices for predicting MAFLD in overweight/obese children that may be useful for widespread screening and identification of children at high risk of MAFLD for early treatment. WHAT IS KNOWN • Most of the indicators predicting pediatric MAFLD are derived from the predictive indicators for NAFLD, but the diagnostic criteria for MAFLD and NAFLD are not exactly the same. • The accuracy of predictors based on routine physical examination and blood biochemical indicators to diagnose MAFLD is limited. WHAT IS NEW • This study developed indicators based on routine examination parameters that have approving performance for MAFLD, with AUC values exceeding 0.70.
Collapse
Affiliation(s)
- Yunfei Xing
- Department of Maternal and Child Health, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - PingPing Zhang
- Ningbo Center for Healthy Lifestyle Research, Ningbo City First Hospital, Ningbo, Zhejiang Province, 315000, China
| | - Xueying Li
- Department of Maternal and Child Health, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Shifeng Jin
- Department of Maternal and Child Health, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, Zhejiang Province, 315000, China
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Hai-Jun Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, Zhejiang Province, 315000, China.
| | - Hui Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
13
|
Rupasinghe K, Hind J, Hegarty R. Updates in Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) in Children. J Pediatr Gastroenterol Nutr 2023; 77:583-591. [PMID: 37592398 DOI: 10.1097/mpg.0000000000003919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The obesity epidemic is one of the major health concerns of the 21st century. Nonalcoholic fatty liver disease (NAFLD) is linked with the increased adiposity associated with obesity. NAFLD has become the most frequent cause of chronic liver disease in adults and children worldwide. Metabolic dysfunction-associated fatty liver disease (MAFLD) also known in children as pediatric fatty liver disease (PeFLD) type 2 has begun to supersede NAFLD as the preferred nomenclature in the pediatric population. Evidence suggests the etiology of MAFLD is multifactorial, related to the complex interplay of hormonal, nutritional, genetic, and environmental factors. Current limitations in accurate diagnostic biomarkers have rendered it a diagnosis of exclusion and it is important to exclude alternative or coexisting causes of PeFLD. Lifestyle changes and modifications remains the primary treatment modality in MAFLD in children. Weight loss of 7%-10% is described as reversing MAFLD in most patients. The Mediterranean diet also shows promise in reversing MAFLD. Pharmacological intervention is debatable in children, and though pediatric trials have not shown promise, other agents undergoing adult clinical trials show promise. This review outlines the latest evidence in pediatric MAFLD and its management.
Collapse
Affiliation(s)
- Kushila Rupasinghe
- From the Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
| | | | | |
Collapse
|
14
|
Song K, Yang J, Lee HS, Oh JS, Kim S, Lee M, Suh J, Kwon A, Kim HS, Chae HW. Parental metabolic syndrome and elevated liver transaminases are risk factors for offspring, even in children and adolescents with a normal body mass index. Front Nutr 2023; 10:1166244. [PMID: 37941769 PMCID: PMC10627857 DOI: 10.3389/fnut.2023.1166244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction The parent-child correlation in metabolic syndrome (MetS) and elevated transaminases is sparsely researched. We assessed the correlation of parental MetS and elevated transaminase status with these conditions in their children. Methods Data of 4,167 youths aged 10-18 years were analyzed in a population-based survey, and the parental characteristics were stratified by the presence or absence of MetS or alanine aminotransferase (ALT) elevation in their children. The prevalence of these conditions in children was analyzed according to their parents' status. Logistic regression analyses were performed with MetS and ALT elevation in youth as the dependent variables. Results The proportions of MetS and ALT elevation were higher in parents of children with MetS and ALT elevation than in those without, even among youths without obesity. In logistic regression analyses, age, body mass index-standard deviation score (BMI-SDS), and ALT elevation were positively associated with MetS, whereas age, male sex, BMI-SDS, protein intake, and MetS were positively associated with ALT elevation. Higher protein intake was related to ALT elevation, whereas metabolic components and nutritional factors were closely related in parents and their children. Odds ratios (OR) of ALT elevation for MetS was 8.96 even after adjusting nutritional factors in the children. The OR was higher for ALT elevation in the children of parents with MetS and ALT elevation compared to those without. ORs for MetS and ALT elevation in the children of parents with MetS were higher than those of children of parents without MetS, even after adjusting for nutritional intake. ORs for ALT elevation were higher in the children of parents with ALT elevation than those without, even after adjusting for nutritional intake and BMI of parents as well as the nutritional intake, age, sex, and BMI-SDS of the children. Conclusion MetS and elevated liver transaminase statuses in children were associated with those of their parents even after adjusting for nutritional factors, and the relationships were more prominent in the youth without obesity.
Collapse
Affiliation(s)
- Kyungchul Song
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Juyeon Yang
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Suk Oh
- Department of Pediatrics, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Sujin Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myeongseob Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junghwan Suh
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ahreum Kwon
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ho-Seong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Wook Chae
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Song K, Yang J, Lee HS, Kim SJ, Lee M, Suh J, Kwon A, Kim HS, Chae HW. Changes in the Prevalences of Obesity, Abdominal Obesity, and Non-Alcoholic Fatty Liver Disease among Korean Children during the COVID-19 Outbreak. Yonsei Med J 2023; 64:269-277. [PMID: 36996898 PMCID: PMC10067793 DOI: 10.3349/ymj.2022.0540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 04/01/2023] Open
Abstract
PURPOSE We aimed to investigate the prevalences of obesity, abdominal obesity, and non-alcoholic fatty liver disease (NAFLD) among children and adolescents during the coronavirus disease 2019 (COVID-19) outbreak. MATERIALS AND METHODS This population-based study investigated the prevalences of obesity, abdominal obesity, and NAFLD among 1428 children and adolescents between 2018-2019 and 2020. We assessed the prevalences of obesity, abdominal obesity, and NAFLD according to body mass index, age, sex, and residential district. Logistic regression analyses were performed to determine the relationships among obesity, abdominal obesity, and NAFLD. RESULTS In the obese group, the prevalence of abdominal obesity increased from 75.55% to 92.68%, and that of NAFLD increased from 40.68% to 57.82%. In age-specific analysis, the prevalence of abdominal obesity increased from 8.25% to 14.11% among participants aged 10-12 years and from 11.70% to 19.88% among children aged 13-15 years. In residential district-specific analysis, the prevalence of both abdominal obesity and NAFLD increased from 6.96% to 15.74% in rural areas. In logistic regression analysis, the odds ratio of abdominal obesity for NAFLD was 11.82. CONCLUSION Our results demonstrated that the prevalences of abdominal obesity and NAFLD increased among obese Korean children and adolescents and in rural areas during the COVID-19 outbreak. Additionally, the prevalence of abdominal obesity increased among young children. These findings suggest the importance of closely monitoring abdominal obesity and NAFLD among children during COVID-19, focusing particularly on obese young children and individuals in rural areas.
Collapse
Affiliation(s)
- Kyungchul Song
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Juyeon Yang
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Kim
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Myeongseob Lee
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Junghwan Suh
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ahreum Kwon
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ho-Seong Kim
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Wook Chae
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
16
|
Shaheen M, Schrode KM, Tedlos M, Pan D, Najjar SM, Friedman TC. Racial/ethnic and gender disparity in the severity of NAFLD among people with diabetes or prediabetes. Front Physiol 2023; 14:1076730. [PMID: 36891143 PMCID: PMC9986441 DOI: 10.3389/fphys.2023.1076730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Aim: Non-alcoholic fatty liver disease (NAFLD) exhibits a racial disparity. We examined the prevalence and the association between race, gender, and NAFLD among prediabetes and diabetes populations among adults in the United States. Methods: We analyzed data for 3,190 individuals ≥18 years old from the National Health and Nutrition Examination Survey (NHANES) 2017-2018. NAFLD was diagnosed by FibroScan® using controlled attenuation parameter (CAP) values: S0 (none) < 238, S1 (mild) = 238-259, S2 (moderate) = 260-290, S3 (severe) > 290. Data were analyzed using Chi-square test and multinomial logistic regression, adjusting for confounding variables and considering the design and sample weights. Results: Of the 3,190 subjects, the prevalence of NAFLD was 82.6%, 56.4%, and 30.5% (p < 0.0001) among diabetes, prediabetes and normoglycemia populations respectively. Mexican American males with prediabetes or diabetes had the highest prevalence of severe NAFLD relative to other racial/ethnic groups (p < 0.05). In the adjusted model, among the total, prediabetes, and diabetes populations, a one unit increase in HbA1c was associated with higher odds of severe NAFLD [adjusted odds ratio (AOR) = 1.8, 95% confidence level (CI) = 1.4-2.3, p < 0.0001; AOR = 2.2, 95% CI = 1.1-4.4, p = 0.033; and AOR = 1.5, 95% CI = 1.1-1.9, p = 0.003 respectively]. Conclusion: We found that prediabetes and diabetes populations had a high prevalence and higher odds of NAFLD relative to the normoglycemic population and HbA1c is an independent predictor of NAFLD severity in prediabetes and diabetes populations. Healthcare providers should screen prediabetes and diabetes populations for early detection of NAFLD and initiate treatments including lifestyle modification to prevent the progression to non-alcoholic steatohepatitis or liver cancer.
Collapse
Affiliation(s)
- Magda Shaheen
- Charles R. Drew University, Los Angeles, CA, United States
| | | | | | - Deyu Pan
- Charles R. Drew University, Los Angeles, CA, United States
| | - Sonia M. Najjar
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | | |
Collapse
|
17
|
Prosperi S, Chiarelli F. COVID-19 and diabetes in children. Ann Pediatr Endocrinol Metab 2022; 27:157-168. [PMID: 36203266 PMCID: PMC9537670 DOI: 10.6065/apem.2244150.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 01/08/2023] Open
Abstract
This review describes the impact of coronavirus disease 2019 (COVID-19) in children and adolescents, investigating changes in diabetes presentation during the COVID-19 pandemic, possible links between severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection and diabetes, and mechanisms of pancreatic β-cell destruction. Although glycemic control in individuals with already known diabetes mellitus did not worsen during the pandemic, there was a worrying increase in diabetic ketoacidosis in children with new-onset diabetes, probably due to containment measures and delayed access to emergency departments. Moreover, new evidence suggests that SARS-CoV-2 has the capacity to directly and indirectly induce pancreatic β-cell destruction, and the risk of newly diagnosed diabetes after COVID-19 increased in both children and adults. While long-term studies continue to follow children with SARS-CoV-2 infection, this review discusses available findings on the relationship between COVID-19 and diabetes. It is important to emphasize the need to maintain close links between families of children with chronic conditions and their pediatricians, as well as to promote early access to healthcare services, in order to reduce dangerous delays in diabetes diagnosis and prevent diabetic ketoacidosis.
Collapse
Affiliation(s)
| | - Francesco Chiarelli
- Address for correspondence: Francesco Chiarelli Department of Pediatrics, University of Chieti, Via dei Vestini, 5, I-66100 Chieti, Italy
| |
Collapse
|
18
|
Song K, Son NH, Chang DR, Chae HW, Shin HJ. Feasibility of Ultrasound Attenuation Imaging for Assessing Pediatric Hepatic Steatosis. BIOLOGY 2022; 11:biology11071087. [PMID: 36101465 PMCID: PMC9313139 DOI: 10.3390/biology11071087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
We investigated the feasibility of ultrasound attenuation imaging (ATI) for assessing pediatric hepatic steatosis. A total of 111 children and adolescents who underwent liver ultrasonography with ATI for suspected hepatic steatosis were included. Participants were classified into the normal, mild, or moderate−severe fatty liver group according to grayscale US findings. Associations between clinical factors, magnetic resonance imaging proton density fat fraction, steatosis stage and ATI values were evaluated. To determine the cutoff values of ATI for staging hepatic steatosis, areas under the curve (AUCs) were analyzed. Factors that could cause measurement failure with ATI were assessed. Of 111 participants, 88 had successful measurement results. Median ATI values were significantly increased according to steatosis stage (p < 0.001). Body mass index (BMI) was a significant factor for increased ATI values (p = 0.047). To differentiate fatty liver from normal liver, a cutoff value of 0.59 dB/cm/MHz could be used with an AUC value of 0.853. To differentiate moderate to severe fatty liver from mild fatty liver, a cutoff value of 0.69 dB/cm/MHz could be used with an AUC value up to 0.91. ATI can be used in children as an effective ultrasonography technique for quantifying and staging pediatric hepatic steatosis.
Collapse
Affiliation(s)
- Kyungchul Song
- Department of Pediatrics, Severance Children’s Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (K.S.); (H.W.C.)
| | - Nak-Hoon Son
- Department of Statistics, Keimyung University, Daegu 42601, Korea;
| | - Dong Ryul Chang
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Korea;
| | - Hyun Wook Chae
- Department of Pediatrics, Severance Children’s Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (K.S.); (H.W.C.)
| | - Hyun Joo Shin
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Korea;
- Correspondence: ; Tel.: +82-31-5189-8321; Fax: +82-31-5189-8377
| |
Collapse
|
19
|
Song K, Lee HW, Choi HS, Park G, Lee HS, Kim SJ, Lee M, Suh J, Kwon A, Kim HS, Chae HW. Comparison of the Modified TyG Indices and Other Parameters to Predict Non-Alcoholic Fatty Liver Disease in Youth. BIOLOGY 2022; 11:biology11050685. [PMID: 35625413 PMCID: PMC9138077 DOI: 10.3390/biology11050685] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022]
Abstract
Simple Summary Non-alcoholic fatty liver disease (NAFLD) is associated with cardio-metabolic risk factors, including obesity, dyslipidemia, insulin resistance, and hepatic cirrhosis. The increasing prevalence of NAFLD among youths has become a public health concern. However, studies about reliable markers for assessing NAFLD in youths are limited. Thus, we investigated the markers including the triglycerides-glucose (TyG) index, modified TyG indices, hepatic steatosis index (HSI), aspartate transaminase-to-platelet ratio index (APRI), and modified APRIs for the prediction of NAFLD. This study demonstrated that the modified TyG indices, APRI-body mass index standard deviation score, and HSI are strongly associated with NAFLD in children and adolescents. Thus, these markers may be useful for identifying youths who require hepatic ultrasonography and early treatment. Abstract We investigated the modified triglycerides-glucose (TyG) indices and other markers for non-alcoholic fatty liver disease (NAFLD) in 225 participants aged 10–19 years, and the participants were divided into subgroups according to their NAFLD grade. We performed logistic regression analysis and calculated the odds ratios (ORs) with 95% confidence intervals (CIs) of tertiles 2 and 3 for each parameter, with those of tertile 1 as a reference. The area under the receiver operating characteristic (ROC) curve was calculated to compare the parameters for identifying NAFLD. TyG and modified indices, aspartate transaminase-to-platelet ratio index (APRI)-body mass index (BMI), APRI-BMI standard deviation score (SDS), APRI waist-to-hip ratio, fibrosis-4 index (FIB)-4, and hepatic steatosis index (HSI) were higher in participants with NAFLD than in those without NAFLD. The ORs and 95% CIs for NAFLD progressively increased across tertiles of each parameter. TyG and modified TyG indices, FIB-4, HSI, and modified APRIs, except APRI waist-to-height ratio, predicted NAFLD significantly through ROC curves. Modified TyG indices, APRI-BMI SDS, and HSI were superior to the other markers for NAFLD prediction. Modified TyG indices, APRI-BMI SDS, and HSI appear to be useful for assessing NAFLD in youths.
Collapse
Affiliation(s)
- Kyungchul Song
- Department of Pediatrics, Severance Children’s Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (K.S.); (H.W.L.); (S.J.K.); (M.L.); (J.S.); (A.K.); (H.-S.K.)
| | - Hae Won Lee
- Department of Pediatrics, Severance Children’s Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (K.S.); (H.W.L.); (S.J.K.); (M.L.); (J.S.); (A.K.); (H.-S.K.)
| | - Han Saem Choi
- Department of Pediatrics, International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Korea;
| | - Goeun Park
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul 03722, Korea; (G.P.); (H.S.L.)
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul 03722, Korea; (G.P.); (H.S.L.)
| | - Su Jin Kim
- Department of Pediatrics, Severance Children’s Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (K.S.); (H.W.L.); (S.J.K.); (M.L.); (J.S.); (A.K.); (H.-S.K.)
| | - Myeongseob Lee
- Department of Pediatrics, Severance Children’s Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (K.S.); (H.W.L.); (S.J.K.); (M.L.); (J.S.); (A.K.); (H.-S.K.)
| | - Junghwan Suh
- Department of Pediatrics, Severance Children’s Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (K.S.); (H.W.L.); (S.J.K.); (M.L.); (J.S.); (A.K.); (H.-S.K.)
| | - Ahreum Kwon
- Department of Pediatrics, Severance Children’s Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (K.S.); (H.W.L.); (S.J.K.); (M.L.); (J.S.); (A.K.); (H.-S.K.)
| | - Ho-Seong Kim
- Department of Pediatrics, Severance Children’s Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (K.S.); (H.W.L.); (S.J.K.); (M.L.); (J.S.); (A.K.); (H.-S.K.)
| | - Hyun Wook Chae
- Department of Pediatrics, Severance Children’s Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; (K.S.); (H.W.L.); (S.J.K.); (M.L.); (J.S.); (A.K.); (H.-S.K.)
- Correspondence: ; Tel.: +82-2-2019-3350; Fax: +82-2-393-9118
| |
Collapse
|