1
|
Nguyen CTG, Meng F. Unleashing the power of nucleic acid therapeutics through efficient cytosolic delivery. J Control Release 2025; 383:113774. [PMID: 40280238 DOI: 10.1016/j.jconrel.2025.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The approval of siRNA-based therapy for liver disease in 2018 and the subsequent success of mRNA-based SARS-CoV-2 vaccines have inaugurated a new era in nucleic acid-based therapeutics. These breakthroughs underscore the transformative potential of nucleic acid-based therapeutics, which modulate gene function, correct genetic defects, or disrupt pathological molecular processes. Such advances represent a paradigm shift in modern medicine. Despite their immense promise, the clinical realization of nucleic acid-based therapies is fundamentally constrained by endosomal entrapment, a critical barrier that significantly limits therapeutic efficacy. Overcoming this obstacle is imperative to fully unlock the potential of these therapies. Designing effective strategies to facilitate the escape of nucleic acids from endosomes-or bypassing endosomal pathways altogether-remains a central challenge in the field. In this review, we provide a comprehensive and critical analysis of current approaches aimed at enhancing endosomal escape or circumventing endosomal entrapment. By highlighting both the successes and limitations of these strategies, we aim to offer valuable insights to inform the development of more efficient and clinically viable nucleic acid delivery systems, advancing the future of molecular medicine.
Collapse
Affiliation(s)
- Cao Thuy Giang Nguyen
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Lowell, MA 01854, USA
| | - Fanfei Meng
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Lowell, MA 01854, USA.
| |
Collapse
|
2
|
Raina S, Samuel E, Fuchs H. DT-13 Mediates Ligand-Dependent Activation of PPARγ Response Elements In Vitro. BIOLOGY 2024; 13:1015. [PMID: 39765682 PMCID: PMC11673078 DOI: 10.3390/biology13121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Activation of inflammatory pathways releases a storm of cytokines. Moreover, unregulated cytokines contribute to chronic inflammatory disorders. However, ligand-activated peroxisome proliferator-activated receptor gamma (PPARγ) is involved in suppressing inflammatory cytokines via transrepression of nuclear factor kappa B (NFκB). Therefore, in this study, the anti-inflammatory saponin DT-13 is explored as a ligand of PPARγ. DT-13 upregulated the expression of PPARγ in lipopolysaccharide (LPS)-stimulated RAW264.7 cells in comparison to treatment with LPS alone. Applying a HEK transfection model, we observed a DT-13 dose-dependent increase in ligand-dependent activation of PPARγ, which was compared with troglitazone and rosiglitazone. DT-13 was not able to compete with the synthetic fluoromone tracer for binding to PPARγ as observed in a fluorescence polarization binding assay, whereas molecular docking showed a possible binding interaction of DT-13 with the PPARγ nuclear receptor. We proved the expression of PPARγ protein in the presence of DT-13 using a robust cell-based HEK293FT transfection model. More in-depth analysis needs to be performed to evaluate the efficiency of the binding of DT-13 to PPARγ. A possible binding interaction of DT-13 to PPARγ was observed, similar to that of rosiglitazone. This study revealed a novel mechanism for anti-inflammatory effects by DT-13 through PPARγ-dependent transrepression of NFκB.
Collapse
Affiliation(s)
| | | | - Hendrik Fuchs
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany
| |
Collapse
|
3
|
Rahman U, Younas Z, Ahmad I, Yousaf T, Latif R, Rubab U, Hassan H, Shafi U, Mashwani ZUR. Enhancing health and therapeutic potential: innovations in the medicinal and pharmaceutical properties of soy bioactive compounds. Front Pharmacol 2024; 15:1397872. [PMID: 39421675 PMCID: PMC11483366 DOI: 10.3389/fphar.2024.1397872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/24/2024] [Indexed: 10/19/2024] Open
Abstract
An extensive examination of the medical uses of soybean bioactive components is provided by this thorough review. It explores the possible health advantages of isoflavones with phytoestrogenic qualities, like genistein, which may lower the risk of cancer. The review highlights the different roles and possible anticancer activities of phenolic compounds, phytic acid, protease inhibitors, lignans, and saponins, among other bioactive components. It also addresses the benefits of dietary fiber and oligosaccharides derived from soybeans for intestinal health, as well as the impact of soy protein on diabetes, obesity, cancer, and cardiovascular health. Conjugated linoleic acid (CLA) has anticancer and cholesterol-lowering properties; its involvement in promoting metabolic processes is also examined. Pinitol is highlighted in the study as a blood sugar regulator with promise for controlling insulin signaling. In this review, we aim to affirm soybeans' potential as a high-functional, well-being food by examining their recently discovered therapeutic and pharmacological capabilities, rather than to improve upon the previous studies on the reported nutritional advantages of soybeans.
Collapse
Affiliation(s)
| | | | - Ilyas Ahmad
- *Correspondence: Zia-ur-Rehman Mashwani, ; Ilyas Ahmad,
| | | | | | | | | | | | | |
Collapse
|
4
|
Chen P, Cao XW, Dong JW, Zhao J, Wang FJ. Saponin and Ribosome-Inactivating Protein Synergistically Trigger Lysosome-Dependent Apoptosis by Inhibiting Lysophagy: Potential to Become a New Antitumor Strategy. Mol Pharm 2024; 21:2993-3005. [PMID: 38722865 DOI: 10.1021/acs.molpharmaceut.4c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The susceptibility of lysosomal membranes in tumor cells to cationic amphiphilic drugs (CADs) enables CADs to induce lysosomal membrane permeabilization (LMP) and trigger lysosome-dependent cell death (LDCD), suggesting a potential antitumor therapeutic approach. However, the existence of intrinsic lysosomal damage response mechanisms limits the display of the pharmacological activity of CADs. In this study, we report that low concentrations of QS-21, a saponin with cationic amphiphilicity extracted from Quillaja Saponaria tree, can induce LMP but has nontoxicity to tumor cells. QS-21 and MAP30, a type I ribosome-inactivating protein, synergistically induce apoptosis in tumor cells at low concentrations of both. Mechanistically, QS-21-induced LMP helps MAP30 escape from endosomes or lysosomes and subsequently enter the endoplasmic reticulum, where MAP30 downregulates the expression of autophagy-associated LC3 proteins, thereby inhibiting lysophagy. The inhibition of lysophagy results in the impaired clearance of damaged lysosomes, leading to the leakage of massive lysosomal contents such as cathepsins into the cytoplasm, ultimately triggering LDCD. In summary, our study showed that coadministration of QS-21 and MAP30 amplified the lysosomal disruption and can be a new synergistic LDCD-based antitumor therapy.
Collapse
Affiliation(s)
- Piao Chen
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xue-Wei Cao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd., 209 West Hulian Road, Dongyang, Zhejiang 322100, People's Republic of China
| | - Jing-Wen Dong
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd., 209 West Hulian Road, Dongyang, Zhejiang 322100, People's Republic of China
| | - Jian Zhao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Fu-Jun Wang
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd., 209 West Hulian Road, Dongyang, Zhejiang 322100, People's Republic of China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
5
|
Schlaak L, Weise C, Kuropka B, Weng A. Mutational Analysis of RIP Type I Dianthin-30 Suggests a Role for Arg24 in Endocytosis. Toxins (Basel) 2024; 16:219. [PMID: 38787071 PMCID: PMC11125672 DOI: 10.3390/toxins16050219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Saponin-mediated endosomal escape is a mechanism that increases the cytotoxicity of type I ribosome-inactivating proteins (type I RIPs). In order to actualize their cytotoxicity, type I RIPs must be released into the cytosol after endocytosis. Without release from the endosomes, type I RIPs are largely degraded and cannot exert their cytotoxic effects. Certain triterpene saponins are able to induce the endosomal escape of these type I RIPs, thus increasing their cytotoxicity. However, the molecular mechanism underlying the endosomal escape enhancement of type I RIPs by triterpene saponins has not been fully elucidated. In this report, we investigate the involvement of the basic amino acid residues of dianthin-30, a type I RIP isolated from the plant Dianthus caryophyllus L., in endosomal escape enhancement using alanine scanning. Therefore, we designed 19 alanine mutants of dianthin-30. Each mutant was combined with SO1861, a triterpene saponin isolated from the roots of Saponaria officinalis L., and subjected to a cytotoxicity screening in Neuro-2A cells. Cytotoxic screening revealed that dianthin-30 mutants with lysine substitutions did not impair the endosomal escape enhancement. There was one particular mutant dianthin, Arg24Ala, that exhibited significantly reduced synergistic cytotoxicity in three mammalian cell lines. However, this reduction was not based on an altered interaction with SO1861. It was, rather, due to the impaired endocytosis of dianthin Arg24Ala into the cells.
Collapse
Affiliation(s)
- Louisa Schlaak
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany;
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; (C.W.); (B.K.)
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; (C.W.); (B.K.)
| | - Alexander Weng
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany;
| |
Collapse
|
6
|
Schulze FJ, Asadian-Birjand M, Pradela M, Niesler N, Nagel G, Fuchs H. A cleavable peptide adapter augments the activity of targeted toxins in combination with the glycosidic endosomal escape enhancer SO1861. BMC Biotechnol 2024; 24:24. [PMID: 38685061 PMCID: PMC11057116 DOI: 10.1186/s12896-024-00854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Treatment with tumor-targeted toxins attempts to overcome the disadvantages of conventional cancer therapies by directing a drug's cytotoxic effect specifically towards cancer cells. However, success with targeted toxins has been hampered as the constructs commonly remain bound to the outside of the cell or, after receptor-mediated endocytosis, are either transported back to the cell surface or undergo degradation in lysosomes. Hence, solutions to ensure endosomal escape are an urgent need in treatment with targeted toxins. In this work, a molecular adapter that consists of a cell penetrating peptide and two cleavable peptides was inserted into a targeted toxin between the ribosome-inactivating protein dianthin and the epidermal growth factor. Applying cell viability assays, this study examined whether the addition of the adapter further augments the endosomal escape enhancement of the glycosylated triterpenoid SO1861, which has shown up to more than 1000-fold enhancement in the past. RESULTS Introducing the peptide adapter into the targeted toxin led to an about 12-fold enhancement in the cytotoxicity on target cells while SO1861 caused a 430-fold increase. However, the combination of adapter and glycosylated triterpenoid resulted in a more than 4300-fold enhancement and in addition to a 51-fold gain in specificity. CONCLUSIONS Our results demonstrated that the cleavable peptide augments the endosomal escape mediated by glycosylated triterpenoids while maintaining specificity. Thus, the adapter is a promising addition to glycosylated triterpenoids to further increase the efficacy and therapeutic window of targeted toxins.
Collapse
Affiliation(s)
- Finn J Schulze
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Mazdak Asadian-Birjand
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Michael Pradela
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Nicole Niesler
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Gregor Nagel
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hendrik Fuchs
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
7
|
Yang G, Qi Z, Shan S, Xie D, Tan X. Advances in Separation, Biological Properties, and Structure-Activity Relationship of Triterpenoids Derived from Camellia oleifera Abel. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4574-4586. [PMID: 38385335 DOI: 10.1021/acs.jafc.3c09168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Extensive research has been conducted on Camellia oleifera Abel., a cultivar predominantly distributed in China, to investigate its phytochemical composition, owning to its potential as an edible oil crop. Pentacyclic triterpene saponins, as essential active constituents, play a significant role in contributing to the pharmacological effects of this cultivar. The saponins derived from C. oleifera (CoS) offer a diverse array of bioactivity benefits, including antineoplastic/bactericidal/inflammatory properties, cardiovascular protection, neuroprotection, as well as hypoglycemic and hypolipidemic effects. This review presents a comprehensive analysis of the isolation and pharmacological properties of CoS. Specially, we attempt to reveal the antitumor structure-activity relationship (SAR) of CoS-derived triterpenoids. The active substitution sites of CoS, namely, C-3, C-15, C-16, C-21, C-22, C-23, and C-28 pentacyclic triterpenoids, make it a unique and highly valuable substance with significant medicinal and culinary applications. As such, CoS can play a critical role in transforming people's lives, providing unique medicinal benefits, and contributing to the advancement of both medicine and cuisine.
Collapse
Affiliation(s)
- Guliang Yang
- National Engineering Laboratory for Rice and Byproducts Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan 410004, People's Republic of China
| | - Zhiwen Qi
- National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Nanjing, Jiangsu 210042, People's Republic of China
| | - Sijie Shan
- National Engineering Laboratory for Rice and Byproducts Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan 410004, People's Republic of China
| | - Di Xie
- Loudi City Farmer Quality Education Center, Loudi, Hunan 417000, People's Republic of China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Collaborative Innovation Center of Cultivation and Utilization for Non-Wood Forest Tree, Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, Hunan 410004, People's Republic of China
| |
Collapse
|
8
|
Masilamani AP, Huber N, Nagl C, Dettmer-Monaco V, Monaco G, Wolf I, Schultze-Seemann S, Taromi S, Gratzke C, Fuchs H, Wolf P. Enhanced cytotoxicity of a Pseudomonas Exotoxin A based immunotoxin against prostate cancer by addition of the endosomal escape enhancer SO1861. Front Pharmacol 2023; 14:1211824. [PMID: 37484018 PMCID: PMC10358361 DOI: 10.3389/fphar.2023.1211824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Immunotoxins consist of an antibody or antibody fragment that binds to a specific cell surface structure and a cytotoxic domain that kills the cell after cytosolic uptake. Pseudomonas Exotoxin A (PE) based immunotoxins directed against a variety of tumor entities have successfully entered the clinic. PE possesses a KDEL-like motif (REDLK) that enables the toxin to travel from sorting endosomes via the KDEL-receptor pathway to the endoplasmic reticulum (ER), from where it is transported into the cytosol. There, it ADP-ribosylates the eukaryotic elongation factor 2, resulting in ribosome inhibition and finally apoptosis. One major problem of immunotoxins is their lysosomal degradation causing the need for much more immunotoxin molecules than finally required for induction of cell death. The resulting dose limitations and substantially increased side effects require new strategies to achieve improved cytosolic uptake. Here we generated an immunotoxin consisting of a humanized single chain variable fragment (scFv) targeting the prostate specific membrane antigen (PSMA) and the de-immunized PE variant PE24mut. This immunotoxin, hD7-1(VL-VH)-PE24mut, showed high and specific cytotoxicity in PSMA-expressing prostate cancer cells. We deleted the REDLK sequence to prevent transport to the ER and achieve endosomal entrapment. The cytotoxicity of this immunotoxin, hD7-1(VL-VH)-PE24mutΔREDLK, was greatly reduced. To restore activity, we added the endosomal escape enhancer SO1861 and observed an up to 190,000-fold enhanced cytotoxicity corresponding to a 57-fold enhancement compared to the initial immunotoxin with the REDLK sequence. A biodistribution study with different routes of administration clearly showed that the subcutaneous injection of hD7-1(VL-VH)-PE24mutΔREDLK in mice resulted in the highest tumor uptake. Treatment of mice bearing prostate tumors with a combination of hD7-1(VL-VH)-PE24mutΔREDLK plus SO1861 resulted in inhibition of tumor growth and enhanced overall survival compared to the monotherapies. The endosomal entrapment of non-toxic anti-PSMA immunotoxins followed by enhanced endosomal escape by SO1861 provides new therapeutic options in the future management of prostate cancer.
Collapse
Affiliation(s)
- Anie P. Masilamani
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nathalie Huber
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constanze Nagl
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Viviane Dettmer-Monaco
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
| | - Gianni Monaco
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Freiburg, Germany
- Institute of Neuropathology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Isis Wolf
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty for Biology, University of Freiburg, Freiburg, Germany
| | - Susanne Schultze-Seemann
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sanaz Taromi
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medicine I, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medical and Life Sciences, University Furtwangen, VS-Schwenningen, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hendrik Fuchs
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Koczurkiewicz-Adamczyk P, Grabowska K, Karnas E, Piska K, Wnuk D, Klaś K, Galanty A, Wójcik-Pszczoła K, Michalik M, Pękala E, Fuchs H, Podolak I. Saponin Fraction CIL1 from Lysimachia ciliata L. Enhances the Effect of a Targeted Toxin on Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15051350. [PMID: 37242592 DOI: 10.3390/pharmaceutics15051350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Saponins are plant metabolites that possess multidirectional biological activities, among these is antitumor potential. The mechanisms of anticancer activity of saponins are very complex and depend on various factors, including the chemical structure of saponins and the type of cell they target. The ability of saponins to enhance the efficacy of various chemotherapeutics has opened new perspectives for using them in combined anticancer chemotherapy. Co-administration of saponins with targeted toxins makes it possible to reduce the dose of the toxin and thus limit the side effects of overall therapy by mediating endosomal escape. Our study indicates that the saponin fraction CIL1 of Lysimachia ciliata L. can improve the efficacy of the EGFR-targeted toxin dianthin (DE). We investigated the effect of cotreatment with CIL1 + DE on cell viability in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, on proliferation in a crystal violet assay (CV) and on pro-apoptotic activity using Annexin V/7 Actinomycin D (7-AAD) staining and luminescence detection of caspase levels. Cotreatment with CIL1 + DE enhanced the target cell-specific cytotoxicity, as well as the antiproliferative and proapoptotic properties. We found a 2200-fold increase in both the cytotoxic and antiproliferative efficacy of CIL1 + DE against HER14-targeted cells, while the effect on control NIH3T3 off-target cells was less profound (6.9- or 5.4-fold, respectively). Furthermore, we demonstrated that the CIL1 saponin fraction has a satisfactory in vitro safety profile with a lack of cytotoxic and mutagenic potential.
Collapse
Affiliation(s)
- Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Karolina Grabowska
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Katarzyna Klaś
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Hendrik Fuchs
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Irma Podolak
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| |
Collapse
|
10
|
Wang W, Cao XW, Wang FJ, Zhao J. Cytotoxic effects of recombinant proteins enhanced by momordin Ic are dependent on cholesterol and ganglioside GM1. Toxicon 2023; 229:107129. [PMID: 37086901 DOI: 10.1016/j.toxicon.2023.107129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023]
Abstract
Plant-derived triterpenoid saponins have been shown to play a powerful role in enhancing the cytotoxic activity of protein therapeutics. However, the mechanism of how saponins are acting is not clearly understood. In this study, momordin Ic (MIC), a triterpenoid saponin derived from Kochia scoparia (L.) Schrad., specifically enhance the antiproliferative effect of recombinant MAP30 (a type I ribosome inactivating protein, RIP) in breast cancer cells. Subsequently, the possible mechanism of how MIC enhanced the cytotoxicity of MAP30 was analyzed in detail. We observed the level of intracellular labeled MAP30 using fluorescence microscopy and flow cytometry. And a reporter protein, GAL9, was used to monitor the role of MIC in promoting endosomal escape. We found endosomal escape does not play a role for the enhancer effect of MIC while the effect of MIC on MAP30 is cholesterol dependent and that ganglioside GM1, a lipid raft marker, can competitively inhibit cytotoxicity of MAP30 enhanced by MIC. Finally, we provided some insights into the correlation between the sugar side chain of MIC and its role in enhancing of RIP cytotoxicity and altering of drug cell tropism.
Collapse
Affiliation(s)
- Wei Wang
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xue-Wei Cao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fu-Jun Wang
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd. 209 West Hulian Road, Dongyang, 322100, Zhejiang, China; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Jian Zhao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
11
|
Zhu M, Sun Y, Bai H, Wang Y, Yang B, Wang Q, Kuang H. Effects of saponins from Chinese herbal medicines on signal transduction pathways in cancer: A review. Front Pharmacol 2023; 14:1159985. [PMID: 37063281 PMCID: PMC10090286 DOI: 10.3389/fphar.2023.1159985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Cancer poses a serious threat to human health, and the search for safe and effective drugs for its treatment has aroused interest and become a long-term goal. Traditional Chinese herbal medicine (TCM), an ancient science with unique anti-cancer advantages, has achieved outstanding results in long-term clinical practice. Accumulating evidence shows that saponins are key bioactive components in TCM and have great research and development applications for their significant role in the treatment of cancer. Saponins are a class of glycosides comprising nonpolar triterpenes or sterols attached to hydrophilic oligosaccharide groups that exert antitumor effects by targeting the NF-κB, PI3Ks-Akt-mTOR, MAPK, Wnt-β-catenin, JAK-STAT3, APMK, p53, and EGFR signaling pathways. Presently, few advances have been made in physiological and pathological studies on the effect of saponins on signal transduction pathways involved in cancer treatment. This paper reviews the phytochemistry and extraction methods of saponins of TCM and their effects on signal transduction pathways in cancer. It aims to provide theoretical support for in-depth studies on the anticancer effects of saponins.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Haodong Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yimeng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| |
Collapse
|
12
|
Antioxidant status in the blood, liver, and muscle tissue of turkey hens receiving a diet with alfalfa protein concentrate. Poult Sci 2023; 102:102521. [PMID: 36796243 PMCID: PMC9958502 DOI: 10.1016/j.psj.2023.102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
This study aimed to investigate the impact of the oxidative potential of turkeys fed a diet with alfalfa protein concentrate (APC), used throughout the rearing period or periodically at 2-wk intervals. The research material consisted of 6-wk-old BIG 6 turkey hens kept in pens, 5 birds per pen in 6 replicates. The experimental factor was the addition of APC to the diet in the amount of 15 or 30 g/kg of diet. APC was administered in 2 ways: birds received a diet with APC throughout the experiment or periodically. In the latter case, the birds received the diet with APC for 2 wk, and then for 2 wk they received the standard diet without APC. Levels of nutrients in the diet; flavonoids, polyphenols, tannins, and saponins in APC; uric acid, creatinine, bilirubin, and some antioxidants in the blood; and enzyme parameters in the blood and tissues of turkeys were determined. The use of APC in the diet stimulated antioxidant processes, which could be seen in the values of the pro-oxidant-antioxidant parameters of the tissues and blood plasma of turkeys. The significant reduction in the H2O2 level (P = 0.042) and slight reduction in the MDA level (P = 0.083), accompanied by an increase in catalase (P = 0.046) activity in the turkeys continuously receiving APC in the amount of 30 g/kg of diet, as well as the increase in plasma antioxidant parameters (vitamin C, P = 0.042 and FRAP, P = 0.048) in these birds, reflects improvement in their antioxidant status. Thus continuous use of the APC supplement in the amount of 30 g/kg of diet proved to be a better feeding practice to optimize oxidative potential than periodic inclusion of APC.
Collapse
|
13
|
Hasanzadeh A, Vahabi AH, Hooshmand SE, Hosseini ES, Azar BKY, Kiani J, Saeedi S, Shahbazi A, Rudra A, Hamblin MR, Karimi M. Saponin and fluorine-modified polycation as a versatile gene delivery system. NANOTECHNOLOGY 2022; 33:445101. [PMID: 35882099 DOI: 10.1088/1361-6528/ac842d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Despite the development of many novel carriers for the delivery of various types of genetic material, the lack of a delivery system with high efficiency and low cytotoxicity is a major bottleneck. Herein, low molecular weight polyethylenimine (PEI1.8k) was functionalized with saponin residues using phenylboronic acid (PBA) as an ATP-responsive cross-linker, and a fluorinated side chain to construct PEI-PBA-SAP-F polycation as a highly efficient delivery vector. This vehicle could transfect small plasmid DNA (∼3 kb) with outstanding efficiency into various cells, including HEK 293T, NIH3T3, A549, PC12, MCF7 and HT-29, as well as robust transfection of a large plasmid (∼9 kb) into HEK 293T cells. The carrier indicated good transfection efficacy even at high concentration of serum and low doses of plasmid. The use of green fluorescent protein (GFP) knock-out analysis demonstrated transfection of different types of CRISPR/Cas9 complexes (Cas9/sgRNA ribonucleoproteins RNP, plasmid encoding Cas9 plus sgRNA targeting GFP, Cas9 expression plasmid plusin vitro-prepared sgRNA). In summary, we report an effective PEI-PBA-SAP-F gene carrier with the appropriate lipophilic/cationic balance for biomedical applications.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Vahabi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyyed Emad Hooshmand
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elaheh Sadat Hosseini
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behjat Kheiri Yeghaneh Azar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Saeedi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arnab Rudra
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Lei J, Zhao J, Long MYC, Cao XW, Wang FJ. In addition to its endosomal escape effect, platycodin D also synergizes with ribosomal inactivation protein to induce apoptosis in hepatoma cells through AKT and MAPK signaling pathways. Chem Biol Interact 2022; 364:110058. [PMID: 35872048 DOI: 10.1016/j.cbi.2022.110058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
Efficient endosomal escape after cellular uptake is a major challenge for the clinical application of therapeutic proteins. To overcome this obstacle, several strategies have been used to help protein drugs escape from endosomes without affecting the integrity of the cell membrane. Among them, some triterpenoid saponins with special structures were used to greatly enhance the anti-tumor therapeutic effect of protein toxins. Herein, we demonstrated that platycodin D (PD), polygalacin D (PGD) and platycodin D2 (PD2) from Platycodonis Radix significantly enhanced the ability of MHBP (a type I ribosome-inactivating protein toxin MAP30 fused with a cell-penetrating peptide HBP) to induce apoptosis in hepatoma cells. Based on the results of co-localization of endocytosed EGFP-HBP with a lysosomal probe and Galectin-9 vesicle membrane damage sensor, we demonstrated that PD, PGD and PD2 have the ability to promote endosomal escape of endocytic proteins without affecting the integrity of the plasma membrane. Meanwhile, we observed that cholesterol metabolism plays an important role in the activity of PD by RNA-seq analysis and KEGG pathway enrichment analysis, and confirm that PD, PGD and PD2 enhance the anti-tumor activity of MHBP by inducing the redistribution of free cholesterol and inhibiting the activity of cathepsin B and cathepsin D. Finally, we found that PD synergized with MHBP to induce caspase-dependent apoptosis through inhibiting Akt and ERK1/2 signaling pathways and activating JNK and p38 MAPK signaling pathways. This study provides new insights into the application of PD in cancer therapy and provides efficient and promising strategies for the cytosolic delivery of therapeutic proteins.
Collapse
Affiliation(s)
- Jin Lei
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian Zhao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Meng-Yi-Chen Long
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xue-Wei Cao
- Department of Applied Biology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Fu-Jun Wang
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd. 209 West Hulian Road, Dongyang, 322100, Zhejiang, China; Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
15
|
Panjideh H, Niesler N, Weng A, Fuchs H. Improved Therapy of B-Cell Non-Hodgkin Lymphoma by Obinutuzumab-Dianthin Conjugates in Combination with the Endosomal Escape Enhancer SO1861. Toxins (Basel) 2022; 14:toxins14070478. [PMID: 35878216 PMCID: PMC9318199 DOI: 10.3390/toxins14070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 12/28/2022] Open
Abstract
Immunotoxins do not only bind to cancer-specific receptors to mediate the elimination of tumor cells through the innate immune system, but also increase target cytotoxicity by the intrinsic toxin activity. The plant glycoside SO1861 was previously reported to enhance the endolysosomal escape of antibody-toxin conjugates in non-hematopoietic cells, thus increasing their cytotoxicity manifold. Here we tested this technology for the first time in a lymphoma in vivo model. First, the therapeutic CD20 antibody obinutuzumab was chemically conjugated to the ribosome-inactivating protein dianthin. The cytotoxicity of obinutuzumab-dianthin (ObiDi) was evaluated on human B-lymphocyte Burkitt’s lymphoma Raji cells and compared to human T-cell leukemia off-target Jurkat cells. When tested in combination with SO1861, the cytotoxicity for target cells was 131-fold greater than for off-target cells. In vivo imaging in a xenograft model of B-cell lymphoma in mice revealed that ObiDi/SO1861 efficiently prevents tumor growth (51.4% response rate) compared to the monotherapy with ObiDi (25.9%) and non-conjugated obinutuzumab (20.7%). The reduction of tumor volume and overall survival was also improved. Taken together, our results substantially contribute to the development of a combination therapy with SO1861 as a platform technology to enhance the efficacy of therapeutic antibody-toxin conjugates in lymphoma and leukemia.
Collapse
Affiliation(s)
- Hossein Panjideh
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
| | - Nicole Niesler
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
| | - Alexander Weng
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Straße 2+4, D-14195 Berlin, Germany;
| | - Hendrik Fuchs
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
- Correspondence:
| |
Collapse
|
16
|
Tissue Culture Response of Ornamental and Medicinal Aesculus Species—A Review. PLANTS 2022; 11:plants11030277. [PMID: 35161258 PMCID: PMC8839481 DOI: 10.3390/plants11030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
Species of the genus Aesculus are very attractive woody ornamentals. Their organs contain numerous health-promoting phytochemicals. The most valuable of them—aescin—is used in commercial preparations for the treatment of venous insufficiency. The industrial source of aescin is horse chestnut seeds because the zygotic embryos are the main site of its accumulation. Horse chestnut somatic and zygotic embryos contain similar amount of aescin, hence somatic embryos could be exploited as an alternative source of aescin. Somatic embryogenesis, androgenesis and de novo shoot organogenesis were successfully achieved in several Aesculus species, as well as secondary somatic embryogenesis and shoot organogenesis, which enables mass production of embryos and shoots. In addition, an efficient method for cryopreservation of embryogenic tissue was established, assuring constant availability of the plant material. The developed methods are suitable for clonal propagation of elite specimens selected as the best aescin producers, the most attractive ornamentals or plants resistant to pests and diseases. These methods are also useful for molecular breeding purposes. Thus, in this review, the medicinal uses and a comprehensive survey of in vitro propagation methods established for Aesculus species, as well as the feasibility of in vitro production of aescin, are presented and discussed.
Collapse
|
17
|
Gevrenova R, Zengin G, Balabanova V, Voynikov Y, Zheleva-Dimitrova D. C, O – flavonoid glycosides and oleanane-type bidesmosides from Gypsophila perfoliata L. “tekirae” (Caryophyllaceae): Chemophenetic implications. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Berlinck RGS, Crnkovic CM, Gubiani JR, Bernardi DI, Ióca LP, Quintana-Bulla JI. The isolation of water-soluble natural products - challenges, strategies and perspectives. Nat Prod Rep 2021; 39:596-669. [PMID: 34647117 DOI: 10.1039/d1np00037c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Covering period: up to 2019Water-soluble natural products constitute a relevant group of secondary metabolites notably known for presenting potent biological activities. Examples are aminoglycosides, β-lactam antibiotics, saponins of both terrestrial and marine origin, and marine toxins. Although extensively investigated in the past, particularly during the golden age of antibiotics, hydrophilic fractions have been less scrutinized during the last few decades. This review addresses the possible reasons on why water-soluble metabolites are now under investigated and describes approaches and strategies for the isolation of these natural compounds. It presents examples of several classes of hydrosoluble natural products and how they have been isolated. Novel stationary phases and chromatography techniques are also reviewed, providing a perspective towards a renaissance in the investigation of water-soluble natural products.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
19
|
Wolf P. Targeted Toxins for the Treatment of Prostate Cancer. Biomedicines 2021; 9:biomedicines9080986. [PMID: 34440190 PMCID: PMC8391386 DOI: 10.3390/biomedicines9080986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common cancer and the fifth leading cause of cancer deaths worldwide. Despite improvements in diagnosis and treatment, new treatment options are urgently needed for advanced stages of the disease. Targeted toxins are chemical conjugates or fully recombinant proteins consisting of a binding domain directed against a target antigen on the surface of cancer cells and a toxin domain, which is transported into the cell for the induction of apoptosis. In the last decades, targeted toxins against prostate cancer have been developed. Several challenges, however, became apparent that prevented their direct clinical use. They comprise immunogenicity, low target antigen binding, endosomal entrapment, and lysosomal/proteasomal degradation of the targeted toxins. Moreover, their efficacy is impaired by prostate tumors, which are marked by a dense microenvironment, low target antigen expression, and apoptosis resistance. In this review, current findings in the development of targeted toxins against prostate cancer in view of effective targeting, reduction of immunogenicity, improvement of intracellular trafficking, and overcoming apoptosis resistance are discussed. There are promising approaches that should lead to the clinical use of targeted toxins as therapeutic alternatives for advanced prostate cancer in the future.
Collapse
Affiliation(s)
- Philipp Wolf
- Department of Urology, Medical Center, University of Freiburg, 79106 Freiburg, Germany; ; Tel.: +49-761-270-28921
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
20
|
Kim D, Rahhal N, Rademacher C. Elucidating Carbohydrate-Protein Interactions Using Nanoparticle-Based Approaches. Front Chem 2021; 9:669969. [PMID: 34046397 PMCID: PMC8144316 DOI: 10.3389/fchem.2021.669969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Carbohydrates are present on every living cell and coordinate important processes such as self/non-self discrimination. They are amongst the first molecular determinants to be encountered when cellular interactions are initiated. In particular, they resemble essential molecular fingerprints such as pathogen-, danger-, and self-associated molecular patterns guiding key decision-making in cellular immunology. Therefore, a deeper understanding of how cellular receptors of the immune system recognize incoming particles, based on their carbohydrate signature and how this information is translated into a biological response, will enable us to surgically manipulate them and holds promise for novel therapies. One approach to elucidate these early recognition events of carbohydrate interactions at cellular surfaces is the use of nanoparticles coated with defined carbohydrate structures. These particles are captured by carbohydrate receptors and initiate a cellular cytokine response. In the case of endocytic receptors, the capturing enables the engulfment of exogenous particles. Thereafter, the particles are sorted and degraded during their passage in the endolysosomal pathway. Overall, these processes are dependent on the nature of the endocytic carbohydrate receptors and consequently reflect upon the carbohydrate patterns on the exogenous particle surface. This interplay is still an under-studied subject. In this review, we summarize the application of nanoparticles as a promising tool to monitor complex carbohydrate-protein interactions in a cellular context and their application in areas of biomedicine.
Collapse
Affiliation(s)
- Dongyoon Kim
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nowras Rahhal
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Vienna, Austria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Vienna, Austria
| |
Collapse
|
21
|
Magnetic Nanoparticle-Based Dianthin Targeting for Controlled Drug Release Using the Endosomal Escape Enhancer SO1861. NANOMATERIALS 2021; 11:nano11041057. [PMID: 33924180 PMCID: PMC8074366 DOI: 10.3390/nano11041057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 01/22/2023]
Abstract
Targeted tumor therapy can provide the basis for the inhibition of tumor growth. However, a number of toxin-based therapeutics lack efficacy because of insufficient endosomal escape after being internalized by endocytosis. To address this problem, the potential of glycosylated triterpenoids, such as SO1861, as endosomal escape enhancers (EEE) for superparamagnetic iron oxide nanoparticle (SPION)-based toxin therapy was investigated. Herein, two different SPION-based particle systems were synthesized, each selectively functionalized with either the targeted toxin, dianthin-epidermal growth factor (DiaEGF), or the EEE, SO1861. After applying both particle systems in vitro, an almost 2000-fold enhancement in tumor cell cytotoxicity compared to the monotherapy with SPION-DiaEGF and a 6.7-fold gain in specificity was observed. Thus, the required dose of the formulation was appreciably reduced, and the therapeutic window widened.
Collapse
|
22
|
Jing J, Zhang R, Wang Y, Tang S, Yang H, Du L, Lin B, Shao L, Zhang F, Xue P. Less polar ginsenosides have better protective effects on mice infected by Listeria monocytogenes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112065. [PMID: 33636464 DOI: 10.1016/j.ecoenv.2021.112065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Listeria monocytogenes widely exists in the natural environment and does great harm, which can cause worldwide public safety problem. Infection with L. monocytogenes can cause rapid death of Kupffer cell (KCs) in liver tissue and liver damage. American ginseng saponins is a natural compound in plants, which has great potential in inhibiting L. monocytogenes infection. Therefore, American ginseng stem-leaf saponins (AGS) and American ginseng heat-transformed saponins (HTS) were used as raw materials to study their bacteriostatic experiments in vivo and in vitro. In this experiment, female Kunming mice were randomly divided into five groups: control group, negative group, AGS group, HTS group (10 mg/kg/day in an equal volume via gastric administration) and penicillin group, each group containing six mice. Profiles AGS and HTS components were evaluated by high-performance liquid chromatography (HPLC) analysis. The bacteriostatic effect of AGS and HTS on L. monocytogenes was evaluated by inhibition zone test, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The bacteriostatic effect of AGS and HTS pretreatment on mice infected with L. monocytogenes were studies by animal experimental. The results showed that the content of polar saponins in AGS was 0.81 ± 0.003 mg/mg, less polar saponins was 0.08 ± 0.02 mg/mg, the content of polar saponins in HTS was 0.10 ± 0.01 mg/mg, less polar saponins was 0.76 ± 0.02 mg/mg. The in vitro bacteriostatic diameter of HTS (16.6 ± 0.8 mm) is large than that of AGS (10.2 ± 1.2 mm). AGS and HTS pretreatment could reduce the colony numbers in the livers of mice infected with Listeria monocytogenes. The levels of alanine aminotransferase (ALT), IL-1β, IL-6, TNF-α and IFN-γ in the livers of mice in the pretreatment group were significantly lower than those in the negative group. There were obvious leukoplakia, calcification and other liver damage on the liver surface in the negative control group, and obvious inflammatory cell infiltration in HE sections. AGS and HTS pretreatment can reduce liver injury caused by L. monocytogenes and protect the liver. Compared with AGS, HTS has higher content of less polar saponins and better bacteriostatic effect in vitro. The count of bacterial in liver tissue of HTS group was significantly lower, the survival rate was significantly higher than that of AGS group. Less polar saponins had better bacteriostatic effect. Collectively, less polar saponins pretreatment has a protective effect on mice infected with L. monocytogenes, to which alleviated liver damage, improved anti-inflammatory ability and immunity of the body, protected liver may contribute.
Collapse
Affiliation(s)
- Jinjin Jing
- School of Public Health, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Ruoyu Zhang
- School of Public Health, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Yunhai Wang
- Affiliated Hospital of Weifang Medical University, Weifang 261053, People's Republic of China
| | - Shaojian Tang
- School of Pharmacy, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Hanchao Yang
- Affiliated Hospital of Weifang Medical University, Weifang 261053, People's Republic of China
| | - Lidong Du
- Clinical Medical Colleges, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Bingjie Lin
- School of Public Health, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Lijun Shao
- School of Public Health, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Fengxiang Zhang
- School of Public Health, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Peng Xue
- School of Public Health, Weifang Medical University, Weifang 261053, People's Republic of China.
| |
Collapse
|
23
|
Kim IS, Kim CH, Yang WS. Physiologically Active Molecules and Functional Properties of Soybeans in Human Health-A Current Perspective. Int J Mol Sci 2021; 22:4054. [PMID: 33920015 PMCID: PMC8071044 DOI: 10.3390/ijms22084054] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to providing nutrients, food can help prevent and treat certain diseases. In particular, research on soy products has increased dramatically following their emergence as functional foods capable of improving blood circulation and intestinal regulation. In addition to their nutritional value, soybeans contain specific phytochemical substances that promote health and are a source of dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, and phytic acid, while serving as a trypsin inhibitor. These individual substances have demonstrated effectiveness in preventing chronic diseases, such as arteriosclerosis, cardiac diseases, diabetes, and senile dementia, as well as in treating cancer and suppressing osteoporosis. Furthermore, soybean can affect fibrinolytic activity, control blood pressure, and improve lipid metabolism, while eliciting antimutagenic, anticarcinogenic, and antibacterial effects. In this review, rather than to improve on the established studies on the reported nutritional qualities of soybeans, we intend to examine the physiological activities of soybeans that have recently been studied and confirm their potential as a high-functional, well-being food.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Gyunggi-Do 16419, Korea
- Samsung Advanced Institute of Health Science and Technology, Gyunggi-Do 16419, Korea
| | | |
Collapse
|
24
|
Doligalska M, Jóźwicka K, Szewczak L, Nowakowska J, Brodaczewska K, Goździk K, Pączkowski C, Szakiel A. Calendula officinalis Triterpenoid Saponins Impact the Immune Recognition of Proteins in Parasitic Nematodes. Pathogens 2021; 10:pathogens10030296. [PMID: 33806494 PMCID: PMC7999767 DOI: 10.3390/pathogens10030296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
The influence of triterpenoid saponins on subcellular morphological changes in the cells of parasitic nematodes remains poorly understood. Our study examines the effect of oleanolic acid glucuronides from marigold (Calendula officinalis) on the possible modification of immunogenic proteins from infective Heligmosomoides polygyrus bakeri larvae (L3). Our findings indicate that the triterpenoid saponins alter the subcellular morphology of the larvae and prevent recognition of nematode-specific proteins by rabbit immune-IgG. TEM ultrastructure and HPLC analysis showed that microtubule and cytoskeleton fibres were fragmented by saponin treatment. MASCOT bioinformatic analysis revealed that in larvae exposed to saponins, the immune epitopes of their proteins altered. Several mitochondrial and cytoskeleton proteins involved in signalling and cellular processes were downregulated or degraded. As possible candidates, the following set of recognised proteins may play a key role in the immunogenicity of larvae: beta-tubulin isotype, alpha-tubulin, myosin, paramyosin isoform-1, actin, disorganized muscle protein-1, ATP-synthase, beta subunit, carboxyl transferase domain protein, glutamate dehydrogenase, enolase (phosphopyruvate hydratase), fructose-bisphosphate aldolase 2, tropomyosin, arginine kinase or putative chaperone protein DnaK, and galactoside-binding lectin. Data are available via ProteomeXchange with identifier PXD024205.
Collapse
Affiliation(s)
- Maria Doligalska
- Department of Parasitology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (K.J.); (L.S.); (K.B.); (K.G.)
- Correspondence: ; Tel.: +48-22-55-41-115
| | - Kinga Jóźwicka
- Department of Parasitology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (K.J.); (L.S.); (K.B.); (K.G.)
| | - Ludmiła Szewczak
- Department of Parasitology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (K.J.); (L.S.); (K.B.); (K.G.)
| | - Julita Nowakowska
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Klaudia Brodaczewska
- Department of Parasitology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (K.J.); (L.S.); (K.B.); (K.G.)
| | - Katarzyna Goździk
- Department of Parasitology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (K.J.); (L.S.); (K.B.); (K.G.)
| | - Cezary Pączkowski
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (C.P.); (A.S.)
| | - Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (C.P.); (A.S.)
| |
Collapse
|
25
|
Zhu Y, Liang J, Gao C, Wang A, Xia J, Hong C, Zhong Z, Zuo Z, Kim J, Ren H, Li S, Wang Q, Zhang F, Wang J. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J Control Release 2021; 330:641-657. [DOI: 10.1016/j.jconrel.2020.12.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 12/12/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
|
26
|
Fischer A, Wolf I, Fuchs H, Masilamani AP, Wolf P. Pseudomonas Exotoxin A Based Toxins Targeting Epidermal Growth Factor Receptor for the Treatment of Prostate Cancer. Toxins (Basel) 2020; 12:E753. [PMID: 33260619 PMCID: PMC7761469 DOI: 10.3390/toxins12120753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) was found to be a valuable target on prostate cancer (PCa) cells. However, EGFR inhibitors mostly failed in clinical studies with patients suffering from PCa. We therefore tested the targeted toxins EGF-PE40 and EGF-PE24mut consisting of the natural ligand EGF as binding domain and PE40, the natural toxin domain of Pseudomonas Exotoxin A, or PE24mut, the de-immunized variant thereof, as toxin domains. Both targeted toxins were expressed in the periplasm of E.coli and evoked an inhibition of protein biosynthesis in EGFR-expressing PCa cells. Concentration- and time-dependent killing of PCa cells was found with IC50 values after 48 and 72 h in the low nanomolar or picomolar range based on the induction of apoptosis. EGF-PE24mut was found to be about 11- to 120-fold less toxic than EGF-PE40. Both targeted toxins were more than 600 to 140,000-fold more cytotoxic than the EGFR inhibitor erlotinib. Due to their high and specific cytotoxicity, the EGF-based targeted toxins EGF-PE40 and EGF-PE24mut represent promising candidates for the future treatment of PCa.
Collapse
Affiliation(s)
- Alexandra Fischer
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.F.); (I.W.); (A.P.M.)
- Department of Urology, Antibody-Based Diagnostics and Therapies, Medical Center—University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany
| | - Isis Wolf
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.F.); (I.W.); (A.P.M.)
- Department of Urology, Antibody-Based Diagnostics and Therapies, Medical Center—University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany
| | - Hendrik Fuchs
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Anie Priscilla Masilamani
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.F.); (I.W.); (A.P.M.)
- Department of Urology, Antibody-Based Diagnostics and Therapies, Medical Center—University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany
| | - Philipp Wolf
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.F.); (I.W.); (A.P.M.)
- Department of Urology, Antibody-Based Diagnostics and Therapies, Medical Center—University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany
| |
Collapse
|
27
|
Clochard J, Jerz G, Schmieder P, Mitdank H, Tröger M, Sama S, Weng A. A new acetylated triterpene saponin from Agrostemma githago L. modulates gene delivery efficiently and shows a high cellular tolerance. Int J Pharm 2020; 589:119822. [PMID: 32861772 DOI: 10.1016/j.ijpharm.2020.119822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022]
Abstract
Transfection is the process to deliver nucleic acid into eukaryotic cells. Different transfection techniques already exist. However, they can be expensive and toxic toward subjected cells. Previous research shed light on natural occurring molecules called triterpene saponins that have great potential for the non-viral gene delivery. Using a combination of different chromatographic techniques and in vitro transfection bioassays, a new triterpenoid saponin (agrostemmoside E) from the plant Agrostemma githago L. was isolated. Agrostemmoside E was characterized by mass spectrometry, intense NMR spectroscopy and was identified as 3-{O-ß-D-Galactopyranosyl-(1→2)]-[ß-D-xylopyranosyl-(1→3)]-ß-D-glucuronopyranosyl} quillaic acid 28-O-{[ß-D-4,6-di-(O-acetyl)-glucopyranosyl-(1→3)]-[ß-D-xylopyranosyl-(1→4)]-α-L-rhamnopyranosyl-(1→2)}-[3,4-di-(O-acetyl)-ß-D-quinovopyranosyl-(1→4)]-ß-D-fucopyranoside ester. Agrostemmoside E has a great potential for delivery of gene loaded nanoplexes and increased the transfection efficiency by 70% compared to 2% without agrostemmoside E. By comparative toxicity studies, we show that agrostemmoside E can be applied at high concentrations without toxicity, justifying its use as a new tool for gene transfections.
Collapse
Affiliation(s)
- Jason Clochard
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Gerold Jerz
- Institut für Lebensmittelchemie, Technische Universität Braunschweig, Schleinitz-Str. 20, 38106 Braunschweig, Germany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str., 1013125 Berlin, Germany
| | - Hardy Mitdank
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Meike Tröger
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Simko Sama
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| | - Alexander Weng
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
28
|
Niesler N, Arndt J, Silberreis K, Fuchs H. Generation of a soluble and stable apoptin-EGF fusion protein, a targeted viral protein applicable for tumor therapy. Protein Expr Purif 2020; 175:105687. [PMID: 32681952 DOI: 10.1016/j.pep.2020.105687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 11/18/2022]
Abstract
A promising candidate for tumor targeted toxins is the chicken anemia-derived protein apoptin that induces tumor-specific apoptosis. It was aimed to design a novel apoptin-based targeted toxin by genetic fusion of apoptin with the tumor-directed ligand epidermal growth factor (EGF) using Escherichia coli as expression host. However, apoptin is highly hydrophobic and tends to form insoluble aggregates. Therefore, three different apoptin-EGF variants were generated. The fusion protein hexa-histidine (His)-apoptin-EGF (HAE) was expressed in E. coli and purified under denaturing conditions due to inclusion bodies. The protein solubility was improved by maltose-binding protein (MBP) or glutathione S-transferase. The protein MBP-apoptin-EGFHis (MAEH) was found favorable as a targeted toxin regarding final yield (4-6 mg/L) and stability. MBP was enzymatically removed using clotting factor Xa, which resulted in low yield and poor separation. MAEH was tested on target and non-target cell lines. The targeted tumor cell line A431 showed significant toxicity with an IC50 of 69.55 nM upon incubation with MAEH while fibroblasts and target receptor-free cells remained unaffected. Here we designed a novel EGF receptor targeting drug with high yield, purity and stability.
Collapse
Affiliation(s)
- Nicole Niesler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
| | - Janine Arndt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Kim Silberreis
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Augustenburger Platz 1, 13353, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Hendrik Fuchs
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
29
|
Cao XW, Wang FJ, Liew OW, Lu YZ, Zhao J. Analysis of Triterpenoid Saponins Reveals Insights into Structural Features Associated with Potent Protein Drug Enhancement Effects. Mol Pharm 2020; 17:683-694. [PMID: 31913047 DOI: 10.1021/acs.molpharmaceut.9b01158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plant-based saponins are amphipathic glycosides composed of a hydrophobic aglycone backbone covalently bound to one or more hydrophilic sugar moieties. Recently, the endosomal escape activity of triterpenoid saponins has been investigated as a potentially powerful tool for improved cytosolic penetration of protein drugs internalized by endocytic uptake, thereby greatly enhancing their pharmacological effects. However, only a few saponins have been studied, and the paucity in understanding the structure-activity relationship of saponins imposes significant limitations on their applications. To address this knowledge gap, 12 triterpenoid saponins with diverse structural side chains were screened for their utility as endosomolytic agents. These compounds were used in combination with a toxin (MAP30-HBP) comprising a type I ribosome-inactivating protein fused to a cell-penetrating peptide. Suitability of saponins as endosomolytic agents was assessed on the basis of cytotoxicity, endosomal escape promotion, and synergistic effects on toxins. Five saponins showed strong endosomal escape activity, enhancing MAP30-HBP cytotoxicity by more than 106 to 109 folds. These saponins also enhanced the apoptotic effect of MAP30-HBP in a pH-dependent manner. Additionally, growth inhibition of MAP30-HBP-treated SMMC-7721 cells was greater than that of similarly treated HeLa cells, suggesting that saponin-mediated endosomolytic effect is likely to be cell-specific. Furthermore, the structural features and hydrophobicity of the sugar side chains were analyzed to draw correlations with endosomal escape activity and derive predictive rules, thus providing new insights into structure-activity relationships of saponins. This study revealed new saponins that can potentially be exploited as efficient cytosolic delivery reagents for improved therapeutic drug effects.
Collapse
Affiliation(s)
- Xue-Wei Cao
- Department of Applied Biology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Fu-Jun Wang
- New Drug R&D Center , Zhejiang Fonow Medicine Company, Ltd. , 209 West Hulian Road , Dongyang 322100 , Zhejiang , China.,Shanghai R&D Center for Standardization of Chinese Medicines , 1200 Cailun Road , Shanghai 201203 , China.,Institute of Chinese Materia , Shanghai University of Traditional Chinese Medicine , 1200 Cailun Road , Shanghai 201203 , China
| | - Oi-Wah Liew
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System , Centre for Translational Medicine , MD6#08-01, 14 Medical Drive , 117599 , Singapore
| | - Ye-Zhou Lu
- Department of Applied Biology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Jian Zhao
- Department of Applied Biology , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China.,State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
30
|
Chen F, Huang G. Application of glycosylation in targeted drug delivery. Eur J Med Chem 2019; 182:111612. [DOI: 10.1016/j.ejmech.2019.111612] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 01/10/2023]
|
31
|
Critical Issues in the Development of Immunotoxins for Anticancer Therapy. J Pharm Sci 2019; 109:104-115. [PMID: 31669121 DOI: 10.1016/j.xphs.2019.10.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/23/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
Immunotoxins (ITs) are attractive anticancer modalities aimed at cancer-specific delivery of highly potent cytotoxic protein toxins. An IT consists of a targeting domain (an antibody, cytokine, or another cell-binding protein) chemically conjugated or recombinantly fused to a highly cytotoxic payload (a bacterial and plant toxin or human cytotoxic protein). The mode of action of ITs is killing designated cancer cells through the effector function of toxins in the cytosol after cellular internalization via the targeted cell-specific receptor-mediated endocytosis. Although numerous ITs of diverse structures have been tested in the past decades, only 3 ITs-denileukin diftitox, tagraxofusp, and moxetumomab pasudotox-have been clinically approved for treating hematological cancers. No ITs against solid tumors have been approved for clinical use. In this review, we discuss critical research and development issues associated with ITs that limit their clinical success as well as strategies to overcome these obstacles. The issues include off-target and on-target toxicities, immunogenicity, human cytotoxic proteins, antigen target selection, cytosolic delivery efficacy, solid-tumor targeting, and developability. To realize the therapeutic promise of ITs, novel strategies for safe and effective cytosolic delivery into designated tumors, including solid tumors, are urgently needed.
Collapse
|
32
|
Dianthin and Its Potential in Targeted Tumor Therapies. Toxins (Basel) 2019; 11:toxins11100592. [PMID: 31614697 PMCID: PMC6832487 DOI: 10.3390/toxins11100592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
Dianthin enzymes belong to ribosome-inactivating proteins (RIPs) of type 1, i.e., they only consist of a catalytic domain and do not have a cell binding moiety. Dianthin-30 is very similar to saporin-S3 and saporin-S6, two RIPs often used to design targeted toxins for tumor therapy and already tested in some clinical trials. Nevertheless, dianthin enzymes also exhibit differences to saporin with regard to structure, efficacy, toxicity, immunogenicity and production by heterologous expression. Some of the distinctions might make dianthin more suitable for targeted tumor therapies than other RIPs. The present review provides an overview of the history of dianthin discovery and illuminates its structure, function and role in targeted toxins. It further discusses the option to increase the efficacy of dianthin by endosomal escape enhancers.
Collapse
|
33
|
Gevrenova R, Zaharieva MM, Kroumov AD, Voutquenne-Nazabadioko L, Zheleva-Dimitrova D, Balabanova V, Hajdenski HM, Konstantinov S. Gypsophila saponins enhance the cytotoxicity of etoposide in HD-MY-Z lymphoma cells. Food Chem Toxicol 2019; 133:110777. [PMID: 31472227 DOI: 10.1016/j.fct.2019.110777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 01/20/2023]
Abstract
Glucuronide Oleanane-type Triterpenoid Carboxylic Acid 3,28-Bidesmosides (GOTCAB) are accumulated in Gypsophila L. roots. In the study we aimed at investigating the possible synergistic effects of Gypsophila trichotoma GOTCABs and cytostatic etoposide towards the Hodgkin lymphoma cell line HD-MY-Z. The combination effects with etoposide were evaluated using the symbolic mathematical software MAPLE. Liquid chromatography-mass spectrometry allowed the identification or tentative assignment of 28 core GOTCAB structures together with 6 monodesmosides in the root extract. Tested gypsogenin-based saponins possessed C-28 ester-bonded chain substituted with acetyl, cis/trans methoxycinnamoyl and both acetyl and sulfate groups. No cytotoxic effect was observed up to 20 μg/mL on normal mice fibroblasts (CCL-1 cell line) and lymphoma cells. Etoposide alone exerted IC50 93 μg/mL. In the presence of acetylated saponins (20 μg/mL), a strong synergism (Fa = 0.8, CI = 0.1) was observed with IC50 11 μg/mL. The combination induced apoptosis witnessed by caspase activation, elevated levels of cytosolic mono- and oligonucleosomes, and nuclear fragmentation together with discernible increase in ROS generation. The results emphasize the arabinose in the C-3 chain and acetylation pattern of the C-28 chain of the saponins as important structural features for cytotoxicity enhancing activity. Triterpenoid saponins are a valuable tool to improve the efficacy of cytostatics.
Collapse
Affiliation(s)
- Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St, 1000, Sofia, Bulgaria.
| | - Maya M Zaharieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Akad. G. Bonchev Str, 1113, Sofia, Bulgaria
| | - Alexander D Kroumov
- Department of Applied Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Akad. G. Bonchev Str, 1113, Sofia, Bulgaria
| | | | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St, 1000, Sofia, Bulgaria
| | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St, 1000, Sofia, Bulgaria
| | - Hristo M Hajdenski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Akad. G. Bonchev Str, 1113, Sofia, Bulgaria
| | - Spiro Konstantinov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St, 1000, Sofia, Bulgaria
| |
Collapse
|
34
|
Gevrenova R, Doytchinova I, Kołodziej B, Henry M. In-depth characterization of the GOTCAB saponins in seven cultivated Gypsophila L. species (Caryophyllaceae) by liquid chromatography coupled with quadrupole-Orbitrap mass spectrometer. BIOCHEM SYST ECOL 2019. [DOI: 10.1016/j.bse.2019.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
Smith WS, Johnston DA, Holmes SE, Wensley HJ, Flavell SU, Flavell DJ. Augmentation of Saporin-Based Immunotoxins for Human Leukaemia and Lymphoma Cells by Triterpenoid Saponins: The Modifying Effects of Small Molecule Pharmacological Agents. Toxins (Basel) 2019; 11:toxins11020127. [PMID: 30791598 PMCID: PMC6410249 DOI: 10.3390/toxins11020127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Triterpenoid saponins from Saponinum album (SA) significantly augment the cytotoxicity of saporin-based immunotoxins but the mechanism of augmentation is not fully understood. We investigated the effects of six small molecule pharmacological agents, which interfere with endocytic and other processes, on SA-mediated augmentation of saporin and saporin-based immunotoxins (ITs) directed against CD7, CD19, CD22 and CD38 on human lymphoma and leukaemia cell lines. Inhibition of clathrin-mediated endocytosis or endosomal acidification abolished the SA augmentation of saporin and of all four immunotoxins tested but the cytotoxicity of each IT or saporin alone was largely unaffected. The data support the hypothesis that endocytic processes are involved in the augmentative action of SA for saporin ITs targeted against a range of antigens expressed by leukaemia and lymphoma cells. In addition, the reactive oxygen species (ROS) scavenger tiron reduced the cytotoxicity of BU12-SAP and OKT10-SAP but had no effect on 4KB128-SAP or saporin cytotoxicity. Tiron also had no effect on SA-mediated augmentation of the saporin-based ITs or unconjugated saporin. These results suggest that ROS are not involved in the augmentation of saporin ITs and that ROS induction is target antigen-dependent and not directly due to the cytotoxic action of the toxin moiety.
Collapse
Affiliation(s)
- Wendy S Smith
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - David A Johnston
- Biomedical Imaging Unit, University of Southampton School of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Suzanne E Holmes
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Harrison J Wensley
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Sopsamorn U Flavell
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - David J Flavell
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital, Southampton SO16 6YD, UK.
| |
Collapse
|
36
|
Bernardes N, Fialho AM. Perturbing the Dynamics and Organization of Cell Membrane Components: A New Paradigm for Cancer-Targeted Therapies. Int J Mol Sci 2018; 19:E3871. [PMID: 30518103 PMCID: PMC6321595 DOI: 10.3390/ijms19123871] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 01/26/2023] Open
Abstract
Cancer is a multi-process disease where different mechanisms exist in parallel to ensure cell survival and constant adaptation to the extracellular environment. To adapt rapidly, cancer cells re-arrange their plasma membranes to sustain proliferation, avoid apoptosis and resist anticancer drugs. In this review, we discuss novel approaches based on the modifications and manipulations that new classes of molecules can exert in the plasma membrane lateral organization and order of cancer cells, affecting growth factor signaling, invasiveness, and drug resistance. Furthermore, we present azurin, an anticancer protein from bacterial origin, as a new approach in the development of therapeutic strategies that target the cell membrane to improve the existing standard therapies.
Collapse
Affiliation(s)
- Nuno Bernardes
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.
| | - Arsenio M Fialho
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| |
Collapse
|
37
|
Gevrenova R, Bardarov K, Bouguet-Bonnet S, Voynikov Y, Balabanova V, Zheleva-Dimitrova D, Henry M. A new liquid chromatography-high resolution Orbitrap mass spectrometry-based strategy to characterize Glucuronide Oleanane-type Triterpenoid Carboxylic Acid 3, 28-O-Bidesmosides (GOTCAB) saponins.A case study of Gypsophila glomerata Pall ex M. B. (Caryophyllaceae). J Pharm Biomed Anal 2018; 159:567-581. [DOI: 10.1016/j.jpba.2018.07.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
|
38
|
Marciani DJ. Elucidating the Mechanisms of Action of Saponin-Derived Adjuvants. Trends Pharmacol Sci 2018; 39:573-585. [PMID: 29655658 DOI: 10.1016/j.tips.2018.03.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022]
Abstract
Numerous triterpenoid saponins are adjuvants that modify the activities of T cells and antigen-presenting cells, like dendritic cells (DCs). Saponins can induce either proinflammatory Th1/Th2 or sole anti-inflammatory Th2 immunities. Structure-activity relationships (SARs) have shown that imine-forming carbonyl groups are needed for T cell activation leading to induction of Th1/Th2 immunities. While saponins having different triterpenoid aglycons and oligosaccharide chains can activate DCs to induce Th1/Th2 immunoresponses, fucopyranosyl residues from their oligosaccharides by binding to the DC-SIGN receptor can bias DCs toward a sole Th2 immunity. Here we discuss the mechanisms of action of these saponins in view of new information, which may serve as a basis to design improved adjuvants and related drugs.
Collapse
Affiliation(s)
- Dante J Marciani
- Qantu Therapeutics, Inc., 612 East Main Street, Lewisville, TX 75057, USA.
| |
Collapse
|
39
|
Giansanti F, Flavell DJ, Angelucci F, Fabbrini MS, Ippoliti R. Strategies to Improve the Clinical Utility of Saporin-Based Targeted Toxins. Toxins (Basel) 2018; 10:toxins10020082. [PMID: 29438358 PMCID: PMC5848183 DOI: 10.3390/toxins10020082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/29/2018] [Accepted: 02/11/2018] [Indexed: 02/06/2023] Open
Abstract
Plant Ribosome-inactivating proteins (RIPs) including the type I RIP Saporin have been used for the construction of Immunotoxins (ITxs) obtained via chemical conjugation of the toxic domain to whole antibodies or by generating genetic fusions to antibody fragments/targeting domains able to direct the chimeric toxin against a desired sub-population of cancer cells. The high enzymatic activity, stability and resistance to conjugation procedures and especially the possibility to express recombinant fusions in yeast, make Saporin a well-suited tool for anti-cancer therapy approaches. Previous clinical work on RIPs-based Immunotoxins (including Saporin) has shown that several critical issues must be taken into deeper consideration to fully exploit their therapeutic potential. This review focuses on possible combinatorial strategies (chemical and genetic) to augment Saporin-targeted toxin efficacy. Combinatorial approaches may facilitate RIP escape into the cytosolic compartment (where target ribosomes are), while genetic manipulations may minimize potential adverse effects such as vascular-leak syndrome or may identify T/B cell epitopes in order to decrease the immunogenicity following similar strategies as those used in the case of bacterial toxins such as Pseudomonas Exotoxin A or as for Type I RIP Bouganin. This review will further focus on strategies to improve recombinant production of Saporin-based chimeric toxins.
Collapse
Affiliation(s)
- Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy.
| | - David J Flavell
- The Simon Flavell Leukaemia Research Laboratory (Leukaemia Busters), Southampton General Hospital, Southampton, SO16 8AT, UK.
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy.
| | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, I-67100 L'Aquila, Italy.
| |
Collapse
|
40
|
Plant Ribosome-Inactivating Proteins: Progesses, Challenges and Biotechnological Applications (and a Few Digressions). Toxins (Basel) 2017; 9:toxins9100314. [PMID: 29023422 PMCID: PMC5666361 DOI: 10.3390/toxins9100314] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Plant ribosome-inactivating protein (RIP) toxins are EC3.2.2.22 N-glycosidases, found among most plant species encoded as small gene families, distributed in several tissues being endowed with defensive functions against fungal or viral infections. The two main plant RIP classes include type I (monomeric) and type II (dimeric) as the prototype ricin holotoxin from Ricinus communis that is composed of a catalytic active A chain linked via a disulphide bridge to a B-lectin domain that mediates efficient endocytosis in eukaryotic cells. Plant RIPs can recognize a universally conserved stem-loop, known as the α-sarcin/ ricin loop or SRL structure in 23S/25S/28S rRNA. By depurinating a single adenine (A4324 in 28S rat rRNA), they can irreversibly arrest protein translation and trigger cell death in the intoxicated mammalian cell. Besides their useful application as potential weapons against infected/tumor cells, ricin was also used in bio-terroristic attacks and, as such, constitutes a major concern. In this review, we aim to summarize past studies and more recent progresses made studying plant RIPs and discuss successful approaches that might help overcoming some of the bottlenecks encountered during the development of their biomedical applications.
Collapse
|