1
|
Zhu X, Li Z, Chen L, Li L, Ouyang M, Zhou H, Xiao K, Lin L, Chu PK, Zhou C, Xun C, Yang L, Huang W, Ding X. Exosomes delivering miR-129-5p combined with sorafenib ameliorate hepatocellular carcinoma progression via the KCTD1/HIF-1α/VEGF pathway. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01044-x. [PMID: 40227531 DOI: 10.1007/s13402-025-01044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Potassium channel tetramerization domain-containing 1 (KCTD1) plays a critical role in transcriptional regulation and adipogenesis, but its significance in hepatocellular cancer (HCC) has not been reported. METHODS Immunohistochemistry, Western blotting and quantitative real-time PCR analysis were performed to assess the expression of KCTD1 and related genes in HCC cells. MTT assays, colony formation, cell migration, invasion and the in-vivo mouse models were utilized to evaluate the function of KCTD1 in HCC progression. Co-immunoprecipitation, chromatin immunoprecipitation and luciferase reporter assays were conducted to elucidate the molecular mechanisms of KCTD1 in HCC. RESULTS KCTD1 expression was increased in human HCC tissues and closely associated with advanced tumor stages. KCTD1 overexpression enhanced growth, migration, and invasion of Huh7 and HepG2 cells both in vitro and in vivo, while KCTD1 knockdown reversed these effects in MHCC97H cells. Mechanistically, KCTD1 interacted with hypoxia-inducible factor 1 alpha (HIF-1α) and enhanced HIF-1α protein stability with the inhibited prolyl-hydroxylases (PHD)/Von Hippel-Lindau (VHL) pathway, consequently activating the Vascular Endothelial Growth Factor (VEGF)/VEGFR2 pathway in HCC cells. Sorafenib and KCTD1 knockdown synergistically inhibited intrahepatic tumor growth following in situ injection of MHCC97H cells. miR-129-5p downregulated KCTD1 by binding to KCTD1 3'UTR. Finally, 45 µg exosomes from miR-129-5p-overexpressing MHCC97H cells combined with 25 mg/kg sorafenib to decrease HCC tumor size. CONCLUSIONS These results suggested that KCTD1 protects HIF-1α from degradation and activates the VEGF signaling cascade to enhance HCC progression. Therefore, KCTD1 may serve as a novel target of HCC and pave the way for an efficient combined therapy in advanced HCC.
Collapse
Affiliation(s)
- Xinyu Zhu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Zhiwei Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Li Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
| | - Limin Li
- College of Engineering and Design, Hunan Normal University, Taozihu Road No. 68, Changsha, 410081, China.
| | - Mi Ouyang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Hao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Kai Xiao
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Ling Lin
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chang Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
| | - Chengfeng Xun
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
| | - Liu Yang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
| | - Wenhuan Huang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China
| | - Xiaofeng Ding
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Lushan Road No. 14, Changsha, 410081, China.
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China.
| |
Collapse
|
2
|
Eghbalifard N, Nouri N, Rouzbahani S, Bakhshi M, Ghasemi Kahrizsangi N, Golafshan F, Abbasi F. Hypoxia signaling in cancer: HIF-1α stimulated by COVID-19 can lead to cancer progression and chemo-resistance in oral squamous cell carcinoma (OSCC). Discov Oncol 2025; 16:399. [PMID: 40138101 PMCID: PMC11947373 DOI: 10.1007/s12672-025-02150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
The potential implications of Coronavirus disease-2019 (COVID-19) on oral squamous cell carcinoma (OSCC) development, chemo-resistance, tumor recurrence, and patient outcomes are explored, emphasizing the urgent need for tailored therapeutic strategies to mitigate these risks. The role of hypoxia-inducible factor 1-alpha (HIF-1α) in OSCC studies has highlighted HIF-1α as a crucial prognostic marker in OSCC, with implications for disease prognosis and patient survival. Its overexpression has been linked to aggressive subtypes in early OSCC stages, indicating its significance as an early biomarker for disease progression. Moreover, dysplastic lesions with heightened HIF-1α expression exhibit a greater propensity for malignant transformation, underscoring its role in early oral carcinogenesis. Cancer patients, including those with OSCC, face an elevated risk of severe COVID-19 complications, which may further impact cancer progression and treatment outcomes. Understanding the interplay between COVID-19 infection, HIF-1α activation, and OSCC pathogenesis is crucial for enhancing clinical management strategies. So, insights from this review shed light on the significance of HIF-1α in OSCC tumorigenesis, metastasis formation, and patient prognosis. The review underscores the need for further research to elucidate the precise mechanisms through which HIF-1α modulates cancer progression and chemo-resistance in the context of COVID-19 infection. Such knowledge is essential for developing targeted therapeutic interventions to improve outcomes for OSCC patients.
Collapse
Affiliation(s)
- Negar Eghbalifard
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nikta Nouri
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Rouzbahani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Bakhshi
- Islamic Azad University of Najaf Abad, Affiliated Hospitals, Isfahan, Iran
| | - Negin Ghasemi Kahrizsangi
- Child Growth and Development Research Center, Research Institute for Primary Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faraz Golafshan
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Abbasi
- Department of Obstetrics and Gynecology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran.
| |
Collapse
|
3
|
Ghosh R, Bhowmik A, Biswas S, Samanta P, Sarkar R, Pakhira S, Mondal M, Hajra S, Saha P. Natural flavonoid Orientin restricts 5-Fluorouracil induced cancer stem cells mediated angiogenesis by regulating HIF1α and VEGFA in colorectal cancer. Mol Med 2025; 31:85. [PMID: 40045186 PMCID: PMC11881437 DOI: 10.1186/s10020-024-01032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/06/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Cancer stem cells are a small subpopulation of cells which are responsible for tumor metastasis, angiogenesis, drug resistance etc. 5-Fluorouracil (5FU), a common therapeutic drug used in colorectal cancer treatment is reported to enrich CSCs, tumor recurrence and induces severe organ toxicities resulting in poor clinical outcome in patients. Therefore, we introduced a natural flavonoid Orientin in combination with 5FU to mitigate the CSC mediated angiogenesis and induced toxicities. METHODS Tumorosphere generation, flow cytometry, immunofluorescence assay, and western blotting were performed by using 5FU and Orientin individually and both treated colorectal cells and CSCs. In silico study was carried out to check the interaction between HIF1α and Orientin. In ovo chorioallantoic membrane (CAM) assay and tube formation assay using HUVECs were performed to monitor CSC mediated angiogenesis. In vivo CT26 syngeneic mice model was used to validate in silico and ex vivo results. RESULTS We found that 5FU treatment significantly increased the CD44+/CD133+ CSC population. In contrast, this CSC population in CSC enriched spheres (CES) derived from HCT116 cells were decreased by combination of Orientin and 5FU. Decrease of CSC's stemness properties was also noted, as evidenced by the downregulation of NANOG, SOX2 and OCT4. This new therapeutic strategy also inhibited CSC mediated angiogenesis by downregulating 5FU induced ROS, NO and LPO in those tumorospheres. Combination of Orientin and 5FU significantly reduced CSC mediated angiogenesis in HUVEC and CAM. Additionally, in silico study predicted that Orientin can bind to the PAS domain of HIF1α, a crucial factor for promoting angiogenesis. Expression of HIF1α and VEGFA were also decreased when the CESs were exposed to the combinatorial treatment. Additionally, we found that treatment with 5FU alone resulted reduction in tumor volume but it enriched CSCs and produced nephrotoxicity and hepatotoxicity in vivo. Combined treatment also considerably reduced the CD44+/CD133+ CSC population and hindered angiogenesis in a therapeutic in vivo model in BALB/c mice. CONCLUSIONS This novel treatment strategy of "Orientin with 5FU" is likely to improve the efficiency of conventional chemotherapy and may suppress disease recurrence in colorectal cancer by limiting CSC mediated angiogenesis.
Collapse
Affiliation(s)
- Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Rupali Sarkar
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
4
|
Seymour L, Nuru N, Johnson KR, Gutierrez JMV, Njoku VT, Darie CC, Neagu AN. Roles of Post-Translational Modifications of Transcription Factors Involved in Breast Cancer Hypoxia. Molecules 2025; 30:645. [PMID: 39942749 PMCID: PMC11820228 DOI: 10.3390/molecules30030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
BC is the most commonly diagnosed cancer and the second leading cause of cancer death among women worldwide. Cellular stress is a condition that leads to disrupted homeostasis by extrinsic and intrinsic factors. Among other stressors, hypoxia is a driving force for breast cancer (BC) progression and a general hallmark of solid tumors. Thus, intratumoral hypoxia is an important determinant of invasion, metastasis, treatment failure, prognosis, and patient mortality. Acquisition of the epithelial-mesenchymal transition (EMT) phenotype is also a consequence of tumor hypoxia. The cellular response to hypoxia is mainly regulated by the hypoxia signaling pathway, governed by hypoxia-inducible factors (HIFs), mainly HIF1α. HIFs are a family of transcription factors (TFs), which induce the expression of target genes involved in cell survival and proliferation, metabolic reprogramming, angiogenesis, resisting apoptosis, invasion, and metastasis. HIF1α cooperates with a large number of other TFs. In this review, we focused on the crosstalk and cooperation between HIF1α and other TFs involved in the cellular response to hypoxia in BC. We identified a cluster of TFs, proposed as the HIF1α-TF interactome, that orchestrates the transcription of target genes involved in hypoxia, due to their post-translational modifications (PTMs), including phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation, hydroxylation, acetylation, S-nitrosylation, and palmitoylation. PTMs of these HIF1α-related TFs drive their stability and activity, degradation and turnover, and the bidirectional translocation between the cytoplasm or plasma membrane and nucleus of BC cells, as well as the transcription/activation of proteins encoded by oncogenes or inactivation of tumor suppressor target genes. Consequently, PTMs of TFs in the HIF1α interactome are crucial regulatory mechanisms that drive the cellular response to oxygen deprivation in BC cells.
Collapse
Affiliation(s)
- Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Jennifer Michel Villalpando Gutierrez
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Victor Tochukwu Njoku
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
5
|
Spinicci K, Powathil G, Stéphanou A. Modelling the Impact of HIF on Metabolism and the Extracellular Matrix: Consequences for Tumour Growth and Invasion. Bull Math Biol 2025; 87:27. [PMID: 39751947 PMCID: PMC11698809 DOI: 10.1007/s11538-024-01391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/08/2024] [Indexed: 01/04/2025]
Abstract
The extracellular matrix (ECM) is a complex structure involved in many biological processes with collagen being the most abundant protein. Density of collagen fibers in the matrix is a factor influencing cell motility and migration speed. In cancer, this affects the ability of cells to migrate and invade distant tissues which is relevant for designing new therapies. Furthermore, increased cancer cell migration and invasion have been observed in hypoxic conditions. Interestingly, it has been revealed that the Hypoxia Inducible Factor (HIF) can not only impact the levels of metabolic genes but several collagen remodeling genes as well. The goal of this paper is to explore the impact of the HIF protein on both the tumour metabolism and the cancer cell migration with a focus on the Warburg effect and collagen remodelling processes. Therefore, we present an agent-based model (ABM) of tumour growth combining genetic regulations with metabolic and collagen-related processes involved in HIF pathways. Cancer cell migration is influenced by the extra-cellular collagen through a biphasic response dependant on collagen density. Results of the model showed that extra-cellular collagen within the tumour was mainly influenced by the local cellular density while collagen also influenced the shape of the tumour. In our simulations, proliferation was reduced with higher extra-cellular collagen levels or with lower oxygen levels but reached a maximum in the absence of cell-cell adhesion. Interestingly, combining lower levels of oxygen with higher levels of collagen further reduced the proliferation of the tumour. Since HIF impacts the metabolism and may affect the appearance of the Warburg Effect, we investigated whether different collagen conditions could lead to the adoption of the Warburg phenotype. We found that this was not the case, results suggested that adoption of the Warburg phenotype seemed mainly controlled by inhibition of oxidative metabolism by HIF combined with oscillations of oxygen.
Collapse
Affiliation(s)
- Kévin Spinicci
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France.
- Department of Mathematics, Swansea University, Swansea, SA1 8EN, UK.
| | - Gibin Powathil
- Department of Mathematics, Swansea University, Swansea, SA1 8EN, UK
| | - Angélique Stéphanou
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| |
Collapse
|
6
|
Hase N, Misiak D, Taubert H, Hüttelmaier S, Gekle M, Köhn M. APOBEC3C-mediated NF-κB activation enhances clear cell renal cell carcinoma progression. Mol Oncol 2025; 19:114-132. [PMID: 39183666 PMCID: PMC11705732 DOI: 10.1002/1878-0261.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Renowned as the predominant form of kidney cancer, clear cell renal cell carcinoma (ccRCC) exhibits susceptibility to immunotherapies due to its specific expression profile as well as notable immune cell infiltration. Despite this, effectively treating metastatic ccRCC remains a significant challenge, necessitating a more profound comprehension of the underlying molecular mechanisms governing its progression. Here, we unveil that the enhanced expression of the RNA-binding protein DNA dC → dU-editing enzyme APOBEC-3C (APOBEC3C; also known as A3C) in ccRCC tissue and ccRCC-derived cell lines serves as a catalyst for tumor growth by amplifying nuclear factor-kappa B (NF-κB) activity. By employing RNA-sequencing and cell-based assays in ccRCC-derived cell lines, we determined that A3C is a stress-responsive factor and crucial for cell survival. Furthermore, we identified that A3C binds and potentially stabilizes messenger RNAs (mRNAs) encoding positive regulators of the NF-κB pathway. Upon A3C depletion, essential subunits of the NF-κB family are abnormally restrained in the cytoplasm, leading to deregulation of NF-κB target genes. Our study illuminates the pivotal role of A3C in promoting ccRCC tumor development, positioning it as a prospective target for future therapeutic strategies.
Collapse
Affiliation(s)
- Nora Hase
- Junior Group ‘Non‐Coding RNAs and RBPs in Human Diseases’, Medical FacultyMartin Luther University Halle/WittenbergGermany
| | - Danny Misiak
- Section for Molecular Cell Biology, Institute of Molecular MedicineMartin Luther University Halle/WittenbergGermany
| | - Helge Taubert
- Department of Urology and Pediatric UrologyUniversity Hospital Erlangen, Friedrich Alexander University Erlangen/NürnbergGermany
| | - Stefan Hüttelmaier
- Section for Molecular Cell Biology, Institute of Molecular MedicineMartin Luther University Halle/WittenbergGermany
| | - Michael Gekle
- Julius‐Bernstein‐Institute of PhysiologyMartin Luther University Halle/WittenbergGermany
| | - Marcel Köhn
- Junior Group ‘Non‐Coding RNAs and RBPs in Human Diseases’, Medical FacultyMartin Luther University Halle/WittenbergGermany
| |
Collapse
|
7
|
Farhat N, Vazquez-Jimenez J, Heying R, Seghaye MC. Myocardial mRNA expression of interleukin-6 and hypoxia inducible factor-1α in neonates with congenital cardiac defects. Mol Cell Pediatr 2024; 11:14. [PMID: 39708201 DOI: 10.1186/s40348-024-00187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND In neonates with congenital heart disease (CHD), myocardial remodelling involves activation of inflammatory pathways. The role of hypoxemia related pathways is however unknown. This study was therefore designed to investigate myocardial mRNA expression of interleukin (IL)-6 and hypoxia-inducible factor (HIF)-1α in neonates with CHD and analyse its influence on post-operative outcome. RESULTS 14 neonates with CHD scheduled for open cardiac surgery were studied. In group 1 (n = 5), pre-operative transcutaneous arterial oxygen saturation (SaO2) was ≤ 85% and in group 2 (n = 9) > 85%. Expression of IL-6- and HIF-1α-mRNA was studied on right atrial biopsy by RT-PCR and corelated to post-operative (po) outcome. Group 1 patients showed higher mean arterial blood pressure (MAP) and lower glycaemia 4 h po (p = 0.047 and p = 0.021, respectively). In the whole cohort, SaO2 correlated negatively with MAP (Pearson R: -0.662, p = 0.010). mRNA coding for IL-6 and HIF-1α was detected in the myocardium of all neonates independently of age, gender, or type of CHD. IL6-mRNA expression was not influenced by pre-operative hypoxemia but was associated with higher lactate levels in early po period (Pearson R: 0,611, p = 0,020). HIF-1α-mRNA expression correlated negatively with pre-operative SaO2 (Pearson R: -0.551, p = 0.04) and with aspartate aminotransferase levels 4 h po (Pearson R: 0.625, p = 0.017). CONCLUSION Our study shows that besides inflammatory pathways, hypoxemia related pathways are activated in the myocardium of neonates with CHD. Myocardial expression of both IL-6-mRNA and HIF-1α-mRNA relates to biological markers of a worse po outcome.
Collapse
Affiliation(s)
- Nesrine Farhat
- Department of Paediatric Cardiology, University Hospital, Liège, Belgium.
| | | | - Ruth Heying
- Department of Paediatric Cardiology, University Hospital, Leuven, Belgium
| | | |
Collapse
|
8
|
Xu Q, Liu H, Ye Y, Wuren T, Ge RL. Effects of different hypoxia exposure on myeloid-derived suppressor cells in mice. Exp Mol Pathol 2024; 140:104932. [PMID: 39305701 DOI: 10.1016/j.yexmp.2024.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 12/20/2024]
Abstract
For many people living at high altitudes for long or short periods of time, hypoxia is a challenge affecting many aspects of the body, including the immune system. Recently, myeloid-derived suppressor cells (MDSCs) have emerged as an immune cell population that plays an important role in several pathological conditions. However, to the best of our knowledge, there are no data regarding the behavior of MDSCs under hypoxic conditions. Therefore, the aim of this study is to investigate the monocytic type (M)- and polymorphonuclear type (PMN)-MDSC ratios in different hypoxic conditions to reveal the relationship between MDSCs and high-altitude hypoxia, as well as to determine whether MDSCs are involved in the regulation of the immune balance under hypoxic conditions as immunosuppressive factors. For the first time, we showed that MDSC abundance varies under different lengths of hypoxic exposure. We found that acute normobaric hypoxia led to an initial increase in the number of M-MDSCs, which decreased within 30 d. Both M- and PMN-MDSC ratios initially decreased under hypobaric hypoxia conditions within 30 d, but after 6 months in the real high altitude environment, M-MDSC ratio increased significantly. In summary, our data suggest that different hypoxic conditions influence MDSCs in mice, thereby contributing to a better understanding of the process of hypoxia adaptation and the occurrence and development of high-altitude disease.
Collapse
Affiliation(s)
- Qiying Xu
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China; Research Center for High Altitude Medicine, Qinghai University, Xining, China; Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, China
| | - Huifang Liu
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China; Research Center for High Altitude Medicine, Qinghai University, Xining, China; Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, China
| | - Yi Ye
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China; Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Tana Wuren
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China; Research Center for High Altitude Medicine, Qinghai University, Xining, China.
| | - Ri-Li Ge
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xining, China; Research Center for High Altitude Medicine, Qinghai University, Xining, China.
| |
Collapse
|
9
|
Merz N, Hartel JC, Grösch S. How ceramides affect the development of colon cancer: from normal colon to carcinoma. Pflugers Arch 2024; 476:1803-1816. [PMID: 38635059 PMCID: PMC11582153 DOI: 10.1007/s00424-024-02960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
The integrity of the colon and the development of colon cancer depend on the sphingolipid balance in colon epithelial cells. In this review, we summarize the current knowledge on how ceramides and their complex derivatives influence normal colon development and colon cancer development. Ceramides, glucosylceramides and sphingomyelin are essential membrane components and, due to their biophysical properties, can influence the activation of membrane proteins, affecting protein-protein interactions and downstream signalling pathways. Here, we review the cellular mechanisms known to be affected by ceramides and their effects on colon development. We also describe which ceramides are deregulated during colorectal carcinogenesis, the molecular mechanisms involved in ceramide deregulation and how this affects carcinogenesis. Finally, we review new methods that are now state of the art for studying lipid-protein interactions in the physiological environment.
Collapse
Affiliation(s)
- Nadine Merz
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Theodor Stern Kai 7, 60590, Frankfurt, Germany
| | - Jennifer Christina Hartel
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Theodor Stern Kai 7, 60590, Frankfurt, Germany
| | - Sabine Grösch
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Theodor Stern Kai 7, 60590, Frankfurt, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany.
| |
Collapse
|
10
|
Mussa A, Ismail NH, Hamid M, Al-Hatamleh MAI, Bragoli A, Hajissa K, Mokhtar NF, Mohamud R, Uskoković V, Hassan R. Understanding the role of TNFR2 signaling in the tumor microenvironment of breast cancer. J Exp Clin Cancer Res 2024; 43:312. [PMID: 39609700 PMCID: PMC11603874 DOI: 10.1186/s13046-024-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Collapse
Affiliation(s)
- Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Mahasin Hamid
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan Province, Changsha, 410013, China
- Department of Zoology, Faculty of Sciences and Information Technology, University of Nyala, Nyala, 63311, Sudan
| | - Mohammad A I Al-Hatamleh
- Division of Hematology and Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anthony Bragoli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (iNFORMM), Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, 92604, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, 92832, USA
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| |
Collapse
|
11
|
Aruge S, Asif M, Tariq A, Asif S, Zafar M, Elahi MA, Riaz L, Javed A, Bostan N, Sattar S. Impact of MTHFD2 Expression in Bladder/Breast Cancer and Screening of Its Potential Inhibitor. ACS OMEGA 2024; 9:44193-44202. [PMID: 39524662 PMCID: PMC11541529 DOI: 10.1021/acsomega.4c03599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Genes of folate-mediated 1 carbon metabolism are found to be highly upregulated in tumor cells and promote cancer cell proliferation. The current study aimed to determine the expression of the MTHFD2 gene in bladder and breast cancers. Furthermore, the determination of potential ligand-based inhibitors against MTHFD2 was performed in comparison with those of chemotherapeutic drugs and natural plant-based compounds. Semiquantitative expression analysis along with structure-based virtual ligand library screening was done to find plausible inhibitors. MTHFD2 expression was significantly increased with tumor stage progression both in low- and high-grade bladder cancer and especially in triple-negative breast cancer. Virtual ligand-based library screening against the three-dimensional MTHFD2 protein structure led to the identification of plausible inhibitors like MCULE-8109969891-0 and MCULE-9715677418-0-1 that displayed lower binding free energy as compared to that of already documented LY345899. Similar scaffold commercial drugs leucal (LEU), epirubicin (EPI), and lometrexol also displayed strong binding to the active site of MTHFD2. EPI and LEU in combinatorial therapy were also tested in vitro on MDA-MB-231 cells. The high doses of LEU in combination with EPI showed a significant reduction in cell viability at 2 and 3 μM concentrations. The interaction of breast cancer serum with high expression of MTHFD2 also showed an increase in binding of epirubicin in the presence of leucovorin. The decrease in the absorbance spectra of epirubicin at 37 and 53 °C displayed the stability induced by LEU on the interaction of EPI with the MTHFD2 binding pocket. Leucovorin tends to stabilize the interaction as the binding affinity is high even at 53 °C. Thus, MTHFD2 might be used as a cancer biomarker since its expression level changes drastically with tumor progression. Further experimental studies are required to establish the potential mode of inhibition of the novel small ligands. Future in vivo trials may validate the effectiveness of the combinatorial therapy.
Collapse
Affiliation(s)
- Samreen Aruge
- Department
of Biosciences, COMSATS University Islamabad, Islamabad Campus, 45550 Islamabad, Pakistan
| | - Maleeha Asif
- Department
of Biochemistry, Hazara University, Dhodial, Mansehra, Khyber Pakthunkhwa 21120, Pakistan
| | - Aamira Tariq
- Department
of Biosciences, COMSATS University Islamabad, Islamabad Campus, 45550 Islamabad, Pakistan
| | - Saaim Asif
- Department
of Biosciences, COMSATS University Islamabad, Islamabad Campus, 45550 Islamabad, Pakistan
| | - Muhammad Zafar
- Institute
of Kidney Disease, Hayatabad
Medical Complex, Hayatabad, Peshawar, Khyber Pakthunkhwa 25100, Pakistan
| | - Muhammad Affan Elahi
- Department
of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Lubna Riaz
- Micro-molecular
lab, Public Health Laboratories Division, National Institute of Health, 45500 Islamabad, Pakistan
| | - Aneela Javed
- ASAB, NUST University, Islamabad 44000, Pakistan
| | - Nazish Bostan
- Molecular
Virology Laboratories, Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Sadia Sattar
- Molecular
Virology Laboratories, Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| |
Collapse
|
12
|
Gera R, Arora R, Chhabra P, Sharma U, Parsad R, Ahlawat S, Mir MA, Singh MK, Kumar R. Exploring transcriptomic mechanisms underlying pulmonary adaptation to diverse environments in Indian rams. Mol Biol Rep 2024; 51:1111. [PMID: 39485559 DOI: 10.1007/s11033-024-10067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND The Changthangi sheep thrive at high altitudes in the cold desert regions of Ladakh, India while Muzaffarnagri sheep are well-suited to the low altitude plains of northern India. This study investigates the molecular mechanisms of pulmonary adaptation to diverse environments by analyzing gene expression profiles of lung tissues through RNA sequencing. METHODS AND RESULTS Four biological replicates of lung tissue from each breed were utilized to generate the transcriptomic data. Differences in gene expression analysis revealed discrete expression profiles in lungs of each breed. In Changthangi sheep, genes related to immune responses, particularly cytokine signaling, were significantly enriched. Pathway analysis highlighted the activation of NF-kB signaling, a key mediator of inflammation and immune response. Additionally, the gene network analysis indicated a strong association between cytokine signaling, hypoxia-inducible factor (HIF) and NF-kB activation, suggesting a coordinated response to hypoxic stress in lungs of Changthangi sheep. In Muzaffarnagri sheep, the gene expression profiles were enriched for pathways related to energy metabolism, homeostasis and lung physiology. Key pathways identified include collagen formation and carbohydrate metabolism, both of which are crucial for maintaining lung function and structural integrity. Gene network analysis further reinforced this by revealing a strong connection between genes associated with lung structure and function. CONCLUSIONS Our findings shed light on the valuable insights into gene expression mechanisms that enable these sheep breeds to adapt to their respective environments and contribute to a better understanding of high altitude adaptation in livestock.
Collapse
Affiliation(s)
- Ritika Gera
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
- UIET, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India.
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Ram Parsad
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Mohsin Ayoub Mir
- Mountain Research Centre for Sheep and Goat, SKUAST, Aulestang, 190006, Shuhama, Kashmir, India
| | - Manoj Kumar Singh
- ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, 281122, Uttar Pradesh, India
| | - Rajesh Kumar
- UIET, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| |
Collapse
|
13
|
Mitra A, Yi D, Dai Z, de Jesus Perez V. Unraveling the role of HIF and epigenetic regulation in pulmonary arterial hypertension: implications for clinical research and its therapeutic approach. Front Med (Lausanne) 2024; 11:1460376. [PMID: 39450110 PMCID: PMC11499164 DOI: 10.3389/fmed.2024.1460376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/12/2024] [Indexed: 10/26/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling with high pulmonary pressure, which ultimately leads to right heart failure and premature death. Emerging evidence suggests that both hypoxia and epigenetics play a pivotal role in the pathogenesis of PAH development. In this review article, we summarize the current developments in regulation of hypoxia inducible factor (HIF) isoforms in PAH vascular remodeling and the development of suitable animal models for discovery and testing of HIF pathway-targeting PAH therapeutics. In addition, we also discuss the epigenetic regulation of HIF-dependent isoforms in PAH and its therapeutic potential from a new perspective which highlights the importance of HIF isoform-specific targeting as a novel salutary strategy for PAH treatment.
Collapse
Affiliation(s)
- Ankita Mitra
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, United States
| | - Dan Yi
- Department of Internal Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ, United States
| | - Zhiyu Dai
- Department of Internal Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AZ, United States
- Department of Medicine, Washington University School of Medicine in St. Louis (WashU), St. Louis, MO, United States
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Critical Care, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
14
|
WANG YUN, LI XIAOJIANG, LIU DALONG, WANG ZHIFENG, XIA JICHEN, WANG LIJUN, ZHANG XUDONG. Research progress on the role of adipocyte exosomes in cancer progression. Oncol Res 2024; 32:1649-1660. [PMID: 39308520 PMCID: PMC11413817 DOI: 10.32604/or.2024.043482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/07/2024] [Indexed: 09/25/2024] Open
Abstract
Exosomes, minute vesicles ubiquitously released by diverse cell types, serve as critical mediators in intercellular communication. Their pathophysiological relevance, especially in malignancies, has garnered significant attention. A meticulous exploration of the exosomal impact on cancer development has unveiled avenues for innovative and clinically valuable techniques. The cargo conveyed by exosomes exerts transformative effects on both local and distant microenvironments, thereby influencing a broad spectrum of biological responses in recipient cells. These membrane-bound extracellular vesicles (EVs) play a pivotal role in delivering bioactive molecules among cells and organs. Cellular and biological processes in recipient cells, ranging from stromal cell reprogramming to immunological responses, extracellular matrix formation, and modulation of cancer cell activation, expansion, and metastasis, are subject to exosome-mediated cell-to-cell communication. Moreover, exosomes have been implicated in endowing cancer cells with resistance to treatment. Extensive research has explored the potential of exosomes as therapeutic targets and diagnostic indicators. This comprehensive review seeks to provide an in-depth understanding of the pivotal components and roles of exosomes in tumorigenesis, growth, progression, and therapeutic responses. The insights into the multifaceted involvement of exosomes in malignant cancers are essential for the scientific community, fostering the development of novel therapeutic and diagnostic strategies in the relentless pursuit of cancer.
Collapse
Affiliation(s)
- YUN WANG
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| | - XIAOJIANG LI
- Department of Orthopaedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| | - DALONG LIU
- Department of Orthopaedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| | - ZHIFENG WANG
- Department of Internal Medicine, Changchun Chaoyang District Hospital of Traditional Chinese Medicine, Changchun, 130061, China
| | - JICHEN XIA
- Department of Orthopedics and Traumatology, Jilin Integrated Traditional Chinese and Western Medicine Hospital of Jilin Province, Jilin, 132012, China
| | - LIJUN WANG
- Department of Oncology, Liaoyuan Second People’s Hospital, Liaoyuan, 136299, China
| | - XUDONG ZHANG
- Department of Brain Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| |
Collapse
|
15
|
Abe Y, Sano T, Otsuka N, Ogawa M, Tanaka N. PRMT5-mediated methylation of STAT3 is required for lung cancer stem cell maintenance and tumour growth. Commun Biol 2024; 7:593. [PMID: 38760429 PMCID: PMC11101626 DOI: 10.1038/s42003-024-06290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
STAT3 is constitutively activated in many cancer types, including lung cancer, and can induce cancer cell proliferation and cancer stem cell (CSC) maintenance. STAT3 is activated by tyrosine kinases, such as JAK and SRC, but the mechanism by which STAT3 maintains its activated state in cancer cells remains unclear. Here, we show that PRMT5 directly methylates STAT3 and enhances its activated tyrosine phosphorylation in non-small cell lung cancer (NSCLC) cells. PRMT5 expression is also induced by STAT3, suggesting the presence of a positive feedback loop in cancer cells. Furthermore, methylation of STAT3 at arginine 609 by PRMT5 is important for its transcriptional activity and support of tumour growth and CSC maintenance. Indeed, NSCLC cells expressing the STAT3 mutant which R609 was replaced to alanine (R609K) show significantly impaired tumour growth in nude mice. Overall, our study reveals a mechanism by which STAT3 remains activated in NSCLC and provides a new target for cancer therapeutic approaches.
Collapse
Affiliation(s)
- Yoshinori Abe
- Laboratory of Molecular Analysis, Nippon Medical School, Tokyo, Japan
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Takumi Sano
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Naoki Otsuka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Masashi Ogawa
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan.
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.
| |
Collapse
|
16
|
Zhang LL, Wang L, Zhang DN, Wu JT, Liu Y, Wang YP. Case report: Ureteric bud intestinal-type adenocarcinoma involving the cervix was misdiagnosed as a large cervical fibroid. Front Med (Lausanne) 2024; 11:1374653. [PMID: 38681049 PMCID: PMC11045929 DOI: 10.3389/fmed.2024.1374653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024] Open
Abstract
Background Malignant tumors of the ureteric bud are not common, and cervical involvement is even rarer. So far, there have been no such cases in the literature. Case summary A 50-year-old woman developed intermittent light bleeding in the past 7 months and lower abdominal pain in the past 2 months. The human papillomavirus 16 (HPV) DNA, P16 chemical staining, thinPrep cytology test (TCT), and cervical and cervical canal tissue biopsy were all negative. Pelvic color Doppler ultrasound exhibited incomplete mediastinal uterus and heterogeneous echo from the cervical canal to the posterior wall of the cervix. Pelvic contrast-enhanced CT showed left cervical mass, left retroperitoneal mass, absence of the left kidney, and mediastinal uterus. An increase in human epididymal protein 4 (HE4) (133.6 pmol/L) was detected, while other tumor markers were at normal levels. Based on these examination results, a diagnosis of "cervical fibroids, left retroperitoneal mass, incomplete mediastinal uterus, left kidney deficiency"[SIC] was conducted, and expanded hysterectomy, right adnexectomy, and left retroperitoneal mass resection were performed. Through intraoperative rapid pathological diagnosis, postoperative pathological diagnosis combined with the re-evaluation of laboratory, and imaging and intraoperative examination results, the patient was diagnosed with ureteric bud intestinal-type adenocarcinoma involving the cervix. The patient has been tracked and followed up for approximately 11 months. She underwent six courses of chemotherapy. At present, the medication has been discontinued for 4 months, and there is no recurrence, metastasis, or deterioration of the tumor. Conclusion For large masses of the cervix, it is feasible for the operation to be performed, improving the prognosis. There were a few limitations. A preoperative aspiration biopsy of masses was not performed to differentiate benign from malignant. Preoperative urography was not performed to clarify the function of the malformed urinary system structure. Partial cystectomy should be performed simultaneously with the resection of the ureteric bud for intestinal-type adenocarcinoma. In this case, a partial cystectomy was not performed, which can only be compensated with postoperative chemotherapy. Moreover, this patient did not undergo genetic screening, and it is currently unclear whether there are any genetic mutations associated with ureteric bud intestinal adenocarcinoma.
Collapse
Affiliation(s)
- Li-li Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Li Wang
- Department of Obstetrics and Gynecology, The 964th Hospital, Changchun, Jilin, China
| | - Dan-ni Zhang
- Department of Obstetrics and Gynecology, The 964th Hospital, Changchun, Jilin, China
| | - Jun-tong Wu
- Department of Obstetrics and Gynecology, The 964th Hospital, Changchun, Jilin, China
| | - Yuan Liu
- Department of Obstetrics and Gynecology, The 964th Hospital, Changchun, Jilin, China
| | - Yan-ping Wang
- Obstetrics and Gynecology Diagnosis and Treatment Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
17
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
18
|
Fok M, Hill R, Fowler H, Clifford R, Kler A, Uzzi-Daniel J, Rocha S, Grundy G, Parsons J, Vimalachandran D. Enhancing radiotherapy outcomes in rectal cancer: A systematic review of targeting hypoxia-induced radioresistance. Clin Transl Radiat Oncol 2024; 44:100695. [PMID: 37961749 PMCID: PMC10637894 DOI: 10.1016/j.ctro.2023.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Introduction Neoadjuvant radiotherapy is successfully used in rectal cancer to improve overall survival. However, treatment response is both unpredictable and variable. There is strong evidence to show that the phenomenon of tumour hypoxia is associated with radioresistance, however the mechanism(s) behind this are poorly understood. Consequently, there have only been a small number of studies evaluating methods targeting hypoxia-induced radioresistance. The purpose of this systematic review is to evaluate the potential effectiveness of targeting hypoxia-induced radioresistance in rectal cancer and provide recommendations for future research in this area. Methods A comprehensive literature search was performed following the PRISMA guidelines. This study was registered on the Prospero database (CRD42023441983). Results Eight articles met the inclusion criteria. All studies identified were in vitro or in vivo studies, there were no clinical trials. Of the 8 studies identified, 5 assessed the efficacy of drugs which directly or indirectly targeted hypoxia and three that identified potential targets. There was conflicting in vivo evidence for the use of metformin to overcome hypoxia induced radioresistance. Vorinostat, atovaquone, and evofosfamide showed promising preclinical evidence that they can overcome hypoxia-induced radioresistance. Discussion The importance of investigating hypoxia-induced radioresistance in rectal cancer is crucial. However, to date, only a small number of preclinical studies exist evaluating this phenomenon. This systematic review highlights the importance of further research to fully understand the mechanism behind this radioresistance. There are promising targets identified in this systematic review however, substantially more pre-clinical and clinical research as a priority for future research is needed.
Collapse
Affiliation(s)
- Matthew Fok
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
| | - Rhianna Hill
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
| | - Hayley Fowler
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
| | - Rachael Clifford
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
| | - Aaron Kler
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
| | - Jayanma Uzzi-Daniel
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
| | - Sonia Rocha
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
| | - Gabrielle Grundy
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
| | - Jason Parsons
- Institute of Cancer and Genomic Sciences, University of Birmingham, UK
| | - Dale Vimalachandran
- Institute of Systems, Molecular and Integrative Biology University of Liverpool, UK
- Countess of Chester Hospital, Colorectal Surgery Department, Chester, UK
| |
Collapse
|
19
|
Valente R, Cordeiro S, Luz A, Melo MC, Rodrigues CR, Baptista PV, Fernandes AR. Doxorubicin-sensitive and -resistant colorectal cancer spheroid models: assessing tumor microenvironment features for therapeutic modulation. Front Cell Dev Biol 2023; 11:1310397. [PMID: 38188017 PMCID: PMC10771845 DOI: 10.3389/fcell.2023.1310397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction: The research on tumor microenvironment (TME) has recently been gaining attention due to its important role in tumor growth, progression, and response to therapy. Because of this, the development of three-dimensional cancer models that mimic the interactions in the TME and the tumor structure and complexity is of great relevance to cancer research and drug development. Methods: This study aimed to characterize colorectal cancer spheroids overtime and assess how the susceptibility or resistance to doxorubicin (Dox) or the inclusion of fibroblasts in heterotypic spheroids influence and modulate their secretory activity, namely the release of extracellular vesicles (EVs), and the response to Dox-mediated chemotherapy. Different characteristics were assessed over time, namely spheroid growth, viability, presence of hypoxia, expression of hypoxia and inflammation-associated genes and proteins. Due to the importance of EVs in biomarker discovery with impact on early diagnostics, prognostics and response to treatment, proteomic profiling of the EVs released by the different 3D spheroid models was also assessed. Response to treatment was also monitored by assessing Dox internalization and its effects on the different 3D spheroid structures and on the cell viability. Results and Discussion: The results show that distinct features are affected by both Dox resistance and the presence of fibroblasts. Fibroblasts can stabilize spheroid models, through the modulation of their growth, viability, hypoxia and inflammation levels, as well as the expressions of its associated transcripts/proteins, and promotes alterations in the protein profile exhibit by EVs. Summarily, fibroblasts can increase cell-cell and cell-extracellular matrix interactions, making the heterotypic spheroids a great model to study TME and understand TME role in chemotherapies resistance. Dox resistance induction is shown to influence the internalization of Dox, especially in homotypic spheroids, and it is also shown to influence cell viability and consequently the chemoresistance of those spheroids when exposed to Dox. Taken together these results highlight the importance of finding and characterizing different 3D models resembling more closely the in vivo interactions of tumors with their microenvironment as well as modulating drug resistance.
Collapse
Affiliation(s)
- Ruben Valente
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Sandra Cordeiro
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - André Luz
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Maria C. Melo
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Catarina Roma Rodrigues
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Pedro V. Baptista
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
20
|
Zhao Y, Lv HJ, Deng XY, Chen P, Garstka MA, Shi BY, Fu J. Translocated HMGB3 is involved in papillary thyroid cancer progression by activating cytoplasmic TLR3 and transmembrane TREM1. Cell Cycle 2023; 22:2584-2601. [PMID: 38197217 PMCID: PMC10936681 DOI: 10.1080/15384101.2024.2302244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
The family of high mobility group box (HMGB) proteins participates in various biological processes including immunity, inflammation, as well as cancer formation and progression. However, its role in thyroid cancer remains to be clarified. We performed quantitative RT-PCR (qRT-PCR), western blot, enzyme-linked immunosorbent, immunohistochemistry, and immunofluorescence assays to evaluate the expression level and subcellular location of HMGB3. The effects of HMGB3 knockdown on malignant biological behaviors of thyroid cancer were determined by cell proliferation assays, cell cycle and apoptosis assays, and transwell chamber migration and invasion assays. Differential expression genes (DEGs) altered by HMGB3 were analyzed using the Ingenuity Pathway Analysis (IPA) and TRRUST v2 database. HMGB3 correlated pathways predicted by bioinformatic analysis were then confirmed using western blot, co-immunoprecipitation, dual-luciferase reporter assay, and flow cytometry. We found that HMGB3 is overexpressed and its downregulation inhibits cell viability, promotes cell apoptosis and cell cycle arrest, and suppresses cell migration and invasion in thyroid cancer. In PTC, both tissue and serum levels of HMGB3 are elevated and are correlated with lymph node metastasis and advanced tumor stage. Mechanistically, we observed the translocation of HMGB3 in PTC, induced at least partially by hypoxia. Cytoplasmic HMGB3 activates nucleic-acid-mediated TLR3/NF-κB signaling and extracellular HMGB3 interacts with the transmembrane TREM1 receptor in PTC. This study demonstrates the oncogenic role of HMGB3 cytoplasmic and extracellular translocation in papillary thyroid cancers; we recommend its future use as a potential circulating biomarker and therapeutic target for PTC.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Department of Endocrinology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Hong-Jun Lv
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xue-Yang Deng
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Pu Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Malgorzata A. Garstka
- Core Research Laboratory; Department of Endocrinology; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bing-Yin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Jiao Fu
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
21
|
Wang H, Wang L, Chen Y, Huang J, Xing Y, Wang L, Zhang J, Yang H. Catalytically proficient ceria nanodots supported on redox-active mesoporous hosts for treatment of inflammatory bowel disease via efficient ROS scavenging. J Mater Chem B 2023; 11:10369-10382. [PMID: 37873599 DOI: 10.1039/d3tb01602a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ceria nanozyme-based ROS scavengers have shown great potential in the treatment of inflammatory bowel disease (IBD) through microenvironment regulation. However, the currently developed nanotherapeutics suffer from difficulties in concomitantly achieving small sizes and stable interparticle dispersion which is pivotal to sufficient oxygen vacancies facilitating electron transfer and oxygen storage in the dynamic cycling of Ce3+/Ce4+ redox pairs. Herein, a hybrid nanosystem consisting of ceria nanodots supported on redox-active mesoporous hosts was developed to address the challenge of ROS scavenging, in particular the efficient downregulation of the readily renewable, highly concentrated H2O2 species. Specifically, Ce4+ ions oxidized from Ce3+ in weakly basic solution were captured and reduced in time by the abundant catechols on the mesoporous polydopamine nanoparticles. This led to strong restriction of ceria growth (∼2.8 nm) in the ion precipitation process and efficient maintenance of the Ce3+/Ce4+ ratio at a high value of 1.59 which is 4.8 fold higher than that of homogeneously nucleated ceria nanoparticles. Through this design, the nanohybrid showed an attractive catalytic performance in scavenging multiple ROS species, particularly the fast and recyclable conversion of H2O2. Thereby, significant suppression of the inflammatory cytokine/chemokine secretion was achieved by inhibiting the activation of NF-κB signaling pathways (5.1 fold higher as compared to those of pristine ceria nanoparticles), upregulating the Nrf2 signaling pathway, and reducing the proportion of M1 macrophages at IBD sites. Therapeutic efficiency was also demonstrated by the effective repair of the intestinal mucosal barrier by recovering the tight junction integrity in vivo. This study sheds light on the employment of redox-active hosts to support ceria catalysts for advancing anti-inflammation applications by boosting ROS scavenging performance.
Collapse
Affiliation(s)
- Hailing Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Liucan Wang
- Department of General Surgery, Chongqing People's Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401121, China.
| | - Yuhua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Jixi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Lu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Hua Yang
- Department of General Surgery, Chongqing People's Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing 401121, China.
| |
Collapse
|
22
|
Akinsulie OC, Shahzad S, Ogunleye SC, Oladapo IP, Joshi M, Ugwu CE, Gbadegoye JO, Hassan FO, Adeleke R, Afolabi Akande Q, Adesola RO. Crosstalk between hypoxic cellular micro-environment and the immune system: a potential therapeutic target for infectious diseases. Front Immunol 2023; 14:1224102. [PMID: 37600803 PMCID: PMC10434535 DOI: 10.3389/fimmu.2023.1224102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023] Open
Abstract
There are overwhelming reports on the promotional effect of hypoxia on the malignant behavior of various forms of cancer cells. This has been proposed and tested exhaustively in the light of cancer immunotherapy. However, there could be more interesting functions of a hypoxic cellular micro-environment than malignancy. There is a highly intricate crosstalk between hypoxia inducible factor (HIF), a transcriptional factor produced during hypoxia, and nuclear factor kappa B (NF-κB) which has been well characterized in various immune cell types. This important crosstalk shares common activating and inhibitory stimuli, regulators, and molecular targets. Impaired hydroxylase activity contributes to the activation of HIFs. Inflammatory ligands activate NF-κB activity, which leads to the expression of inflammatory and anti-apoptotic genes. The eventual sequelae of the interaction between these two molecular players in immune cells, either bolstering or abrogating functions, is largely cell-type dependent. Importantly, this holds promise for interesting therapeutic interventions against several infectious diseases, as some HIF agonists have helped prevent immune-related diseases. Hypoxia and inflammation are common features of infectious diseases. Here, we highlighted the role of this crosstalk in the light of functional immunity against infection and inflammation, with special focus on various innate and adaptive immune cells. Particularly, we discussed the bidirectional effects of this crosstalk in the regulation of immune responses by monocytes/macrophages, dendritic cells, neutrophils, B cells, and T cells. We believe an advanced understanding of the interplay between HIFs and NF-kB could reveal novel therapeutic targets for various infectious diseases with limited treatment options.
Collapse
Affiliation(s)
- Olalekan Chris Akinsulie
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sammuel Shahzad
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Seto Charles Ogunleye
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Ifeoluwa Peace Oladapo
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Melina Joshi
- Center for Molecular Dynamics Nepal, Kathmandu, Nepal
| | - Charles Egede Ugwu
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
| | - Joy Olaoluwa Gbadegoye
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Richard Adeleke
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Qudus Afolabi Akande
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | | |
Collapse
|
23
|
Perepechaeva ML, Klyushova LS, Grishanova AY. AhR and HIF-1 α Signaling Pathways in Benign Meningioma under Hypoxia. Int J Cell Biol 2023; 2023:6840271. [PMID: 37305351 PMCID: PMC10257548 DOI: 10.1155/2023/6840271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/13/2023] Open
Abstract
The role of hypoxia in benign meningiomas is less clear than that in the malignant meningiomas. Hypoxia-induced transcription factor 1 subunit alpha (HIF-1α) and its downstream signaling pathways play a central role in the mechanism of hypoxia. HIF-1α forms a complex with the aryl hydrocarbon receptor nuclear translocator (ARNT) protein and can compete for ARNT with aryl hydrocarbon receptor (AhR). In this work, the status of HIF-1α- and AhR-dependent signaling pathways was investigated in World Health Organization (WHO) grade 1 meningioma and patient-derived tumor primary cell culture under hypoxic conditions. mRNA levels of HIF-1α, AhR, and of their target genes as well as of ARNT and nuclear receptor coactivator NCOA2 were determined in tumor tissues from patients in whom the tumor was promptly removed either with or without prior endovascular embolization. Using the patient-derived nonembolized tumor primary cell culture, the effects of a hypoxia mimetic cobalt chloride (CoCl2) and an activator of the AhR signaling pathway benzo(α)pyrene (B[a]P) on mRNA levels of HIF-1α, AhR, and their target genes were investigated. Our findings show active functioning of AhR signaling in meningioma tissue of patients with tumor embolization and crosstalk between HIF-1α and AhR signaling in meningeal cells under hypoxia.
Collapse
Affiliation(s)
- Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Lyubov S. Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Alevtina Y. Grishanova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| |
Collapse
|
24
|
Ye Y, Xu Q, Wuren T. Inflammation and immunity in the pathogenesis of hypoxic pulmonary hypertension. Front Immunol 2023; 14:1162556. [PMID: 37215139 PMCID: PMC10196112 DOI: 10.3389/fimmu.2023.1162556] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is a complicated vascular disorder characterized by diverse mechanisms that lead to elevated blood pressure in pulmonary circulation. Recent evidence indicates that HPH is not simply a pathological syndrome but is instead a complex lesion of cellular metabolism, inflammation, and proliferation driven by the reprogramming of gene expression patterns. One of the key mechanisms underlying HPH is hypoxia, which drives immune/inflammation to mediate complex vascular homeostasis that collaboratively controls vascular remodeling in the lungs. This is caused by the prolonged infiltration of immune cells and an increase in several pro-inflammatory factors, which ultimately leads to immune dysregulation. Hypoxia has been associated with metabolic reprogramming, immunological dysregulation, and adverse pulmonary vascular remodeling in preclinical studies. Many animal models have been developed to mimic HPH; however, many of them do not accurately represent the human disease state and may not be suitable for testing new therapeutic strategies. The scientific understanding of HPH is rapidly evolving, and recent efforts have focused on understanding the complex interplay among hypoxia, inflammation, and cellular metabolism in the development of this disease. Through continued research and the development of more sophisticated animal models, it is hoped that we will be able to gain a deeper understanding of the underlying mechanisms of HPH and implement more effective therapies for this debilitating disease.
Collapse
Affiliation(s)
- Yi Ye
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Qinghai-Utah Key Laboratory of High-Altitude Medicine, Xining, China
| | - Qiying Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Qinghai-Utah Key Laboratory of High-Altitude Medicine, Xining, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Qinghai-Utah Key Laboratory of High-Altitude Medicine, Xining, China
| |
Collapse
|
25
|
Akimoto M, Susa T, Okudaira N, Koshikawa N, Hisaki H, Iizuka M, Okinaga H, Takenaga K, Okazaki T, Tamamori-Adachi M. Hypoxia induces downregulation of the tumor-suppressive sST2 in colorectal cancer cells via the HIF-nuclear IL-33-GATA3 pathway. Proc Natl Acad Sci U S A 2023; 120:e2218033120. [PMID: 37094129 PMCID: PMC10160999 DOI: 10.1073/pnas.2218033120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
As a decoy receptor, soluble ST2 (sST2) interferes with the function of the inflammatory cytokine interleukin (IL)-33. Decreased sST2 expression in colorectal cancer (CRC) cells promotes tumor growth via IL-33-mediated bioprocesses in the tumor microenvironment. In this study, we discovered that hypoxia reduced sST2 expression in CRC cells and explored the associated molecular mechanisms, including the expression of key regulators of ST2 gene transcription in hypoxic CRC cells. In addition, the effect of the recovery of sST2 expression in hypoxic tumor regions on malignant progression was investigated using mouse CRC cells engineered to express sST2 in response to hypoxia. Our results indicated that hypoxia-dependent increases in nuclear IL-33 interfered with the transactivation activity of GATA3 for ST2 gene transcription. Most importantly, hypoxia-responsive sST2 restoration in hypoxic tumor regions corrected the inflammatory microenvironment and suppressed tumor growth and lung metastasis. These results indicate that strategies targeting sST2 in hypoxic tumor regions could be effective for treating malignant CRC.
Collapse
Affiliation(s)
- Miho Akimoto
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Takao Susa
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Noriyuki Okudaira
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Nobuko Koshikawa
- Department of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Nitona, Chuoh-ku, Chiba260-8717, Japan
| | - Harumi Hisaki
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
- Medical Education Center, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Hiroko Okinaga
- Department of Internal Medicine, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Keizo Takenaga
- Department of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Nitona, Chuoh-ku, Chiba260-8717, Japan
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Mimi Tamamori-Adachi
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| |
Collapse
|
26
|
Hsieh TY, Sung WW, Chang YC, Yu CY, Lu LY, Dong C, Lee TH, Chen SL. Melatonin induces cell cycle arrest and suppresses tumor invasion in urinary bladder urothelial carcinoma. Aging (Albany NY) 2023; 15:3107-3119. [PMID: 37086261 PMCID: PMC10188331 DOI: 10.18632/aging.204673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Urinary bladder urothelial carcinoma (UBUC) encompasses about 90% of all bladder cancer cases, and the mainstream treatment is the transurethral resection of the bladder tumor followed by intravesical instillation. High rates of mortality, recurrence, and progression in bladder cancer have stimulated the search for alternative adjuvant therapies. The aim of this study was to investigate the potential of melatonin as adjuvant therapy in bladder cancer. Cell viability and clonogenic ability were assessed by an MTT assay and colony formation. Cell cycle and apoptosis analysis were performed by flow cytometry and Hoechst 33342 staining, while cell metastasis capacity was measured by wound healing and transwell assays. Potential mechanisms were investigated by an oncology array and verified via western blotting. The melatonin treatment significantly reduced T24 and UMUC3 bladder cancer cell proliferation and clonogenic ability. G1 arrest and sub-G1 accumulation in the T24 and UMUC3 cells led to cell proliferation suppression and cell death, and Hoechst 33342 staining further verified the apoptosis induction directly by melatonin. Moreover, melatonin weakened cell motility and invasiveness. Based on the oncology array results, we demonstrated that melatonin exerts its anti-cancer effect by down-regulating the HIF-1α and NF-κB pathways and downstream pathways, including Bcl-2, leading to cell cycle arrest and apoptosis induction in the UBUC cells. Overall, these findings support the potential of melatonin as adjuvant therapy in bladder cancer.
Collapse
Affiliation(s)
- Tzuo-Yi Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Wei Sung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ya-Chuan Chang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Ying Yu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Li-Yu Lu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chen Dong
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tsung-Hsien Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University, Taichung, Taiwan
- Division of Infertility Clinic, Lee Women’s Hospital, Taichung, Taiwan
| | - Sung-Lang Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
27
|
Nanjireddy PM, Olejniczak SH, Buxbaum NP. Targeting of chimeric antigen receptor T cell metabolism to improve therapeutic outcomes. Front Immunol 2023; 14:1121565. [PMID: 36999013 PMCID: PMC10043186 DOI: 10.3389/fimmu.2023.1121565] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Genetically engineered chimeric antigen receptor (CAR) T cells can cure patients with cancers that are refractory to standard therapeutic approaches. To date, adoptive cell therapies have been less effective against solid tumors, largely due to impaired homing and function of immune cells within the immunosuppressive tumor microenvironment (TME). Cellular metabolism plays a key role in T cell function and survival and is amenable to manipulation. This manuscript provides an overview of known aspects of CAR T metabolism and describes potential approaches to manipulate metabolic features of CAR T to yield better anti-tumor responses. Distinct T cell phenotypes that are linked to cellular metabolism profiles are associated with improved anti-tumor responses. Several steps within the CAR T manufacture process are amenable to interventions that can generate and maintain favorable intracellular metabolism phenotypes. For example, co-stimulatory signaling is executed through metabolic rewiring. Use of metabolic regulators during CAR T expansion or systemically in the patient following adoptive transfer are described as potential approaches to generate and maintain metabolic states that can confer improved in vivo T cell function and persistence. Cytokine and nutrient selection during the expansion process can be tailored to yield CAR T products with more favorable metabolic features. In summary, improved understanding of CAR T cellular metabolism and its manipulations have the potential to guide the development of more effective adoptive cell therapies.
Collapse
Affiliation(s)
- Priyanka Maridhi Nanjireddy
- Department of Pediatric Oncology, Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Immunology Department, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Scott H. Olejniczak
- Immunology Department, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nataliya Prokopenko Buxbaum
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- *Correspondence: Nataliya Prokopenko Buxbaum,
| |
Collapse
|
28
|
Lan T, Ji N, Tian QQ, Zhan Y, He W. An edoplasmic reticulum-targeted NIR fluorescent probe with a large Stokes shift for hypoxia imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122201. [PMID: 36463622 DOI: 10.1016/j.saa.2022.122201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Hypoxia is closely linked to various diseases, including solid tumors. The level of nitroreductase (NTR) is usually abnormally upregulated in hypoxic conditions, which can be a biomarker of hypoxia. Herein, the first endoplasmic reticulum-targeting NIR fluorescent probe, ISO-NTR, was developed for highly selective and sensitive detection of NTR. It shows a large Stokes shift (185 nm) and a 5-fold increases in fluorescence intensity. Meanwhile, the ISO-NTR probe with a dicyanoisophorone derivative has excellent endoplasmic reticulum targeting in living systems with high Pearson's correlation coefficients (Rr = 0.9489). Molecular docking calculations and high binding energy between the probe and NTR (-10.78 kcal·mol-1) may explain the high selectivity of ISO-NTR. Additionally, it has been successfully applied to NTR imaging in vitro and vivo due to its good sensitivity, high selectivity and large Stokes shift, which may provide an effective method for studying the physiological and pathological functions of NTR in living systems. This probe could be developed as a potential imaging tool to further explore the pathogenesis of hypoxia-related diseases in endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ting Lan
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China
| | - Nan Ji
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China
| | - Qin-Qin Tian
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China
| | - Yu Zhan
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China
| | - Wei He
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| |
Collapse
|
29
|
Abdelzaher WY, Ibrahim MA, Hassan M, El-Tahawy NFG, Fawzy MA, Hafez HM. Protective effect of eicosapentaenoic acid against estradiol valerate-induced endometrial hyperplasia via modulation of NF-κB/HIF-1α/VEGF signaling pathway in rats. Chem Biol Interact 2023; 373:110399. [PMID: 36774993 DOI: 10.1016/j.cbi.2023.110399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Early diagnosis and treatment of endometrial hyperplasia (EH) remains mandatory for endometrial cancer (EC) prevention. OBJECTIVE To study the possible protective effect of eicosapentaenoic acid (EPA) in EH - induced by estradiol valerate (EV) in rats. METHODS/MATERIALS Adult female Wistar rats were given EV with or without EPA for 10 days. The uterine changes were evaluated by both physical (weight index) and histopathological methods. The markers of oxidative stress (Uterine malondialdehyde (MDA) and serum total antioxidant capacity (TAC) as well as serum estradiol and progesterone levels, and apoptosis (uterine caspase-3) were determined. Immunohistochemical estimations of nuclear factor kappa B (NF-κB) and vascular endothelial growth factor (VEGF) in addition to hypoxia-inducible factor 1 alpha (HIF-1α) immunoblotting were measured in uterine tissue. KEY FINDINGS EV showed significant increase in uterine weight index that is accompanied with histopatholigical evidences of EH. Such changes were associated with significant alterations in oxidative stress markers, modulation of estradiol and progesterone serum levels, an increase in HIF-1α, NF-κB and VEGF immuno-expressions and a significant decrease in caspase-3. EPA, in either dose, showed significant amelioration in uterine weight index as well as in histopathological changes. Such effect was accompanied with significant improvement in the measured hormonal levels, oxidative stress, apoptosis, and inflammatory parameters. CONCLUSIONS EPA in the used doses provided biochemical and histopathological improvement in EV-induced EH via modulation of NF-κB/HIF-1α/VEGF signaling pathway.
Collapse
Affiliation(s)
| | - Mohamed A Ibrahim
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| | - Marwa Hassan
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| | | | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt.
| | - Heba M Hafez
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| |
Collapse
|
30
|
Wei X, Leng X, Li G, Wang R, Chi L, Sun D. Advances in research on the effectiveness and mechanism of Traditional Chinese Medicine formulas for colitis-associated colorectal cancer. Front Pharmacol 2023; 14:1120672. [PMID: 36909166 PMCID: PMC9995472 DOI: 10.3389/fphar.2023.1120672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Inflammatory bowel disease (IBD) can progress into colitis-associated colorectal cancer (CAC) through the inflammation-cancer sequence. Although the mechanism of carcinogenesis in IBD has not been fully elucidated, the existing research indicates that CAC may represent a fundamentally different pathogenesis pattern of colorectal cancer. At present, there is no proven safe and effective medication to prevent IBD cancer. In recent years, Chinese medicine extracts and Chinese medicine monomers have been the subject of numerous articles about the prevention and treatment of CAC, but their clinical application is still relatively limited. Traditional Chinese Medicine (TCM) formulas are widely applied in clinical practice. TCM formulas have demonstrated great potential in the prevention and treatment of CAC in recent years, although there is still a lack of review. Our work aimed to summarize the effects and potential mechanisms of TCM formulas for the prevention and treatment of CAC, point out the issues and limitations of the current research, and provide recommendations for the advancement of CAC research in the future. We discovered that TCM formulas regulated many malignant biological processes, such as inflammation-mediated oxidative stress, apoptosis, tumor microenvironment, and intestinal microecology imbalance in CAC, through a review of the articles published in databases such as PubMed, SCOPUS, Web of Science, Embase, and CNKI. Several major signal transduction pathways, including NF-κB, STAT3, Wnt/β-catenin, HIF-1α, and Nrf2, were engaged. TCM formula may be a promising treatment candidate to control the colitis-cancer transformation, however further high-quality research is required.
Collapse
Affiliation(s)
- Xiunan Wei
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Leng
- Weifang Traditional Chinese Hospital, Weifang, China
| | - Gongyi Li
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruting Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Chi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dajuan Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
31
|
Xiao C, Liu S, Ge G, Jiang H, Wang L, Chen Q, Jin C, Mo J, Li J, Wang K, Zhang Q, Zhou J. Roles of hypoxia-inducible factor in hepatocellular carcinoma under local ablation therapies. Front Pharmacol 2023; 14:1086813. [PMID: 36814489 PMCID: PMC9939531 DOI: 10.3389/fphar.2023.1086813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common digestive malignancies. HCC It ranges as the fifth most common cause of cancer mortality worldwide. While The prognosis of metastatic or advanced HCC is still quite poor. Recently, locoregional treatment, especially local ablation therapies, plays an important role in the treatment of HCC. Radiofrequency ablation (RFA) and high-intensity focused ultrasound (HIFU) ablation are the most common-used methods effective and feasible for treating HCC. However, the molecular mechanisms underlying the actions of ablation in the treatments for HCC and the HCC recurrence after ablation still are poorly understood. Hypoxia-inducible factor (HIF), the key gene switch for adaptive responses to hypoxia, has been found to play an essential role in the rapid aggressive recurrence of HCC after ablation treatment. In this review, we summarized the current evidence of the roles of HIF in the treatment of HCC with ablation. Fifteen relevant studies were included and further analyzed. Among them, three clinical studies suggested that HIF-1α might serve as a crucial role in the RAF treatment of HCC or the local recurrence of HCC after RFA. The remainder included experimental studies demonstrated that HIF-1, 2α might target the different molecules (e.g., BNIP3, CA-IX, and arginase-1) and signaling cascades (e.g., VEGFA/EphA2 pathway), constituting a complex network that promoted HCC invasion and metastasis after ablation. Currently, the inhibitors of HIF have been developed, providing important proof of targeting HIF for the prevention of HCC recurrence after IRFA and HIFU ablation. Further confirmation by prospective clinical and in-depth experimental studies is still warranted to illustrate the effects of HIF in HCC recurrence followed ablation treatment in the future.
Collapse
Affiliation(s)
- Chunying Xiao
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Sheng Liu
- Department of Hepatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Ge
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Jin Li
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Qianqian Zhang
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianyu Zhou
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
32
|
Norda S, Papadantonaki R. Regulation of cells of the arterial wall by hypoxia and its role in the development of atherosclerosis. VASA 2023; 52:6-21. [PMID: 36484144 DOI: 10.1024/0301-1526/a001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell's response to hypoxia depends on stabilization of the hypoxia-inducible factor 1 complex and transactivation of nuclear factor kappa-B (NF-κB). HIF target gene transcription in cells resident to atherosclerotic lesions adjoins a complex interplay of cytokines and mediators of inflammation affecting cholesterol uptake, migration, and inflammation. Maladaptive activation of the HIF-pathway and transactivation of nuclear factor kappa-B causes monocytes to invade early atherosclerotic lesions, maintaining inflammation and aggravating a low-oxygen environment. Meanwhile HIF-dependent upregulation of the ATP-binding cassette transporter ABCA1 causes attenuation of cholesterol efflux and ultimately macrophages becoming foam cells. Hypoxia facilitates neovascularization by upregulation of vascular endothelial growth factor (VEGF) secreted by endothelial cells and vascular smooth muscle cells lining the arterial wall destabilizing the plaque. HIF-knockout animal models and inhibitor studies were able to show beneficial effects on atherogenesis by counteracting the HIF-pathway in the cell wall. In this review the authors elaborate on the up-to-date literature on regulation of cells of the arterial wall through activation of HIF-1α and its effect on atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Stephen Norda
- Department of Cardiovascular Medicine, University Hospital Münster, Germany
| | - Rosa Papadantonaki
- Emergency Department, West Middlesex University Hospital, Chelsea and Westminster NHS Trust, London, United Kingdom
| |
Collapse
|
33
|
Li Z, Cui Y, Zhang S, Xu J, Shao J, Chen H, Chen J, Wang S, Zeng M, Zhang H, Lu S, Qian ZR, Xing G. Novel hypoxia-related gene signature for predicting prognoses that correlate with the tumor immune microenvironment in NSCLC. Front Genet 2023; 14:1115308. [PMID: 37091782 PMCID: PMC10115983 DOI: 10.3389/fgene.2023.1115308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Background: Intratumoral hypoxia is widely associated with the development of malignancy, treatment resistance, and worse prognoses. The global influence of hypoxia-related genes (HRGs) on prognostic significance, tumor microenvironment characteristics, and therapeutic response is unclear in patients with non-small cell lung cancer (NSCLC). Method: RNA-seq and clinical data for NSCLC patients were derived from The Cancer Genome Atlas (TCGA) database, and a group of HRGs was obtained from the MSigDB. The differentially expressed HRGs were determined using the limma package; prognostic HRGs were identified via univariate Cox regression. Using the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression, an optimized prognostic model consisting of nine HRGs was constructed. The prognostic model's capacity was evaluated by Kaplan‒Meier survival curve analysis and receiver operating characteristic (ROC) curve analysis in the TCGA (training set) and GEO (validation set) cohorts. Moreover, a potential biological pathway and immune infiltration differences were explained. Results: A prognostic model containing nine HRGs (STC2, ALDOA, MIF, LDHA, EXT1, PGM2, ENO3, INHA, and RORA) was developed. NSCLC patients were separated into two risk categories according to the risk score generated by the hypoxia model. The model-based risk score had better predictive power than the clinicopathological method. Patients in the high-risk category had poor recurrence-free survival in the TCGA (HR: 1.426; 95% CI: 0.997-2.042; p = 0.046) and GEO (HR: 2.4; 95% CI: 1.7-3.2; p < 0.0001) cohorts. The overall survival of the high-risk category was also inferior to that of the low-risk category in the TCGA (HR: 1.8; 95% CI: 1.5-2.2; p < 0.0001) and GEO (HR: 1.8; 95% CI: 1.4-2.3; p < 0.0001) cohorts. Additionally, we discovered a notable distinction in the enrichment of immune-related pathways, immune cell abundance, and immune checkpoint gene expression between the two subcategories. Conclusion: The proposed 9-HRG signature is a promising indicator for predicting NSCLC patient prognosis and may be potentially applicable in checkpoint therapy efficiency prediction.
Collapse
Affiliation(s)
- Zhaojin Li
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Yu Cui
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Shupeng Zhang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
- *Correspondence: Shupeng Zhang,
| | - Jie Xu
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jianping Shao
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Hekai Chen
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jingzhao Chen
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Shun Wang
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Meizhai Zeng
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Hao Zhang
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Siqian Lu
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Zhi Rong Qian
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Guoqiang Xing
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| |
Collapse
|
34
|
Xu YR, Wang AL, Li YQ. Hypoxia-inducible factor 1-alpha is a driving mechanism linking chronic obstructive pulmonary disease to lung cancer. Front Oncol 2022; 12:984525. [PMID: 36338690 PMCID: PMC9634253 DOI: 10.3389/fonc.2022.984525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD), irrespective of their smoking history, are more likely to develop lung cancer than the general population. This is mainly because COPD is characterized by chronic persistent inflammation and hypoxia, which are the risk factors for lung cancer. However, the mechanisms underlying this observation are still unknown. Hypoxia-inducible factor 1-alpha (HIF-1α) plays an important role in the crosstalk that exists between inflammation and hypoxia. Furthermore, HIF-1α is the main regulator of somatic adaptation to hypoxia and is highly expressed in hypoxic environments. In this review, we discuss the molecular aspects of the crosstalk between hypoxia and inflammation, showing that HIF-1α is an important signaling pathway that drives COPD progression to lung cancer. Here, we also provide an overview of HIF-1α and its principal regulatory mechanisms, briefly describe HIF-1α-targeted therapy in lung cancer, and summarize substances that may be used to target HIF-1α at the level of COPD-induced inflammation.
Collapse
Affiliation(s)
- Yuan-rui Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - An-long Wang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Ya-qing Li
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- *Correspondence: Ya-qing Li,
| |
Collapse
|
35
|
Reimche I, Yu H, Ariantari NP, Liu Z, Merkens K, Rotfuß S, Peter K, Jungwirth U, Bauer N, Kiefer F, Neudörfl JM, Schmalz HG, Proksch P, Teusch N. Phenanthroindolizidine Alkaloids Isolated from Tylophora ovata as Potent Inhibitors of Inflammation, Spheroid Growth, and Invasion of Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms231810319. [PMID: 36142230 PMCID: PMC9499467 DOI: 10.3390/ijms231810319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC), representing the most aggressive form of breast cancer with currently no targeted therapy available, is characterized by an inflammatory and hypoxic tumor microenvironment. To date, a broad spectrum of anti-tumor activities has been reported for phenanthroindolizidine alkaloids (PAs), however, their mode of action in TNBC remains elusive. Thus, we investigated six naturally occurring PAs extracted from the plant Tylophora ovata: O-methyltylophorinidine (1) and its five derivatives tylophorinidine (2), tylophoridicine E (3), 2-demethoxytylophorine (4), tylophoridicine D (5), and anhydrodehydrotylophorinidine (6). In comparison to natural (1) and for more-in depth studies, we also utilized a sample of synthetic O-methyltylophorinidine (1s). Our results indicate a remarkably effective blockade of nuclear factor kappa B (NFκB) within 2 h for compounds (1) and (1s) (IC50 = 17.1 ± 2.0 nM and 3.3 ± 0.2 nM) that is different from its effect on cell viability within 24 h (IC50 = 13.6 ± 0.4 nM and 4.2 ± 1 nM). Furthermore, NFκB inhibition data for the additional five analogues indicate a structure–activity relationship (SAR). Mechanistically, NFκB is significantly blocked through the stabilization of its inhibitor protein kappa B alpha (IκBα) under normoxic as well as hypoxic conditions. To better mimic the TNBC microenvironment in vitro, we established a 3D co-culture by combining the human TNBC cell line MDA-MB-231 with primary murine cancer-associated fibroblasts (CAF) and type I collagen. Compound (1) demonstrates superiority against the therapeutic gold standard paclitaxel by diminishing spheroid growth by 40% at 100 nM. The anti-proliferative effect of (1s) is distinct from paclitaxel in that it arrests the cell cycle at the G0/G1 state, thereby mediating a time-dependent delay in cell cycle progression. Furthermore, (1s) inhibited invasion of TNBC monoculture spheroids into a matrigel®-based environment at 10 nM. In conclusion, PAs serve as promising agents with presumably multiple target sites to combat inflammatory and hypoxia-driven cancer, such as TNBC, with a different mode of action than the currently applied chemotherapeutic drugs.
Collapse
Affiliation(s)
- Irene Reimche
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Haiqian Yu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ni Putu Ariantari
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Udayana University, Bali 80361, Indonesia
| | - Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kay Merkens
- Department of Chemistry, University of Cologne, 50923 Cologne, Germany
| | - Stella Rotfuß
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
| | - Karin Peter
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
| | - Ute Jungwirth
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Nadine Bauer
- European Institute of Molecular Imaging, University of Münster, 48149 Münster, Germany
| | - Friedemann Kiefer
- European Institute of Molecular Imaging, University of Münster, 48149 Münster, Germany
- Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | | | | | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Nicole Teusch
- Department of Biomedical Sciences, Institute of Health Research and Education, University of Osnabrück, 49090 Osnabrück, Germany
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Correspondence: ; Tel.: +49-211-81-14163
| |
Collapse
|
36
|
COMMD3 Expression Affects Angiogenesis through the HIF1α/VEGF/NF-κB Signaling Pathway in Hepatocellular Carcinoma In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1655502. [PMID: 36092163 PMCID: PMC9463002 DOI: 10.1155/2022/1655502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022]
Abstract
Background High expression of copper metabolizing MURR1 domain (COMMD3) is significantly correlated with poor prognosis in hepatocellular carcinoma (HCC) patients. Here, we explored the mechanism by which COMMD3 affects HCC angiogenesis through the HIF1α/VEGF/NF-κB signaling pathway. Methods SK-Hep1 and Hep-3B cell lines were transfected by COMMD3 overexpression and RNA interference lentivirus and verified using RT-qPCR and western blotting techniques. Using RNA sequencing, we analyzed differentially expressed genes in COMMD3-overexpressed and COMMD3-knockdown HCC cells. Altogether, colony formation assay, wound healing assay, transwell cell invasion assay, flow cytometry apoptosis experiments, HUVEC tube formation detection, phalloidin staining assay, western blotting, immunohistochemical staining, and a nude mouse xenograft model were used for experimental verification. Results Lentivirus COMMD3 overexpression and knockdown were successfully established in HCC cells. COMMD3 overexpression significantly promoted the proliferation, angiogenesis, migration, and invasion capacities of HCC cells with no obvious effect on apoptosis versus controls while COMMD3 knockdown showed the opposite trend. The expression and protein levels of COMMD3 as well as HIF1α, VEGF, and NF-κB were increased in COMMD3-overexpressing HCC cells versus control cells, while they were reduced after COMMD3 knockdown. In addition, RNA-seq indicated that COMMD3 is an indispensable gene for HCC angiogenesis through HIF1α and NF-κB signaling pathways. Conclusion This study showed that low expression of COMMD3 can inhibit HCC angiogenesis by suppressing the HIF1α/VEGF/NF-κB pathway. This implicates COMMD3 as a potential biomarker for improving the therapeutic outcome of HCC.
Collapse
|
37
|
Sevastre AS, Manea EV, Popescu OS, Tache DE, Danoiu S, Sfredel V, Tataranu LG, Dricu A. Intracellular Pathways and Mechanisms of Colored Secondary Metabolites in Cancer Therapy. Int J Mol Sci 2022; 23:ijms23179943. [PMID: 36077338 PMCID: PMC9456420 DOI: 10.3390/ijms23179943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the great advancements made in cancer treatment, there are still many unsatisfied aspects, such as the wide palette of side effects and the drug resistance. There is an obvious increasing scientific attention towards nature and what it can offer the human race. Natural products can be used to treat many diseases, of which some plant products are currently used to treat cancer. Plants produce secondary metabolites for their signaling mechanisms and natural defense. A variety of plant-derived products have shown promising anticancer properties in vitro and in vivo. Rather than recreating the natural production environment, ongoing studies are currently setting various strategies to significantly manipulate the quantity of anticancer molecules in plants. This review focuses on the recently studied secondary metabolite agents that have shown promising anticancer activity, outlining their potential mechanisms of action and pathways.
Collapse
Affiliation(s)
- Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Elena Victoria Manea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Oana Stefana Popescu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Daniela Elise Tache
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Suzana Danoiu
- Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-334-30-25
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| |
Collapse
|
38
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
39
|
Hafez Ghoran S, Calcaterra A, Abbasi M, Taktaz F, Nieselt K, Babaei E. Curcumin-Based Nanoformulations: A Promising Adjuvant towards Cancer Treatment. Molecules 2022; 27:molecules27165236. [PMID: 36014474 PMCID: PMC9414608 DOI: 10.3390/molecules27165236] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 02/06/2023] Open
Abstract
Throughout the United States, cancer remains the second leading cause of death. Traditional treatments induce significant medical toxic effects and unpleasant adverse reactions, making them inappropriate for long-term use. Consequently, anticancer-drug resistance and relapse are frequent in certain situations. Thus, there is an urgent necessity to find effective antitumor medications that are specific and have few adverse consequences. Curcumin is a polyphenol derivative found in the turmeric plant (Curcuma longa L.), and provides chemopreventive, antitumor, chemo-, and radio-sensitizing properties. In this paper, we summarize the new nano-based formulations of polyphenolic curcumin because of the growing interest in its application against cancers and tumors. According to recent studies, the use of nanoparticles can overcome the hydrophobic nature of curcumin, as well as improving its stability and cellular bioavailability in vitro and in vivo. Several strategies for nanocurcumin production have been developed, each with its own set of advantages and unique features. Because the majority of the curcumin-based nanoformulation evidence is still in the conceptual stage, there are still numerous issues impeding the provision of nanocurcumin as a possible therapeutic option. To support the science, further work is necessary to develop curcumin as a viable anti-cancer adjuvant. In this review, we cover the various curcumin nanoformulations and nanocurcumin implications for therapeutic uses for cancer, as well as the current state of clinical studies and patents. We further address the knowledge gaps and future research orientations required to develop curcumin as a feasible treatment candidate.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666-63111, Iran
- Medicinal Plant Breeding and Development Research Institute, University of Kurdistan, Sanandaj 66177-15175, Iran
- Correspondence: (S.H.G.); or (E.B.); Tel.: +98-9144425047 (S.H.G.); Tel.: +98-4133392686 (E.B.)
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Sapienza–University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71336-54361, Iran
| | - Fatemeh Taktaz
- Department of Biology, Faculty of Sciences, University of Hakim Sabzevari, Sabzevar 96179-76487, Iran
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Kay Nieselt
- Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Esmaeil Babaei
- Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz 51666-16471, Iran
- Correspondence: (S.H.G.); or (E.B.); Tel.: +98-9144425047 (S.H.G.); Tel.: +98-4133392686 (E.B.)
| |
Collapse
|
40
|
Targeting HIF-1α by Natural and Synthetic Compounds: A Promising Approach for Anti-Cancer Therapeutics Development. Molecules 2022; 27:molecules27165192. [PMID: 36014432 PMCID: PMC9413992 DOI: 10.3390/molecules27165192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
Advancement in novel target detection using improved molecular cancer biology has opened up new avenues for promising anti-cancer drug development. In the past two decades, the mechanism of tumor hypoxia has become more understandable with the discovery of hypoxia-inducible factor-1α (HIF-1α). It is a major transcriptional regulator that coordinates the activity of various transcription factors and their downstream molecules involved in tumorigenesis. HIF-1α not only plays a crucial role in the adaptation of tumor cells to hypoxia but also regulates different biological processes, including cell proliferation, survival, cellular metabolism, angiogenesis, metastasis, cancer stem cell maintenance, and propagation. Therefore, HIF-1α overexpression is strongly associated with poor prognosis in patients with different solid cancers. Hence, pharmacological targeting of HIF-1α has been considered to be a novel cancer therapeutic strategy in recent years. In this review, we provide brief descriptions of natural and synthetic compounds as HIF-1α inhibitors that have the potential to accelerate anticancer drug discovery. This review also introduces the mode of action of these compounds for a better understanding of the chemical leads, which could be useful as cancer therapeutics in the future.
Collapse
|
41
|
Yan Y, Li H, Yao H, Cheng X. Nanodelivery Systems Delivering Hypoxia-Inducible Factor-1 Alpha Short Interfering RNA and Antisense Oligonucleotide for Cancer Treatment. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.932976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypoxia-inducible factor (HIF), which plays a crucial role in oxygen homeostasis, contributes to immunosuppression, tumor angiogenesis, multidrug resistance, photodynamic therapy resistance, and metastasis. HIF as a therapeutic target has attracted scientists’ strong academic research interests. Short interfering RNA (siRNA) and antisense oligonucleotide (ASO) are the more promising and broadly utilized methods for oligonucleotide-based therapy. Their physicochemical characteristics such as hydrophilicity, negative charge, and high molecular weight make them impossible to cross the cell membrane. Moreover, siRNA and ASO are subjected to a rapid deterioration in circulation and cannot translocate into nuclear. Delivery of siRNA and ASO to specific gene targets should be realized without off-target gene silencing and affecting the healthy cells. Nanoparticles as vectors for delivery of siRNA and ASO possess great advantages and flourish in academic research. In this review, we summarized and analyzed regulation mechanisms of HIF under hypoxia, the significant role of HIF in promoting tumor progression, and recent academic research on nanoparticle-based delivery of HIF siRNA and ASO for cancer immunotherapy, antiangiogenesis, reversal of multidrug resistance and radioresistance, potentiating photodynamic therapy, inhibiting tumor metastasis and proliferation, and enhancing apoptosis are reviewed in this thesis. Furthermore, we hope to provide some rewarding suggestions and enlightenments for targeting HIF gene therapy.
Collapse
|
42
|
Gobbo MG, de Mendonça Fernandes GM, Fernandes-Ferreira R, Caires LP, Caldas HC, de Campos Zuccari DAP, Bordin-Junior NA, Gonçalves Vidotti GA, Souza DRS. Evaluation of doxorubicin in three-dimensional culture of breast cancer cells and the response in PI3K/AKT/PTEN signaling pathways: a pilot study. Women Health 2022; 62:467-475. [DOI: 10.1080/03630242.2022.2085842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marina Guimarães Gobbo
- Biologia Molecular (NPBIM), Faculdade de Medicina de São Jose do Rio Preto, (FAMERP)Núcleo de Pesquisa em Bioquímica e , São Paulo, Brazil
| | | | - Rafael Fernandes-Ferreira
- Biologia Molecular (NPBIM), Faculdade de Medicina de São Jose do Rio Preto, (FAMERP)Núcleo de Pesquisa em Bioquímica e , São Paulo, Brazil
| | - Lennon Pereira Caires
- Laboratory of Immunology and Experimental Transplantation (LITEX), Faculdade de Medicina de São Jose do Rio Preto, (FAMERP), São Paulo, Brazil
| | - Heloisa Cristina Caldas
- Laboratory of Immunology and Experimental Transplantation (LITEX), Faculdade de Medicina de São Jose do Rio Preto, (FAMERP), São Paulo, Brazil
| | | | - Newton Antonio Bordin-Junior
- Departamento de Ginecologia do Hospital de Base da Faculdade de Medicina de São José do Rio Preto Serviço de mastologia do Hospital de Base da Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil
| | | | - Doroteia Rossi Silva Souza
- Biologia Molecular (NPBIM), Faculdade de Medicina de São Jose do Rio Preto, (FAMERP)Núcleo de Pesquisa em Bioquímica e , São Paulo, Brazil
| |
Collapse
|
43
|
Angom RS, Kulkarni T, Wang E, Kumar Dutta S, Bhattacharya S, Das P, Mukhopadhyay D. Vascular Endothelial Growth Factor Receptor-1 Modulates Hypoxia-Mediated Endothelial Senescence and Cellular Membrane Stiffness via YAP-1 Pathways. Front Cell Dev Biol 2022; 10:903047. [PMID: 35846360 PMCID: PMC9283904 DOI: 10.3389/fcell.2022.903047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Hypoxia-induced endothelial cell (EC) dysfunction has been implicated as potential initiators of different pathogenesis, including Alzheimer’s disease and vascular dementia. However, in-depth structural, mechanical, and molecular mechanisms leading to EC dysfunction and pathology need to be revealed. Here, we show that ECs exposed to hypoxic conditions readily enter a senescence phenotype. As expected, hypoxia upregulated the expression of vascular endothelial growth factor (VEGFs) and its receptors (VEGFRs) in the ECs. Interestingly, Knockdown of VEGFR-1 expression prior to hypoxia exposure prevented EC senescence, suggesting an important role of VEGFR-1 expression in the induction of EC senescence. Using atomic force microscopy, we showed that senescent ECs had a flattened cell morphology, decreased membrane ruffling, and increased membrane stiffness, demonstrating unique morphological and nanomechanical signatures. Furthermore, we show that hypoxia inhibited the Hippo pathway Yes-associated protein (YAP-1) expression and knockdown of YAP-1 induced senescence in the ECs, supporting a key role of YAP-1 expression in the induction of EC senescence. And importantly, VEGFR-1 Knockdown in the ECs modulated YAP-1 expression, suggesting a novel VEGFR-1-YAP-1 axis in the induction of hypoxia-mediated EC senescence. In conclusion, VEGFR-1 is overexpressed in ECs undergoing hypoxia-mediated senescence, and the knockdown of VEGFR-1 restores cellular structural and nanomechanical integrity by recovering YAP-1 expression.
Collapse
Affiliation(s)
| | - Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Shamit Kumar Dutta
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Pritam Das
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
- *Correspondence: Debabrata Mukhopadhyay,
| |
Collapse
|
44
|
Simón L, Sanhueza S, Gaete-Ramírez B, Varas-Godoy M, Quest AFG. Role of the Pro-Inflammatory Tumor Microenvironment in Extracellular Vesicle-Mediated Transfer of Therapy Resistance. Front Oncol 2022; 12:897205. [PMID: 35646668 PMCID: PMC9130576 DOI: 10.3389/fonc.2022.897205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 12/03/2022] Open
Abstract
Advances in our understanding of cancer biology have contributed to generating different treatments to improve the survival of cancer patients. However, although initially most of the therapies are effective, relapse and recurrence occur in a large percentage of these cases after the treatment, and patients then die subsequently due to the development of therapy resistance in residual cancer cells. A large spectrum of molecular and cellular mechanisms have been identified as important contributors to therapy resistance, and more recently the inflammatory tumor microenvironment (TME) has been ascribed an important function as a source of signals generated by the TME that modulate cellular processes in the tumor cells, such as to favor the acquisition of therapy resistance. Currently, extracellular vesicles (EVs) are considered one of the main means of communication between cells of the TME and have emerged as crucial modulators of cancer drug resistance. Important in this context is, also, the inflammatory TME that can be caused by several conditions, including hypoxia and following chemotherapy, among others. These inflammatory conditions modulate the release and composition of EVs within the TME, which in turn alters the responses of the tumor cells to cancer therapies. The TME has been ascribed an important function as a source of signals that modulate cellular processes in the tumor cells, such as to favor the acquisition of therapy resistance. Although generally the main cellular components considered to participate in generating a pro-inflammatory TME are from the immune system (for instance, macrophages), more recently other types of cells of the TME have also been shown to participate in this process, including adipocytes, cancer-associated fibroblasts, endothelial cells, cancer stem cells, as well as the tumor cells. In this review, we focus on summarizing available information relating to the impact of a pro-inflammatory tumor microenvironment on the release of EVs derived from both cancer cells and cells of the TME, and how these EVs contribute to resistance to cancer therapies.
Collapse
Affiliation(s)
- Layla Simón
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Escuela de Nutrición y Dietética, Universidad Finis Terrae, Santiago, Chile
| | - Sofía Sanhueza
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Belén Gaete-Ramírez
- Cancer Cell Biology Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Cancer Cell Biology Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Andrew F G Quest
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
45
|
Hypoxia-driven metabolic heterogeneity and immune evasive behaviour of gastrointestinal cancers: Elements of a recipe for disaster. Cytokine 2022; 156:155917. [PMID: 35660715 DOI: 10.1016/j.cyto.2022.155917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
Gastrointestinal (GI) cancers refer to a group of malignancies associated with the GI tract (GIT). Like other solid tumors, hypoxic regions consistently feature inside the GI tumor microenvironment (TME) and contribute towards metabolic reprogramming of tumor-resident cells by modulating hypoxia-induced factors. We highlight here how the metabolic crosstalk between cancer cells and immune cells generate immunosuppressive environment inside hypoxic tumors. Given the fluctuating nature of tumor hypoxia, the metabolic fluxes between immune cells and cancer cells change dynamically. These changes alter cellular phenotypes and functions, resulting in the acceleration of cancer progression. These evolved properties of hypoxic tumors make metabolism-targeting monotherapy approaches or immunotherapy-measures unsuccessful. The current review highlights the advantages of combined immunometabolic treatment strategies to target hypoxic GI cancers and also identifies research areas to develop better combinational therapeutics for future.
Collapse
|
46
|
Molecular effects of genistein, as a potential anticancer agent, on CXCR-4 and VEGF pathway in acute lymphoblastic leukemia. Mol Biol Rep 2022; 49:4161-4170. [PMID: 35608747 DOI: 10.1007/s11033-022-07163-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 01/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is one of the angiogenic mediators that can be secreted by leukemic cells and plays an important role in tumor invasion and metastasis. Another important agent contributing to the relapse of ALL is C-X-C chemokine receptor type-4 (CXCR-4), expression of this receptor in cancer cells has been related to metastasis. It has been identified that genistein-a soy-derived isoflavonoid-has anti-angiogenesis functions. We aimed to show the effects of this compound on VEGF and CXCR-4 in Acute lymphoblastic leukemia (ALL) cell models. METHODS AND RESULTS The cytotoxicity of Genistein was measured using the MTS colorimetric assay. After being treated with Genistein, the expression of VEGF in mRNA and protein levels was measured in MOLT-4 and Jurkat cells. We also used flow cytometry assay to determine the expression of CXCR-4 in cell surfaces. We found that Genistein decreased cell viability in two cell models while was more effective on MOLT-4 cells. After Genistein-treatment, surface expression levels of CXCR-4 were decreased, while VEGF secretion and mRNA expression levels were increased in MOLT-4 and Jurkat cells. CONCLUSIONS The results suggest that Genistein may not be a reliable choice for the treatment of ALL; however, this different identified pattern can be useful for the recognition of VEGF and CXCR-4 modulators and thus for planning new treatments for leukemia and other VEGF related disorders.
Collapse
|
47
|
Okabe S, Tanaka Y, Gotoh A. Therapeutic targeting of PFKFB3 and PFKFB4 in multiple myeloma cells under hypoxic conditions. Biomark Res 2022; 10:31. [PMID: 35578370 PMCID: PMC9109357 DOI: 10.1186/s40364-022-00376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
The treatment of multiple myeloma (MM) patients has been dramatically changed by the introduction of new agents; however, many patients relapse. Hypoxia is a critical component of the bone-marrow microenvironment. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) is responsible for maintaining cellular levels of fructose-2,6-bisphosphate, which regulates glycolysis. We found that the gene expressions of PFKFB3 and PFKFB4 were elevated under hypoxic conditions. Treatments with the PFKFB3 inhibitor, PFK158, and PFKFB4 inhibitor, 5MPN, were found to inhibit the growth of myeloma cells. The combined treatment of myeloma cells with carfilzomib and PFK158 or 5MPN was more cytotoxic than either drug alone. Caspase 3/7 activity and cellular cytotoxicity were also increased. In addition, the combined treatment was effective in the bortezomib-resistant cell line. Our data also suggest that administration of PFKFB3 and PFKFB4 inhibitors may be a powerful strategy against myeloma cells and to enhance the cytotoxic effects of proteasome inhibitors in hypoxic conditions.
Collapse
Affiliation(s)
- Seiichi Okabe
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Yuko Tanaka
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Akihiko Gotoh
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
48
|
Moy RH, Nguyen A, Loo JM, Yamaguchi N, Kajba CM, Santhanam B, Ostendorf BN, Wu YG, Tavazoie S, Tavazoie SF. Functional genetic screen identifies ITPR3/calcium/RELB axis as a driver of colorectal cancer metastatic liver colonization. Dev Cell 2022; 57:1146-1159.e7. [PMID: 35487218 PMCID: PMC9446818 DOI: 10.1016/j.devcel.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/02/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
Abstract
Metastatic colonization is the primary cause of death from colorectal cancer (CRC). We employed genome-scale in vivo short hairpin RNA (shRNA) screening and validation to identify 26 promoters of CRC liver colonization. Among these genes, we identified a cluster that contains multiple targetable genes, including ITPR3, which promoted liver-metastatic colonization and elicited similar downstream gene expression programs. ITPR3 is a caffeine-sensitive inositol 1,4,5-triphosphate (IP3) receptor that releases calcium from the endoplasmic reticulum and enhanced metastatic colonization by inducing expression of RELB, a transcription factor that is associated with non-canonical NF-κB signaling. Genetic, cell biological, pharmacologic, and clinical association studies revealed that ITPR3 and RELB drive CRC colony formation by promoting cell survival upon substratum detachment or hypoxic exposure. RELB was sufficient to drive colonization downstream of ITPR3. Our findings implicate the ITPR3/calcium/RELB axis in CRC metastatic colony formation and uncover multiple clinico-pathologically associated targetable proteins as drivers of CRC metastatic colonization.
Collapse
Affiliation(s)
- Ryan H Moy
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Alexander Nguyen
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Jia Min Loo
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Norihiro Yamaguchi
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Christina M Kajba
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Balaji Santhanam
- Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Benjamin N Ostendorf
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Y Gloria Wu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Saeed Tavazoie
- Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
49
|
Tanshinone IIA prevents acute lung injury by regulating macrophage polarization. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:274-280. [PMID: 35181255 DOI: 10.1016/j.joim.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Acute lung injury (ALI) is a serious respiratory dysfunction caused by pathogen or physical invasion. The strong induced inflammation often causes death. Tanshinone IIA (Tan-IIA) is the major constituent of Salvia miltiorrhiza Bunge and has been shown to display anti-inflammatory effects. The aim of the current study was to investigate the effects of Tan-IIA on ALI. METHODS A murine model of lipopolysaccharide (LPS)-induced ALI was used. The lungs and serum samples of mice were extracted at 3 days after treatment. ALI-induced inflammatory damages were confirmed from cytokine detections and histomorphology observations. Effects of Tan-IIA were investigated using in vivo and in vitro ALI models. Tan-IIA mechanisms were investigated by performing Western blot and flow cytometry experiments. A wound-healing assay was performed to confirm the Tan-IIA function. RESULTS The cytokine storm induced by LPS treatment was detected at 3 days after LPS treatment, and alveolar epithelial damage and lymphocyte aggregation were observed. Tan-IIA treatment attenuated the LPS-induced inflammation and reduced the levels of inflammatory cytokines released not only by inhibiting neutrophils, but also by macrophage. Moreover, we found that macrophage activation and polarization after LPS treatment were abrogated after applying the Tan-IIA treatment. An in vitro assay also confirmed that including the Tan-IIA supplement increased the relative amount of the M2 subtype and decreased that of M1. Rebalanced macrophages and Tan-IIA inhibited activations of the nuclear factor-κB and hypoxia-inducible factor pathways. Including Tan-IIA and macrophages also improved alveolar epithelial repair by regulating macrophage polarization. CONCLUSION This study found that while an LPS-induced cytokine storm exacerbated ALI, including Tan-IIA could prevent ALI-induced inflammation and improve the alveolar epithelial repair, and do so by regulating macrophage polarization.
Collapse
|
50
|
Lin H, Chen M, Gao Y, Wang Z, Jin F. Tussilagone protects acute lung injury from PM2.5 via alleviating Hif-1α/NF-κB-mediated inflammatory response. ENVIRONMENTAL TOXICOLOGY 2022; 37:1198-1210. [PMID: 35112795 PMCID: PMC9303425 DOI: 10.1002/tox.23476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/07/2021] [Accepted: 01/16/2022] [Indexed: 05/06/2023]
Abstract
Environmental pollution, especially particulate matter in the air, is a serious threat to human health. Long-term inhalation of particulate matter with a diameter < 2.5 μm (PM2.5) induced irreversible respiratory and lung injury. However, it is not clear whether temporary exposure to massive PM2.5 would result in epithelial damage and lung injury. More importantly, it is urgent to clarify the mechanisms of PM2.5 cytotoxicity and develop a defensive and therapeutic approach. In this study, we demonstrated that temporary exposure with PM2.5 induced lung epithelial cell apoptosis via promoting cytokines expression and inflammatory factors secretion. The cytotoxicity of PM2.5 could be alleviated by tussilagone (TSL), which is a natural compound isolated from the flower buds of Tussilago farfara. The mechanism study indicated that PM2.5 promoted the protein level of Hif-1α by reducing its degradation mediated by PHD2 binding, which furtherly activated NF-κB signaling and inflammatory response. Meanwhile, TSL administration facilitated the interaction of the Hif-1α/PHD2 complex and restored the Hif-1α protein level increased by PM2.5. When PHD2 was inhibited in epithelial cells, the protective function of TSL on PM2.5 cytotoxicity was attenuated and the expression of cytokines was retrieved. Expectedly, the in vivo study also suggested that temporary PM2.5 exposure led to acute lung injury. TSL treatment could effectively relieve the damage and decrease the expression of inflammatory cytokines by repressing Hif-1α level and NF-κB activation. Our findings provide a new therapeutic strategy for air pollution-related respiratory diseases, and TSL would be a potential preventive medicine for PM2.5 cytotoxicity.
Collapse
Affiliation(s)
- Hongwei Lin
- Respiration Department of Tangdu Hospital, Air force Military Medical UniversityXi'anChina
| | - Min Chen
- Respiration Department of Tangdu Hospital, Air force Military Medical UniversityXi'anChina
| | - Yanjun Gao
- Respiration Department of Tangdu Hospital, Air force Military Medical UniversityXi'anChina
| | - Zaiqiang Wang
- Respiration Department of Tangdu Hospital, Air force Military Medical UniversityXi'anChina
| | - Faguang Jin
- Respiration Department of Tangdu Hospital, Air force Military Medical UniversityXi'anChina
| |
Collapse
|