1
|
Shichi Y, Fujiwara M, Gomi F, Nonaka K, Hasegawa F, Shinji S, Rokutan H, Arai T, Takahashi K, Ishiwata T. Transmission electron microscopic analysis of pancreatic ductal adenocarcinoma cell spheres formed in 3D cultures. Med Mol Morphol 2025:10.1007/s00795-025-00435-1. [PMID: 40183819 DOI: 10.1007/s00795-025-00435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cell lines are classified into two types: epithelial and mesenchymal protein-expressing. Using scanning electron microscopy, we reported that these two groups differ in terms of morphology when they formed tumor spheres under three-dimensional (3D) culturing. In this study, we used transmission electron microscopy (TEM) to examine the intracellular microstructures of five epithelial and three mesenchymal PDAC cell lines in 3D culture, and compared them to the morphologies of the same cell types in two-dimensional (2D) cultures. Microvilli were present in all PDAC cells cultured in 2D and 3D, and were well developed in epithelial PDAC cells. Desmosome-like structures were only observed in epithelial PDAC cells, and were more common in 3D cultures. Secretory granules were observed in epithelial PDAC and mesenchymal PANC-1 cells, and were more common in 3D cultures. Intracytoplasmic lumina were only observed in epithelial PK-59 and T3M-4 cells cultured in 3D. Abundant filamentous aggregates were observed in 2D-cultured T3M-4 and MIA PaCa-2 cells. By contrast, entosis was observed in 3D-cultured PK-59, PK-1, and KP4 cells. Microstructural differences enhanced by 3D culturing revealed significant phenotypic diversity among PDAC cells, and may provide key insights into curing intractable pancreatic cancer.
Collapse
Affiliation(s)
- Yuuki Shichi
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Masakazu Fujiwara
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Fujiya Gomi
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Keisuke Nonaka
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Fumio Hasegawa
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Seiichi Shinji
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
- Department of Gastroenterological Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Hirofumi Rokutan
- Department of Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Kimimasa Takahashi
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan
| | - Toshiyuki Ishiwata
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
2
|
Banerjee D, Vydiam K, Vangala V, Mukherjee S. Advancement of Nanomaterials- and Biomaterials-Based Technologies for Wound Healing and Tissue Regenerative Applications. ACS APPLIED BIO MATERIALS 2025; 8:1877-1899. [PMID: 40019109 DOI: 10.1021/acsabm.5c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Patients and healthcare systems face significant social and financial challenges due to the increasing number of individuals with chronic external and internal wounds that fail to heal. The complexity of the healing process remains a serious health concern, despite the effectiveness of conventional wound dressings in promoting healing. Recent advancements in materials science and fabrication techniques have led to the development of innovative dressings that enhance wound healing. To further expedite the healing process, novel approaches such as nanoparticles, 3D-printed wound dressings, and biomolecule-infused dressings have emerged, along with cell-based methods. Additionally, gene therapy technologies are being harnessed to generate stem cell derivatives that are more functional, selective, and responsive than their natural counterparts. This review highlights the significant potential of biomaterials, nanoparticles, 3D bioprinting, and gene- and cell-based therapies in wound healing. However, it also underscores the necessity for further research to address the existing challenges and integrate these strategies into standard clinical practice.
Collapse
Affiliation(s)
- Durba Banerjee
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Kalyan Vydiam
- United Therapeutics, Manchester, New Hampshire 0310, United States
| | - Venugopal Vangala
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Sudip Mukherjee
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Isinelli G, Failla S, Plebani R, Prete A. Exploring oncology treatment strategies with tyrosine kinase inhibitors through advanced 3D models (Review). MEDICINE INTERNATIONAL 2025; 5:13. [PMID: 39790707 PMCID: PMC11707505 DOI: 10.3892/mi.2024.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025]
Abstract
The limitations of two-dimensional (2D) models in cancer research have hindered progress in fully understanding the complexities of drug resistance and therapeutic failures. However, three-dimensional (3D) models provide a more accurate representation of in vivo environments, capturing critical cellular interactions and dynamics that are essential in evaluating the efficacy and toxicity of tyrosine kinase inhibitors (TKIs). These advanced models enable researchers to explore drug resistance mechanisms with greater precision, optimizing treatment strategies and improving the predictive accuracy of clinical outcomes. By leveraging 3D models, it will be possible to deepen the current understanding of TKIs and drive forward innovations in cancer treatment. The present review discusses the limitations of 2D models and the transformative impact of 3D models on oncology research, highlighting their roles in addressing the challenges of 2D systems and advancing TKI studies.
Collapse
Affiliation(s)
- Giorgia Isinelli
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Chemistry, Biology and Biotechnology, University of Perugia, I-06123 Perugia, Italy
| | - Sharon Failla
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Roberto Plebani
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D'Annunzio’ University, I-66100 Chieti-Pescara, Italy
| | - Alessandro Prete
- Department of Clinical and Experimental Medicine, Endocrine Unit 2, University of Pisa, I-56122 Pisa, Italy
| |
Collapse
|
4
|
De Martinis ECP, Alves VF, Pereira MG, Andrade LN, Abichabki N, Abramova A, Dannborg M, Bengtsson-Palme J. Applying 3D cultures and high-throughput technologies to study host-pathogen interactions. Front Immunol 2025; 16:1488699. [PMID: 40051624 PMCID: PMC11882522 DOI: 10.3389/fimmu.2025.1488699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Recent advances in cell culturing and DNA sequencing have dramatically altered the field of human microbiome research. Three-dimensional (3D) cell culture is an important tool in cell biology, in cancer research, and for studying host-microbe interactions, as it mimics the in vivo characteristics of the host environment in an in vitro system, providing reliable and reproducible models. This work provides an overview of the main 3D culture techniques applied to study interactions between host cells and pathogenic microorganisms, how these systems can be integrated with high-throughput molecular methods, and how multi-species model systems may pave the way forward to pinpoint interactions among host, beneficial microbes and pathogens.
Collapse
Affiliation(s)
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Neves Andrade
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nathália Abichabki
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Abramova
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
| | - Mirjam Dannborg
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Evangelista A, Scocozza F, Conti M, Auricchio F, Conti B, Dorati R, Genta I, Benazzo M, Pisani S. Exploring Mechanical Features of 3D Head and Neck Cancer Models. J Funct Biomater 2025; 16:74. [PMID: 40137353 PMCID: PMC11942903 DOI: 10.3390/jfb16030074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) presents significant challenges in oncology due to its complex biology and poor prognosis. Traditional two-dimensional (2D) cell culture models cannot replicate the intricate tumor microenvironment, limiting their usefulness in studying disease mechanisms and testing therapies. In contrast, three-dimensional (3D) in vitro models provide more realistic platforms that better mimic the architecture, mechanical features, and cellular interactions of HNSCC. This review explores the mechanical properties of 3D in vitro models developed for HNSCC research. It highlights key 3D culture techniques, such as spheroids, organoids, and bioprinted tissues, emphasizing their ability to simulate critical tumor characteristics like hypoxia, drug resistance, and metastasis. Particular attention is given to stiffness, elasticity, and dynamic behavior, highlighting how these models emulate native tumor tissues. By enhancing the physiological relevance of in vitro studies, 3D models offer significant potential to revolutionize HNSCC research and facilitate the development of effective, personalized therapeutic strategies. This review bridges the gap between preclinical and clinical applications by summarizing the mechanical properties of 3D models and providing guidance for developing systems that replicate both biological and mechanical characteristics of tumor tissues, advancing innovation in cancer research and therapy.
Collapse
Affiliation(s)
- Aleksandra Evangelista
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Via Golgi 19, 27100 Pavia, Italy; (A.E.); (M.B.)
| | - Franca Scocozza
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (M.C.); (F.A.)
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (M.C.); (F.A.)
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, Piazza Edmondo Malan 2, San Donato Milanese, 20097 Milano, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (M.C.); (F.A.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (B.C.); (R.D.); (I.G.); (S.P.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (B.C.); (R.D.); (I.G.); (S.P.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (B.C.); (R.D.); (I.G.); (S.P.)
| | - Marco Benazzo
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Via Golgi 19, 27100 Pavia, Italy; (A.E.); (M.B.)
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (B.C.); (R.D.); (I.G.); (S.P.)
| |
Collapse
|
6
|
Pyrczak-Felczykowska A, Herman-Antosiewicz A. Modification in Structures of Active Compounds in Anticancer Mitochondria-Targeted Therapy. Int J Mol Sci 2025; 26:1376. [PMID: 39941144 PMCID: PMC11818413 DOI: 10.3390/ijms26031376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer is a multifaceted disease characterised by uncontrolled cellular proliferation and metastasis, resulting in significant global mortality. Current therapeutic strategies, including surgery, chemotherapy, and radiation therapy, face challenges such as systemic toxicity and tumour resistance. Recent advancements have shifted towards targeted therapies that act selectively on molecular structures within cancer cells, reducing off-target effects. Mitochondria have emerged as pivotal targets in this approach, given their roles in metabolic reprogramming, retrograde signalling, and oxidative stress, all of which drive the malignant phenotype. Targeting mitochondria offers a promising strategy to address these mechanisms at their origin. Synthetic derivatives of natural compounds hold particular promise in mitochondrial-targeted therapies. Innovations in drug design, including the use of conjugates and nanotechnology, focus on optimizing these compounds for mitochondrial specificity. Such advancements enhance therapeutic efficacy while minimizing systemic toxicity, presenting a significant step forward in modern anticancer strategies.
Collapse
Affiliation(s)
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland;
| |
Collapse
|
7
|
Mansur AAP, Carvalho SM, Lobato ZIP, Leite MF, Krambrock K, Mansur HS. Bioengineering stimuli-responsive organic-inorganic nanoarchitetures based on carboxymethylcellulose-poly-l-lysine nanoplexes: Unlocking the potential for bioimaging and multimodal chemodynamic-magnetothermal therapy of brain cancer cells. Int J Biol Macromol 2025; 290:138985. [PMID: 39706409 DOI: 10.1016/j.ijbiomac.2024.138985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Regrettably, glioblastoma multiforme (GBM) remains the deadliest form of brain cancer, where the early diagnosis plays a pivotal role in the patient's therapy and prognosis. Hence, we report for the first time the design, synthesis, and characterization of new hybrid organic-inorganic stimuli-responsive nanoplexes (NPX) for bioimaging and killing brain cancer cells (GBM, U-87). These nanoplexes were built through coupling two nanoconjugates, produced using a facile, sustainable, green aqueous colloidal process ("bottom-up"). One nanocomponent was based on cationic epsilon-poly-l-lysine polypeptide (εPL) conjugated with ZnS quantum dots (QDs) acting as chemical ligand and cell-penetrating peptide (CPP) for bioimaging of cancer cells (QD@εPL). The second nanocomponent was based on anionic carboxymethylcellulose (CMC) polysaccharide surrounding superparamagnetic magnetite "nanozymes" (MNZ) behaving as a capping macromolecular shell (MNZ@CMC) for killing cancer cells through chemodynamic therapy (CDT) and magnetohyperthermia (MHT). The results demonstrated the effective production of supramolecular aqueous colloidal nanoplexes (QD@εPL_MNZ@CMC, NPX) integrated into single nanoplatforms, mainly electrostatically stabilized by εPL/CMC biomolecules with anticancer activity against U-87 cells using 2D and 3D spheroid models. They displayed nanotheranostics (i.e., diagnosis and therapy) behavior credited to the photonic activity of QD@εPL with luminescent intracellular bioimaging, amalgamated with a dual-mode killing effect of GBM cancer cells through CDT by nanozyme-induced biocatalysis and as "nanoheaters" by magnetically-responsive hyperthermia therapy.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil
| | - Zélia I P Lobato
- Department of Preventive Veterinary Medicine School of Veterinary, Federal University of Minas Gerais, UFMG, Brazil
| | - M Fátima Leite
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais - UFMG, Brazil
| | - Klaus Krambrock
- Departament of Physics, Federal University of Minas Gerais - UFMG, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil.
| |
Collapse
|
8
|
Pastore M, Giachi A, Spínola-Lasso E, Marra F, Raggi C. Organoids and spheroids: advanced in vitro models for liver cancer research. Front Cell Dev Biol 2025; 12:1536854. [PMID: 39850799 PMCID: PMC11754960 DOI: 10.3389/fcell.2024.1536854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Liver cancer is a leading cause of cancer-related deaths worldwide, highlighting the need for innovative approaches to understand its complex biology and develop effective treatments. While traditional in vivo animal models have played a vital role in liver cancer research, ethical concerns and the demand for more human-relevant systems have driven the development of advanced in vitro models. Spheroids and organoids have emerged as powerful tools due to their ability to replicate tumor microenvironment and facilitate preclinical drug development. Spheroids are simpler 3D culture models that partially recreate tumor structure and cell interactions. They can be used for drug penetration studies and high-throughput screening. Organoids derived from stem cells or patient tissues that accurately emulate the complexity and functionality of liver tissue. They can be generated from pluripotent and adult stem cells, as well as from liver tumor specimens, providing personalized models for studying tumor behavior and drug responses. Liver organoids retain the genetic variability of the original tumor and offer a robust platform for high-throughput drug screening and personalized treatment strategies. However, both organoids and spheroids have limitations, such as the absence of functional vasculature and immune components, which are essential for tumor growth and therapeutic responses. The field of preclinical modeling is evolving, with ongoing efforts to develop more predictive and personalized models that reflect the complexities of human liver cancer. By integrating these advanced in vitro tools, researchers can gain deeper insights into liver cancer biology and accelerate the development of novel treatments.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
9
|
He CK, Hung MC, Hxu CH, Hsieh YH, Lin YS. Pitfalls in measuring solution toxicity using the level of bioluminescence inhibition in Aliivibrio fischeri. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110067. [PMID: 39510333 DOI: 10.1016/j.cbpc.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/06/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
Toxic emission from industrial activity is a serious problem, particularly with regard to the quality of water. Thus, the ISO 11348-3 standard for assessing water quality has been established. This method is used to determine solution toxicity from the bioluminescence inhibition of Aliivibrio fischeri. However, the accuracy of measurements is influenced by the selection of individual reaction time points. This study explores the utility of the area under the curve (AUC) method in water quality detection and evaluates how A. fischeri responds to three toxicants, namely ethanol, acetone, and zinc sulfate, over time. The half-maximal effective concentrations of these three substances were found to be 10.13 %, 5.02 %, and 19.49 mg/L, respectively. Compared with the results from individual reaction time point assessments, the results of AUC comprehensively captured the effects of the toxicants, including time-dependent effects and hormetic effects, by capturing dynamic changes under different toxicant concentrations and reaction times. Therefore, AUC analysis mitigates the pitfalls associated with individual reaction times and provides a more accurate and reliable assessment method for water quality detection, contributing to a better understanding of the impact of toxic substances on aquatic environments.
Collapse
Affiliation(s)
- Cheng-Kun He
- Department of Chemical Engineering, National United University, Miaoli, Taiwan
| | - Ming-Chun Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chong-Hao Hxu
- Department of Chemical Engineering, National United University, Miaoli, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Sheng Lin
- Department of Chemical Engineering, National United University, Miaoli, Taiwan.
| |
Collapse
|
10
|
Pinho SA, Gardner GL, Alva R, Stuart JA, Cunha-Oliveira T. Creating Physiological Cell Environments In Vitro: Adjusting Cell Culture Media Composition and Oxygen Levels to Investigate Mitochondrial Function and Cancer Metabolism. Methods Mol Biol 2025; 2878:163-199. [PMID: 39546262 DOI: 10.1007/978-1-0716-4264-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
In vitro and ex vivo studies are crucial for mitochondrial research, offering valuable insights into cellular mechanisms and aiding in diagnostic and therapeutic strategies. Accurate in vitro models rely on adequate cell culture conditions, such as the composition of culture media and oxygenation levels. These conditions can influence energy metabolism and mitochondrial activities, thus impacting studies involving mitochondrial components, such as the effectiveness of anticancer drugs. This chapter focuses on practical guidance for creating setups that replicate in vivo microenvironments, capturing the original metabolic context of cells. We explore protocols to better mimic the physiological cell environment, promote cellular reconfiguration, and prime cells according to the modeled context. The first part is dedicated to the use of human dermal fibroblasts, which are a promising model for pre-clinical mitochondrial research due to their adaptability and relevance to human mitochondrial physiology. We present an optimized protocol for gradually adjusting extracellular glucose levels, which demonstrated significant mitochondrial, metabolic, and redox remodeling in normal adult dermal fibroblasts. The second part is dedicated to replication of tumor microenvironments, which are relevant for studies targeting cellular energy metabolism to inhibit tumor growth. Currently available physiological media can mimic blood plasma metabolome but not the specific tumor microenvironment. To address this, we describe optimized media formulation and oxygenation protocols, which can simulate the tumor microenvironment in cell culture experiments. Replicating in vivo microenvironments in in vitro and ex vivo studies can enhance our understanding of cellular processes, facilitate drug development, and advance personalized therapeutics in mitochondrial medicine.
Collapse
Affiliation(s)
- Sónia A Pinho
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PDBEB - Doctoral Programme in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Georgina L Gardner
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Jeff A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Teresa Cunha-Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
11
|
Shoji JY, Davis RP, Mummery CL, Krauss S. Global Literature Analysis of Tumor Organoid and Tumor-on-Chip Research. Cancers (Basel) 2025; 17:108. [PMID: 39796734 PMCID: PMC11719888 DOI: 10.3390/cancers17010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Tumor organoid and tumor-on-chip (ToC) platforms replicate aspects of the anatomical and physiological states of tumors. They, therefore, serve as models for investigating tumor microenvironments, metastasis, and immune interactions, especially for precision drug testing. To map the changing research diversity and focus in this field, we performed a quality-controlled text analysis of categorized academic publications and clinical studies. Methods: Previously, we collected metadata of academic publications on organoids or organ-on-chip platforms from PubMed, Web of Science, Scopus, EMBASE, and bioRxiv, published between January 2011 and June 2023. Here, we selected documents from this metadata corpus that were computationally determined as relevant to tumor research and analyzed them using an in-house text analysis algorithm. Additionally, we collected and analyzed metadata from ClinicalTrials.gov of clinical studies related to tumor organoids or ToC as of March 2023. Results and Discussion: From 3551 academic publications and 139 clinical trials, we identified 55 and 24 tumor classes modeled as tumor organoids and ToC models, respectively. The research was particularly active in neural and hepatic/pancreatic tumor organoids, as well as gastrointestinal, neural, and reproductive ToC models. Comparative analysis with cancer statistics showed that lung, lymphatic, and cervical tumors were under-represented in tumor organoid research. Our findings also illustrate varied research topics, including tumor physiology, therapeutic approaches, immune cell involvement, and analytical techniques. Mapping the research geographically highlighted the focus on colorectal cancer research in the Netherlands, though overall the specific research focus of countries did not reflect regional cancer prevalence. These insights not only map the current research landscape but also indicate potential new directions in tumor model research.
Collapse
Affiliation(s)
- Jun-ya Shoji
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Richard P. Davis
- Department of Anatomy & Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Christine L. Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, 7522 NB Enschede, The Netherlands
| | - Stefan Krauss
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
12
|
Vitacolonna M, Bruch R, Schneider R, Jabs J, Hafner M, Reischl M, Rudolf R. A spheroid whole mount drug testing pipeline with machine-learning based image analysis identifies cell-type specific differences in drug efficacy on a single-cell level. BMC Cancer 2024; 24:1542. [PMID: 39696122 DOI: 10.1186/s12885-024-13329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The growth and drug response of tumors are influenced by their stromal composition, both in vivo and 3D-cell culture models. Cell-type inherent features as well as mutual relationships between the different cell types in a tumor might affect drug susceptibility of the tumor as a whole and/or of its cell populations. However, a lack of single-cell procedures with sufficient detail has hampered the automated observation of cell-type-specific effects in three-dimensional stroma-tumor cell co-cultures. METHODS Here, we developed a high-content pipeline ranging from the setup of novel tumor-fibroblast spheroid co-cultures over optical tissue clearing, whole mount staining, and 3D confocal microscopy to optimized 3D-image segmentation and a 3D-deep-learning model to automate the analysis of a range of cell-type-specific processes, such as cell proliferation, apoptosis, necrosis, drug susceptibility, nuclear morphology, and cell density. RESULTS This demonstrated that co-cultures of KP-4 tumor cells with CCD-1137Sk fibroblasts exhibited a growth advantage compared to tumor cell mono-cultures, resulting in higher cell counts following cytostatic treatments with paclitaxel and doxorubicin. However, cell-type-specific single-cell analysis revealed that this apparent benefit of co-cultures was due to a higher resilience of fibroblasts against the drugs and did not indicate a higher drug resistance of the KP-4 cancer cells during co-culture. Conversely, cancer cells were partially even more susceptible in the presence of fibroblasts than in mono-cultures. CONCLUSION In summary, this underlines that a novel cell-type-specific single-cell analysis method can reveal critical insights regarding the mechanism of action of drug substances in three-dimensional cell culture models.
Collapse
Affiliation(s)
- Mario Vitacolonna
- CeMOS, Mannheim University of Applied Sciences, 68163, Mannheim, Germany.
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany.
| | - Roman Bruch
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggen-stein-Leopoldshafen, Germany
| | | | - Julia Jabs
- Merck Healthcare KGaA, 64293, Darmstadt, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
- Institute of Medical Technology, Medical Faculty Mannheim of Heidelberg University, Mannheim University of Applied Sciences, 68167, Mannheim, Germany
| | - Markus Reischl
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggen-stein-Leopoldshafen, Germany
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
| |
Collapse
|
13
|
Kim J, Eo EY, Kim B, Lee H, Kim J, Koo BK, Kim HJ, Cho S, Kim J, Cho YJ. Transcriptomic Analysis of Air-Liquid Interface Culture in Human Lung Organoids Reveals Regulators of Epithelial Differentiation. Cells 2024; 13:1991. [PMID: 39682739 PMCID: PMC11639892 DOI: 10.3390/cells13231991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
To develop in vitro respiratory models, it is crucial to identify the factors involved in epithelial cell differentiation. In this study, we comprehensively analyzed the effects of air-liquid interface (ALI) culture on epithelial cell differentiation using single-cell RNA sequencing (scRNA-seq). ALI culture induced a pronounced shift in cell composition, marked by a fivefold increase in ciliated cells and a reduction of more than half in basal cells. Transcriptional signatures associated with epithelial cell differentiation, analyzed using iPathwayGuide software, revealed the downregulation of VEGFA and upregulation of CDKN1A as key signals for epithelial differentiation. Our findings highlight the efficacy of the ALI culture for replicating the human lung airway epithelium and provide valuable insights into the crucial factors that influence human ciliated cell differentiation.
Collapse
Affiliation(s)
- Jieun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; (J.K.); (E.-Y.E.); (B.K.); (H.-J.K.)
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea
| | - Eun-Young Eo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; (J.K.); (E.-Y.E.); (B.K.); (H.-J.K.)
| | - Bokyong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; (J.K.); (E.-Y.E.); (B.K.); (H.-J.K.)
| | - Heetak Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea; (H.L.); (J.K.); (B.-K.K.)
| | - Jihoon Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea; (H.L.); (J.K.); (B.-K.K.)
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Bon-Kyoung Koo
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea; (H.L.); (J.K.); (B.-K.K.)
| | - Hyung-Jun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; (J.K.); (E.-Y.E.); (B.K.); (H.-J.K.)
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| | - Jinho Kim
- Department of Genomic Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; (J.K.); (E.-Y.E.); (B.K.); (H.-J.K.)
| |
Collapse
|
14
|
Batista Brochado AC, de Moraes JA, Rodrigues de Oliveira B, De Souza Lima VH, Mariano ED, Karande S, Romasco T, Leite PEC, Mourão CF, Gomes Alves G. Metabolic and Regulatory Pathways Involved in the Anticancer Activity of Perillyl Alcohol: A Scoping Review of In Vitro Studies. Cancers (Basel) 2024; 16:4003. [PMID: 39682189 PMCID: PMC11640718 DOI: 10.3390/cancers16234003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Perillyl alcohol (POH), a plant-derived compound, has demonstrated anti-tumor activity across various human cancers. Understanding the regulatory pathways through which POH exerts its effects is crucial for identifying new therapeutic opportunities and exploring potential drug repositioning strategies. Therefore, this scoping review aims to provide a comprehensive overview of the metabolic and regulatory pathways involved in the anticancer effects of POH, based on in vitro evidence. METHODS Following the PRISMA-ScR 2018 guidelines, a systematic search was conducted in the PUBMED, Web of Science, and Scopus databases. RESULTS A total of 39 studies were included, revealing that POH exerts its biological effects by modulating several pathways, including the regulation of cyclins, CDKs, and p21, thereby affecting cell cycle progression. It inhibits growth and promotes cell death by attenuating AKT phosphorylation, reducing PARP-1 activity, increasing caspase activity and the FAS receptor and its ligand FASL. Additionally, POH reduces ERK phosphorylation, inhibits RAS protein isoprenylation, and decreases Na/K-ATPase activity. CONCLUSIONS In conclusion, this review delineates the key regulatory pathways responsible for mediating the biological effects of POH in cancer.
Collapse
Affiliation(s)
- Ana Carolina Batista Brochado
- Post-Graduation Program in Science & Biotechnology, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil
| | - Júlia Alves de Moraes
- Clinical Research Unit, Antonio Pedro University Hospital, Fluminense Federal University, Niteroi 24020-140, Brazil
| | - Bruna Rodrigues de Oliveira
- Clinical Research Unit, Antonio Pedro University Hospital, Fluminense Federal University, Niteroi 24020-140, Brazil
| | - Victor Hugo De Souza Lima
- Post-Graduation Program in Science & Biotechnology, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil
| | | | - Sachin Karande
- Dental Research Division, Department of Periodontology and Oral Implantology, Fluminense Federal University, Niteroi 21941-617, Brazil
| | - Tea Romasco
- Division of Dental Research Administration, Tufts University School of Dental Medicine, Boston, MA 02111, USA
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Paulo Emilio Correa Leite
- Post-Graduation Program in Science & Biotechnology, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil
| | - Carlos Fernando Mourão
- Department of Basic and Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Gutemberg Gomes Alves
- Post-Graduation Program in Science & Biotechnology, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil
- Clinical Research Unit, Antonio Pedro University Hospital, Fluminense Federal University, Niteroi 24020-140, Brazil
| |
Collapse
|
15
|
Cordeiro S, Oliveira BB, Valente R, Ferreira D, Luz A, Baptista PV, Fernandes AR. Breaking the mold: 3D cell cultures reshaping the future of cancer research. Front Cell Dev Biol 2024; 12:1507388. [PMID: 39659521 PMCID: PMC11628512 DOI: 10.3389/fcell.2024.1507388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Despite extensive efforts to unravel tumor behavior and develop anticancer therapies, most treatments fail when advanced to clinical trials. The main challenge in cancer research has been the absence of predictive cancer models, accurately mimicking the tumoral processes and response to treatments. The tumor microenvironment (TME) shows several human-specific physical and chemical properties, which cannot be fully recapitulated by the conventional 2D cell cultures or the in vivo animal models. These limitations have driven the development of novel in vitro cancer models, that get one step closer to the typical features of in vivo systems while showing better species relevance. This review introduces the main considerations required for developing and exploiting tumor spheroids and organoids as cancer models. We also detailed their applications in drug screening and personalized medicine. Further, we show the transition of these models into novel microfluidic platforms, for improved control over physiological parameters and high-throughput screening. 3D culture models have provided key insights into tumor biology, more closely resembling the in vivo TME and tumor characteristics, while enabling the development of more reliable and precise anticancer therapies.
Collapse
Affiliation(s)
- Sandra Cordeiro
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Beatriz B. Oliveira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ruben Valente
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Daniela Ferreira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - André Luz
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
16
|
Adams M, Cottrell J. Development and characterization of an in vitro fluorescently tagged 3D bone-cartilage interface model. Front Endocrinol (Lausanne) 2024; 15:1484912. [PMID: 39600948 PMCID: PMC11588493 DOI: 10.3389/fendo.2024.1484912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Three-dimensional cultures are widely used to study bone and cartilage. These models often focus on the interaction between osteoblasts and osteoclasts or osteoblasts and chondrocytes. A culture of osteoblasts, osteoclasts and chondrocytes would represent the cells that interact in the joint and a model with these cells could be used to study many diseases that affect the joints. The goal of this study was to develop 3D bone-cartilage interface (3D-BCI) that included osteoblasts, osteocytes, osteoclasts, and cartilage. Fluorescently tagged cell lines were developed to assess the interactions as cells differentiate to form bone and cartilage. Mouse cell line, MC3T3, was labeled with a nuclear GFP tag and differentiated into osteoblasts and osteocytes in Matrigel. Raw264.7 cells transfected with a red cytoplasmic tag were added to the system and differentiated with the MC3T3 cells to form osteoclasts. A new method was developed to differentiate chondrocyte cell line ATDC5 in a cartilage spheroid, and the ATDC5 spheroid was added to the MC3T3 and Raw264.7 cell model. We used an Incucyte and functional analysis to assess the cells throughout the differentiation process. The 3D-BCI model was found to be positive for TRAP, ALP, Alizarin red and Alcian blue staining to confirm osteoblastogenesis, osteoclastogenesis, and cartilage formation. Gene expression confirmed differentiation of cells based on increased expression of osteoblast markers: Alpl, Bglap, Col1A2, and Runx2, cartilage markers: Acan, Col2A1, Plod2, and osteoclast markers: Acp5, Rank and Ctsk. Based on staining, protein expression and gene expression results, we conclude that we successfully developed a mouse model with a 3D bone-cartilage interface.
Collapse
Affiliation(s)
- Mary Adams
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, United States
- Immunology Translational Research, Translational Early Development, Bristol Myers Squibb, Summit, NJ, United States
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
17
|
Rossi M, Pellegrino C, Rydzyk MM, Farruggia G, de Biase D, Cetrullo S, D'Adamo S, Bisi A, Blasi P, Malucelli E, Cappadone C, Gobbi S. Chalcones induce apoptosis, autophagy and reduce spreading in osteosarcoma 3D models. Biomed Pharmacother 2024; 179:117284. [PMID: 39151310 DOI: 10.1016/j.biopha.2024.117284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Osteosarcoma is the most common primary bone malignancy with a challenging prognosis marked by a high rate of metastasis. The limited success of current treatments may be partially attributed to an incomplete understanding of osteosarcoma pathophysiology and to the absence of reliable in vitro models to select the best molecules for in vivo studies. Among the natural compounds relevant for osteosarcoma treatment, Licochalcone A (Lic-A) and chalcone derivatives are particularly interesting. Here, Lic-A and selected derivatives have been evaluated for their anticancer effect on multicellular tumor spheroids from MG63 and 143B osteosarcoma cell lines. A metabolic activity assay revealed Lic-A, 1i, and 1k derivatives as the most promising candidates. To delve into their mechanism of action, caspase activity assay was conducted in 2D and 3D in vitro models. Notably, apoptosis and autophagic induction was generally observed for Lic-A and 1k. The invasion assay demonstrated that Lic-A and 1k possess the ability to mitigate the spread of osteosarcoma cells within a matrix. The effectiveness of chalcone as a natural scaffold for generating potential antiproliferative agents against osteosarcoma has been demonstrated. In particular, chalcones exert their antiproliferative activity by inducing apoptosis and autophagy, and in addition they are capable of reducing cell invasion. These findings suggest Lic-A and 1k as promising antitumor agents against osteosarcoma cells.
Collapse
Affiliation(s)
- M Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - C Pellegrino
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| | - M M Rydzyk
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - G Farruggia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - D de Biase
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - S Cetrullo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy; Istituto Nazionale per le Ricerche Cardiovascolari, Bologna 40126, Italy
| | - S D'Adamo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - A Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| | - P Blasi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - E Malucelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| | - C Cappadone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy.
| | - S Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| |
Collapse
|
18
|
Moreno Valtierra M, Urue Corral A, Jiménez-Avalos JA, Barbosa Avalos E, Dávila-Rodríguez J, Morales Hernández N, Comas-García M, Toriz González G, Oceguera-Villanueva A, Cruz-Ramos JA, Hernández Gutiérrez R, Martínez Velázquez M, García Carvajal ZY. Patterned PVA Hydrogels with 3D Petri Dish ® Micro-Molds of Varying Topography for Spheroid Formation of HeLa Cancer Cells: In Vitro Assessment. Gels 2024; 10:518. [PMID: 39195047 DOI: 10.3390/gels10080518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Cell spheroids are an important three-dimensional (3D) model for in vitro testing and are gaining interest for their use in clinical applications. More natural 3D cell culture environments that support cell-cell interactions have been created for cancer drug discovery and therapy applications, such as the scaffold-free 3D Petri Dish® technology. This technology uses reusable and autoclavable silicone micro-molds with different topographies, and it conventionally uses gelled agarose for hydrogel formation to preserve the topography of the selected micro-mold. The present study investigated the feasibility of using a patterned Poly(vinyl alcohol) hydrogel using the circular topography 12-81 (9 × 9 wells) micro-mold to form HeLa cancer cell spheroids and compare them with the formed spheroids using agarose hydrogels. PVA hydrogels showed a slightly softer, springier, and stickier texture than agarose hydrogels. After preparation, Fourier transform infrared (FTIR) spectra showed chemical interactions through hydrogen bonding in the PVA and agarose hydrogels. Both types of hydrogels favor the formation of large HeLa spheroids with an average diameter of around 700-800 µm after 72 h. However, the PVA spheroids are more compact than those from agarose, suggesting a potential influence of micro-mold surface chemistry on cell behavior and spheroid formation. This was additionally confirmed by evaluating the spheroid size, morphology, integrity, as well as E-cadherin and Ki67 expression. The results suggest that PVA promotes stronger cell-to-cell interactions in the spheroids. Even the integrity of PVA spheroids was maintained after exposure to the drug cisplatin. In conclusion, the patterned PVA hydrogels were successfully prepared using the 3D Petri Dish® micro-molds, and they could be used as suitable platforms for studying cell-cell interactions in cancer drug therapy.
Collapse
Affiliation(s)
- Maira Moreno Valtierra
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Adriana Urue Corral
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Jorge Armando Jiménez-Avalos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
- Centro de Investigación y Desarrollo Oncológico, S.A. de C.V. (CIDO), Av. Palmira # 600-A, Col. Villas del Pedregal, San Luis Potosí 78218, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec # 1570, San Luis Potosí 78210, Mexico
| | - Erika Barbosa Avalos
- Laboratorio de Anatomía Patológica, Hospital Civil Viejo Fray Antonio Alcalde, Coronel Calderón #777, El Retiro, Guadalajara 44280, Mexico
| | - Judith Dávila-Rodríguez
- Laboratorio de Anatomía Patológica, Hospital Civil Viejo Fray Antonio Alcalde, Coronel Calderón #777, El Retiro, Guadalajara 44280, Mexico
| | - Norma Morales Hernández
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero # 1227, Col. El Bajío del Arenal, Zapopan 45019, Mexico
| | - Mauricio Comas-García
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec # 1570, San Luis Potosí 78210, Mexico
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Sierra Leona # 550 Lomas de San Luis, San Luis Potosí 78210, Mexico
| | - Guillermo Toriz González
- Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Carretera Guadalajara-Nogales km 15.5, Zapopan 45220, Mexico
| | - Antonio Oceguera-Villanueva
- Instituto Jalisciense de Cancerología, Secretaría de Salud Jalisco, 715 Coronel Calderón St., El Retiro, Guadalajara 44280, Mexico
| | - José Alfonso Cruz-Ramos
- Instituto Jalisciense de Cancerología, Secretaría de Salud Jalisco, 715 Coronel Calderón St., El Retiro, Guadalajara 44280, Mexico
| | - Rodolfo Hernández Gutiérrez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Moisés Martínez Velázquez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Zaira Yunuen García Carvajal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
| |
Collapse
|
19
|
Hoog CJPO', Mehra N, Maliepaard M, Bol K, Gelderblom H, Sonke GS, de Langen AJ, van de Donk NWCJ, Janssen JJWM, Minnema MC, van Erp NP, Boerrigter E. Dose selection of novel anticancer drugs: exposing the gap between selected and required doses. Lancet Oncol 2024; 25:e340-e351. [PMID: 39089312 DOI: 10.1016/s1470-2045(24)00134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 08/03/2024]
Abstract
Historically, dose selection of anticancer drugs has mainly been based on establishing the maximum tolerated dose in phase 1 clinical trials with a traditional 3 plus 3 design. In the era of targeted therapies and immune-modulating agents, this approach does not necessarily lead to selection of the most favourable dose. This strategy can introduce potentially avoidable toxicity or inconvenience for patients. Multiple changes in drug development could lead to more rational dose selection, such as use of better predictive preclinical models, adaptive and randomised trial design, evaluation of multiple dose levels in late-phase development, assessment of target activity and saturation, and early biomarker use for efficacy and safety evaluation. In this Review, we evaluate the rationale and validation of dose selection in each phase of drug development for anticancer drugs approved by the European Medicines Agency and US Food and Drug Administration from Jan 1, 2020, to June 30, 2023, and give recommendations for dose optimisation to improve safety and patient convenience. In our evaluation, we classified 20 (65%) of the 31 recently registered anticancer agents as potential candidates for dose optimisation, which could be achieved either by reducing the dose (n=10 [32%]) or adjusting the dosage regimen (n=10 [32%]). Dose selection seemed to be adequately justified for nine (29%) of the drugs, whereas the reviewed data were inconclusive for formulating a recommendation on dose optimisation for two (6%) of the drugs.
Collapse
Affiliation(s)
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marc Maliepaard
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, Netherlands; Dutch Medicines Evaluation Board (CBG-MEB), Utrecht, Netherlands
| | - Kalijn Bol
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Adrianus J de Langen
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jeroen J W M Janssen
- Department of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Monique C Minnema
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nielka P van Erp
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Emmy Boerrigter
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
20
|
Ewell DJ, Vue N, Moinuddin SM, Sarkar T, Ahsan F, Vinall RL. Development of a Bladder Cancer-on-a-Chip Model to Assess Bladder Cancer Cell Invasiveness. Cancers (Basel) 2024; 16:2657. [PMID: 39123388 PMCID: PMC11311651 DOI: 10.3390/cancers16152657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
We have developed a bladder cancer-on-a-chip model which supports the 3D growth of cells and can be used to assess and quantify bladder cancer cell invasiveness in a physiologically appropriate environment. Three bladder cancer cell lines (T24, J82, and RT4) were resuspended in 50% Matrigel® and grown within a multi-channel organ-on-a-chip system. The ability of live cells to invade across into an adjacent 50% Matrigel®-only channel was assessed over a 2-day period. Cell lines isolated from patients with high-grade bladder cancer (T24 and J82) invaded across into the Matrigel®-only channel at a much higher frequency compared to cells isolated from a patient with low-grade cancer (RT4) (p < 0.001). The T24 and J82 cells also invaded further distances into the Matrigel®-only channel compared to the RT4 cells (p < 0.001). The cell phenotype within the model was maintained as assessed by cell morphology and immunohistochemical analysis of E-cadherin. Treatment with ATN-161, an α5β1 integrin inhibitor and well-known migrastatic drug, caused a dose-dependent decrease in the invasiveness of the J82 cells (p < 0.01). The combined data demonstrate that our bladder cancer-on-a-chip model supports the retention of the bladder cancer cell phenotype and can be used to reproducibly assess and quantify the invasiveness of live bladder cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruth L. Vinall
- Department of Pharmaceutical & Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA; (D.J.E.); (N.V.); (S.M.M.); (T.S.); (F.A.)
| |
Collapse
|
21
|
Roscigno G, Affinito A, Quintavalle C, Cillari R, Condorelli G, Cavallaro G, Mauro N. Ultrasmall Carbon Nanodots as Theranostic Nanoheaters for Precision Breast Cancer Phototherapy: Establishing the Translational Potential in Tumor-in-a-Dish Models. ACS Biomater Sci Eng 2024; 10:4269-4278. [PMID: 38916153 DOI: 10.1021/acsbiomaterials.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
This study investigates the remarkable attributes of sulfur-doped carbon nanodots (CDs) synthesized in high yield and a narrow size distribution (4.8 nm). These CDs exhibit notable features, including potential bioelimination through renal clearance and efficient photothermal conversion in the near-infrared region with multicolor photoluminescence across the visible spectrum. Our research demonstrates high biocompatibility and effective near-infrared (NIR)-triggered photothermal toxicity when targeting mammospheres and patient-derived tumor organoids. Moreover, the study delves into the intricate cellular responses induced by CD-mediated hyperthermia. This involves efficient tumor mass death, activation of the p38-mitogen-activated protein kinase (MAPK) pathway, and upregulation of genes associated with apoptosis, hypoxia, and autophagy. The interaction of CDs with mammospheres reveals their ability to penetrate the complex microenvironment, impeded at 4 °C, indicating an energy-dependent endocytosis mechanism. This observation underscores the CDs' potential for targeted drug delivery, particularly in anticancer therapeutics. This investigation contributes to understanding the multifunctional properties of sulfur-doped CDs and highlights their promising applications in cancer therapeutics. Utilizing 3-D tumor-in-a-dish patients' organoids enhances translational potential, providing a clinically relevant platform for assessing therapeutic efficacy in a context mirroring the physiological conditions of cancerous tissues.
Collapse
Affiliation(s)
- Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Pansini 5, Naples 80131, Italy
- Department of Biology, "Federico II" University of Naples, Via Cinthia 21, Napoli 80126, Italy
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Pansini 5, Naples 80131, Italy
- Institute Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, Naples 80131, Italy
| | - Cristina Quintavalle
- Institute Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, Naples 80131, Italy
| | - Roberta Cillari
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, Palermo 90123, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Pansini 5, Naples 80131, Italy
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, Palermo 90123, Italy
| | - Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32, Palermo 90123, Italy
| |
Collapse
|
22
|
Dirheimer L, Pons T, François A, Lamy L, Cortese S, Marchal F, Bezdetnaya L. Targeting of 3D oral cancer spheroids by αVβ6 integrin using near-infrared peptide-conjugated IRDye 680. Cancer Cell Int 2024; 24:228. [PMID: 38951897 PMCID: PMC11218202 DOI: 10.1186/s12935-024-03417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND In the treatment of oral cavity cancer, margin status is one of the most critical prognostic factors. Positive margins are associated with higher local recurrence and lower survival rates. Therefore, the universal goal of oral surgical oncology is to achieve microscopically clear margins. Near-infrared fluorescence guided surgery (FGS) could improve surgical resection using fluorescent probes. αVβ6 integrin has shown great potential for cancer targeting due to its overexpression in oral cancers. Red fluorescent contrast agent IRDye 680 coupled with anti-αVβ6 peptide (IRDye-A20) represents an asset to improve FGS of oral cancer. This study investigates the potential of IRDye-A20 as a selective imaging agent in 3D three-dimensional tongue cancer cells. METHODS αVβ6 integrin expression was evaluated by RT-qPCR and Western Blotting in 2D HSC-3 human tongue cancer cells and MRC-5 human fibroblasts. Targeting ability of IRDye-A20 was studied in both cell lines by flow cytometry technique. 3D tumor spheroid models, homotypic (HSC-3) and stroma-enriched heterotypic (HSC-3/MRC-5) spheroids were produced by liquid overlay procedure and further characterized using (immuno)histological and fluorescence-based techniques. IRDye-A20 selectivity was evaluated in each type of spheroids and each cell population. RESULTS αVβ6 integrin was overexpressed in 2D HSC-3 cancer cells but not in MRC-5 fibroblasts and consistently, only HSC-3 were labelled with IRDye-A20. Round shaped spheroids with an average diameter of 400 μm were produced with a final ratio of 55%/45% between HSC-3 and MRC-5 cells, respectively. Immunofluorescence experiments demonstrated an uniform expression of αVβ6 integrin in homotypic spheroid, while its expression was restricted to cancer cells only in heterotypic spheroid. In stroma-enriched 3D model, Cytokeratin 19 and E-cadherin were expressed only by cancer cells while vimentin and fibronectin were expressed by fibroblasts. Using flow cytometry, we demonstrated that IRDye-A20 labeled the whole homotypic spheroid, while in the heterotypic model all cancer cells were highly fluorescent, with a negligible fluorescence in fibroblasts. CONCLUSIONS The present study demonstrated an efficient selective targeting of A20FMDV2-conjugated IRDye 680 in 3D tongue cancer cells stroma-enriched spheroids. Thus, IRDye-A20 could be a promising candidate for the future development of the fluorescence-guided surgery of oral cancers.
Collapse
Affiliation(s)
- L Dirheimer
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - T Pons
- ESPCI Paris, LPEM UMR 8213, PSL University, CNRS, Sorbonne University, Paris, France
| | - A François
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France
| | - L Lamy
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France
| | - S Cortese
- Surgical Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France
| | - F Marchal
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France
- Surgical Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France
| | - L Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France.
| |
Collapse
|
23
|
Li Y, Xu C, Zhou X, Li J, Xu S, Tu Y, Mu X, Huang J, Huang Q, Kang L, Wang H, Zhang M, Yuan Y, Wu C, Zhang J. DNA adductomics aided rapid screening of genotoxic impurities using nucleosides and 3D bioprinted human liver organoids. Talanta 2024; 273:125902. [PMID: 38508126 DOI: 10.1016/j.talanta.2024.125902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Current genotoxicity assessment methods are mainly employed to verify the genotoxic safety of drugs, but do not allow for rapid screening of specific genotoxic impurities (GTIs). In this study, a new approach for the recognition of GTIs has been proposed. It is to expose the complex samples to an in vitro nucleoside incubation model, and then draw complete DNA adduct profiles to infer the structures of potential genotoxic impurities (PGIs). Subsequently, the genotoxicity is confirmed in human by 3D bioprinted human liver organoids. To verify the feasibility of the approach, lansoprazole chloride compound (Lanchlor), a PGI during the synthesis of lansoprazole, was selected as the model drug. After confirming genotoxicity by Comet assay, it was exposed to different models to map and compare the DNA adduct profiles by LC-MS/MS. The results showed Lanchlor could generate diverse DNA adducts, revealing firstly its genotoxicity at molecular mechanism of action. Furthermore, the largest variety and content of DNA adducts were observed in the nucleoside incubation model, while the human liver organoids exhibited similar results with rats. The results showed that the combination of DNA adductomics and 3D bioprinted organoids were useful for the rapid screening of GTIs.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Chen Xu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Xueting Zhou
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Jinhong Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Shiting Xu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanbo Tu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Xue Mu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiajun Huang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Qing Huang
- Devision of Inspection Technology Research, Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, NSW, 2006, Australia
| | - Huaisong Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Mei Zhang
- Devision of Inspection Technology Research, Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Yaozuo Yuan
- Devision of Inspection Technology Research, Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China.
| | - Chunyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China.
| | - Junying Zhang
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
24
|
Bilgin S. Apoptotic effect of 5-fluorouracil-doxorubicin combination on colorectal cancer cell monolayers and spheroids. Mol Biol Rep 2024; 51:603. [PMID: 38698270 DOI: 10.1007/s11033-024-09562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Drug combination studies help to improve new treatment approaches for colon cancer. Tumor spheroids (3D) are better models than traditional 2-dimensional cultures (2D) to evaluate cellular responses to chemotherapy drugs. The cultivation of cancer cells in 2D and 3D cultures affects the apoptotic process, which is a major factor influencing the response of cancer cells to chemotherapeutic drugs. In this study, the antiproliferative effects of 5-fluorouracil (5-FU) and doxorubicin (DOX) were investigated separately and in combination using 2D and 3D cell culture models on two different colon cancer cell lines, HT-29 (apoptosis-resistant cells) and Caco-2 2 (apoptosis-susceptible cells). METHODS The effect of the drugs on the proliferation of both colon cancer cells was determined by performing an MTT assay in 2D culture. The apoptotic effect of 5-FU and DOX, both as single agents and in combination, was assessed in 2D and 3D cultures through quantitative real-time polymerase chain reaction analysis. The expression of apoptotic genes, such as caspases, p53, Bax, and Bcl-2, was quantified. RESULTS It was found that the mRNA expression of proapoptotic genes was significantly upregulated, whereas the mRNA expression of the antiapoptotic Bcl-2 gene was significantly downregulated in both colon cancer models treated with 5-FU, DOX, and 5-FU + DOX. CONCLUSION The results indicated that the 5-FU + DOX combination therapy induces apoptosis and renders 5-FU and DOX more effective at lower concentrations compared to their alone use. This study reveals promising results in reducing the potential side effects of treatment by enabling the use of lower drug doses.
Collapse
Affiliation(s)
- Sema Bilgin
- Department of Medical Laboratory Techniques, Tokat Vocational School of Health Services, Tokat Gaziosmanpasa University, 60000, Tokat, Turkey.
| |
Collapse
|
25
|
Shreeya T, Ansari MS, Kumar P, Saifi M, Shati AA, Alfaifi MY, Elbehairi SEI. Senescence: A DNA damage response and its role in aging and Neurodegenerative Diseases. FRONTIERS IN AGING 2024; 4:1292053. [PMID: 38596783 PMCID: PMC11002673 DOI: 10.3389/fragi.2023.1292053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024]
Abstract
Senescence is a complicated, multi-factorial, irreversible cell cycle halt that has a tumor-suppressing effect in addition to being a significant factor in aging and neurological diseases. Damaged DNA, neuroinflammation, oxidative stress and disrupted proteostasis are a few of the factors that cause senescence. Senescence is triggered by DNA damage which initiates DNA damage response. The DNA damage response, which includes the formation of DNA damage foci containing activated H2AX, which is a key factor in cellular senescence, is provoked by a double strand DNA break. Oxidative stress impairs cognition, inhibits neurogenesis, and has an accelerated aging effect. Senescent cells generate pro-inflammatory mediators known as senescence-associated secretory phenotype (SASP). These pro-inflammatory cytokines and chemokines have an impact on neuroinflammation, neuronal death, and cell proliferation. While it is tempting to think of neurodegenerative diseases as manifestations of accelerated aging and senescence, this review will present information on brain ageing and neurodegeneration as a result of senescence and DNA damage response.
Collapse
Affiliation(s)
- Tejal Shreeya
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Mohd Saifullah Ansari
- Institute of Genetics, Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Prabhat Kumar
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | | | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
26
|
Górnicki T, Lambrinow J, Golkar-Narenji A, Data K, Domagała D, Niebora J, Farzaneh M, Mozdziak P, Zabel M, Antosik P, Bukowska D, Ratajczak K, Podhorska-Okołów M, Dzięgiel P, Kempisty B. Biomimetic Scaffolds-A Novel Approach to Three Dimensional Cell Culture Techniques for Potential Implementation in Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:531. [PMID: 38535679 PMCID: PMC10974775 DOI: 10.3390/nano14060531] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 01/06/2025]
Abstract
Biomimetic scaffolds imitate native tissue and can take a multidimensional form. They are biocompatible and can influence cellular metabolism, making them attractive bioengineering platforms. The use of biomimetic scaffolds adds complexity to traditional cell cultivation methods. The most commonly used technique involves cultivating cells on a flat surface in a two-dimensional format due to its simplicity. A three-dimensional (3D) format can provide a microenvironment for surrounding cells. There are two main techniques for obtaining 3D structures based on the presence of scaffolding. Scaffold-free techniques consist of spheroid technologies. Meanwhile, scaffold techniques contain organoids and all constructs that use various types of scaffolds, ranging from decellularized extracellular matrix (dECM) through hydrogels that are one of the most extensively studied forms of potential scaffolds for 3D culture up to 4D bioprinted biomaterials. 3D bioprinting is one of the most important techniques used to create biomimetic scaffolds. The versatility of this technique allows the use of many different types of inks, mainly hydrogels, as well as cells and inorganic substances. Increasing amounts of data provide evidence of vast potential of biomimetic scaffolds usage in tissue engineering and personalized medicine, with the main area of potential application being the regeneration of skin and musculoskeletal systems. Recent papers also indicate increasing amounts of in vivo tests of products based on biomimetic scaffolds, which further strengthen the importance of this branch of tissue engineering and emphasize the need for extensive research to provide safe for humansbiomimetic tissues and organs. In this review article, we provide a review of the recent advancements in the field of biomimetic scaffolds preceded by an overview of cell culture technologies that led to the development of biomimetic scaffold techniques as the most complex type of cell culture.
Collapse
Affiliation(s)
- Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Jakub Lambrinow
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Afsaneh Golkar-Narenji
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA; (P.M.)
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
| | - Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 6193673111, Iran;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA; (P.M.)
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.A.); (K.R.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Kornel Ratajczak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.A.); (K.R.)
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructure Research, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (J.L.); (M.Z.); (P.D.)
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.D.); (D.D.); (J.N.)
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.A.); (K.R.)
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
27
|
Ferronato GDA, Vit FF, da Silveira JC. 3D culture applied to reproduction in females: possibilities and perspectives. Anim Reprod 2024; 21:e20230039. [PMID: 38510565 PMCID: PMC10954237 DOI: 10.1590/1984-3143-ar2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/13/2023] [Indexed: 03/22/2024] Open
Abstract
In vitro cell culture is a well-established technique present in numerous laboratories in diverse areas. In reproduction, gametes, embryos, and reproductive tissues, such as the ovary and endometrium, can be cultured. These cultures are essential for embryo development studies, understanding signaling pathways, developing drugs for reproductive diseases, and in vitro embryo production (IVP). Although many culture systems are successful, they still have limitations to overcome. Three-dimensional (3D) culture systems can be close to physiological conditions, allowing greater interaction between cells and cells with the surrounding environment, maintenance of the cells' natural morphology, and expression of genes and proteins such as in vivo. Additionally, three-dimensional culture systems can stimulated extracellular matrix generating responses due to the mechanical force produced. Different techniques can be used to perform 3D culture systems, such as hydrogel matrix, hanging drop, low attachment surface, scaffold, levitation, liquid marble, and 3D printing. These systems demonstrate satisfactory results in follicle culture, allowing the culture from the pre-antral to antral phase, maintaining the follicular morphology, and increasing the development rates of embryos. Here, we review some of the different techniques of 3D culture systems and their applications to the culture of follicles and embryos, bringing new possibilities to the future of assisted reproduction.
Collapse
Affiliation(s)
| | - Franciele Flores Vit
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | | |
Collapse
|
28
|
Ravi K, Manoharan TJM, Wang KC, Pockaj B, Nikkhah M. Engineered 3D ex vivo models to recapitulate the complex stromal and immune interactions within the tumor microenvironment. Biomaterials 2024; 305:122428. [PMID: 38147743 PMCID: PMC11098715 DOI: 10.1016/j.biomaterials.2023.122428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Cancer thrives in a complex environment where interactions between cellular and acellular components, surrounding the tumor, play a crucial role in disease development and progression. Despite significant progress in cancer research, the mechanism driving tumor growth and therapeutic outcomes remains elusive. Two-dimensional (2D) cell culture assays and in vivo animal models are commonly used in cancer research and therapeutic testing. However, these models suffer from numerous shortcomings including lack of key features of the tumor microenvironment (TME) & cellular composition, cost, and ethical clearance. To that end, there is an increased interest in incorporating and elucidating the influence of TME on cancer progression. Advancements in 3D-engineered ex vivo models, leveraging biomaterials and microengineering technologies, have provided an unprecedented ability to reconstruct native-like bioengineered cancer models to study the heterotypic interactions of TME with a spatiotemporal organization. These bioengineered cancer models have shown excellent capabilities to bridge the gap between oversimplified 2D systems and animal models. In this review article, we primarily provide an overview of the immune and stromal cellular components of the TME and then discuss the latest state-of-the-art 3D-engineered ex vivo platforms aiming to recapitulate the complex TME features. The engineered TME model, discussed herein, are categorized into three main sections according to the cellular interactions within TME: (i) Tumor-Stromal interactions, (ii) Tumor-Immune interactions, and (iii) Complex TME interactions. Finally, we will conclude the article with a perspective on how these models can be instrumental for cancer translational studies and therapeutic testing.
Collapse
Affiliation(s)
- Kalpana Ravi
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
29
|
Wang Q, Fan T, Jia R, Zhang N, Zhao L, Zhong R, Sun G. First report on the QSAR modelling and multistep virtual screening of the inhibitors of nonstructural protein Nsp14 of SARS-CoV-2: Reducing unnecessary chemical synthesis and experimental tests. ARAB J CHEM 2024; 17:105614. [DOI: 10.1016/j.arabjc.2024.105614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
|
30
|
Li K, Ren K, Du S, Gao X, Yu J. Development of Liver Cancer Organoids: Reproducing Tumor Microenvironment and Advancing Research for Liver Cancer Treatment. Technol Cancer Res Treat 2024; 23:15330338241285097. [PMID: 39363866 PMCID: PMC11456184 DOI: 10.1177/15330338241285097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Liver cancer a leading cause of cancer-related deaths worldwide, yet understanding of its development mechanism remains limited, and treatment barriers present substantial challenges. Owing to the heterogeneity of tumors, traditional 2D culture models are inadequate for capturing the complexity and diversity of tumor biology and understanding of the disease. Organoids have garnered considerable attention because of their ability to self-renew and develop functional structures in vitro that closely resemble those of human organs. This review explores the history of liver organoids, their cellular origins, techniques of constructing tumor microenvironments that recapitulate liver cancer organoids, and the biological and clinical applications of liver and liver cancer organoids and explores the current challenges related to liver cancer organoid applications and potentially valuable solutions, with the aim of facilitating the construction of in vitro clinical models of liver cancer therapeutic research.
Collapse
Affiliation(s)
- Kangkang Li
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang Hospital Affiliataed Bengbu Medical College, Fuyang, Anhui province, China, 236000
| | - Kuiwu Ren
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang Hospital Affiliataed Bengbu Medical College, Fuyang, Anhui province, China, 236000
| | - Sen Du
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang Hospital Affiliataed Bengbu Medical College, Fuyang, Anhui province, China, 236000
| | - Xiang Gao
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui province, China, 236000
| | - Jiangtao Yu
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang Hospital Affiliataed Bengbu Medical College, Fuyang, Anhui province, China, 236000
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui province, China, 236000
| |
Collapse
|
31
|
Miller CP, Fung M, Jaeger-Ruckstuhl CA, Xu Y, Warren EH, Akilesh S, Tykodi SS. Therapeutic targeting of tumor spheroids in a 3D microphysiological renal cell carcinoma-on-a-chip system. Neoplasia 2023; 46:100948. [PMID: 37944353 PMCID: PMC10663960 DOI: 10.1016/j.neo.2023.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Metastatic renal cell carcinoma (RCC) remains an incurable disease for most patients highlighting an urgent need for new treatments. However, the preclinical investigation of new therapies is limited by traditional two-dimensional (2D) cultures which do not recapitulate the properties of tumor cells within a collagen extracellular matrix (ECM), while human tumor xenografts are time-consuming, expensive and lack adaptive immune cells. We report a rapid and economical human microphysiological system ("RCC-on-a-chip") to investigate therapies targeting RCC spheroids in a 3D collagen ECM. We first demonstrate that culture of RCC cell lines A498 and RCC4 in a 3D collagen ECM more faithfully reproduces the gene expression program of primary RCC tumors compared to 2D culture. We next used bortezomib as a cytotoxin to develop automated quantification of dose-dependent tumor spheroid killing. We observed that viable RCC spheroids exhibited collective migration within the ECM and demonstrated that our 3D system can be used to identify compounds that inhibit spheroid collective migration without inducing cell death. Finally, we demonstrate the RCC-on-a-chip as a platform to model the trafficking of tumor-reactive T cells into the ECM and observed antigen-specific A498 spheroid killing by engineered human CD8+ T cells expressing an ROR1-specific chimeric antigen receptor. In summary, the phenotypic differences between the 3D versus 2D environments, rapid imaging-based readout, and the ability to carefully study the impact of individual variables with quantitative rigor will encourage adoption of the RCC-on-a-chip system for testing a wide range of emerging therapies for RCC.
Collapse
Affiliation(s)
- Chris P Miller
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.
| | - Megan Fung
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Carla A Jaeger-Ruckstuhl
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Yuexin Xu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Edus H Warren
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States; Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, United States
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States; Kidney Research Institute, University of Washington, Seattle, WA, United States
| | - Scott S Tykodi
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, United States; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
32
|
Sethi A, Rezk A, Couban R, Chowdhury T. Role of midazolam on cancer progression/survival - An updated systematic review. Indian J Anaesth 2023; 67:951-961. [PMID: 38213688 PMCID: PMC10779977 DOI: 10.4103/ija.ija_731_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 01/13/2024] Open
Abstract
Background and Aims Cancer is a leading cause of mortality worldwide. Despite advancements in cancer management, cancer progression remains a challenge, requiring the development of novel therapies. Midazolam is a commonly used adjunct to anaesthesia care for various surgeries, including cancer. Recently, there has been a growing interest in exploring the potential role of midazolam as an anticancer agent; however, the exact mechanism of this linkage is yet to be investigated thoroughly. Methods Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline, this systematic review presented aggregated evidence (till November 2022) of the effects of midazolam on cancer progression and survival. All primary research article types where midazolam was administered in vivo or in vitro on subjects with cancers were included. No restrictions were applied on routes of administration or the type of cancer under investigation. Narrative synthesis depicted qualitative findings, whereas frequencies and percentages presented numerical data. Results Of 1720 citations, 19 studies were included in this review. All articles were preclinical studies conducted either in vitro (58%, 11/19) or both in vivo and in vitro (42%, 8/19). The most studied cancer was lung carcinoma (21%, 4/19). There are two main findings in this review. First, midazolam delays cancer progression (89%, 17/19). Second, midazolam reduces cancer cell survival (63%, 12/19). The two major mechanisms of these properties can be explained via inducing apoptosis (63%, 12/19) and inhibiting cancer cell proliferation (53%, 10/19). In addition, midazolam demonstrated antimetastatic properties via inhibition of cancer invasion (21%, 4/19), migration (26%, 5/19), or epithelial-mesenchymal transition (5%, 1/19). These anticancer properties of midazolam were demonstrated through different pathways when midazolam was used alone or in combination with traditional cancer chemotherapeutic agents. Conclusion This systematic review highlights that midazolam has the potential to impede cancer progression and decrease cancer cell survival. Extrapolation of these results into human cancer necessitates further investigation.
Collapse
Affiliation(s)
- Ansh Sethi
- Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Amal Rezk
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| | - Rachel Couban
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Tumul Chowdhury
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Sakshaug BC, Folkesson E, Haukaas TH, Visnes T, Flobak Å. Systematic review: predictive value of organoids in colorectal cancer. Sci Rep 2023; 13:18124. [PMID: 37872318 PMCID: PMC10593775 DOI: 10.1038/s41598-023-45297-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/18/2023] [Indexed: 10/25/2023] Open
Abstract
While chemotherapy alone or in combination with radiotherapy and surgery are important modalities in the treatment of colorectal cancer, their widespread use is not paired with an abundance of diagnostic tools to match individual patients with the most effective standard-of-care chemo- or radiotherapy regimens. Patient-derived organoids are tumour-derived structures that have been shown to retain certain aspects of the tissue of origin. We present here a systematic review of studies that have tested the performance of patient derived organoids to predict the effect of anti-cancer therapies in colorectal cancer, for chemotherapies, targeted drugs, and radiation therapy, and we found overall a positive predictive value of 68% and a negative predictive value of 78% for organoid informed treatment, which outperforms response rates observed with empirically guided treatment selection.
Collapse
Affiliation(s)
- B Cristoffer Sakshaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Evelina Folkesson
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tonje Husby Haukaas
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Torkild Visnes
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Åsmund Flobak
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.
- The Cancer Clinic, St Olav's University Hospital, Prinsesse Kristinas Gate 1, 7030, Trondheim, Norway.
| |
Collapse
|
34
|
Rago V, Perri A, Di Agostino S. New Therapeutic Perspectives in Prostate Cancer: Patient-Derived Organoids and Patient-Derived Xenograft Models in Precision Medicine. Biomedicines 2023; 11:2743. [PMID: 37893116 PMCID: PMC10604340 DOI: 10.3390/biomedicines11102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
One of the major goals in the advancement of basic cancer research focuses on the development of new anticancer therapies. To understand the molecular mechanisms of cancer progression, acquired drug resistance, and the metastatic process, the use of preclinical in vitro models that faithfully summarize the properties of the tumor in patients is still a necessity. The tumor is represented by a diverse group of cell clones, and in recent years, to reproduce in vitro preclinical tumor models, monolayer cell cultures have been supplanted by patient-derived xenograft (PDX) models and cultured organoids derived from the patient (PDO). These models have proved indispensable for the study of the tumor microenvironment (TME) and its interaction with tumor cells. Prostate cancer (PCa) is the most common neoplasia in men in the world. It is characterized by genomic instability and resistance to conventional therapies. Despite recent advances in diagnosis and treatment, PCa remains a leading cause of cancer death. Here, we review the studies of the last 10 years as the number of papers is growing very fast in the field. We also discuss the discovered limitations and the new challenges in using the organoid culture system and in using PDXs in studying the prostate cancer phenotype, performing drug testing, and developing anticancer molecular therapies.
Collapse
Affiliation(s)
- Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Silvia Di Agostino
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
35
|
Papapostolou I, Bochen F, Peinelt C, Maldifassi MC. A Simple and Fast Method for the Formation and Downstream Processing of Cancer-Cell-Derived 3D Spheroids: An Example Using Nicotine-Treated A549 Lung Cancer 3D Spheres. Methods Protoc 2023; 6:94. [PMID: 37888026 PMCID: PMC10609300 DOI: 10.3390/mps6050094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Although 2D in vitro cancer cell cultures have been used for decades as a first line-of-research tool to investigate antitumoral drugs and treatments, their use presents many drawbacks, including the poor resemblance of such cultures to the characteristics of in vivo tumors. To mitigate these drawbacks, 3D culture models have emerged as a more representative alternative. Cancer cells cultured as 3D structures have the advantage of resembling solid tumors in their architecture and in their resistance to chemotherapeutic drugs, in part because of restrained drug penetration. Additionally, these 3D structures create a more physiological environment for the study of immune cell invasion and migration, comparable to solid tumors. In this paper, we describe a fast and cost-effective step-by-step protocol for the generation of 3D spheres using ultra-low-attachment (ULA) multiwell plates, which can be incorporated into the normal workflow of any laboratory. Using this protocol, spheroids of different human cancer cell lines can be obtained and can then be characterized on the basis of their morphology, viability, and expression of specific markers.
Collapse
Affiliation(s)
| | | | | | - Maria Constanza Maldifassi
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland; (I.P.); (F.B.); (C.P.)
| |
Collapse
|
36
|
Krawczyk E, Kitlińska J. Preclinical Models of Neuroblastoma-Current Status and Perspectives. Cancers (Basel) 2023; 15:3314. [PMID: 37444423 PMCID: PMC10340830 DOI: 10.3390/cancers15133314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Preclinical in vitro and in vivo models remain indispensable tools in cancer research. These classic models, including two- and three-dimensional cell culture techniques and animal models, are crucial for basic and translational studies. However, each model has its own limitations and typically does not fully recapitulate the course of the human disease. Therefore, there is an urgent need for the development of novel, advanced systems that can allow for efficient evaluation of the mechanisms underlying cancer development and progression, more accurately reflect the disease pathophysiology and complexity, and effectively inform therapeutic decisions for patients. Preclinical models are especially important for rare cancers, such as neuroblastoma, where the availability of patient-derived specimens that could be used for potential therapy evaluation and screening is limited. Neuroblastoma modeling is further complicated by the disease heterogeneity. In this review, we present the current status of preclinical models for neuroblastoma research, discuss their development and characteristics emphasizing strengths and limitations, and describe the necessity of the development of novel, more advanced and clinically relevant approaches.
Collapse
Affiliation(s)
- Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Joanna Kitlińska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
37
|
Carvalho SM, Mansur AAP, da Silveira IB, Pires TFS, Victória HFV, Krambrock K, Leite MF, Mansur HS. Nanozymes with Peroxidase-like Activity for Ferroptosis-Driven Biocatalytic Nanotherapeutics of Glioblastoma Cancer: 2D and 3D Spheroids Models. Pharmaceutics 2023; 15:1702. [PMID: 37376150 DOI: 10.3390/pharmaceutics15061702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain cancer in adults. Despite the remarkable advancements in recent years in the realm of cancer diagnosis and therapy, regrettably, GBM remains the most lethal form of brain cancer. In this view, the fascinating area of nanotechnology has emerged as an innovative strategy for developing novel nanomaterials for cancer nanomedicine, such as artificial enzymes, termed nanozymes, with intrinsic enzyme-like activities. Therefore, this study reports for the first time the design, synthesis, and extensive characterization of innovative colloidal nanostructures made of cobalt-doped iron oxide nanoparticles chemically stabilized by a carboxymethylcellulose capping ligand (i.e., Co-MION), creating a peroxidase-like (POD) nanozyme for biocatalytically killing GBM cancer cells. These nanoconjugates were produced using a strictly green aqueous process under mild conditions to create non-toxic bioengineered nanotherapeutics against GBM cells. The nanozyme (Co-MION) showed a magnetite inorganic crystalline core with a uniform spherical morphology (diameter, 2R = 6-7 nm) stabilized by the CMC biopolymer, producing a hydrodynamic diameter (HD) of 41-52 nm and a negatively charged surface (ZP~-50 mV). Thus, we created supramolecular water-dispersible colloidal nanostructures composed of an inorganic core (Cox-MION) and a surrounding biopolymer shell (CMC). The nanozymes confirmed the cytotoxicity evaluated by an MTT bioassay using a 2D culture in vitro of U87 brain cancer cells, which was concentration-dependent and boosted by increasing the cobalt-doping content in the nanosystems. Additionally, the results confirmed that the lethality of U87 brain cancer cells was predominantly caused by the production of toxic cell-damaging reactive oxygen species (ROS) through the in situ generation of hydroxyl radicals (·OH) by the peroxidase-like activity displayed by nanozymes. Thus, the nanozymes induced apoptosis (i.e., programmed cell death) and ferroptosis (i.e., lipid peroxidation) pathways by intracellular biocatalytic enzyme-like activity. More importantly, based on the 3D spheroids model, these nanozymes inhibited tumor growth and remarkably reduced the malignant tumor volume after the nanotherapeutic treatment (ΔV~40%). The kinetics of the anticancer activity of these novel nanotherapeutic agents decreased with the time of incubation of the GBM 3D models, indicating a similar trend commonly observed in tumor microenvironments (TMEs). Furthermore, the results demonstrated that the 2D in vitro model overestimated the relative efficiency of the anticancer agents (i.e., nanozymes and the DOX drug) compared to the 3D spheroid models. These findings are notable as they evidenced that the 3D spheroid model resembles more precisely the TME of "real" brain cancer tumors in patients than 2D cell cultures. Thus, based on our groundwork, 3D tumor spheroid models might be able to offer transitional systems between conventional 2D cell cultures and complex biological in vivo models for evaluating anticancer agents more precisely. These nanotherapeutics offer a wide avenue of opportunities to develop innovative nanomedicines for fighting against cancerous tumors and reducing the frequency of severe side effects in conventionally applied chemotherapy-based treatments.
Collapse
Affiliation(s)
- Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Izabela B da Silveira
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Thaisa F S Pires
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Henrique F V Victória
- Department of Physics, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Klaus Krambrock
- Department of Physics, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - M Fátima Leite
- Department of Physiology and Biophysics, Institute of Biological Sciences-ICB, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil
| |
Collapse
|