1
|
Kennedy AE, Barczewski AH, Arnoldy CR, Pennington JP, Tiernan KA, Hidalgo MB, Reilly CC, Wongsri T, Ragusa MJ, Grigoryan G, Mierke DF, Pellegrini M. The structure of a NEMO construct engineered for screening reveals novel determinants of inhibition. Structure 2025; 33:691-704.e6. [PMID: 39909030 PMCID: PMC11972163 DOI: 10.1016/j.str.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
NEMO is an essential component in the activation of the canonical nuclear factor κB (NF-κB) pathway and exerts its function by recruiting the IκB kinases (IKK) to the IKK complex. Inhibition of the NEMO/IKKs interaction is an attractive therapeutic paradigm for diseases related to NF-κB mis-regulation, but a difficult endeavor because of the extensive protein-protein interface. Here we report the design and characterization of novel engineered constructs of the IKK-binding domain of NEMO, programmed to render this difficult protein domain amenable to NMR measurements and crystallization, while preserving its biological function. ZipNEMO binds IKKβ with nanomolar affinity, is amenable to heteronuclear nuclear magnetic resonance (NMR) techniques and structure determination by X-ray crystallography. We show that NMR spectra of zipNEMO allow to detect inhibitor binding in solution and resonance assignment. The crystal structure of zipNEMO reveals a novel ligand binding motif and the adaptability of the binding pocket and inspired the design of new peptide inhibitors.
Collapse
Affiliation(s)
- Amy E Kennedy
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | | - Kelly A Tiernan
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | | | | | - Tanyawan Wongsri
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Michael J Ragusa
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | - Dale F Mierke
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Maria Pellegrini
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
2
|
Wang J, Ye J, Liu R, Chen C, Wang W. TRIM47 drives gastric cancer cell proliferation and invasion by regulating CYLD protein stability. Biol Direct 2024; 19:106. [PMID: 39516831 PMCID: PMC11546413 DOI: 10.1186/s13062-024-00555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The expression of TRIM47, a member of the TRIM protein and E3 ubiquitin ligase families, is elevated in various cancers, such as non-small cell lung cancer and colorectal cancer, and is linked to poor prognosis. This study aimed to investigate the role of TRIM47 in gastric cancer development. Using The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset and analysis of 20 patient samples from our center, TRIM47 was found to be significantly up-regulated in gastric cancer tissues and associated with advanced N-stage and poor prognosis. We constructed stable TRIM47 knockdown and overexpressing gastric cancer cell lines. CCK8, EDU, colony formation, wound healing, and Transwell tests were used to evaluate the effects on cell proliferation, invasion, and migration. The results showed that TRIM47 knockdown inhibited the proliferation, migration and invasion of gastric cancer cells, while TRIM47 overexpression promoted these behaviors. These results were further confirmed in vivo. In the mechanism part, we found that TRIM47 interacts with CYLD protein. Moreover, TRIM47 promotes K48-linked ubiquitination, leading to the degradation of CYLD by the proteasome, thereby activating the NF-κB pathway and regulating the biological behavior of gastric cancer cells. Taken together, our study demonstrated that TRIM47 is involved in the proliferation and metastasis of gastric cancer through the CYLD/NF-κB pathway.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jing Ye
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
| | - Rongqiang Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China.
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China.
- Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei, 430060, PR China.
| |
Collapse
|
3
|
Althobaiti NA, Al-Abbas NS, Alsharif I, Albalawi AE, Almars AI, Basabrain AA, Jafer A, Ellatif SA, Bauthman NM, Almohaimeed HM, Soliman MH. Gadd45A-mediated autophagy regulation and its impact on Alzheimer's disease pathogenesis: Deciphering the molecular Nexus. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167353. [PMID: 39004381 DOI: 10.1016/j.bbadis.2024.167353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The growth arrest and DNA damage-inducible 45 (Gadd45) gene has been implicated in various central nervous system (CNS) functions, both normal and pathological, including aging, memory, and neurodegenerative diseases. In this study, we examined whether Gadd45A deletion triggers pathways associated with neurodegenerative diseases including Alzheimer's disease (AD). METHODS Utilizing transcriptome data from AD-associated hippocampus samples, we identified Gadd45A as a pivotal regulator of autophagy. Comprehensive analyses, including Gene Ontology enrichment and protein-protein interaction network assessments, highlighted Cdkn1A as a significant downstream target of Gadd45A. Experimental validation confirmed Gadd45A's role in modulating Cdkn1A expression and autophagy levels in hippocampal cells. We also examined the effects of autophagy on hippocampal functions and proinflammatory cytokine secretion. Additionally, a murine model was employed to validate the importance of Gadd45A in neuroinflammation and AD pathology. RESULTS Our study identified 20 autophagy regulatory factors associated with AD, with Gadd45A emerging as a critical regulator. Experimental findings demonstrated that Gadd45A influences hippocampal cell fate by reducing Cdkn1A expression and suppressing autophagic activity. Comparisons between wild-type (WT) and Gadd45A knockout (Gadd45A-/-) mice revealed that Gadd45A-/- mice exhibited significant cognitive impairments, including deficits in working and spatial memory, increased Tau hyperphosphorylation, and elevated levels of kinases involved in Tau phosphorylation in the hippocampus. Additionally, Gadd45A-/- mice showed significant increases in pro-inflammatory cytokines and decreases autophagy markers in the brain. Neurotrophin levels and dendritic spine length were also reduced in Gadd45A-/- mice, likely contributing to the observed cognitive deficits. CONCLUSIONS These findings support the direct involvement of the Gadd45A gene in AD pathogenesis, and enhancing the expression of Gadd45A may represent a promising therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Saudi Arabia
| | - Nouf S Al-Abbas
- Department of Biology, Jamoum University College, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Aishah E Albalawi
- Faculty of Science, Department of Biology, University of Tabuk, Tabuk 47913, Saudi Arabia
| | - Amany I Almars
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ammar A Basabrain
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ayman Jafer
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sawsan Abd Ellatif
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Nuha M Bauthman
- Department of Obstetric & Gynecology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mona H Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Saudi Arabia.
| |
Collapse
|
4
|
Jayab NA, Abed A, Talaat IM, Hamoudi R. The molecular mechanism of NF-κB dysregulation across different subtypes of renal cell carcinoma. J Adv Res 2024:S2090-1232(24)00314-X. [PMID: 39094893 DOI: 10.1016/j.jare.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The nuclear factor kappa B (NF-κB) is a critical pathway that regulates various cellular functions, including immune response, proliferation, growth, and apoptosis. Furthermore, this pathway is tightly regulated to ensure stability in the presence of immunogenic triggers or genotoxic stimuli. The lack of control of the NF-κB pathway can lead to the initiation of different diseases, mainly autoimmune diseases and cancer, including Renal cell carcinoma (RCC). RCC is the most common type of kidney cancer and is characterized by complex genetic composition and elusive molecular mechanisms. AIM OF REVIEW The current review summarizes the mechanism of NF-κB dysregulation in different subtypes of RCC and its impact on pathogenesis. KEY SCIENTIFIC CONCEPT OF REVIEW This review highlights the prominent role of NF-κB in RCC development and progression by driving the expression of multiple genes and interplaying with different pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. In silico analysis of RCC cohorts and molecular studies have revealed that multiple NF-κB members and target genes are dysregulated. The dysregulation includes receptors such as TLR2, signal-transmitting members including RelA, and target genes, for instance, HIF-1α. The lack of effective regulatory mechanisms results in a constitutively active NF-κB pathway, which promotes cancer growth, migration, and survival. In this review, we comprehensively summarize the role of dysregulated NF-κB-related genes in the most common subtypes of RCC, including clear cell RCC (ccRCC), chromophobe RCC (chRCC), and papillary RCC (PRCC).
Collapse
Affiliation(s)
- Nour Abu Jayab
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Alaa Abed
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Iman M Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates; Pathology Department, Faculty of Medicine, Alexandria University, 21131 Alexandria, Egypt.
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Center of Excellence for Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates; BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, 27272 Sharjah, United Arab Emirates; Division of Surgery and Interventional Science, University College London, London, United Kingdom; ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| |
Collapse
|
5
|
Özen SD, Kir S. Ectodysplasin A2 receptor signaling in skeletal muscle pathophysiology. Trends Mol Med 2024; 30:471-483. [PMID: 38443222 DOI: 10.1016/j.molmed.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024]
Abstract
Skeletal muscle is essential in generating mechanical force and regulating energy metabolism and body temperature. Pathologies associated with muscle tissue often lead to impaired physical activity and imbalanced metabolism. Recently, ectodysplasin A2 receptor (EDA2R) signaling has been shown to promote muscle loss and glucose intolerance. Upregulated EDA2R expression in muscle tissue was associated with aging, denervation, cancer cachexia, and muscular dystrophies. Here, we describe the roles of EDA2R signaling in muscle pathophysiology, including muscle atrophy, insulin resistance, and aging-related sarcopenia. We also discuss the EDA2R pathway, which involves EDA-A2 as the ligand and nuclear factor (NF)κB-inducing kinase (NIK) as a downstream mediator, and the therapeutic potential of targeting these proteins in the treatment of muscle wasting and metabolic dysfunction.
Collapse
Affiliation(s)
- Sevgi Döndü Özen
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey.
| |
Collapse
|
6
|
Cornice J, Verzella D, Arboretto P, Vecchiotti D, Capece D, Zazzeroni F, Franzoso G. NF-κB: Governing Macrophages in Cancer. Genes (Basel) 2024; 15:197. [PMID: 38397187 PMCID: PMC10888451 DOI: 10.3390/genes15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are the major component of the tumor microenvironment (TME), where they sustain tumor progression and or-tumor immunity. Due to their plasticity, macrophages can exhibit anti- or pro-tumor functions through the expression of different gene sets leading to distinct macrophage phenotypes: M1-like or pro-inflammatory and M2-like or anti-inflammatory. NF-κB transcription factors are central regulators of TAMs in cancers, where they often drive macrophage polarization toward an M2-like phenotype. Therefore, the NF-κB pathway is an attractive therapeutic target for cancer immunotherapy in a wide range of human tumors. Hence, targeting NF-κB pathway in the myeloid compartment is a potential clinical strategy to overcome microenvironment-induced immunosuppression and increase anti-tumor immunity. In this review, we discuss the role of NF-κB as a key driver of macrophage functions in tumors as well as the principal strategies to overcome tumor immunosuppression by targeting the NF-κB pathway.
Collapse
Affiliation(s)
- Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| |
Collapse
|
7
|
Elwakeel A, Bridgewater HE, Bennett J. Unlocking Dendritic Cell-Based Vaccine Efficacy through Genetic Modulation-How Soon Is Now? Genes (Basel) 2023; 14:2118. [PMID: 38136940 PMCID: PMC10743214 DOI: 10.3390/genes14122118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The dendritic cell (DC) vaccine anti-cancer strategy involves tumour-associated antigen loading and maturation of autologous ex vivo cultured DCs, followed by infusion into the cancer patient. This strategy stemmed from the idea that to induce a robust anti-tumour immune response, it was necessary to bypass the fundamental immunosuppressive mechanisms of the tumour microenvironment that dampen down endogenous innate immune cell activation and enable tumours to evade immune attack. Even though the feasibility and safety of DC vaccines have long been confirmed, clinical response rates remain disappointing. Hence, the full potential of DC vaccines has yet to be reached. Whether this cellular-based vaccination approach will fully realise its position in the immunotherapy arsenal is yet to be determined. Attempts to increase DC vaccine immunogenicity will depend on increasing our understanding of DC biology and the signalling pathways involved in antigen uptake, maturation, migration, and T lymphocyte priming to identify amenable molecular targets to improve DC vaccine performance. This review evaluates various genetic engineering strategies that have been employed to optimise and boost the efficacy of DC vaccines.
Collapse
Affiliation(s)
- Ahmed Elwakeel
- Centre for Health and Life Sciences (CHLS), Coventry University, Coventry CV1 5FB, UK; (A.E.); (H.E.B.)
| | - Hannah E. Bridgewater
- Centre for Health and Life Sciences (CHLS), Coventry University, Coventry CV1 5FB, UK; (A.E.); (H.E.B.)
| | - Jason Bennett
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
8
|
Brownlie RJ, Kennedy R, Wilson EB, Milanovic M, Taylor CF, Wang D, Davies JR, Owston H, Adams EJ, Stephenson S, Caeser R, Gewurz BE, Giannoudis PV, Scuoppo C, McGonagle D, Hodson DJ, Tooze RM, Doody GM, Cook G, Westhead DR, Klein U. Cytokine receptor IL27RA is an NF-κB-responsive gene involved in CD38 upregulation in multiple myeloma. Blood Adv 2023; 7:3874-3890. [PMID: 36867577 PMCID: PMC10405202 DOI: 10.1182/bloodadvances.2022009044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Multiple myeloma (MM) shows constitutive activation of canonical and noncanonical nuclear factor κB (NF-κB) signaling via genetic mutations or tumor microenvironment (TME) stimulations. A subset of MM cell lines showed dependency for cell growth and survival on the canonical NF-κB transcription factor RELA alone, suggesting a critical role for a RELA-mediated biological program in MM pathogenesis. Here, we determined the RELA-dependent transcriptional program in MM cell lines and found the expression of the cell surface molecules interleukin-27 receptor-α (IL-27Rα) and the adhesion molecule JAM2 to be responsive to RELA at the messenger RNA and protein levels. IL-27Rα and JAM2 were expressed on primary MM cells at higher levels than on healthy long-lived plasma cells (PCs) in the bone marrow. IL-27 activated STAT1, and to a lesser extent STAT3, in MM cell lines and in PCs generated from memory B cells in an IL-21-dependent in vitro PC differentiation assay. Concomitant activity of IL-21 and IL-27 enhanced differentiation into PCs and increased the cell-surface expression of the known STAT target gene CD38. In accordance, a subset of MM cell lines and primary MM cells cultured with IL-27 upregulated CD38 cell-surface expression, a finding with potential implications for enhancing the efficacy of CD38-directed monoclonal antibody therapies by increasing CD38 expression on tumor cells. The elevated expression of IL-27Rα and JAM2 on MM cells compared with that on healthy PCs may be exploited for the development of targeted therapeutic strategies that modulate the interaction of MM cells with the TME.
Collapse
Affiliation(s)
- Rebecca J. Brownlie
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| | - Ruth Kennedy
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| | - Erica B. Wilson
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| | - Maja Milanovic
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Claire F. Taylor
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| | - Dapeng Wang
- Leeds Omics, University of Leeds, Leeds, United Kingdom
| | - John R. Davies
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Heather Owston
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Emma J. Adams
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| | - Sophie Stephenson
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| | - Rebecca Caeser
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Peter V. Giannoudis
- Leeds Orthopaedic & Trauma Sciences, Leeds General Infirmary, and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Claudio Scuoppo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
- National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Daniel J. Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Reuben M. Tooze
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| | - Gina M. Doody
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| | - Gordon Cook
- CRUK Clinical Trials Unit, Leeds Institute of Clinical Trial Research, University of Leeds, Leeds, United Kingdom
| | - David R. Westhead
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s Hospital, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
9
|
Duran CL, Karagiannis GS, Chen X, Sharma VP, Entenberg D, Condeelis JS, Oktay MH. Cooperative NF-κB and Notch1 signaling promotes macrophage-mediated MenaINV expression in breast cancer. Breast Cancer Res 2023; 25:37. [PMID: 37024946 PMCID: PMC10080980 DOI: 10.1186/s13058-023-01628-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Metastasis is a multistep process that leads to the formation of clinically detectable tumor foci at distant organs and frequently to patient demise. Only a subpopulation of breast cancer cells within the primary tumor can disseminate systemically and cause metastasis. To disseminate, cancer cells must express MenaINV, an isoform of the actin regulatory protein Mena, encoded by the ENAH gene, that endows tumor cells with transendothelial migration activity, allowing them to enter and exit the blood circulation. We have previously demonstrated that MenaINV mRNA and protein expression is induced in cancer cells by macrophage contact. In this study, we discovered the precise mechanism by which macrophages induce MenaINV expression in tumor cells. We examined the promoter of the human and mouse ENAH gene and discovered a conserved NF-κB transcription factor binding site. Using live imaging of an NF-κB activity reporter and staining of fixed tissues from mouse and human breast cancer, we further determined that for maximal induction of MenaINV in cancer cells, NF-κB needs to cooperate with the Notch1 signaling pathway. Mechanistically, Notch1 signaling does not directly increase MenaINV expression, but it enhances and sustains NF-κB signaling through retention of p65, an NF-κB transcription factor, in the nucleus of tumor cells, leading to increased MenaINV expression. In mice, these signals are augmented following chemotherapy treatment and abrogated upon macrophage depletion. Targeting Notch1 signaling in vivo decreased NF-κB signaling activation and MenaINV expression in the primary tumor and decreased metastasis. Altogether, these data uncover mechanistic targets for blocking MenaINV induction that should be explored clinically to decrease cancer cell dissemination and improve survival of patients with metastatic disease.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - George S Karagiannis
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY, USA
| | - Xiaoming Chen
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Ved P Sharma
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Bio-Imaging Resource Center, The Rockefeller University, Box 209, 1230 York Avenue, New York City, NY, 10065, USA
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - John S Condeelis
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Cell Biology, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY, USA.
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
10
|
Duran CL, Karagiannis GS, Chen X, Sharma VP, Entenberg D, Condeelis JS, Oktay MH. Cooperative NF-κB and Notch1 signaling promotes macrophage-mediated MenaINV expression in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522642. [PMID: 36711751 PMCID: PMC9881873 DOI: 10.1101/2023.01.03.522642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metastasis is a multistep process that leads to the formation of clinically detectable tumor foci at distant organs and frequently patient demise. Only a subpopulation of breast cancer cells within the primary tumor can disseminate systemically and cause metastasis. To disseminate, cancer cells must express MenaINV, an isoform of the actin-regulatory protein Mena encoded by the ENAH gene that endows tumor cells with transendothelial migration activity allowing them to enter and exit the blood circulation. We have previously demonstrated that MenaINV mRNA and protein expression is induced in cancer cells by macrophage contact. In this study, we discovered the precise mechanism by which macrophages induce MenaINV expression in tumor cells. We examined the promoter of the human and mouse ENAH gene and discovered a conserved NF-κB transcription factor binding site. Using live imaging of an NF-κB activity reporter and staining of fixed tissues from mouse and human breast cancer we further determined that for maximal induction of MenaINV in cancer cell NF-κB needs to cooperate with the Notch1 signaling pathway. Mechanistically, Notch1 signaling does not directly increase MenaINV expression, but it enhances and sustains NF-κB signaling through retention of p65, an NF-κB transcription factor, in the nucleus of tumor cells, leading to increased MenaINV expression. In mice, these signals are augmented following chemotherapy treatment and abrogated upon macrophage depletion. Targeting Notch1 signaling in vivo decreased NF-κB signaling and MenaINV expression in the primary tumor and decreased metastasis. Altogether, these data uncover mechanistic targets for blocking MenaINV induction that should be explored clinically to decrease cancer cell dissemination and improve survival of patients with metastatic disease.
Collapse
|
11
|
Zhernov YV, Simanduyev MY, Zaostrovtseva OK, Semeniako EE, Kolykhalova KI, Fadeeva IA, Kashutina MI, Vysochanskaya SO, Belova EV, Shcherbakov DV, Sukhov VA, Sidorova EA, Mitrokhin OV. Molecular Mechanisms of Scombroid Food Poisoning. Int J Mol Sci 2023; 24:ijms24010809. [PMID: 36614252 PMCID: PMC9821622 DOI: 10.3390/ijms24010809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
Scombroid food poisoning (SFP) is a foodborne disease that develops after consumption of fresh fish and, rarely, seafood that has fine organoleptic characteristics but contains a large amount of exogenous histamine. SFP, like other food pseudo-allergic reactions (FPA), is a disorder that is clinically identical to allergic reactions type I, but there are many differences in their pathogenesis. To date, SFP has been widespread throughout the world and is an urgent problem, although exact epidemiological data on incidence varies greatly. The need to distinguish SFP from true IgE-associated allergy to fish and seafood is one of the most difficult examples of the differential diagnosis of allergic conditions. The most important difference is the absence of an IgE response in SFP. The pathogenesis of SFP includes a complex system of interactions between the body and chemical triggers such as exogenous histamine, other biogenic amines, cis-urocanic acid, salicylates, and other histamine liberators. Because of the wide range of molecular pathways involved in this process, it is critical to understand their differences. This may help predict and prevent poor outcomes in patients and contribute to the development of adequate hygienic rules and regulations for seafood product safety. Despite the vast and lengthy history of research on SFP mechanisms, there are still many blank spots in our understanding of this condition. The goals of this review are to differentiate various molecular mechanisms of SFP and describe methods of hygienic regulation of some biogenic amines that influence the concentration of histamine in the human body and play an important role in the mechanism of SFP.
Collapse
Affiliation(s)
- Yury V. Zhernov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Center for Medical Anthropology, N.N. Miklukho-Maclay Institute of Ethnology and Anthropology, Russian Academy of Sciences, 119017 Moscow, Russia
- Department of Medical and Biological Disciplines, Reaviz Medical University, 107564 Moscow, Russia
- Correspondence: ; Tel.: +7-(915)-1552000
| | - Mark Y. Simanduyev
- The Baku Branch, I.M. Sechenov First Moscow State Medical University (Sechenov University), Baku AZ1141, Azerbaijan
| | - Olga K. Zaostrovtseva
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Ekaterina E. Semeniako
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Kseniia I. Kolykhalova
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Inna A. Fadeeva
- Department of Foreign Language, Faculty of World Economy, Diplomatic Academy of the Russian Foreign Ministry, 119034 Moscow, Russia
- Department of Public Administration in Foreign Policy, Diplomatic Academy of the Russian Foreign Ministry, 119034 Moscow, Russia
| | - Maria I. Kashutina
- Loginov Moscow Clinical Scientific and Practical Center, 111123 Moscow, Russia
- Department of Public Health Promotion, National Research Centre for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy, Clinical Pharmacology and Emergency Medicine, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Sonya O. Vysochanskaya
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Elena V. Belova
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Denis V. Shcherbakov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Vitaly A. Sukhov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Ekaterina A. Sidorova
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Oleg V. Mitrokhin
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
12
|
Benchama O, Malamas MS, Praveen K, Ethier EC, Williams MK, Makriyannis A, Avraham HK. Inhibition of triple negative breast cancer-associated inflammation and progression by N- acylethanolamine acid amide hydrolase (NAAA). Sci Rep 2022; 12:22255. [PMID: 36564457 PMCID: PMC9789040 DOI: 10.1038/s41598-022-26564-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with high mortality due to the high expression of pro-inflammatory cytokines and lack of targeted therapies. N-acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase that promotes inflammatory responses through the deactivation of Palmitoylethanolamide (PEA), an endogenous bioactive lipid mediator. Here, we examined NAAA expression in TNBC cells (MDA-MB-231 and MDA-MB-BrM2 cells) and the effects of NAAA inhibition on TNBC tumor growth, using a selective NAAA inhibitor AM11095 (IC50 = 20 nM). TNBC cells expressed elevated levels of full-length and splice mRNAs naaa variants. TNBC cells also express the N-acyl ethanol amides and elevated levels of the two fatty acid cores arachidonic (AA) and docosahexaenoic (DHA). PEA or AM11095 inhibited the secretion of IL-6 and IL-8, reduced the activation of the NF-kB pathway, decreased the expression of VEGF and Placental growth factor (PLGF) in TNBCs, and inhibited tumor cell migration in vitro. Using cellular magnetic resonance imaging (MRI), body images of mice administered with human MDA-MB-BrM2 cells treated with AM11095 showed a significant decrease in tumor numbers with a lower volume of tumors and increased mice survival. Mice untreated or treated with vehicle control showed a high number of tumors with high volumes in multiple organs. Thus, NAAA inhibition may constitute a potential therapeutic approach in the management of TNBC-associated inflammation and tumor growth.
Collapse
Affiliation(s)
- Othman Benchama
- grid.261112.70000 0001 2173 3359Center of Drug Discovery, Northeastern University, Boston, MA 02115 USA
| | - Michael S. Malamas
- grid.261112.70000 0001 2173 3359Center of Drug Discovery, Northeastern University, Boston, MA 02115 USA
| | - Kulkarni Praveen
- grid.261112.70000 0001 2173 3359Center for Translational Neuroimaging, Northeastern University, Boston, MA 02115 USA
| | - Elizabeth C. Ethier
- grid.261112.70000 0001 2173 3359Center of Drug Discovery, Northeastern University, Boston, MA 02115 USA
| | | | - Alexandros Makriyannis
- grid.261112.70000 0001 2173 3359Center of Drug Discovery, Northeastern University, Boston, MA 02115 USA
| | - Hava Karsenty Avraham
- grid.261112.70000 0001 2173 3359Center of Drug Discovery, Northeastern University, Boston, MA 02115 USA
| |
Collapse
|
13
|
Verzella D, Cornice J, Arboretto P, Vecchiotti D, Di Vito Nolfi M, Capece D, Zazzeroni F, Franzoso G. The NF-κB Pharmacopeia: Novel Strategies to Subdue an Intractable Target. Biomedicines 2022; 10:2233. [PMID: 36140335 PMCID: PMC9496094 DOI: 10.3390/biomedicines10092233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022] Open
Abstract
NF-κB transcription factors are major drivers of tumor initiation and progression. NF-κB signaling is constitutively activated by genetic alterations or environmental signals in many human cancers, where it contributes to almost all hallmarks of malignancy, including sustained proliferation, cell death resistance, tumor-promoting inflammation, metabolic reprogramming, tissue invasion, angiogenesis, and metastasis. As such, the NF-κB pathway is an attractive therapeutic target in a broad range of human cancers, as well as in numerous non-malignant diseases. Currently, however, there is no clinically useful NF-κB inhibitor to treat oncological patients, owing to the preclusive, on-target toxicities of systemic NF-κB blockade. In this review, we discuss the principal and most promising strategies being developed to circumvent the inherent limitations of conventional IκB kinase (IKK)/NF-κB-targeting drugs, focusing on new molecules that target upstream regulators or downstream effectors of oncogenic NF-κB signaling, as well as agents targeting individual NF-κB subunits.
Collapse
Affiliation(s)
- Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| |
Collapse
|
14
|
Capece D, Verzella D, Flati I, Arboretto P, Cornice J, Franzoso G. NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol 2022; 43:757-775. [PMID: 35965153 DOI: 10.1016/j.it.2022.07.004] [Citation(s) in RCA: 256] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
The procurement and management of nutrients and ability to fight infections are fundamental requirements for survival. These defense responses are bioenergetically costly, requiring the immune system to balance protection against pathogens with the need to maintain metabolic homeostasis. NF-κB transcription factors are central regulators of immunity and inflammation. Over the last two decades, these factors have emerged as a pivotal node coordinating the immune and metabolic systems in physiology and the etiopathogenesis of major threats to human health, including cancer, autoimmunity, chronic inflammation, and others. In this review, we discuss recent advances in understanding how NF-κB-dependent metabolic programs control inflammation, metabolism, and immunity and how improved knowledge of them may lead to better diagnostics and therapeutics for widespread human diseases.
Collapse
Affiliation(s)
- Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
15
|
Di Francesco B, Verzella D, Capece D, Vecchiotti D, Di Vito Nolfi M, Flati I, Cornice J, Di Padova M, Angelucci A, Alesse E, Zazzeroni F. NF-κB: A Druggable Target in Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:3557. [PMID: 35884618 PMCID: PMC9319319 DOI: 10.3390/cancers14143557] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is an aggressive hematological malignancy that relies on highly heterogeneous cytogenetic alterations. Although in the last few years new agents have been developed for AML treatment, the overall survival prospects for AML patients are still gloomy and new therapeutic options are still urgently needed. Constitutive NF-κB activation has been reported in around 40% of AML patients, where it sustains AML cell survival and chemoresistance. Given the central role of NF-κB in AML, targeting the NF-κB pathway represents an attractive strategy to treat AML. This review focuses on current knowledge of NF-κB's roles in AML pathogenesis and summarizes the main therapeutic approaches used to treat NF-κB-driven AML.
Collapse
|
16
|
Cardiac Calcifications: Phenotypes, Mechanisms, Clinical and Prognostic Implications. BIOLOGY 2022; 11:biology11030414. [PMID: 35336788 PMCID: PMC8945469 DOI: 10.3390/biology11030414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022]
Abstract
There is a growing interest in arterial and heart valve calcifications, as these contribute to cardiovascular outcome, and are leading predictors of cardiovascular and kidney diseases. Cardiovascular calcifications are often considered as one disease, but, in effect, they represent multifaced disorders, occurring in different milieus and biological phenotypes, following different pathways. Herein, we explore each different molecular process, its relative link with the specific clinical condition, and the current therapeutic approaches to counteract calcifications. Thus, first, we explore the peculiarities between vascular and valvular calcium deposition, as this occurs in different tissues, responds differently to shear stress, has specific etiology and time courses to calcification. Then, we differentiate the mechanisms and pathways leading to hyperphosphatemic calcification, typical of the media layer of the vessel and mainly related to chronic kidney diseases, to those of inflammation, typical of the intima vascular calcification, which predominantly occur in atherosclerotic vascular diseases. Finally, we examine calcifications secondary to rheumatic valve disease or other bacterial lesions and those occurring in autoimmune diseases. The underlying clinical conditions of each of the biological calcification phenotypes and the specific opportunities of therapeutic intervention are also considered and discussed.
Collapse
|
17
|
Roberti A, Chaffey LE, Greaves DR. NF-κB Signaling and Inflammation-Drug Repurposing to Treat Inflammatory Disorders? BIOLOGY 2022; 11:372. [PMID: 35336746 PMCID: PMC8945680 DOI: 10.3390/biology11030372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Abstract
NF-κB is a central mediator of inflammation, response to DNA damage and oxidative stress. As a result of its central role in so many important cellular processes, NF-κB dysregulation has been implicated in the pathology of important human diseases. NF-κB activation causes inappropriate inflammatory responses in diseases including rheumatoid arthritis (RA) and multiple sclerosis (MS). Thus, modulation of NF-κB signaling is being widely investigated as an approach to treat chronic inflammatory diseases, autoimmunity and cancer. The emergence of COVID-19 in late 2019, the subsequent pandemic and the huge clinical burden of patients with life-threatening SARS-CoV-2 pneumonia led to a massive scramble to repurpose existing medicines to treat lung inflammation in a wide range of healthcare systems. These efforts continue and have proven to be controversial. Drug repurposing strategies are a promising alternative to de novo drug development, as they minimize drug development timelines and reduce the risk of failure due to unexpected side effects. Different experimental approaches have been applied to identify existing medicines which inhibit NF-κB that could be repurposed as anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; (A.R.); (L.E.C.)
| |
Collapse
|
18
|
Schirmer B, Giehl K, Kubatzky KF. Report of the 24th Meeting on Signal Transduction 2021. Int J Mol Sci 2022; 23:ijms23042015. [PMID: 35216127 PMCID: PMC8877372 DOI: 10.3390/ijms23042015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
The annual meeting “Signal Transduction—Receptors, Mediators and Genes” of the Signal Transduction Society (STS) is an interdisciplinary conference which is open to all scientists sharing a common interest in the elucidation of the signaling pathways mediating physiological or pathological processes in the health and disease of humans, animals, plants, fungi, prokaryotes, and protists. The 24th meeting on signal transduction was held from 15 to 17 November 2021 in Weimar, Germany. As usual, keynote presentations by invited scientists introduced the respective workshops, and were followed by speakers chosen from the submitted abstracts. A special workshop focused on “Target Identification and Interaction”. Ample time was reserved for the discussion of the presented data during the workshops. Unfortunately, due to restrictions owing to the SARS-CoV-2 pandemic, the poster sessions—and thus intensive scientific discussions at the posters—were not possible. In this report, we provide a concise summary of the various workshops and further aspects of the scientific program.
Collapse
Affiliation(s)
- Bastian Schirmer
- Institut für Pharmakologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Klaudia Giehl
- Signaltransduktion Zellulärer Motilität, Innere Medizin V, Justus-Liebig-Universität Giessen, Aulweg 128, 35392 Giessen, Germany;
| | - Katharina F. Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-56-38361
| |
Collapse
|
19
|
Molecular Mechanisms, Biomarkers and Emerging Therapies for Chemotherapy Resistant TNBC. Int J Mol Sci 2022; 23:ijms23031665. [PMID: 35163586 PMCID: PMC8836182 DOI: 10.3390/ijms23031665] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with high recurrence rates, high incidence of distant metastases, and poor overall survival (OS). Taxane and anthracycline-containing chemotherapy (CT) is currently the main systemic treatment option for TNBC, while platinum-based chemotherapy showed promising results in the neoadjuvant and metastatic settings. An early arising of intrinsic or acquired CT resistance is common and represents the main hurdle for successful TNBC treatment. Numerous mechanisms were uncovered that can lead to the development of chemoresistance. These include cancer stem cells (CSCs) induction after neoadjuvant chemotherapy (NACT), ATP-binding cassette (ABC) transporters, hypoxia and avoidance of apoptosis, single factors such as tyrosine kinase receptors (EGFR, IGFR1), a disintegrin and metalloproteinase 10 (ADAM10), and a few pathological molecular pathways. Some biomarkers capable of predicting resistance to specific chemotherapeutic agents were identified and are expected to be validated in future studies for a more accurate selection of drugs to be employed and for a more tailored approach, both in neoadjuvant and advanced settings. Recently, based on specific biomarkers, some therapies were tailored to TNBC subsets and became available in clinical practice: olaparib and talazoparib for BRCA1/2 germline mutation carriers larotrectinib and entrectinib for neurotrophic tropomyosin receptor kinase (NTRK) gene fusion carriers, and anti-trophoblast cell surface antigen 2 (Trop2) antibody drug conjugate therapy for heavily pretreated metastatic TNBC (mTNBC). Further therapies targeting some pathologic molecular pathways, apoptosis, miRNAS, epidermal growth factor receptor (EGFR), insulin growth factor 1 receptor (IGF-1R), and androgen receptor (AR) are under investigation. Among them, phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and EGFR inhibitors as well as antiandrogens showed promising results and are under evaluation in Phase II/III clinical trials. Emerging therapies allow to select specific antiblastics that alone or by integrating the conventional therapeutic approach may overcome/hinder chemoresistance.
Collapse
|
20
|
Xia Q, Huang X, Huang J, Zheng Y, March ME, Li J, Wei Y. The Role of Autophagy in Skeletal Muscle Diseases. Front Physiol 2021; 12:638983. [PMID: 33841177 PMCID: PMC8027491 DOI: 10.3389/fphys.2021.638983] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is the most abundant type of tissue in human body, being involved in diverse activities and maintaining a finely tuned metabolic balance. Autophagy, characterized by the autophagosome–lysosome system with the involvement of evolutionarily conserved autophagy-related genes, is an important catabolic process and plays an essential role in energy generation and consumption, as well as substance turnover processes in skeletal muscles. Autophagy in skeletal muscles is finely tuned under the tight regulation of diverse signaling pathways, and the autophagy pathway has cross-talk with other pathways to form feedback loops under physiological conditions and metabolic stress. Altered autophagy activity characterized by either increased formation of autophagosomes or inhibition of lysosome-autophagosome fusion can lead to pathological cascades, and mutations in autophagy genes and deregulation of autophagy pathways have been identified as one of the major causes for a variety of skeleton muscle disorders. The advancement of multi-omics techniques enables further understanding of the molecular and biochemical mechanisms underlying the role of autophagy in skeletal muscle disorders, which may yield novel therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Qianghua Xia
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xubo Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jieru Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongfeng Zheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jin Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongjie Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Wang X, Peng H, Huang Y, Kong W, Cui Q, Du J, Jin H. Post-translational Modifications of IκBα: The State of the Art. Front Cell Dev Biol 2020; 8:574706. [PMID: 33224945 PMCID: PMC7674170 DOI: 10.3389/fcell.2020.574706] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
The nuclear factor-kappa B (NF-κB) signaling pathway regulates a variety of biological functions in the body, and its abnormal activation contributes to the pathogenesis of many diseases, such as cardiovascular and respiratory diseases and cancers. Therefore, to ensure physiological homeostasis of body systems, this pathway is strictly regulated by IκBα transcription, IκBα synthesis, and the IκBα-dependent nuclear transport of NF-κB. Particularly, the post-translational modifications of IκBα including phosphorylation, ubiquitination, SUMOylation, glutathionylation and hydroxylation are crucial in the abovementioned regulatory process. Because of the importance of the NF-κB pathway in maintaining body homeostasis, understanding the post-translational modifications of IκBα can not only provide deeper insights into the regulation of NF-κB pathway but also contribute to the development of new drug targets and biomarkers for the diseases.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Centre for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
22
|
Marra A, Trapani D, Viale G, Criscitiello C, Curigliano G. Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer 2020; 6:54. [PMID: 33088912 PMCID: PMC7568552 DOI: 10.1038/s41523-020-00197-2] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is not a unique disease, encompassing multiple entities with marked histopathological, transcriptomic and genomic heterogeneity. Despite several efforts, transcriptomic and genomic classifications have remained merely theoretic and most of the patients are being treated with chemotherapy. Driver alterations in potentially targetable genes, including PIK3CA and AKT, have been identified across TNBC subtypes, prompting the implementation of biomarker-driven therapeutic approaches. However, biomarker-based treatments as well as immune checkpoint inhibitor-based immunotherapy have provided contrasting and limited results so far. Accordingly, a better characterization of the genomic and immune contexture underpinning TNBC, as well as the translation of the lessons learnt in the metastatic disease to the early setting would improve patients' outcomes. The application of multi-omics technologies, biocomputational algorithms, assays for minimal residual disease monitoring and novel clinical trial designs are strongly warranted to pave the way toward personalized anticancer treatment for patients with TNBC.
Collapse
Affiliation(s)
- Antonio Marra
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Dario Trapani
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
| | - Giulia Viale
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
| | - Carmen Criscitiello
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| |
Collapse
|
23
|
Liu CP, Li X, Lai GN, Li JH, Jia WY, Cao YY, Xu WX, Tan QL, Zhou CY, Luo M, Zhang XY, Yuan DQ, Tian JY, Zhang X, Zeng X. Mechanisms of Macrophage Immunomodulatory Activity Induced by a New Polysaccharide Isolated From Polyporus umbellatus (Pers.) Fries. Front Chem 2020; 8:581. [PMID: 32850623 PMCID: PMC7399574 DOI: 10.3389/fchem.2020.00581] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Bladder cancer is one of the most malignant tumors closely associated with macrophage immune dysfunction. The Chinese medicine polyporus has shown excellent efficacy in treating bladder cancer, with minimal side effects. However, its material basis and mechanism of action remain unclear. A new water-soluble polysaccharide (HPP) with strong immunomodulatory activity was isolated from the fungus Polyporus umbellatus (Pers.) Fries. HPP had an average molecular weight of 6.88 kDa and was composed mainly of an <-(1 → 4)-linked D-galactan backbone. The immunomodulatory activity of HPP was determined in vitro, and the results revealed that it could obviously increase the secretion of immune factors by IFN-γ-stimulated macrophages, including nitric oxide (NO), interleukin-6 (IL-6), interleukin-1β (IL-1β), RANTES and interleukin-23 (IL-23), and the expression of the cell membrane molecule CD80. In addition, HPP was recognized by Toll-like receptor 2 (TLR2) and activated the signaling pathways of NF-κB and NLRP3 in a bladder cancer microenvironment model, indicating that HPP could enhance host immune system function. These findings demonstrated that HPP may be a potential immune modulator in the treatment of immunological diseases or bladder cancer therapy.
Collapse
Affiliation(s)
- Chun-Ping Liu
- Department of Integrated Chinese Medicine Immunization, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Cardiovascular Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiong Li
- Department of Integrated Chinese Medicine Immunization, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ge-Na Lai
- Department of Integrated Chinese Medicine Immunization, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin-Hua Li
- Department of Integrated Chinese Medicine Immunization, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-Yu Jia
- Department of Integrated Chinese Medicine Immunization, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying-Ying Cao
- Department of Integrated Chinese Medicine Immunization, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-Xing Xu
- Department of Integrated Chinese Medicine Immunization, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Long Tan
- Department of Integrated Chinese Medicine Immunization, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang-Yuan Zhou
- Department of Integrated Chinese Medicine Immunization, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Luo
- Department of Integrated Chinese Medicine Immunization, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Ying Zhang
- Department of Integrated Chinese Medicine Immunization, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dao-Qing Yuan
- Department of Integrated Chinese Medicine Immunization, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin-Ying Tian
- Department of Integrated Chinese Medicine Immunization, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian Zhang
- Department of Integrated Chinese Medicine Immunization, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Zeng
- Department of Integrated Chinese Medicine Immunization, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Ramadass V, Vaiyapuri T, Tergaonkar V. Small Molecule NF-κB Pathway Inhibitors in Clinic. Int J Mol Sci 2020; 21:E5164. [PMID: 32708302 PMCID: PMC7404026 DOI: 10.3390/ijms21145164] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor kappa B (NF-κB) signaling is implicated in all major human chronic diseases, with its role in transcription of hundreds of gene well established in the literature. This has propelled research into targeting the NF-κB pathways for modulating expression of those genes and the diseases mediated by them. In-spite of the critical, but often promiscuous role played by this pathway and the inhibition causing adverse drug reaction, currently many biologics, macromolecules, and small molecules that modulate this pathway are in the market or in clinical trials. Furthermore, many marketed drugs that were later found to also have NF-κB targeting activity were repurposed for new therapeutic interventions. Despite the rising importance of biologics in drug discovery, small molecules got around 76% of US-FDA (Food and Drug Administration-US) approval in the last decade. This encouraged us to review information regarding clinically relevant small molecule inhibitors of the NF-κB pathway from cell surface receptor stimulation to nuclear signaling. We have also highlighted the underexplored targets in this pathway that have potential to succeed in clinic.
Collapse
Affiliation(s)
| | | | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), Singapore 138673, Singapore;
- Department of Pathology, NUS, Singapore 117597, Singapore
| |
Collapse
|
25
|
Lam HY, Arumugam S, Bae HG, Wang CC, Jung S, St John AL, Hong W, Han W, Tergaonkar V. ELKS1 controls mast cell degranulation by regulating the transcription of Stxbp2 and Syntaxin 4 via Kdm2b stabilization. SCIENCE ADVANCES 2020; 6:6/31/eabb2497. [PMID: 32937583 PMCID: PMC7531903 DOI: 10.1126/sciadv.abb2497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/09/2020] [Indexed: 05/06/2023]
Abstract
ELKS1 is a protein with proposed roles in regulated exocytosis in neurons and nuclear factor κB (NF-κB) signaling in cancer cells. However, how these two potential roles come together under physiological settings remain unknown. Since both regulated exocytosis and NF-κB signaling are determinants of mast cell (MC) functions, we generated mice lacking ELKS1 in connective tissue MCs (Elks1f/f Mcpt5-Cre) and found that while ELKS1 is dispensable for NF-κB-mediated cytokine production, it is essential for MC degranulation both in vivo and in vitro. Impaired degranulation was caused by reduced transcription of Syntaxin 4 (STX4) and Syntaxin binding protein 2 (Stxpb2), resulting from a lack of ELKS1-mediated stabilization of lysine-specific demethylase 2B (Kdm2b), which is an essential regulator of STX4 and Stxbp2 transcription. These results suggest a transcriptional role for active-zone proteins like ELKS1 and suggest that they may regulate exocytosis through a novel mechanism involving transcription of key exocytosis proteins.
Collapse
Affiliation(s)
- Hiu Yan Lam
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117596, Singapore
| | - Surendar Arumugam
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Han Gyu Bae
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, #02-02 Helios, 11 Biopolis Way, Singapore 138667, Singapore
| | - Cheng Chun Wang
- Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Sangyong Jung
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, #02-02 Helios, 11 Biopolis Way, Singapore 138667, Singapore
| | - Ashley Lauren St John
- Program in Emerging Infectious Diseases, Duke-NUS, Singapore 169857, Singapore
- Department of Microbiology and Immunology, NUS, Singapore 119077, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, #02-02 Helios, 11 Biopolis Way, Singapore 138667, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 119074, Singapore
| |
Collapse
|
26
|
Walter CEJ, Durairajan S, Periyandavan K, C GPD, G DJD, A HRV, Johnson T, Zayed H. Bladder neoplasms and NF-κB: an unfathomed association. Expert Rev Mol Diagn 2020; 20:497-508. [PMID: 32228251 DOI: 10.1080/14737159.2020.1743688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Bladder cancer is the second most common genitourinary tract cancer and is often recurrent and/or chemoresistant after tumor resection. Cigarette smoking, exposure to aromatic amines, and chronic infection/inflammation are bladder cancer risk factors. NF-κB is a transcription factor that plays a critical role in normal physiology and bladder cancer. Bladder cancer patients have constitutively active NF-κB triggered by pro-inflammatory cytokines, chemokines, and hypoxia, augmenting carcinogenesis and progression.Areas covered: NF-κB orchestrates protein interactions (PTEN, survivin, VEGF), regulation (CYLD, USP13) and gene expression (Trp 53) resulting in bladder cancer progression, recurrence and resistance to therapy. This review focuses on NF-κB in bladder inflammation, cancer and resistance to therapy.Expert opinion: NF-κB and bladder cancer necessitate further research to develop better diagnostic and treatment regimens that address progression, recurrence and resistance to therapy. NF-κB is a master regulator that can act with or on minimally one cancer hallmark gene or protein, leading to bladder cancer progression (Tp53, PTEN, VEGF, HMGB1, CYLD, USP13), recurrence (PCNA, BcL-2, JUN) and resistance to therapy (P-gp, twist, SETD6). Thus, an understanding of bladder cancer in relation to NF-κB will offer improved strategies and efficacious targeted therapies resulting in minimal progression, recurrence and resistance to therapy.
Collapse
Affiliation(s)
- Charles Emmanuel Jebaraj Walter
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Sankari Durairajan
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Kalaiselvi Periyandavan
- Department of Medical Biochemistry, Dr. ALM PG Institute of Basic Medical Science, University of Madras, Chennai, India
| | - George Priya Doss C
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, India
| | - Dicky John Davis G
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Hannah Rachel Vasanthi A
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Thanka Johnson
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
27
|
Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis 2020; 11:210. [PMID: 32231206 PMCID: PMC7105474 DOI: 10.1038/s41419-020-2399-y] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Escaping programmed cell death is a hallmark of cancer. NF-κB transcription factors are key regulator of cell survival and aberrant NF-κB signaling has been involved in the pathogenesis of most human malignancies. Although NF-κB is best known for its antiapoptotic role, other processes regulating the life/death balance, such as autophagy and necroptosis, seem to network with NF-κB. This review discusses how the reciprocal regulation of NF-κB, autophagy and programmed cell death affect cancer development and progression.
Collapse
|
28
|
Capece D, Verzella D, Di Francesco B, Alesse E, Franzoso G, Zazzeroni F. NF-κB and mitochondria cross paths in cancer: mitochondrial metabolism and beyond. Semin Cell Dev Biol 2020; 98:118-128. [PMID: 31132468 DOI: 10.1016/j.semcdb.2019.05.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
NF-κB plays a pivotal role in oncogenesis. This transcription factor is best known for promoting cancer cell survival and tumour-driving inflammation. However, several lines of evidence support a crucial role for NF-κB in governing energy homeostasis and mediating cancer metabolic reprogramming. Mitochondria are central players in many metabolic processes altered in cancer. Beyond their bioenergetic activity, several facets of mitochondria biology, including mitochondrial dynamics and oxidative stress, promote and sustain malignant transformation. Recent reports revealed an intimate connection between NF-κB pathway and the oncogenic mitochondrial functions. NF-κB can impact mitochondrial respiration and mitochondrial dynamics, and, reciprocally, mitochondria can sense stress signals and convert them into cell biological responses leading to NF-κB activation. In this review we discuss their emerging reciprocal regulation and the significance of this interplay for anticancer therapy.
Collapse
Affiliation(s)
- Daria Capece
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, W12 0NN London, UK.
| | - Daniela Verzella
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, W12 0NN London, UK.
| | - Barbara Di Francesco
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100, L'Aquila, Italy.
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100, L'Aquila, Italy.
| | - Guido Franzoso
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, W12 0NN London, UK.
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100, L'Aquila, Italy.
| |
Collapse
|
29
|
Davis JL, Cox L, Shao C, Lyu C, Liu S, Aurora R, Veis DJ. Conditional Activation of NF-κB Inducing Kinase (NIK) in the Osteolineage Enhances Both Basal and Loading-Induced Bone Formation. J Bone Miner Res 2019; 34:2087-2100. [PMID: 31246323 PMCID: PMC6854278 DOI: 10.1002/jbmr.3819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Studies from global loss-of-function mutants suggest that alternative NF-κB downstream of NF-κB inducing kinase (NIK) is a cell-intrinsic negative regulator of osteogenesis. However, the interpretation of the osteoblast and/or osteocyte contribution to the bone phenotype is complicated by simultaneous osteoclast defects in these models. Therefore, we turned to a transgenic mouse model to investigate the direct role of NIK in the osteolineage. Osx-Cre;NT3 animals (NT3-Cre +), which bear a constitutively active NIK allele (NT3) driven by Osx-Cre, were compared with their Cre-negative, Control (Ctrl) littermates. NT3-Cre + mice had elevated serum P1NP and CTX levels. Despite this high turnover state, µCT showed that constitutive activation of NIK resulted in a net increase in basal bone mass in both cortical and cancellous compartments. Furthermore, NT3-Cre + mice exhibited a greater anabolic response following mechanical loading compared with controls. We next performed RNA-Seq on nonloaded and loaded tibias to elucidate possible mechanisms underlying the increased bone anabolism seen in NT3-Cre + mice. Hierarchical clustering revealed two main transcriptional programs: one loading-responsive and the other NT3 transgene-driven. Gene ontology (GO) analysis indicated a distinct upregulation of receptor, kinase, and growth factor activities including Wnts, as well as a calcium-response signature in NT3-Cre + limbs. The promoters of these GO-term associated genes, including many known to be bone-anabolic, were highly enriched for multiple κB recognition elements (κB-RE) relative to the background frequency in the genome. The loading response in NT3-Cre + mice substantially overlapped (>90%) with Ctrl. Surprisingly, control animals had 10-fold more DEGs in response to loading. However, most top DEGs shared between genotypes had a high incidence of multiple κB-RE in their promoters. Therefore, both transcriptional programs (loading-responsive and NT3 transgene-driven) are modulated by NF-κB. Our studies uncover a previously unrecognized role for NF-κB in the promotion of both basal and mechanically stimulated bone formation. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jennifer L Davis
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Linda Cox
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Christine Shao
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cheng Lyu
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Shaopeng Liu
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Deborah J Veis
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
- Department of Patholgy, Washington University, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
30
|
Muraoka H, Yoshimura C, Kawabata R, Tsuji S, Hashimoto A, Ochiiwa H, Nakagawa F, Fujioka Y, Matsuo K, Ohkubo S. Activity of TAS4464, a novel NEDD8 activating enzyme E1 inhibitor, against multiple myeloma via inactivation of nuclear factor κB pathways. Cancer Sci 2019; 110:3802-3810. [PMID: 31583781 PMCID: PMC6890451 DOI: 10.1111/cas.14209] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin proteasome pathway is essential for the proliferation and survival of multiple myeloma (MM) cells. TAS4464, a novel highly potent inhibitor of NEDD8 activating enzyme, selectively inactivates cullin-RING ubiquitin E3 ligases, resulting in accumulation of their substrates. Here, we examined 14 MM cell lines treated with TAS4464. TAS4464 induced growth arrest and cell death in the MM cell lines even in the presence of bone marrow stromal cells. It also induced the accumulation of phospho-inhibitor of κBα and phospho-p100, impaired the activities of nuclear factor κB (NF-κB) transcription factors p65 and RelB, and decreased the expression of NF-κB target genes, suggesting that TAS4464 inhibits both the canonical and non-canonical NF-κB pathways. TAS4464 had similar effects in an in vivo human-MM xenograft mouse model in which it was also observed to have strong antitumor effects. TAS4464 synergistically enhanced the antitumor activities of the standard MM chemotherapies bortezomib, lenalidomide/dexamethasone, daratumumab and elotuzumab. Together, these results suggest that the anti-MM activity of TAS4464 occurs via inhibition of the NF-κB pathways, and that treatment with TAS4464 is a potential approach for treating MM by single and combination therapies.
Collapse
Affiliation(s)
- Hiromi Muraoka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical, Tsukuba, Japan
| | - Chihoko Yoshimura
- Discovery and Preclinical Research Division, Taiho Pharmaceutical, Tsukuba, Japan
| | - Rumi Kawabata
- Discovery and Preclinical Research Division, Taiho Pharmaceutical, Tokushima, Japan
| | - Shingo Tsuji
- Discovery and Preclinical Research Division, Taiho Pharmaceutical, Tsukuba, Japan
| | - Akihiro Hashimoto
- Discovery and Preclinical Research Division, Taiho Pharmaceutical, Tsukuba, Japan
| | - Hiroaki Ochiiwa
- Discovery and Preclinical Research Division, Taiho Pharmaceutical, Tsukuba, Japan
| | - Fumio Nakagawa
- Discovery and Preclinical Research Division, Taiho Pharmaceutical, Tokushima, Japan
| | - Yayoi Fujioka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical, Tsukuba, Japan
| | - Kenichi Matsuo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical, Tsukuba, Japan
| | - Shuichi Ohkubo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical, Tsukuba, Japan
| |
Collapse
|
31
|
Shokri S, Mahmoudvand S, Taherkhani R, Farshadpour F, Jalalian FA. Complexity on modulation of NF-κB pathways by hepatitis B and C: A double-edged sword in hepatocarcinogenesis. J Cell Physiol 2019; 234:14734-14742. [PMID: 30741410 DOI: 10.1002/jcp.28249] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Nuclear factor-κB (NF-κB), a family of master regulated dimeric transcription factors, signaling transduction pathways are active players in the cell signaling that control vital cellular processes, including cell growth, proliferation, differentiation, apoptosis, morphogenesis, angiogenesis, and immune responses. Nevertheless, aberrant regulation of the NF-κB signaling pathways has been associated with a significant number of human cancers. In fact, NF-κB acts as a double-edged sword in the vital cellular processes and carcinogenesis. This review provides an overview on the modulation of the NF-κB signaling pathways by proteins of hepatitis B and C viruses. One of the major NF-κB events that are modulated by these viruses is the induction of hepatocellular carcinoma. Given the central function of NF-κB in carcinogenesis, it has turned out to be a considerable therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Somayeh Shokri
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahab Mahmoudvand
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Taherkhani
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Farshadpour
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farid Azizi Jalalian
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
32
|
Nedeljković M, Damjanović A. Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer-How We Can Rise to the Challenge. Cells 2019; 8:E957. [PMID: 31443516 PMCID: PMC6770896 DOI: 10.3390/cells8090957] [Citation(s) in RCA: 509] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Triple-negative (TNBC) is the most lethal subtype of breast cancer owing to high heterogeneity, aggressive nature, and lack of treatment options. Chemotherapy remains the standard of care for TNBC treatment, but unfortunately, patients frequently develop resistance. Accordingly, in recent years, tremendous effort has been made into elucidating the mechanisms of TNBC chemoresistance with the goal of identifying new molecular targets. It has become evident that the development of TNBC chemoresistance is multifaceted and based on the elaborate interplay of the tumor microenvironment, drug efflux, cancer stem cells, and bulk tumor cells. Alterations of multiple signaling pathways govern these interactions. Moreover, TNBC's high heterogeneity, highlighted in the existence of several molecular signatures, presents a significant obstacle to successful treatment. In the present, in-depth review, we explore the contribution of key mechanisms to TNBC chemoresistance as well as emerging strategies to overcome them. We discuss novel anti-tumor agents that target the components of these mechanisms and pay special attention to their current clinical development while emphasizing the challenges still ahead of successful TNBC management. The evidence presented in this review outlines the role of crucial pathways in TNBC survival following chemotherapy treatment and highlights the importance of using combinatorial drug strategies and incorporating biomarkers in clinical studies.
Collapse
Affiliation(s)
- Milica Nedeljković
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia.
| | - Ana Damjanović
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| |
Collapse
|
33
|
Surai PF, Kochish II, Fisinin VI, Juniper DT. Revisiting Oxidative Stress and the Use of Organic Selenium in Dairy Cow Nutrition. Animals (Basel) 2019; 9:E462. [PMID: 31331084 PMCID: PMC6680431 DOI: 10.3390/ani9070462] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
In commercial animals production, productive stress can negatively impact health status and subsequent productive and reproductive performance. A great body of evidence has demonstrated that as a consequence of productive stress, an overproduction of free radicals, disturbance of redox balance/signaling, and oxidative stress were observed. There is a range of antioxidants that can be supplied with animal feed to help build and maintain the antioxidant defense system of the body responsible for prevention of the damaging effects of free radicals and the toxic products of their metabolism. Among feed-derived antioxidants, selenium (Se) was shown to have a special place as an essential part of 25 selenoproteins identified in animals. There is a comprehensive body of research in monogastric species that clearly shows that Se bioavailability within the diet is very much dependent on the form of the element used. Organic Se, in the form of selenomethionine (SeMet), has been reported to be a much more effective Se source when compared with mineral forms such as sodium selenite or selenate. It has been proposed that one of the main advantages of organic Se in pig and poultry nutrition is the non-specific incorporation of SeMet into general body proteins, thus forming an endogenous Se reserve that can be utilized during periods of stress for additional synthesis of selenoproteins. Responses in ruminant species to supplementary Se tend to be much more variable than those reported in monogastric species, and much of this variability may be a consequence of the different fates of Se forms in the rumen following ingestion. It is likely that the reducing conditions found in the rumen are responsible for the markedly lower assimilation of inorganic forms of Se, thus predisposing selenite-fed animals to potential Se inadequacy that may in turn compromise animal health and production. A growing body of evidence demonstrates that organic Se has a number of benefits, particularly in dairy and beef animals; these include improved Se and antioxidant status and better Se transfer via the placenta, colostrum, and milk to the newborn. However, there is a paucity in the data concerning molecular mechanisms of SeMet assimilation, metabolism and selenoprotein synthesis regulation in ruminant animals, and as such, further investigation is required.
Collapse
Affiliation(s)
- Peter F Surai
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia.
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Godollo, Hungary.
| | - Ivan I Kochish
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia
| | - Vladimir I Fisinin
- All-Russian Institute of Poultry Husbandry, 141311 Sergiev Posad, Russia
| | - Darren T Juniper
- Animal, Dairy, Food Chain Sciences, School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6AR, UK
| |
Collapse
|
34
|
Adelaja A, Hoffmann A. Signaling Crosstalk Mechanisms That May Fine-Tune Pathogen-Responsive NFκB. Front Immunol 2019; 10:433. [PMID: 31312197 PMCID: PMC6614373 DOI: 10.3389/fimmu.2019.00433] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/19/2019] [Indexed: 01/14/2023] Open
Abstract
Precise control of inflammatory gene expression is critical for effective host defense without excessive tissue damage. The principal regulator of inflammatory gene expression is nuclear factor kappa B (NFκB), a transcription factor. Nuclear NFκB activity is controlled by IκB proteins, whose stimulus-responsive degradation and re-synthesis provide for transient or dynamic regulation. The IκB-NFκB signaling module receives input signals from a variety of pathogen sensors, such as toll-like receptors (TLRs). The molecular components and mechanisms of NFκB signaling are well-understood and have been reviewed elsewhere in detail. Here we review the molecular mechanisms that mediate cross-regulation of TLR-IκB-NFκB signal transduction by signaling pathways that do not activate NFκB themselves, such as interferon signaling pathways. We distinguish between potential regulatory crosstalk mechanisms that (i) occur proximal to TLRs and thus may have stimulus-specific effects, (ii) affect the core IκB-NFκB signaling module to modulate NFκB activation in response to several stimuli. We review some well-documented examples of molecular crosstalk mechanisms and indicate other potential mechanisms whose physiological roles require further study.
Collapse
Affiliation(s)
- Adewunmi Adelaja
- UCLA-Caltech Medical Scientist Training Program, Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
35
|
Controlling Nuclear NF-κB Dynamics by β-TrCP-Insights from a Computational Model. Biomedicines 2019; 7:biomedicines7020040. [PMID: 31137887 PMCID: PMC6631534 DOI: 10.3390/biomedicines7020040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
The canonical nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway regulates central processes in mammalian cells and plays a fundamental role in the regulation of inflammation and immunity. Aberrant regulation of the activation of the transcription factor NF-κB is associated with severe diseases such as inflammatory bowel disease and arthritis. In the canonical pathway, the inhibitor IκB suppresses NF-κB’s transcriptional activity. NF-κB becomes active upon the degradation of IκB, a process that is, in turn, regulated by the β-transducin repeat-containing protein (β-TrCP). β-TrCP has therefore been proposed as a promising pharmacological target in the development of novel therapeutic approaches to control NF-κB’s activity in diseases. This study explores the extent to which β-TrCP affects the dynamics of nuclear NF-κB using a computational model of canonical NF-κB signaling. The analysis predicts that β-TrCP influences the steady-state concentration of nuclear NF-κB, as well as changes characteristic dynamic properties of nuclear NF-κB, such as fold-change and the duration of its response to pathway stimulation. The results suggest that the modulation of β-TrCP has a high potential to regulate the transcriptional activity of NF-κB.
Collapse
|
36
|
Tornatore L, Capece D, D'Andrea D, Begalli F, Verzella D, Bennett J, Acton G, Campbell EA, Kelly J, Tarbit M, Adams N, Bannoo S, Leonardi A, Sandomenico A, Raimondo D, Ruvo M, Chambery A, Oblak M, Al-Obaidi MJ, Kaczmarski RS, Gabriel I, Oakervee HE, Kaiser MF, Wechalekar A, Benjamin R, Apperley JF, Auner HW, Franzoso G. Clinical proof of concept for a safe and effective NF-κB-targeting strategy in multiple myeloma. Br J Haematol 2019; 185:588-592. [PMID: 30255568 DOI: 10.1111/bjh.15569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Laura Tornatore
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Daria Capece
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Daniel D'Andrea
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Federica Begalli
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Daniela Verzella
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Jason Bennett
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Gary Acton
- Cancer Research UK Centre for Drug Development, London, UK
| | | | | | | | | | - Selina Bannoo
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Antonio Leonardi
- Department of Molecular Medicine, University of Naples Federico II, Naples, Italy
| | | | - Domenico Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Menotti Ruvo
- IBB-CNR and CIRPeB, "Federico II" University of Naples, Naples, Italy
| | - Angela Chambery
- DiSTABiF, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Metod Oblak
- West Middlesex University Hospital, Isleworth, Greater London, UK
| | - Magda J Al-Obaidi
- Haematology Department, Chelsea and Westminster Hospital, London, UK
| | | | - Ian Gabriel
- Haematology Department, Chelsea and Westminster Hospital, London, UK
| | | | - Martin F Kaiser
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | | | - Reuben Benjamin
- Department of Haematology, King's College Hospital, London, UK
| | | | - Holger W Auner
- Centre for Haematology, Imperial College London, London, UK
- Cancer Cell Protein Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Guido Franzoso
- CCSI, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
37
|
Tornatore L, Capece D, D'Andrea D, Begalli F, Verzella D, Bennett J, Acton G, Campbell EA, Kelly J, Tarbit M, Adams N, Bannoo S, Leonardi A, Sandomenico A, Raimondo D, Ruvo M, Chambery A, Oblak M, Al-Obaidi MJ, Kaczmarski RS, Gabriel I, Oakervee HE, Kaiser MF, Wechalekar A, Benjamin R, Apperley JF, Auner HW, Franzoso G. Preclinical toxicology and safety pharmacology of the first-in-class GADD45β/MKK7 inhibitor and clinical candidate, DTP3. Toxicol Rep 2019; 6:369-379. [PMID: 31080744 PMCID: PMC6502747 DOI: 10.1016/j.toxrep.2019.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022] Open
Abstract
Aberrant NF-κB activity drives oncogenesis and cell survival in multiple myeloma (MM) and many other cancers. However, despite an aggressive effort by the pharmaceutical industry over the past 30 years, no specific IκBα kinase (IKK)β/NF-κB inhibitor has been clinically approved, due to the multiple dose-limiting toxicities of conventional NF-κB-targeting drugs. To overcome this barrier to therapeutic NF-κB inhibition, we developed the first-in-class growth arrest and DNA-damage-inducible (GADD45)β/mitogen-activated protein kinase kinase (MKK)7 inhibitor, DTP3, which targets an essential, cancer-selective cell-survival module downstream of the NF-κB pathway. As a result, DTP3 specifically kills MM cells, ex vivo and in vivo, ablating MM xenografts in mice, with no apparent adverse effects, nor evident toxicity to healthy cells. Here, we report the results from the preclinical regulatory pharmacodynamic (PD), safety pharmacology, pharmacokinetic (PK), and toxicology programmes of DTP3, leading to the approval for clinical trials in oncology. These results demonstrate that DTP3 combines on-target-selective pharmacology, therapeutic anticancer efficacy, favourable drug-like properties, long plasma half-life and good bioavailability, with no target-organs of toxicity and no adverse effects preclusive of its clinical development in oncology, upon daily repeat-dose administration in both rodent and non-rodent species. Our study underscores the clinical potential of DTP3 as a conceptually novel candidate therapeutic selectively blocking NF-κB survival signalling in MM and potentially other NF-κB-driven cancers.
Collapse
Affiliation(s)
- Laura Tornatore
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Daria Capece
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Daniel D'Andrea
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Federica Begalli
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Daniela Verzella
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Jason Bennett
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Gary Acton
- Cancer Research UK Centre for Drug Development, London, UK
| | | | | | | | | | - Selina Bannoo
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Antonio Leonardi
- Department of Molecular Medicine, University of Naples Federico II, Naples, Italy
| | | | - Domenico Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Menotti Ruvo
- IBB-CNR and CIRPeB, "Federico II" University of Naples, Naples, Italy
| | - Angela Chambery
- DiSTABiF, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Metod Oblak
- West Middlesex University Hospital, Isleworth, Greater London, UK
| | | | | | - Ian Gabriel
- Haematology Department, Chelsea and Westminster Hospital, London, UK
| | | | - Martin F. Kaiser
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | | | - Reuben Benjamin
- Department of Haematology, King's College Hospital, London, UK
| | | | - Holger W. Auner
- Centre for Haematology, Imperial College, London, UK
- Cancer Cell Protein Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Guido Franzoso
- CCSI, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
38
|
Aberrant Activation of NF-κB Signalling in Aggressive Lymphoid Malignancies. Cells 2018; 7:cells7110189. [PMID: 30380749 PMCID: PMC6262606 DOI: 10.3390/cells7110189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022] Open
Abstract
Lymphoid malignancies frequently harbor genetic mutations leading to aberrant activation of nuclear factor-κB (NF-κB) signaling; in normal cells, this pathway has important roles in the control of cell growth, survival, stress responses, and inflammation. Malignancies with mutations in NF-κB pathway components can derive from all cell stages of mature B-cell development; however, aberrant NF-κB activity is particularly prevalent in aggressive subtypes of non-Hodgkin lymphoma and myeloma. NF-κB activation is mediated by two separate pathways, the canonical and alternative pathway, and five downstream transcription factor subunits. Recent findings implicate a predominant role for distinct NF-κB pathways and subunits in certain lymphoma subtypes and myeloma; findings which are complemented by the realization that individual NF-κB subunits can have unique, non-redundant biological roles in the putative tumor precursor cells, including activated B cells, germinal center B cells and plasma cells. The knowledge gained from these studies may be exploited for the development of therapeutic strategies to inhibit aberrant NF-κB activity at the level of the transcription-factor subunits and their target genes, as global inhibition of the pathway is toxic. Here, we provide an overview on the role of aberrant NF-κB activation in aggressive lymphoid malignancies and discuss the potential importance of individual NF-κB subunits in the pathogenesis of tumor subtypes.
Collapse
|
39
|
Stupina T, Balakina A, Kondrat'eva T, Kozub G, Sanina N, Terent'ev A. NO-Donor Nitrosyl Iron Complex with 2-Aminophenolyl Ligand Induces Apoptosis and Inhibits NF-κB Function in HeLa Cells. Sci Pharm 2018; 86:scipharm86040046. [PMID: 30314357 DOI: 10.3390/scipharm86040046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/17/2023] Open
Abstract
NO donating iron nitrosyl complex with 2-aminothiophenyl ligand (2-AmPh complex) was studied for its ability to cause cell death and affect nuclear factor kappa B (NF-κB) signaling. The complex inhibited viability of HeLa cells and induced cell death that was accompanied by loss of mitochondrial membrane potential and characteristic for apoptosis phosphatidylserine externalization. At IC50, 2-AmPh caused decrease in nuclear content of NF-κB p65 polypeptide and mRNA expression of NF-κB target genes encoding interleukin-8 and anti-apoptotic protein BIRC3. mRNA levels of interleukin-6 and anti-apoptotic protein BIRC2 encoding genes were not affected. Our data demonstrate that NO donating iron nitrosyl complex 2-AmPh can inhibit tumor cell viability and induce apoptosis that is preceded by impairment of NF-κB function and suppression of a subset of NF-κB target genes.
Collapse
Affiliation(s)
- Tatiana Stupina
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
| | - Anastasia Balakina
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
| | - Tatiana Kondrat'eva
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
| | - Galina Kozub
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
| | - Natalia Sanina
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
- Faculty of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.
- Medicinal Chemistry Research and Education Center, Moscow Region State University, 141014 Mytishchi, Russia.
| | - Alexei Terent'ev
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
- Faculty of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.
- Medicinal Chemistry Research and Education Center, Moscow Region State University, 141014 Mytishchi, Russia.
| |
Collapse
|
40
|
Prescott JA, Cook SJ. Targeting IKKβ in Cancer: Challenges and Opportunities for the Therapeutic Utilisation of IKKβ Inhibitors. Cells 2018; 7:cells7090115. [PMID: 30142927 PMCID: PMC6162708 DOI: 10.3390/cells7090115] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023] Open
Abstract
Deregulated NF-κB signalling is implicated in the pathogenesis of numerous human inflammatory disorders and malignancies. Consequently, the NF-κB pathway has attracted attention as an attractive therapeutic target for drug discovery. As the primary, druggable mediator of canonical NF-κB signalling the IKKβ protein kinase has been the historical focus of drug development pipelines. Thousands of compounds with activity against IKKβ have been characterised, with many demonstrating promising efficacy in pre-clinical models of cancer and inflammatory disease. However, severe on-target toxicities and other safety concerns associated with systemic IKKβ inhibition have thus far prevented the clinical approval of any IKKβ inhibitors. This review will discuss the potential reasons for the lack of clinical success of IKKβ inhibitors to date, the challenges associated with their therapeutic use, realistic opportunities for their future utilisation, and the alternative strategies to inhibit NF-κB signalling that may overcome some of the limitations associated with IKKβ inhibition.
Collapse
Affiliation(s)
- Jack A Prescott
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
41
|
Matsuo S, Chaung A, Liou D, Wang P, Yang WL. Inhibition of ubiquitin-activating enzyme protects against organ injury after intestinal ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 2018; 315:G283-G292. [PMID: 29771572 PMCID: PMC6139649 DOI: 10.1152/ajpgi.00024.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal ischemia-reperfusion (I/R) occurs in various clinical settings, such as transplantation, acute mesenteric arterial occlusion, trauma, and shock. I/R injury causes severe systemic inflammation, leading to multiple organ dysfunction associated with high mortality. The ubiquitin proteasome pathway has been indicated in the regulation of inflammation, particularly through the NF-κB signaling pathway. PYR-41 is a small molecular compound that selectively inhibits ubiquitin-activating enzyme E1. A mouse model of intestinal I/R injury by clamping the superior mesenteric artery for 45 min was performed to evaluate the effect of PYR-41 treatment on organ injury and inflammation. PYR-41 was administered intravenously at the beginning of reperfusion. Blood and organ tissues were harvested at 4 h after reperfusion. PYR-41 treatment improved the morphological structure of gut and lung after I/R, as judged by hematoxylin and eosin staining. It also reduced the number of apoptotic terminal deoxynucleotidyl transferase dUTP nick end-labeling-positive cells and caspase-3 activity in the organs. PYR-41 treatment decreased the expression of proinflammatory cytokines IL-6 and IL-1β as well as chemokines keratinocyte chemoattractant and macrophage inflammatory protein-2 in the gut and lung, which leads to inhibition of neutrophils infiltrating into these organs. The serum levels of IL-6, aspartate aminotransferase, and lactate dehydrogenase were reduced by the treatment. The IκB degradation in the gut increased after I/R was inhibited by PYR-41 treatment. Thus, ubiquitination may be a potential therapeutic target for treating patients suffering from intestinal I/R. NEW & NOTEWORTHY Excessive inflammation contributes to organ injury from intestinal ischemia-reperfusion (I/R) in many clinical conditions. NF-κB signaling is very important in regulating inflammatory response. In an experimental model of gut I/R injury, we demonstrate that administration of a pharmacological inhibitor of ubiquitination process attenuates NF-κB activation, leading to reduction of inflammation, tissue damage, and apoptosis in the gut and lungs. Therefore, ubiquitination process may serve as a therapeutic target for treating patients with intestinal I/R injury.
Collapse
Affiliation(s)
- Shingo Matsuo
- 1Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Andrew Chaung
- 1Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Deanna Liou
- 1Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Ping Wang
- 1Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York,2Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Weng-Lang Yang
- 1Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York,2Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| |
Collapse
|
42
|
Puar YR, Shanmugam MK, Fan L, Arfuso F, Sethi G, Tergaonkar V. Evidence for the Involvement of the Master Transcription Factor NF-κB in Cancer Initiation and Progression. Biomedicines 2018; 6:biomedicines6030082. [PMID: 30060453 PMCID: PMC6163404 DOI: 10.3390/biomedicines6030082] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is responsible for the regulation of a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. At the same time, this transcription factor can control the expression of a plethora of genes that promote tumor cell proliferation, survival, metastasis, inflammation, invasion, and angiogenesis. The aberrant activation of this transcription factor has been observed in several types of cancer and is known to contribute to aggressive tumor growth and resistance to therapeutic treatment. Although NF-κB has been identified to be a major contributor to cancer initiation and development, there is evidence revealing its role in tumor suppression. This review briefly highlights the major mechanisms of NF-κB activation, the role of NF-κB in tumor promotion and suppression, as well as a few important pharmacological strategies that have been developed to modulate NF-κB function.
Collapse
Affiliation(s)
- Yu Rou Puar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Vinay Tergaonkar
- Institute of Molecular and Cellular Biology (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- Centre for Cancer Biology (University of South Australia and SA Pathology), Adelaide, SA 5000, Australia.
| |
Collapse
|
43
|
Sydykov A, Mamazhakypov A, Petrovic A, Kosanovic D, Sarybaev AS, Weissmann N, Ghofrani HA, Schermuly RT. Inflammatory Mediators Drive Adverse Right Ventricular Remodeling and Dysfunction and Serve as Potential Biomarkers. Front Physiol 2018; 9:609. [PMID: 29875701 PMCID: PMC5974151 DOI: 10.3389/fphys.2018.00609] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/04/2018] [Indexed: 01/07/2023] Open
Abstract
Adverse right ventricular (RV) remodeling leads to ventricular dysfunction and failure that represents an important determinant of outcome in patients with pulmonary hypertension (PH). Recent evidence indicates that inflammatory activation contributes to the pathogenesis of adverse RV remodeling and dysfunction. It has been shown that accumulation of inflammatory cells such as macrophages and mast cells in the right ventricle is associated with maladaptive RV remodeling. In addition, inhibition of inflammation in animal models of RV failure ameliorated RV structural and functional impairment. Furthermore, a number of circulating inflammatory mediators have been demonstrated to be associated with RV performance. This work reviews the role of inflammation in RV remodeling and dysfunction and discusses anti-inflammatory strategies that may attenuate adverse structural alterations while promoting improvement of RV function.
Collapse
Affiliation(s)
- Akylbek Sydykov
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany.,Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Argen Mamazhakypov
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Aleksandar Petrovic
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Akpay S Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Hossein A Ghofrani
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
44
|
Dodson RB, Powers KN, Gien J, Rozance PJ, Seedorf G, Astling D, Jones K, Crombleholme TM, Abman SH, Alvira CM. Intrauterine growth restriction decreases NF-κB signaling in fetal pulmonary artery endothelial cells of fetal sheep. Am J Physiol Lung Cell Mol Physiol 2018; 315:L348-L359. [PMID: 29722560 DOI: 10.1152/ajplung.00052.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Intrauterine growth restriction (IUGR) in premature newborns increases the risk for bronchopulmonary dysplasia, a chronic lung disease characterized by disrupted pulmonary angiogenesis and alveolarization. We previously showed that experimental IUGR impairs angiogenesis; however, mechanisms that impair pulmonary artery endothelial cell (PAEC) function are uncertain. The NF-κB pathway promotes vascular growth in the developing mouse lung, and we hypothesized that IUGR disrupts NF-κB-regulated proangiogenic targets in fetal PAEC. PAECs were isolated from the lungs of control fetal sheep and sheep with experimental IUGR from an established model of chronic placental insufficiency. Microarray analysis identified suppression of NF-κB signaling and significant alterations in extracellular matrix (ECM) pathways in IUGR PAEC, including decreases in collagen 4α1 and laminin α4, components of the basement membrane and putative NF-κB targets. In comparison with controls, immunostaining of active NF-κB complexes, NF-κB-DNA binding, baseline expression of NF-κB subunits p65 and p50, and LPS-mediated inducible activation of NF-κB signaling were decreased in IUGR PAEC. Although pharmacological NF-κB inhibition did not affect angiogenic function in IUGR PAEC, angiogenic function of control PAEC was reduced to a similar degree as that observed in IUGR PAEC. These data identify reductions in endothelial NF-κB signaling as central to the disrupted angiogenesis observed in IUGR, likely by impairing both intrinsic PAEC angiogenic function and NF-κB-mediated regulation of ECM components necessary for vascular development. These data further suggest that strategies that preserve endothelial NF-κB activation may be useful in lung diseases marked by disrupted angiogenesis such as IUGR.
Collapse
Affiliation(s)
- R Blair Dodson
- Laboratory for Fetal and Regenerative Biology, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Pediatric Heart Lung Center, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Department of Surgery, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,United Therapeutics, Regenerative Medicine Laboratory, Research Triangle Park, Durham, North Carolina
| | - Kyle N Powers
- Laboratory for Fetal and Regenerative Biology, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Pediatric Heart Lung Center, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Department of Surgery, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| | - Jason Gien
- Pediatric Heart Lung Center, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| | - Paul J Rozance
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| | - Gregory Seedorf
- Pediatric Heart Lung Center, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| | - David Astling
- United Therapeutics, Regenerative Medicine Laboratory, Research Triangle Park, Durham, North Carolina
| | - Kenneth Jones
- United Therapeutics, Regenerative Medicine Laboratory, Research Triangle Park, Durham, North Carolina
| | - Timothy M Crombleholme
- Laboratory for Fetal and Regenerative Biology, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Department of Surgery, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| | - Steven H Abman
- Pediatric Heart Lung Center, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado.,Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| | - Cristina M Alvira
- Department of Pediatrics, Stanford University School of Medicine , Palo Alto, California
| |
Collapse
|
45
|
Capece D, D'Andrea D, Verzella D, Tornatore L, Begalli F, Bennett J, Zazzeroni F, Franzoso G. Turning an old GADDget into a troublemaker. Cell Death Differ 2018; 25:642-644. [PMID: 29511335 PMCID: PMC5864189 DOI: 10.1038/s41418-018-0087-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Daria Capece
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Daniel D'Andrea
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Daniela Verzella
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Laura Tornatore
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Federica Begalli
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Jason Bennett
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - Guido Franzoso
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
46
|
Bennett J, Capece D, Begalli F, Verzella D, D'Andrea D, Tornatore L, Franzoso G. NF-κB in the crosshairs: Rethinking an old riddle. Int J Biochem Cell Biol 2018; 95:108-112. [PMID: 29277662 PMCID: PMC6562234 DOI: 10.1016/j.biocel.2017.12.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022]
Abstract
Constitutive NF-κB signalling has been implicated in the pathogenesis of most human malignancies and virtually all non-malignant pathologies. Accordingly, the NF-κB pathway has been aggressively pursued as an attractive therapeutic target for drug discovery. However, the severe on-target toxicities associated with systemic NF-κB inhibition have thus far precluded the development of a clinically useful, NF-κB-targeting medicine as a way to treat patients with either oncological or non-oncological diseases. This minireview discusses some of the more promising approaches currently being developed to circumvent the preclusive safety liabilities of global NF-κB blockade by selectively targeting pathogenic NF-κB signalling in cancer, while preserving the multiple physiological functions of NF-κB in host defence responses and tissue homeostasis.
Collapse
Affiliation(s)
- Jason Bennett
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Daria Capece
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Federica Begalli
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Daniela Verzella
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Daniel D'Andrea
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Laura Tornatore
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Guido Franzoso
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
47
|
Ježek J, Cooper KF, Strich R. Reactive Oxygen Species and Mitochondrial Dynamics: The Yin and Yang of Mitochondrial Dysfunction and Cancer Progression. Antioxidants (Basel) 2018; 7:E13. [PMID: 29337889 PMCID: PMC5789323 DOI: 10.3390/antiox7010013] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are organelles with a highly dynamic ultrastructure maintained by a delicate equilibrium between its fission and fusion rates. Understanding the factors influencing this balance is important as perturbations to mitochondrial dynamics can result in pathological states. As a terminal site of nutrient oxidation for the cell, mitochondrial powerhouses harness energy in the form of ATP in a process driven by the electron transport chain. Contemporaneously, electrons translocated within the electron transport chain undergo spontaneous side reactions with oxygen, giving rise to superoxide and a variety of other downstream reactive oxygen species (ROS). Mitochondrially-derived ROS can mediate redox signaling or, in excess, cause cell injury and even cell death. Recent evidence suggests that mitochondrial ultrastructure is tightly coupled to ROS generation depending on the physiological status of the cell. Yet, the mechanism by which changes in mitochondrial shape modulate mitochondrial function and redox homeostasis is less clear. Aberrant mitochondrial morphology may lead to enhanced ROS formation, which, in turn, may deteriorate mitochondrial health and further exacerbate oxidative stress in a self-perpetuating vicious cycle. Here, we review the latest findings on the intricate relationship between mitochondrial dynamics and ROS production, focusing mainly on its role in malignant disease.
Collapse
Affiliation(s)
- Jan Ježek
- Department of Molecular Biology, Rowan University Graduate School of Biomedical Sciences, Stratford, NJ 08084, USA.
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University Graduate School of Biomedical Sciences, Stratford, NJ 08084, USA.
| | - Randy Strich
- Department of Molecular Biology, Rowan University Graduate School of Biomedical Sciences, Stratford, NJ 08084, USA.
| |
Collapse
|