1
|
Wang H, Zhang W, Sun Y, Xu X, Chen X, Zhao K, Yang Z, Liu H. Nanotherapeutic strategies exploiting biological traits of cancer stem cells. Bioact Mater 2025; 50:61-94. [PMID: 40242505 PMCID: PMC12002948 DOI: 10.1016/j.bioactmat.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells that orchestrate cancer initiation, progression, metastasis, and therapeutic resistance. Despite advances in conventional therapies, the persistence of CSCs remains a major obstacle to achieving cancer eradication. Nanomedicine-based approaches have emerged for precise CSC targeting and elimination, offering unique advantages in overcoming the limitations of traditional treatments. This review systematically analyzes recent developments in nanomedicine for CSC-targeted therapy, emphasizing innovative nanomaterial designs addressing CSC-specific challenges. We first provide a detailed examination of CSC biology, focusing on their surface markers, signaling networks, microenvironmental interactions, and metabolic signatures. On this basis, we critically evaluate cutting-edge nanomaterial engineering designed to exploit these CSC traits, including stimuli-responsive nanodrugs, nanocarriers for drug delivery, and multifunctional nanoplatforms capable of generating localized hyperthermia or reactive oxygen species. These sophisticated nanotherapeutic approaches enhance selectivity and efficacy in CSC elimination, potentially circumventing drug resistance and cancer recurrence. Finally, we present an in-depth analysis of current challenges in translating nanomedicine-based CSC-targeted therapies from bench to bedside, offering critical insights into future research directions and clinical implementation. This review aims to provide a comprehensive framework for understanding the intersection of nanomedicine and CSC biology, contributing to more effective cancer treatment modalities.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Wenjing Zhang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xican Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoyang Chen
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kexu Zhao
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhao Yang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Huiyu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
2
|
Muzaffar A, Tajudin AA, Syahir A. A cutting-edge solution to a gordian knot? Aptamers targeting cancer stem cell markers for strategic cancer therapy. Drug Discov Today 2025:104365. [PMID: 40288486 DOI: 10.1016/j.drudis.2025.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Cancer stem cells (CSCs) are key drivers of tumor proliferation and serve as a basis for therapeutic resistance, metastasis, and recurrence. The erratic efficacy of conventional therapeutic approaches is limited because of their inability to exterminate CSCs. This has spurred the development of novel cancer treatment paradigms that target specifically these cells. Importantly, CSCs are identified and classified based on the differential expression of biomarkers, facilitating their precise isolation and tailored therapeutic interventions. Numerous promising approaches have been developed to target CSC markers, paving the way to precision medicine in cancer treatment. Aptamers are molecularly targeting agents comprising single-strand oligonucleotides arranged in a unique fashion that allows them to bind their targets, including cancer biomarkers, with high specificity and affinity. Given their programmable nature, they can be chemically modified and integrated with various diagnostic components, including nanoparticles (NPs), drugs, and therapeutic RNAs, thereby enhancing their applicability in disease treatment. In this review, we shed light on various aptamer designs that show potential to target putative CSC markers and to efficiently deliver therapeutic moieties.
Collapse
Affiliation(s)
- Aneesa Muzaffar
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Asilah Ahmad Tajudin
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Amir Syahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; UPM-MAKNA Cancer Research Laboratory, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Rajput SK, Minhas K, Azam I, Habib S, Shaikh U, Lalani EN. Prognostic implications of MUC1 and XBP1 concordant expression in multiple myeloma: A retrospective study. PLoS One 2025; 20:e0320934. [PMID: 40179083 PMCID: PMC11967961 DOI: 10.1371/journal.pone.0320934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Multiple myeloma (MM) is a disease of malignant plasma cells (PC) with poor survival. Disease progression and treatment relapse are attributed to MM cancer stem cells (CSCs) and signaling molecules such as MUC1 and XBP1. The study aimed to determine the prognostic value of expression of CSC-associated biomarkers, MUC1 and XBP1 in MM, which has not been explored previously. In this study, we determined the immunohistochemical expression of CSC markers (ALDH1, CD117, and CD34), MUC1, and XBP1 in 128 MM formalin-fixed paraffin-embedded bone marrow archival blocks. The expression of biomarkers was assessed for association with clinicopathological variables and patient survival. Descriptive analysis, survival plots and crude association between outcome and independent variables were assessed using Kaplan Meier and Log rank test. Univariate and multivariable analyses were performed using simple and multiple Cox regression models. The results are reported as crude and adjusted hazard ratios with 95% confidence intervals. Expression of ALDH1 and CD117 was found in 51% and 48% of the tumors, respectively. ALDH1 expression was associated with 1.83 years of reduced survival for patients with CD56-negative tumors. MUC1 expression was observed in 62%, whereas XBP1 was expressed in 48% of tumors. Combinatorial group analysis of XBP1 and MUC1 stratified patients into two prognostic groups. Cases with tumors negative for expression of MUC1 and XBP1 (XBP1-/ MUC1-) were categorized as a good prognostic group with increased survival of 3.42 years compared to cases with tumors expressing both (Worst prognosis, XBP1 + /MUC1+). Concordant expression of MUC1 and XBP1 in MM defines a subset of patients with adverse outcomes. The adjusted hazard ratio showed a four-fold increased risk of mortality associated with the concordant expression of MUC1 and XBP1 in patients > 65 years of age.
Collapse
Affiliation(s)
- Sheerien Kareem Rajput
- Centre for Regenerative Medicine and Stem Cell Research, The Aga Khan University, Karachi, Pakistan
| | - Khurram Minhas
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Iqbal Azam
- Department of Community Health Sciences, The Aga Khan University, Karachi, Pakistan
| | - Sadia Habib
- Centre for Regenerative Medicine and Stem Cell Research, The Aga Khan University, Karachi, Pakistan
| | - Usman Shaikh
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - El-Nasir Lalani
- Centre for Regenerative Medicine and Stem Cell Research, The Aga Khan University, Karachi, Pakistan
| |
Collapse
|
4
|
Li X, Dai J, Shi Y, Chen J, Zhou F, Qian X, Wang P, Fu X, Tan W. Bispecific Aptamer-Drug Conjugates Selectively Eliminate Malignant Hematologic Cells for Treating Acute Myeloid Leukemia. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2580-2590. [PMID: 39841114 DOI: 10.1021/acs.langmuir.4c04350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Surface antigen-directed immunotherapy is a curative treatment modality for acute myeloid leukemia (AML) that is characterized by the abundance and stability expression of surface antigens. However, current surface antigen-directed immunotherapies have shown poor outcomes and undesirable mortality rates in treating AML patients, primarily due to acquired resistance that arises from using single-target therapies to address the heterogeneous expression of surface antigens. Hence, in order to improve the efficacy of antigen-specific therapies for treating AML, we designed a bispecific aptamer-drug conjugate. In particular, cell-SELEX incorporating cell lysate-SELEX for aptamers with HEL cells yielded AptCD117, which specifically binds to CD117 (a highly expressed marker on both hematopoietic stem cells and primary AML cells) and has excellent performance in targeting human AML cells. Combined with CD71-binding aptamer LXD-11b (another broadly expressed surface antigen on leukemia cells), bispecific aptamers were designed to couple with monomethyl auristatin F (MMAF) for fabricating aptamer-drug conjugates. Results demonstrated that bispecific aptamer-MMAF conjugates efficiently kill different CD117 and CD71 expression levels of target AML cell lines in vitro. Importantly, the exposure of AML marrow specimens to bispecific aptamer-MMAF conjugates resulted in the selective elimination of primary AML cells in vitro and had no effect on healthy lymphocytes within the same specimens. Thus, these results provide a proof of concept for the generation of bispecific aptamer-drug conjugates directed against human AML cells, which hold the promise of advancing treatment strategies and improving AML patient outcomes.
Collapse
Affiliation(s)
- Xiaodong Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jiacheng Dai
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Yuenan Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Jie Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Fang Zhou
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xu Qian
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Peng Wang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiaoyi Fu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Xu Z, Wang L, Tu L, Liu T, Zhang Y, He Y, Xiao G, Ouyang G, Ma X, Luo F. Folic Acid-Modified Milk Exosomes Delivering c-Kit siRNA Overcome EGFR-TKIs Resistance in Lung Cancer by Suppressing mTOR Signaling and Stemness. Int J Biol Sci 2025; 21:382-399. [PMID: 39744423 PMCID: PMC11667802 DOI: 10.7150/ijbs.99954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/02/2024] [Indexed: 01/05/2025] Open
Abstract
The EGFR-TKIs (epidermal growth factor receptor-tyrosine kinases inhibitors) offer significant benefits to lung cancer patients with sensitive EGFR mutations; however, the development of acquired resistance poses a significant challenge and leads to poor prognosis. Thus, exploring novel therapeutic strategies to overcome EGFR-TKI resistance is urgently needed. This study introduces an innovative approach utilizing folic acid-modified milk exosomes loaded with c-kit siRNA (FA-mExo-siRNA-c-kit) to target EGFR-TKI resistance in lung cancer. Initially, gefitinib-resistant lung cancer cells exhibited stemness characteristics, including an epithelial-to-mesenchymal transition phenotype and elevated ABCG2 expression, which were closely regulated by c-kit. Subsequent treatment with FA-mExo-siRNA-c-kit demonstrated effective suppression of c-kit expression and attenuation of stemness traits in vitro, reducing gefitinib resistance. In xenograft and liver metastasis models, sequential administration of FA-mExo-siRNA-c-kit and gefitinib resulted in decreased tumor growth and prolonged survival. Mechanistically, c-kit was found to regulate the AKT/mTOR/4EBP1/eIF4E axis, promoting stemness and gefitinib resistance in lung cancer cells. This study unveils a novel mechanism of EGFR-TKI resistance involving the c-kit/mTOR pathway and proposes a promising therapeutic strategy for EGFR-TKI-resistant lung cancer, particularly with liver metastasis, using FA-mExo-siRNA-c-kit, suggesting potential for improved patient outcomes and warranting further investigation.
Collapse
Affiliation(s)
- Zihan Xu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
- Institute for Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China, 610041
| | - Li Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Li Tu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Tao Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Yong Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Yingying He
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Guixiu Xiao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Ganlu Ouyang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Xuelei Ma
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Feng Luo
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| |
Collapse
|
6
|
Krishna S, Prajapati B, Seth P, Sinha S. LncRNA BASP1-AS1 is a positive regulator of stemness and pluripotency in human SH-SY5Y neuroblastoma cells. Biochem Biophys Res Commun 2024; 733:150691. [PMID: 39303525 DOI: 10.1016/j.bbrc.2024.150691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor diagnosed mostly in children below the age of five years and comprises of about 15 % of all paediatric cancer deaths. Tumor initiating cancer stem cells (CSCs) can be targeted for better treatment approaches. BASP1-AS1 is a long non coding (Lnc) RNA that is a divergent LncRNA for its coding gene brain abundant membrane attached signal protein 1 (BASP1). We had earlier demonstrated it to be expressed in foetus derived human neural progenitor cells (hNPCs), where it was a positive regulator of BASP1 and was critical for neural differentiation. In this study, we have investigated the role of BASP1-AS1 in CSCs derived from the human neuroblastoma cell line SH-SY5Y. We cultured SH-SY5Y cells on Poly-d-Lysine coated flasks in serum free media supplemented with growth factors, which led to the enrichment of CSCs as determined by marker expression. When grown on ultra-low attachment flasks, these cells formed CSCs enriched neurospheres. We examined the effects of BASP1-AS1 siRNA mediated knockdown on CSCs enriched SH-SY5Y cells and SH-SY5Y derived neurospheres. BASP1-AS1 knockdown decreased the levels of the corresponding gene BASP1 and the rate of cell proliferation of CSCs enriched cells along with low expression of Ki67. It also reduced the mRNA levels of stem cell and pluripotency gene markers (CD133, CD44, c-KIT, SOX2, OCT4 and NANOG), as also Wnt 2 and the Wnt pathway effector β catenin. It also abrogated the formation of neurospheres in ultra-low attachment flasks. A similar effect on proliferation and stemness related properties was seen on BASP1 knockdown. BASP1-AS1 and its related pathways may provide a point of intervention for the CSCs population in neuroblastoma.
Collapse
Affiliation(s)
| | - Bharat Prajapati
- National Brain Research Centre, Manesar, Gurugram, India; Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, Gothenburg, Sweden
| | - Pankaj Seth
- National Brain Research Centre, Manesar, Gurugram, India.
| | - Subrata Sinha
- National Brain Research Centre, Manesar, Gurugram, India; Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
7
|
Volta L, Myburgh R, Hofstetter M, Koch C, Kiefer JD, Gobbi C, Manfredi F, Zimmermann K, Kaufmann P, Fazio S, Pellegrino C, Russkamp NF, Villars D, Matasci M, Maurer M, Mueller J, Schneiter F, Büschl P, Harrer N, Mock J, Balabanov S, Nombela-Arrieta C, Schroeder T, Neri D, Manz MG. A single-chain variable fragment-based bispecific T-cell activating antibody against CD117 enables T-cell mediated lysis of acute myeloid leukemia and hematopoietic stem and progenitor cells. Hemasphere 2024; 8:e70055. [PMID: 39564539 PMCID: PMC11574467 DOI: 10.1002/hem3.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024] Open
Abstract
Acute myeloid leukemia (AML) derives from hematopoietic stem and progenitor cells (HSPCs). To date, no AML-exclusive, non-HSPC-expressed cell-surface target molecules for AML selective immunotherapy have been identified. Therefore, to still apply surface-directed immunotherapy in this disease setting, time-limited combined immune-targeting of AML cells and healthy HSPCs, followed by hematopoietic stem cell transplantation (HSCT), might be a viable therapeutic approach. To explore this, we generated a recombinant single-chain variable fragment-based bispecific T-cell engaging and activating antibody directed against CD3 on T-cells and CD117, the surface receptor for stem cell factor, expressed by both AML cells and healthy HSPCs. Bispecific CD117xCD3 targeting induced lysis of CD117-positive healthy human HSPCs, AML cell lines and patient-derived AML blasts in the presence of T-cells at subnanomolar concentrations in vitro. Furthermore, in immunocompromised mice, engrafted with human CD117-expressing leukemia cells and human T-cells, the bispecific molecule efficiently prevented leukemia growth in vivo. Additionally, in immunodeficient mice transplanted with healthy human HSPCs, the molecule decreased the number of CD117-positive cells in vivo. Therefore, bispecific CD117xCD3 targeting might be developed clinically in order to reduce CD117-expressing leukemia cells and HSPCs prior to HSCT.
Collapse
|
8
|
Zheng Y, Lu T, Zhang L, Gan Z, Li A, He C, He F, He S, Zhang J, Xiong F. Single-cell RNA-seq analysis of rat molars reveals cell identity and driver genes associated with dental mesenchymal cell differentiation. BMC Biol 2024; 22:198. [PMID: 39256700 PMCID: PMC11389520 DOI: 10.1186/s12915-024-01996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The molecular mechanisms and signaling pathways involved in tooth morphogenesis have been the research focus in the fields of tooth and bone development. However, the cell population in molars at the late bell stage and the mechanisms of hard tissue formation and mineralization remain limited knowledge. RESULTS Here, we used the rat mandibular first and second molars as models to perform single-cell RNA sequencing (scRNA-seq) analysis to investigate cell identity and driver genes related to dental mesenchymal cell differentiation during the late bell hard tissue formation stage. We identified seven main cell types and investigated the heterogeneity of mesenchymal cells. Subsequently, we identified novel cell marker genes, including Pclo in dental follicle cells, Wnt10a in pre-odontoblasts, Fst and Igfbp2 in periodontal ligament cells, and validated the expression of Igfbp3 in the apical pulp. The dynamic model revealed three differentiation trajectories within mesenchymal cells, originating from two types of dental follicle cells and apical pulp cells. Apical pulp cell differentiation is associated with the genes Ptn and Satb2, while dental follicle cell differentiation is associated with the genes Tnc, Vim, Slc26a7, and Fgfr1. Cluster-specific regulons were analyzed by pySCENIC. In addition, the odontogenic function of driver gene TNC was verified in the odontoblastic differentiation of human dental pulp stem cells. The expression of osteoclast differentiation factors was found to be increased in macrophages of the mandibular first molar. CONCLUSIONS Our results revealed the cell heterogeneity of molars in the late bell stage and identified driver genes associated with dental mesenchymal cell differentiation. These findings provide potential targets for diagnosing dental hard tissue diseases and tooth regeneration.
Collapse
Affiliation(s)
- Yingchun Zheng
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ting Lu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Leitao Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhongzhi Gan
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Aoxi Li
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuandong He
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Fei He
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sha He
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Jian Zhang
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Fu Xiong
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, 510515, China.
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
9
|
Xu C, Fang Q, Cui H, Lin Y, Dai C, Li X, Tu P, Cui X. Comparison of the components of fresh Panax notoginseng processed by different methods and their anti-anemia effects on cyclophosphamide-treated mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118148. [PMID: 38583734 DOI: 10.1016/j.jep.2024.118148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese herb Panax notoginseng (PN) tonifies blood, and its main active ingredient is saponin. PN is processed by different methods, resulting in different compositions and effects. AIM OF THE STUDY To investigate changes in the microstructure and composition of fresh PN processed by different techniques and the anti-anemia effects on tumor-bearing BALB/c mice after chemotherapy with cyclophosphamide (CTX). MATERIALS AND METHODS Fresh PN was processed by hot-air drying (raw PN, RPN), steamed at 120 °C for 5 h (steamed PN, SPN), or fried at 130 °C, 160 °C, or 200 °C for 8 min (fried PN, FPN1, FPN2, or FPN3, respectively); then, the microstructures were compared with 3D optical microscopy, quasi-targeted metabolites were detected by liquid chromatography tandem mass spectrometry (LC‒MS/MS), and saponins were detected by high-performance liquid chromatography (HPLC). An anemic mouse model was established by subcutaneous H22 cell injection and treatment with CTX. The antianemia effects of PN after processing via three methods were investigated by measuring peripheral blood parameters, performing HE staining and measuring cell proliferation via immunofluorescence. RESULTS 3D optical profiling revealed that the surface roughness of the SPN and FPN was greater than that of the other materials. Quasi-targeted metabolomics revealed that SPN and FPN had more differentially abundant metabolites whose abundance increased, while SPN had greater amounts of terpenoids and flavones. Analysis of the composition and content of the targeted saponins revealed that the contents of rare saponins (ginsenoside Rh1, 20(S)-Rg3, 20(R)-Rg3, Rh4, Rk3, Rg5) were greater in the SPN. In animal experiments, the RBC, WBC, HGB and HCT levels in peripheral blood were increased by SPN and FPN. HE staining and immunofluorescence showed that H-SPN and M-FPN promoted bone marrow and spleen cell proliferation. CONCLUSION The microstructure and components of fresh PN differed after processing via different methods. SPN and FPN ameliorated CTX-induced anemia in mice, but the effects of PN processed by these two methods did not differ.
Collapse
Affiliation(s)
- Cuiping Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Southwest United Graduate School, Kunming, 650500, China; Yunnan Key Laboratory of Panax Notoginseng, Kunming, 650500, China
| | - Qionglian Fang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Laboratory of Panax Notoginseng, Kunming, 650500, China
| | - Hao Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Laboratory of Panax Notoginseng, Kunming, 650500, China
| | - Yameng Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Laboratory of Panax Notoginseng, Kunming, 650500, China
| | - Chunyan Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Laboratory of Panax Notoginseng, Kunming, 650500, China
| | - Xiaoxun Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Laboratory of Panax Notoginseng, Kunming, 650500, China
| | - Pengfei Tu
- Southwest United Graduate School, Kunming, 650500, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Southwest United Graduate School, Kunming, 650500, China; Yunnan Key Laboratory of Panax Notoginseng, Kunming, 650500, China; Laboratory of Sustainable Utilization of Panax Notoginseng Resources, State Administration of Traditional Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
10
|
Zhang S, Zhang L, Zhang D, Guo Y, Gao Y, Jiang Z, Li S, Liu A, Cao X, Tian J, Zhao S, Yu Y, Yang W, Bai R, Huang L, Yan H, Zhao H, Sun J. Four and a half LIM domains 2 (FHL2) attenuates tumorigenesis of gastrointestinal stromal tumors (GISTs) by negatively regulating KIT signaling. Mol Carcinog 2024; 63:1334-1348. [PMID: 38629424 DOI: 10.1002/mc.23727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 04/01/2024] [Indexed: 06/12/2024]
Abstract
Gastrointestinal stromal tumors (GISTs) are predominately induced by KIT mutants. In this study, we found that four and a half LIM domains 2 (FHL2) was highly expressed in GISTs and KIT signaling dramatically increased FHL2 transcription while FHL2 inhibited KIT transcription. In addition, our results showed that FHL2 associated with KIT and increased the ubiquitination of both wild-type KIT and primary KIT mutants in GISTs, leading to decreased expression and activation of KIT although primary KIT mutants were less inhibited by FHL2 than wild-type KIT. In the animal experiments, loss of FHL2 expression in mice carrying germline KIT/V558A mutation which can develop GISTs resulted in increased tumor growth, but increased sensitivity of GISTs to imatinib treatment which is used as the first-line targeted therapy of GISTs, suggesting that FHL2 plays a role in the response of GISTs to KIT inhibitor. Unlike wild-type KIT and primary KIT mutants, we further found that FHL2 didn't alter the expression and activation of drug-resistant secondary KIT mutants. Taken together, our results indicated that FHL2 acts as the negative feedback of KIT signaling in GISTs while primary KIT mutants are less sensitive and secondary KIT mutants are resistant to the inhibition of FHL2.
Collapse
Affiliation(s)
- Shaoting Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Liangying Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Dan Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yue Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yisha Gao
- Department of Pathology, The First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Zongying Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shujing Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Anbu Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xu Cao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jinhai Tian
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Sien Zhao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Yu
- Department of Emergency, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wei Yang
- Department of Gastroenterology, Ningxia Hospital of Integrated Traditional Chinese and Western Medicine, Yinchuan, China
| | - Ru Bai
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ling Huang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hongli Yan
- Department of Laboratory Medicine, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianmin Sun
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
11
|
Elasbali AM, Al-Soud WA, Elfaki EM, Alanazi HH, Alharbi B, Alharethi SH, Anwer K, Mohammad T, Hassan MI. Identification of novel c-Kit inhibitors from natural sources using virtual screening and molecular dynamics simulations. J Biomol Struct Dyn 2024; 42:5982-5994. [PMID: 37403288 DOI: 10.1080/07391102.2023.2231547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023]
Abstract
The Mast/Stem cell growth factor receptor Kit (c-Kit), a Proto-oncogene c-Kit, is a tyrosine-protein kinase involved in cell differentiation, proliferation, migration, and survival. Its role in developing certain cancers, particularly gastrointestinal stromal tumors (GISTs) and acute myeloid leukemia (AML), makes it an attractive therapeutic target. Several small molecule inhibitors targeting c-Kit have been developed and approved for clinical use. Recent studies have focused on identifying and optimizing natural compounds as c-Kit inhibitors employing virtual screening. Still, drug resistance, off-target side effects, and variability in patient response remain significant challenges. From this perspective, phytochemicals could be an important resource for discovering novel c-Kit inhibitors with less toxicity, improved efficacy, and high specificity. This study aimed to uncover possible c-Kit inhibitors by utilizing a structure-based virtual screening of active phytoconstituents from Indian medicinal plants. Through the screening stages, two promising candidates, Anilinonaphthalene and Licoflavonol, were chosen based on their drug-like features and ability to bind to c-Kit. These chosen candidates were subjected to all-atom molecular dynamics (MD) simulations to evaluate their stability and interaction with c-Kit. The selected compounds Anilinonaphthalene from Daucus carota and Licoflavonol from Glycyrrhiza glabra showed their potential to act as selective binding partners of c-Kit. Our results suggest that the identified phytoconstituents could serve as a starting point to develop novel c-Kit inhibitors for developing new and effective therapies against multiple cancers, including GISTs and AML. The use of virtual screening and MD simulations provides a rational approach to discovering potential drug candidates from natural sources.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakakah, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Science, College of Applied Sciences-Sakaka, Jouf University, Sakakah, Saudi Arabia
| | - Elyasa Mustafa Elfaki
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Bandar Alharbi
- Department of Clinical Laboratory, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudi Arabia
| | - Khalid Anwer
- Department of Botany, C. M. Science College, L. N. Mithila University, Darbhanga, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
12
|
Cao X, Tian J, Cheung MY, Zhang L, Liu Z, Jiang Z, Zhang S, Xiao K, Zhao S, Wang M, Ding F, Li S, Ma L, Zhao H, Sun J. Entry of ZSWIM4 to the nucleus is crucial for its inhibition of KIT and BMAL1 in gastrointestinal stromal tumors. Cell Biosci 2024; 14:87. [PMID: 38951864 PMCID: PMC11218225 DOI: 10.1186/s13578-024-01271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Zinc finger SWIM-type containing 4 (ZSWIM4) is a zinc finger protein with its function largely uncharacterized. In this study, we aimed to investigate the role of ZSWIM4 in gastrointestinal stromal tumors (GISTs). RESULTS We found that ZSWIM4 expression is inhibited by the predominantly mutated protein KIT in GISTs, while conversely, ZSWIM4 inhibits KIT expression and downstream signaling. Consistent with the observation, ZSWIM4 inhibited GIST cell survival and proliferation in vitro. RNA sequencing of GISTs from KITV558A/WT mice and KITV558A/WT/ZSWIM4-/- mice showed that loss of ZSWIM4 expression increases the expression of circadian clock pathway member BMAL1 which contributes to GIST cell survival and proliferation. In addition, we found that KIT signaling increases the distribution of ZSWIM4 in the nucleus of GIST cells, and which is important for its inhibition of KIT and BMAL1. In agreement with the results in vitro, the in vivo studies showed that ZSWIM4 deficiency increases the tumorigenesis of GISTs in KITV558A/WT mice. CONCLUSIONS Taken together, our results revealed that the entry of ZSWIM4 to the nucleus is important for its inhibition of KIT and BMAL1, ultimately attenuating GIST tumorigenesis. The results provide a novel insight in the understanding of signal transduction in GISTs and lay strong theoretical basis for the advancement of GIST treatment.
Collapse
Affiliation(s)
- Xu Cao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jinhai Tian
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Man Yee Cheung
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangying Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Zimei Liu
- Department of Oncology, School of Medicine, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zongying Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shaoting Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Kun Xiao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Sien Zhao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ming Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Feng Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shujing Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lijun Ma
- Department of Oncology, School of Medicine, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jianmin Sun
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
13
|
Zhang L, Zhang S, Cao X, Shi J, Zhao S, Tian J, Xiao K, Wang M, Liu J, Wang C, Zhou L, Yu Y, Zhao H, Li S, Sun J. RAF1 facilitates KIT signaling and serves as a potential treatment target for gastrointestinal stromal tumor. Oncogene 2024; 43:2078-2091. [PMID: 38760447 DOI: 10.1038/s41388-024-03063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
The aberrant activation of RAS/RAF/MEK/ERK signaling is important for KIT mutation-mediated tumorigenesis of gastrointestinal stromal tumor (GIST). In this study, we found that inhibition of RAF1 suppresses the activation of both wild-type KIT and primary KIT mutations in GIST, with primary KIT mutations showing greater sensitivity. This suggests a positive feedback loop between KIT and RAF1, wherein RAF1 facilitates KIT signaling. We further demonstrated that RAF1 associates with KIT and the kinase activity of RAF1 is necessary for its contribution to KIT activation. Accordingly, inhibition of RAF1 suppressed cell survival, proliferation, and cell cycle progression in vitro mediated by both wild-type KIT and primary KIT mutations. Inhibition of RAF1 in vivo suppressed GIST growth in a transgenic mouse model carrying germline KIT/V558A mutation, showing a similar treatment efficiency as imatinib, the first-line targeted therapeutic drug of GIST, while the combination use of imatinib and RAF1 inhibitor further suppressed tumor growth. Acquisition of drug-resistant secondary mutation of KIT is a major cause of treatment failure of GIST following targeted therapy. Like wild-type KIT and primary KIT mutations, inhibition of RAF1 suppressed the activation of secondary KIT mutation, and the cell survival, proliferation, cell cycle progression in vitro, and tumor growth in vivo mediated by secondary KIT mutation. However, the activation of secondary KIT mutation is less dependent on RAF1 compared with that of primary KIT mutations. Taken together, our results revealed that RAF1 facilitates KIT signaling and KIT mutation-mediated tumorigenesis of GIST, providing a rationale for further investigation into the use of RAF1 inhibitors alone or in combination with KIT inhibitor in the treatment of GIST, particularly in cases resistant to KIT inhibitors.
Collapse
Affiliation(s)
- Liangying Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shaoting Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xu Cao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jun Shi
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Sien Zhao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jinhai Tian
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Kun Xiao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ming Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jing Liu
- Department of Pediatrics, the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chengdong Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangji Zhou
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuanyuan Yu
- Department of Emergency, the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Shujing Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
- Department of Pediatrics, the General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Jianmin Sun
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
14
|
Chiariello A, Rossetti L, Valente S, Pasquinelli G, Sollazzo M, Iommarini L, Porcelli AM, Tognocchi M, Conte G, Santoro A, Kwiatkowska KM, Garagnani P, Salvioli S, Conte M. Downregulation of PLIN2 in human dermal fibroblasts impairs mitochondrial function in an age-dependent fashion and induces cell senescence via GDF15. Aging Cell 2024; 23:e14111. [PMID: 38650174 PMCID: PMC11113257 DOI: 10.1111/acel.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 04/25/2024] Open
Abstract
Perilipin 2 (PLIN2) is a lipid droplet (LD)-coating protein playing important roles in lipid homeostasis and suppression of lipotoxicity in different tissues and cell types. Recently, a role for PLIN2 in supporting mitochondrial function has emerged. PLIN2 dysregulation is involved in many metabolic disorders and age-related diseases. However, the exact consequences of PLIN2 dysregulation are not yet completely understood. In this study, we knocked down (KD) PLIN2 in primary human dermal fibroblasts (hDFs) from young (mean age 29 years) and old (mean age 71 years) healthy donors. We have found that PLIN2 KD caused a decline of mitochondrial function only in hDFs from young donors, while mitochondria of hDFs from old donors (that are already partially impaired) did not significantly worsen upon PLIN2 KD. This mitochondrial impairment is associated with the increased expression of the stress-related mitokine growth differentiation factor 15 (GDF15) and the induction of cell senescence. Interestingly, the simultaneous KD of PLIN2 and GDF15 abrogated the induction of cell senescence, suggesting that the increase in GDF15 is the mediator of this phenomenon. Moreover, GDF15 KD caused a profound alteration of gene expression, as observed by RNA-Seq analysis. After a more stringent analysis, this alteration remained statistically significant only in hDFs from young subjects, further supporting the idea that cells from old and young donors react differently when undergoing manipulation of either PLIN2 or GDF15 genes, with the latter being likely a downstream mediator of the former.
Collapse
Affiliation(s)
- Antonio Chiariello
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | - Luca Rossetti
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
- Interdepartmental Centre “Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)”University of BolognaBolognaItaly
| | - Sabrina Valente
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | - Gianandrea Pasquinelli
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology (FABIT)University of BolognaBolognaItaly
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT)University of BolognaBolognaItaly
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT)University of BolognaBolognaItaly
| | - Monica Tognocchi
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Giuseppe Conte
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Aurelia Santoro
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | | | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Stefano Salvioli
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Maria Conte
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| |
Collapse
|
15
|
Murray HC, Miller K, Dun MD, Verrills NM. Pharmaco-phosphoproteomic analysis of cancer-associated KIT mutations D816V and V560G. Proteomics 2024; 24:e2300309. [PMID: 38334196 DOI: 10.1002/pmic.202300309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/24/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
The CD117 mast/stem cell growth factor receptor tyrosine kinase (KIT) is critical for haematopoiesis, melanogenesis and stem cell maintenance. KIT is commonly activated by mutation in cancers including acute myeloid leukaemia, melanoma and gastrointestinal stromal tumours (GISTs). The kinase and the juxtamembrane domains of KIT are mutation hotspots; with the kinase domain mutation D816V common in leukaemia and the juxtamembrane domain mutation V560G common in GISTs. Given the importance of mutant KIT signalling in cancer, we have conducted a proteomic and phosphoproteomic analysis of myeloid progenitor cells expressing D816V- and V560G-KIT mutants, using an FDCP1 isogenic cell line model. Proteomic analysis revealed increased abundance of proteases and growth signalling proteins in KIT-mutant cells compared to empty vector (EV) controls. Pathway analysis identified increased oxidative phosphorylation in D816V- and V560G-mutant KIT cells, which was targetable using the inhibitor IACS010759. Dysregulation of RNA metabolism and cytoskeleton/adhesion pathways was identified in both the proteome and phosphoproteome of KIT-mutant cells. Phosphoproteome analysis further revealed active kinases such as EGFR, ERK and PKC, which were targetable using pharmacological inhibitors. This study provides a pharmaco-phosphoproteomic profile of D816V- and V560G-mutant KIT cells, which reveals novel therapeutic strategies that may be applicable to a range of cancers.
Collapse
Affiliation(s)
- Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Precision Medicine Program, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kasey Miller
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Precision Medicine Program, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Precision Medicine Program, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, and Precision Medicine Program, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
16
|
Abdel-Maksoud FM, Ali S, Abd-Elhafeez HH, Abdalla KEH. Meckel's Diverticulum in Adult Geese (Alopochen egyptiacus): A Comprehensive Study of Structure Using Histological, Electron Microscopy, and Immunohistochemical Methods. Cells Tissues Organs 2024; 213:390-402. [PMID: 38237565 DOI: 10.1159/000536210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/08/2024] [Indexed: 10/03/2024] Open
Abstract
INTRODUCTION The intestine plays an important role in mediating between the bird and its nutritional environment. The yolk stalk, also known as Meckel's diverticulum, is a landmark between the jejunum and ileum. This work aimed to investigate the anatomical, histological, and electron microscopical features of cellular components of the Meckel's diverticulum (MD) in adult geese. METHODS The intestine was dissected from the bird's body cavity, and Meckel's diverticulum was exposed and prepared for light and electron microscopical examinations. RESULTS Our results revealed that the MD mucosa is thrown up into villi and crypts, and the mucosal epithelium is a columnar epithelium with goblet cells as well as intraepithelial lymphocytes. Lymphoid follicles and numerous immune cells were demonstrated within the lamina propria. The mucous glands were also observed within the lamina propria and among the lymphoid follicles. The lining epithelium of MD appeared with different staining affinities: dark cells (electron-dense) and light cells (electron-lucent) contained few mitochondria and more secretory vesicles, while dark cells contained more mitochondria and fewer secretory vesicles. Immunohistochemical analysis of MD revealed positive immunoreactivity for several markers, such as CD117, chromogranin, PLCβ, cytokeratin, MHC II, and S100. CONCLUSION Taken together, our findings suggest that MD is considered an immune organ in adult geese.
Collapse
Affiliation(s)
- Fatma M Abdel-Maksoud
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sphinx University, Assiut, Egypt
| | - Shimaa Ali
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Kamal E H Abdalla
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
17
|
Jiang Z, Guo Y, Shi J, Zhang S, Zhang L, Wang Y, Li G, Bai R, Zhao H, Sun J. Cell-permeable PI3 kinase competitive peptide inhibits KIT mutant mediated tumorigenesis of gastrointestinal stromal tumor (GIST). Mol Biol Rep 2024; 51:98. [PMID: 38206538 DOI: 10.1007/s11033-023-09120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Mutations in the receptor tyrosine kinase KIT are the main cause of gastrointestinal stromal tumor (GIST), and the KIT mutants mediated PI3 kinase activation plays a key role in the tumorigenesis of GIST. In this study, we aimed to block PI3 kinase activation by cell-permeable peptide and investigate its possible application in the treatment of GIST. METHODS AND RESULTS We designed cell-permeable peptides based on the binding domain of PI3 kinase subunit p85 to KIT or PI3 kinase subunit p110, respectively, in order to compete for the binding between p85 and KIT or p110 and therefore inhibit the activation of PI3 kinases mediated by KIT. The results showed that the peptide can penetrate the cells, and inhibit the activation of PI3 kinases, leading to reduced cell survival and cell proliferation mediated by KIT mutants in vitro. Treatment of mice carrying germline KIT/V558A mutation, which can develop GIST, with the peptide that can compete for the binding between p85 and p110, led to reduced tumorigenesis of GIST. The peptide can further enhance the inhibition of the tumor growth by imatinib which is used as the first line targeted therapy of GIST. CONCLUSIONS Our results showed that cell-permeable PI3 kinase competitive peptide can inhibit KIT-mediated PI3 kinase activation and tumorigenesis of GIST, providing a rationale to further test the peptide in the treatment of GIST and even other tumors with over-activation of PI3 kinases.
Collapse
Affiliation(s)
- Zongying Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yue Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Shi
- The Second Affiliated Hospital of Ningxia Medical University, Yinchuan, China
| | - Shaoting Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Liangying Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yapeng Wang
- School of Nursing, Ningxia Medical University, Yinchuan, China
| | - Guofu Li
- Department of Pathology, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ru Bai
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jianmin Sun
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
18
|
Liu A, Zhang S, Wang M, Zhang L, Xu S, Nasimian A, Li S, Zhao S, Cao X, Tian J, Yu Y, Fan Z, Xiao K, Zhao H, Kazi JU, Ma L, Sun J. DDR1/2 enhance KIT activation and imatinib resistance of primary and secondary KIT mutants in gastrointestinal stromal tumors. Mol Carcinog 2024; 63:75-93. [PMID: 37737519 DOI: 10.1002/mc.23637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) are predominantly initiated by KIT mutations. In this study, we observed that discoidin domain receptors 1 and 2 (DDR1 and DDR2) exhibited high expression in GISTs, were associated with KIT, and enhanced the activation of both wild-type KIT and primary KIT mutants. Inhibition of DDR1/2 led to a reduction in the activation of KIT and its downstream signaling molecules, ultimately impairing GIST cell survival and proliferation in vitro. Consequently, treatment of mice carrying germline KIT/V558A mutation with DDR1/2 inhibitor significantly impeded tumor growth, and the combined use of DDR1/2 inhibitor and imatinib, the first-line targeted therapeutic agent for GISTs, markedly enhanced tumor growth suppression. In addition, DDR1/2 inhibition resulted in decreased KIT expression, while KIT inhibition led to upregulation of DDR1/2 expression in GISTs. The presence of DDR1/2 also decreased the sensitivity of wild-type KIT or primary KIT mutants to imatinib, indicating a possible role for DDR1/2 in promoting GIST survival during KIT-targeted therapy. The development of drug-resistant secondary KIT mutations is a primary factor contributing to GIST recurrence following targeted therapy. Similar to primary KIT mutants, DDR1/2 can associate with and enhance the activation of secondary KIT mutants, further diminishing their sensitivity to imatinib. In summary, our data demonstrate that DDR1/2 contribute to KIT activation in GISTs and strengthen resistance to imatinib for both primary and secondary KIT mutants, providing a rationale for further exploration of DDR1/2 targeting in GIST treatment.
Collapse
Affiliation(s)
- Anbu Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shaoting Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ming Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Liangying Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shidong Xu
- Department of Oncology, School of Medicine, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ahmad Nasimian
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Shujing Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Department of Pediatrics, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Sien Zhao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xu Cao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jinhai Tian
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Yu
- Department of Emergency, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhaoyang Fan
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Kun Xiao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, Ministry of Education, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Julhash U Kazi
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Lijun Ma
- Department of Oncology, School of Medicine, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianmin Sun
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
19
|
Almási S, Nagy Á, Krenács T, Lantos T, Zombori T, Cserni G. The prognostic value of stem cell markers in triple-negative breast cancer. Pathol Oncol Res 2023; 29:1611365. [PMID: 38188613 PMCID: PMC10766821 DOI: 10.3389/pore.2023.1611365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
Among the many consecutive theories of cancer, the stem cell theory is currently the most accepted one. Cancer stem cells are located in small niches with specific environment, renew themselves and are believed to be responsible for many recurrences. They can be highlighted with stem cell markers, but often these markers also label tumor cells, and this may represent a phenotypical change associated with prognosis. In this study, we attempted to match tumor outcomes with the expression of the following stem cell markers: ALDH1, AnnexinA1, CD44, CD117, CD166, Nanog and oct-4. Tissue microarray blocks from triple-negative breast cancers were immunostained for the listed markers, and their expression by the majority of tumor cells (diffuse positivity) was correlated with prognosis. Of the 106 tumors investigated, diffuse positivity was seen in 7 (ALDH1), 33 (AnnexinA1), 53 (CD44), 44 (CD117 membranous only), 49 (CD117), 72 (CD166), 19 (Nanog), and 11 (oct-4) cases. With a median follow-up of 83 months, ALDH1 and CD117 expression was associated with DFS, whereas CD44, CD117 and CD166 were associated with OS estimates, based on Kaplan-Meier analyses. In the multivariate Cox proportional hazard models (including the examined markers and clinicopathological data which had a statistical impact in the univariate analysis), the pN category and the lack of ALDH1 expression were independent prognosticators for DFS, and the pN category and diffuse CD44 staining were independent prognosticators for OS. In the multivariate analysis including all of the examined clinicopathological data and markers, only CD117 showed a statistical impact on OS. We failed to demonstrate a prognostic impact for most stem cell markers tested in triple-negative breast cancer, but lack of ALDH1 staining and CD44 expression appears as of prognostic value, requiring further examination in independent studies.
Collapse
Affiliation(s)
- Szintia Almási
- Department of Pathology, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Ágnes Nagy
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Krenács
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Lantos
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Tamás Zombori
- Department of Pathology, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Gábor Cserni
- Department of Pathology, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
- Department of Pathology, Bács-Kiskun County Teaching Hospital, Kecskemét, Hungary
| |
Collapse
|
20
|
Tatar C, Avci CB, Acikgoz E, Oktem G. Doxorubicin-induced senescence promotes resistance to cell death by modulating genes associated with apoptotic and necrotic pathways in prostate cancer DU145 CD133 +/CD44 + cells. Biochem Biophys Res Commun 2023; 680:194-210. [PMID: 37748252 DOI: 10.1016/j.bbrc.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Cancer stem cells (CSCs) are the most important cause of cancer treatment failure. Traditional cancer treatments, such as chemotherapy and radiotherapy, damage healthy cells alongside malignant cells, leading to severe adverse effects. Therefore, inducing cellular senescence without triggering apoptosis, which further damages healthy cells, may be an alternative strategy. However, there is insufficient knowledge regarding senescence induction in CSCs that show resistance to treatment and stemness properties. The present study aims to elucidate the effects of senescence induction on proliferation, cell cycle, and apoptosis in prostate CSCs and non-CSCs. Prostate CSCs were isolated from DU145 cancer cells using the FACS method. Subsequently, senescence induction was performed in RWPE-1, DU145, prostate CSCs, and non-CSCs by using different concentrations of Doxorubicin (DOX). Cellular senescence was detected using the senescence markers SA-β-gal, Ki67, and senescence-associated heterochromatin foci (SAHF). The effects of senescence on cell cycle and apoptosis were evaluated using the Muse Cell Analyzer, and genes in signaling pathways associated with the apoptotic/necrotic pathway were analyzed by real-time PCR. Prostate CSCs were isolated with 95.6 ± 1.4% purity according to CD133+/CD44+ characteristics, and spheroid formation belonging to stem cells was observed. After DOX-induced senescence, we observed morphological changes, SA-β-gal positivity, SAHF, and the lack of Ki67 in senescent cells. Furthermore; we detected G2/M cell cycle arrest and downregulation of various apoptosis-related genes in senescent prostate CSCs. Our results showed that DOX is a potent inducer of senescence for prostate CSCs, inhibits proliferation by arresting the cell cycle, and senescent prostate CSCs develop resistance to apoptosis.
Collapse
Affiliation(s)
- Cansu Tatar
- Department of Stem Cell, Institute of Health Science, Ege University, 35100, Izmir, Turkey.
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, 65080, Turkey.
| | - Gulperi Oktem
- Department of Stem Cell, Institute of Health Science, Ege University, 35100, Izmir, Turkey; Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
| |
Collapse
|
21
|
Molstad AJ, Patra RK. Dimension reduction for integrative survival analysis. Biometrics 2023; 79:1610-1623. [PMID: 35964256 DOI: 10.1111/biom.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
Abstract
We propose a constrained maximum partial likelihood estimator for dimension reduction in integrative (e.g., pan-cancer) survival analysis with high-dimensional predictors. We assume that for each population in the study, the hazard function follows a distinct Cox proportional hazards model. To borrow information across populations, we assume that each of the hazard functions depend only on a small number of linear combinations of the predictors (i.e., "factors"). We estimate these linear combinations using an algorithm based on "distance-to-set" penalties. This allows us to impose both low-rankness and sparsity on the regression coefficient matrix estimator. We derive asymptotic results that reveal that our estimator is more efficient than fitting a separate proportional hazards model for each population. Numerical experiments suggest that our method outperforms competitors under various data generating models. We use our method to perform a pan-cancer survival analysis relating protein expression to survival across 18 distinct cancer types. Our approach identifies six linear combinations, depending on only 20 proteins, which explain survival across the cancer types. Finally, to validate our fitted model, we show that our estimated factors can lead to better prediction than competitors on four external datasets.
Collapse
Affiliation(s)
- Aaron J Molstad
- Department of Statistics and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Rohit K Patra
- Department of Statistics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
22
|
Xiong Y, Taleb M, Misawa K, Hou Z, Banerjee S, Amador-Molina A, Jones DR, Chintala NK, Adusumilli PS. c-Kit signaling potentiates CAR T cell efficacy in solid tumors by CD28- and IL-2-independent co-stimulation. NATURE CANCER 2023; 4:1001-1015. [PMID: 37336986 PMCID: PMC10765546 DOI: 10.1038/s43018-023-00573-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/08/2023] [Indexed: 06/21/2023]
Abstract
The limited efficacy of chimeric antigen receptor (CAR) T cell therapy for solid tumors necessitates engineering strategies that promote functional persistence in an immunosuppressive environment. Herein, we use c-Kit signaling, a physiological pathway associated with stemness in hematopoietic progenitor cells (T cells lose expression of c-Kit during differentiation). CAR T cells with intracellular expression, but no cell-surface receptor expression, of the c-Kit D816V mutation (KITv) have upregulated STAT phosphorylation, antigen activation-dependent proliferation and CD28- and interleukin-2-independent and interferon-γ-mediated co-stimulation, augmenting the cytotoxicity of first-generation CAR T cells. This translates to enhanced survival, including in transforming growth factor-β-rich and low-antigen-expressing solid tumor models. KITv CAR T cells have equivalent or better in vivo efficacy than second-generation CAR T cells and are susceptible to tyrosine kinase inhibitors (safety switch). When combined with CD28 co-stimulation, KITv co-stimulation functions as a third signal, enhancing efficacy and providing a potent approach to treat solid tumors.
Collapse
Affiliation(s)
- Yuquan Xiong
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meriem Taleb
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kyohei Misawa
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhaohua Hou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Srijita Banerjee
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alfredo Amador-Molina
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Navin K Chintala
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
23
|
Fanlo L, Gómez-González S, Rozalén C, Pérez-Núñez I, Sangrador I, Tomás-Daza L, Gautier EL, Usieto S, Rebollo E, Vila-Ubach M, Carcaboso AM, Javierre BM, Celià-Terrassa T, Lavarino C, Martí E, Le Dréau G. Neural crest-related NXPH1/α-NRXN signaling opposes neuroblastoma malignancy by inhibiting organotropic metastasis. Oncogene 2023:10.1038/s41388-023-02742-2. [PMID: 37301928 DOI: 10.1038/s41388-023-02742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Neuroblastoma is a pediatric cancer that can present as low- or high-risk tumors (LR-NBs and HR-NBs), the latter group showing poor prognosis due to metastasis and strong resistance to current therapy. Whether LR-NBs and HR-NBs differ in the way they exploit the transcriptional program underlying their neural crest, sympatho-adrenal origin remains unclear. Here, we identified the transcriptional signature distinguishing LR-NBs from HR-NBs, which consists mainly of genes that belong to the core sympatho-adrenal developmental program and are associated with favorable patient prognosis and with diminished disease progression. Gain- and loss-of-function experiments revealed that the top candidate gene of this signature, Neurexophilin-1 (NXPH1), has a dual impact on NB cell behavior in vivo: whereas NXPH1 and its receptor α-NRXN1 promote NB tumor growth by stimulating cell proliferation, they conversely inhibit organotropic colonization and metastasis. As suggested by RNA-seq analyses, these effects might result from the ability of NXPH1/α-NRXN signalling to restrain the conversion of NB cells from an adrenergic state to a mesenchymal one. Our findings thus uncover a transcriptional module of the sympatho-adrenal program that opposes neuroblastoma malignancy by impeding metastasis, and pinpoint NXPH1/α-NRXN signaling as a promising target to treat HR-NBs.
Collapse
Affiliation(s)
- Lucía Fanlo
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028, Barcelona, Spain
| | - Soledad Gómez-González
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Catalina Rozalén
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003, Barcelona, Spain
| | - Iván Pérez-Núñez
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003, Barcelona, Spain
| | - Irene Sangrador
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003, Barcelona, Spain
| | | | - Emmanuel L Gautier
- Institut National de la Santé et de la Recherche Médicale (Inserm, UMR_S 1166), Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Susana Usieto
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028, Barcelona, Spain
| | - Elena Rebollo
- Molecular Imaging Platform, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028, Barcelona, Spain
| | - Mònica Vila-Ubach
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Angel M Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Biola M Javierre
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Spain
| | - Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003, Barcelona, Spain
| | - Cinzia Lavarino
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Elisa Martí
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028, Barcelona, Spain
| | - Gwenvael Le Dréau
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri Reixac 10-15, 08028, Barcelona, Spain.
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
| |
Collapse
|
24
|
Yehya A, Youssef J, Hachem S, Ismael J, Abou-Kheir W. Tissue-specific cancer stem/progenitor cells: Therapeutic implications. World J Stem Cells 2023; 15:323-341. [PMID: 37342220 PMCID: PMC10277968 DOI: 10.4252/wjsc.v15.i5.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/26/2023] Open
Abstract
Surgical resection, chemotherapy, and radiation are the standard therapeutic modalities for treating cancer. These approaches are intended to target the more mature and rapidly dividing cancer cells. However, they spare the relatively quiescent and intrinsically resistant cancer stem cells (CSCs) subpopulation residing within the tumor tissue. Thus, a temporary eradication is achieved and the tumor bulk tends to revert supported by CSCs' resistant features. Based on their unique expression profile, the identification, isolation, and selective targeting of CSCs hold great promise for challenging treatment failure and reducing the risk of cancer recurrence. Yet, targeting CSCs is limited mainly by the irrelevance of the utilized cancer models. A new era of targeted and personalized anti-cancer therapies has been developed with cancer patient-derived organoids (PDOs) as a tool for establishing pre-clinical tumor models. Herein, we discuss the updated and presently available tissue-specific CSC markers in five highly occurring solid tumors. Additionally, we highlight the advantage and relevance of the three-dimensional PDOs culture model as a platform for modeling cancer, evaluating the efficacy of CSC-based therapeutics, and predicting drug response in cancer patients.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Joe Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Sana Hachem
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jana Ismael
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon.
| |
Collapse
|
25
|
Jang A, Lanka SM, Huang M, Casado CV, Caputo SA, Sweeney PL, Gupta K, Pocha O, Habibian N, Hawkins ME, Lieberman AD, Schwartz J, Jaeger EB, Miller PJ, Layton JL, Barata PC, Lewis BE, Ledet EM, Sartor O. Comparison of circulating tumor DNA between African American and Caucasian patients with metastatic castrate-resistant prostate cancer post-abiraterone and/or enzalutamide. Prostate 2023. [PMID: 37113064 DOI: 10.1002/pros.24544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/18/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND African American men are much more likely than Caucasian men to be diagnosed with and to die of prostate cancer. Genetic differences likely play a role. The cBioPortal database reveals that African American men with prostate cancer have higher rates of CDK12 somatic mutations compared to Caucasian men. However, this does not account for prior prostate cancer treatments, which are particularly important in the castrate-resistant setting. We aimed to compare somatic mutations based on circulating tumor DNA (ctDNA) in metastatic castration-resistant prostate cancer (mCRPC) between African American and Caucasian men after exposure to abiraterone and/or enzalutamide. METHODS This single-institution retrospective study characterizes the somatic mutations detected on ctDNA for African American and Caucasian men with mCRPC who had progressed after abiraterone and/or enzalutamide from 2015 through 2022. We evaluated the gene mutations and types of mutations in this mCRPC cohort. RESULTS There were 50 African American and 200 Caucasian men with CRPC with available ctDNA data. African American men were younger at the time of diagnosis (p = 0.008) and development of castration resistance (p = 0.006). African American men were more likely than Caucasian men to have pathogenic/likely pathogenic (P/LP) mutations in CDK12 (12% vs. 1.5%; p = 0.003) and copy number amplifications and P/LP mutations in KIT (8.0% vs. 1.5%; p = 0.031). African American men were also significantly more likely to have frameshift mutations (28% vs. 14%; p = 0.035). CONCLUSIONS Compared to Caucasian men, African American men with mCRPC after exposure to abiraterone and/or enzalutamide had a higher incidence of somatic CDK12 P/LP mutations and KIT amplifications and P/LP mutations based on ctDNA. African American men also had more frameshift mutations. We hypothesize that these findings have potential implications for tumor immunogenicity.
Collapse
Affiliation(s)
- Albert Jang
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Sree M Lanka
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Minqi Huang
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Crystal V Casado
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Sydney A Caputo
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Patrick L Sweeney
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Kanika Gupta
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Olivia Pocha
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | - Madeline E Hawkins
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Alexandra D Lieberman
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jennifer Schwartz
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Ellen B Jaeger
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Patrick J Miller
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jodi L Layton
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Pedro C Barata
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Brian E Lewis
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elisa M Ledet
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Oliver Sartor
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
26
|
Fan Z, Zhang L, Zhang S, Liu A, Li S, Cao X, Tian J, Zhao S, Sun J. Farnesyltransferase (FTase) Inhibitors Increase Inhibition of KIT Mutants by Imatinib. Rep Biochem Mol Biol 2023; 12:74-82. [PMID: 37724142 PMCID: PMC10505455 DOI: 10.52547/rbmb.12.1.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/19/2022] [Indexed: 09/20/2023]
Abstract
Background Mutations in the receptor tyrosine kinase KIT are the major cause of gastrointestinal stromal tumors. KIT-mediated activation of the RAS/RAF/MEK/ERK and PI3 kinase/AKT pathways plays an important role in KIT mutant-mediated cell transformation. Methods The frequently seen primary KIT mutations W557K558del and V560D, and the secondary KIT mutations V654A and N822K, in gastrointestinal stromal tumors were stably transfected into Ba/F3 cells. Cell proliferation was examined with a CCK kit, and cell survival and cell cycle were examined by flow cytometry. Cell signaling was examined by western blot. Results We found that farnesyltransferase inhibitors tipifarnib and lonafarnib, which inhibit RAS activity, inhibited ERK activation mediated by both wild-type and KIT mutants, which often occur in gastrointestinal stromal tumors. Correspondingly, both wild-type and KIT mutant-mediated cell survival and proliferation were inhibited by both inhibitors. Imatinib is used as the first-line targeted therapy for gastrointestinal stromal tumors in the clinic. In our study, both inhibitors increased imatinib-mediated inhibition of cell survival and proliferation induced by both wild-type and KIT mutants. Similar to the primary KIT mutations, secondary mutations of KIT-induced ERK activation and cell response were inhibited by both inhibitors. Conclusions Our results suggested the potential benefit of farnesyltransferase inhibitors either alone or combined with imatinib in the treatment of gastrointestinal stromal tumors carrying KIT mutations.
Collapse
Affiliation(s)
- Zhaoyang Fan
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medicine, Ningxia Medical University, Yinchuan, China.
| | - Liangying Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medicine, Ningxia Medical University, Yinchuan, China.
| | - Shaoting Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medicine, Ningxia Medical University, Yinchuan, China.
| | - Anbu Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medicine, Ningxia Medical University, Yinchuan, China.
| | - Shujing Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medicine, Ningxia Medical University, Yinchuan, China.
- General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Xu Cao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medicine, Ningxia Medical University, Yinchuan, China.
| | - Jinhai Tian
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medicine, Ningxia Medical University, Yinchuan, China.
- General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Sien Zhao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medicine, Ningxia Medical University, Yinchuan, China.
| | - Jianmin Sun
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medicine, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
27
|
Ruseva M, Parvanov D, Ganeva R, Handzhiyska M, Vidolova N, Metodiev D, Stamenov G. NOTCH1- and CD117-positive stem cells in human endometrium and their implications for successful implantation. F&S SCIENCE 2023; 4:133-140. [PMID: 36754210 DOI: 10.1016/j.xfss.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
OBJECTIVE To investigate the quantity of 2 stem cell types in the endometrial stroma of women undergoing in vitro fertilization and their association with steroid hormone signaling and implantation success after embryo transfer. DESIGN Prospective cohort study. SETTING Private hospital. PATIENT(S) A total of 109 patients undergoing in vitro fertilization. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) Immunohistochemistry staining of endometrial biopsies taken during the midluteal phase using antibodies against NOTCH1 and CD117 was performed. The percentage of endometrial stromal cells positive for these markers was determined. The link of these stem cell percentages with the serum progesterone and estradiol levels and the endometrial expression of their respective receptors were assessed. After embryo transfer, the quantity of stained cells for each marker was also compared according to implantation outcome. RESULT(S) The percentage of NOTCH1+ stromal cells ranged from 0.003%-2.112% (median, 0.062%) and was significantly higher than that of CD117+ cells, which ranged from 0.000%-0.210% (median, 0.020%) (Z = -7.035). The percentage of NOTCH1+ stem cells showed no difference between the studied serum hormone level groups and no relationship with the expression of their receptors in the endometrium. In contrast, the number of CD117+ cells significantly differed between patients with high and low levels of serum progesterone (cutoff, 14.9 ng/mL) and estradiol (cutoff, 135.6 pg/mL). Furthermore, the quantity of CD117+ stem cells was positively correlated with the progesterone receptor (R = 0.277) and estradiol receptor (R= 0.318) expression levels in the endometrium. Although the quantity of NOTCH1+ cells did not differ between the 2 implantation groups, the median percentage of CD117+ cells was significantly higher in patients with successful implantation than in those with unsuccessful implantation (0.03% vs. 0.01%, respectively). The cutoff value for the percentage of CD117+ cells predicting successful implantation was 0.018% (area under the curve, 0.66; 95% confidence interval, 0.56-0.77; sensitivity, 63.1%; specificity, 61.4%). CONCLUSION(S) This study indicates that the quantity of certain stem cell types (CD117+), but not others (NOTCH1+), in the functional endometrium is associated with implantation success and sex hormone signaling during the midluteal phase. These findings highlight the role of CD117+ cells in preparing the endometrium for embryo implantation, and their quantity may be an indirect indicator of endometrial receptivity.
Collapse
Affiliation(s)
- Margarita Ruseva
- Research Department, Nadezhda Women's Health Hospital, Sofia, Bulgaria.
| | - Dimitar Parvanov
- Research Department, Nadezhda Women's Health Hospital, Sofia, Bulgaria
| | - Rumiana Ganeva
- Research Department, Nadezhda Women's Health Hospital, Sofia, Bulgaria
| | - Maria Handzhiyska
- Research Department, Nadezhda Women's Health Hospital, Sofia, Bulgaria
| | - Nina Vidolova
- Research Department, Nadezhda Women's Health Hospital, Sofia, Bulgaria
| | - Dimitar Metodiev
- Pathology Department, Nadezhda Women's Health Hospital, Sofia, Bulgaria
| | - Georgi Stamenov
- Obstetrics and Gynecology Department, Nadezhda Women's Health Hospital, Sofia, Bulgaria
| |
Collapse
|
28
|
Wang Z, Zhang XC, Feng WN, Zhang L, Liu XQ, Guo WB, Deng YM, Zou QF, Yang JJ, Zhou Q, Wang BC, Chen HJ, Tu HY, Yan HH, Wu YL. Circulating tumor cells dynamics during chemotherapy predict survival and response in advanced non-small-cell lung cancer patients. Ther Adv Med Oncol 2023; 15:17588359231167818. [PMID: 37113733 PMCID: PMC10126699 DOI: 10.1177/17588359231167818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Background Circulating tumor cells (CTCs) are prognostic biomarker in non-small-cell lung cancer (NSCLC). CTCs could also be used as predictor of efficacy of systemic treatments in advanced NSCLC. Objectives We described the dynamic changes of CTCs during first-line platinum-based chemotherapy in advanced NSCLC and clarified the correlation between CTC counts and efficacy of chemotherapy. Design Chemotherapy is administered and blood specimens are collected at four time points from baseline to disease progression for CTC detection. Methods This multicenter prospective study enrolled patients with previously untreated stage III or IV NSCLC fit for standard platinum-based chemotherapy. Bloods were sampled as per standard operating procedures at baseline, cycle 1 and cycle 4 of chemotherapy, and at disease progression for CTC analysis using the CellSearch system. Results Among 150 patients enrolled, median overall survival (OS) was 13.8, 8.4, and 7.9 months in patients with CTC-, KIT-CTC, and KIT+CTC at baseline (p = 0.002). Patients with persistent negative CTC (46.0%) had longer progression-free survival [5.7 months, 95% confidence interval (CI): 5.0-6.5 versus 3.0 months, 0.6-5.4; hazard ratio (HR): 0.34, 95% CI: 0.18-0.67) and OS (13.1 months, 10.9-15.3 versus 5.6 months, 4.1-7.1; HR: 0.17, 0.08-0.36) compared with patients with persistent positive CTC (10.7%), which was not impacted by chemotherapy. Chemotherapy decreased CTC from 36.0% (54/150) to 13.7% (13/95). Conclusions CTC persistent presence during treatment represents poor prognosis and resistance to chemotherapy in advanced NSCLC. Chemotherapy could effectively eliminate CTCs. Molecular characterization and the functionalization of CTC will be warranted for further intensive investigation. Trial registration NCT01740804.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Cancer Center, Sun Yat-sen University, Guangzhou, China
| | | | - Wei-Bang Guo
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yan-Ming Deng
- The First People’s Hospital of Foshan, Foshan, China
| | - Qing-Feng Zou
- Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bin-Chao Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | | | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Rd, Guangzhou 510080, China
| |
Collapse
|
29
|
Shnaider PV, Petrushanko IY, Aleshikova OI, Babaeva NA, Ashrafyan LA, Borovkova EI, Dobrokhotova JE, Borovkov IM, Shender VO, Khomyakova E. Expression level of CD117 (KIT) on ovarian cancer extracellular vesicles correlates with tumor aggressiveness. Front Cell Dev Biol 2023; 11:1057484. [PMID: 36875773 PMCID: PMC9978408 DOI: 10.3389/fcell.2023.1057484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Ovarian cancer is known to be the most lethal malignancy among all gynecological cancers affecting a large number of women worldwide. The treatment of ovarian cancer is challenging due to the high recurrence rate of the disease and is further complicated by acquired chemoresistance. Most ovarian cancer deaths are the result of the metastatic spread of drug-resistant cells. The theory of cancer stem cells (CSC) suggests that both tumor initiation and progression are driven by a population of undifferentiated capable of self-renewal, tumor initiation and development of chemoresistance. The CD117 mast/stem cell growth factor receptor (KIT) is the most commonly used marker for ovarian CSCs. Here, we analyze the correlation between CD117 expression and histological tumor type in ovarian cancer cell lines (SK-OV-3 and MES-OV) and in small/medium extracellular vesicles (EVs) isolated from the urine of ovarian cancer patients. We have demonstrated that the abundance of CD117 on cells and EVs is correlated with tumor grade and therapy resistance status. Moreover, using small EVs isolated from ovarian cancer ascites, it was shown that recurrent disease is characterized by a much higher abundance of CD117 on EVs than primary tumor.
Collapse
Affiliation(s)
- Polina V Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Laboratory of Molecular Oncology, Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga I Aleshikova
- National Medical Scientific Centre of Obstetrics, Gynaecology and Perinatal Medicine named after V.I. Kulakov, Moscow, Russia
| | - Nataliya A Babaeva
- National Medical Scientific Centre of Obstetrics, Gynaecology and Perinatal Medicine named after V.I. Kulakov, Moscow, Russia
| | - Lev A Ashrafyan
- National Medical Scientific Centre of Obstetrics, Gynaecology and Perinatal Medicine named after V.I. Kulakov, Moscow, Russia
| | - Ekaterina I Borovkova
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Julia E Dobrokhotova
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan M Borovkov
- Department of Oncology and Hematology, RUDN University, Moscow, Russia
| | - Victoria O Shender
- Laboratory of Molecular Oncology, Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, Russia.,Laboratory of Molecular Oncology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
30
|
Targeting EZH2 Promotes Chemosensitivity of BCL-2 Inhibitor through Suppressing PI3K and c-KIT Signaling in Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms231911393. [PMID: 36232694 PMCID: PMC9569949 DOI: 10.3390/ijms231911393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematological malignancies with high heterogeneity, characterized by a differentiating block at the early progenitor stage. The selective BCL-2 inhibitor, Venetoclax (Ven), has shown exciting clinical results in a certain group of AML patients. However, Ven alone is insufficient to reach an enduringly complete response, which leads to the concern of Ven resistance. Alternative combined therapies with Ven are demanded in AML. Here, we reported the synergistic effect and molecular mechanism of the enhancer of zeste homolog 2 (EZH2) inhibitor DZNeP with Ven in AML cells. Results showed that the combination of DZNeP with Ven significantly induces cell proliferation arrest compared to single-drug control in AML cells and primary samples, and CalcuSyn analysis showed their significant synergy. The combination also significantly promotes apoptosis and increases the expression of pro-apoptotic proteins. The whole transcriptome analysis showed that phosphoinositide-3-kinase-interacting protein1 (PIK3IP1), the PI3K/AKT/mTOR signaling suppressor, is upregulated upon DZNeP treatment. Moreover, EZH2 is upregulated but PIK3IP1 is downregulated in 88 newly diagnosed AML cohorts compared to 70 healthy controls, and a higher expression of EZH2 is associated with poor outcomes in AML patients. Particularly, the combination of DZNeP with Ven dramatically eliminated CD117 (c-KIT) (+) AML blasts, suggesting the effect of the combination on tumor stem cells. In summary, our data indicated that DZNeP increases the sensitivity of Ven in AML by affecting PI3K and c-KIT signaling in AML. Our results also suggested that the therapeutic targeting of both EZH2 and BCL-2 provides a novel potential combined strategy against AML.
Collapse
|
31
|
Chen S, Huang W, Liu Z, Jin M, Li J, Meng L, Li T, Diao Y, Gao H, Hong C, Zheng J, Li F, Zhang Y, Bi D, Teng L, Li X. Identification of nine mutant genes and establishment of three prediction models of organ tropism metastases of non-small cell lung cancer. Cancer Med 2022; 12:3089-3100. [PMID: 36161776 PMCID: PMC9939125 DOI: 10.1002/cam4.5233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Most Non-small cell lung cancer (NSCLC) patients tend to have metastases at the initial diagnosis. However, limited knowledge has been established regarding which factors, are associated with its metastases. This study aims to identify more biomarkers associated with its organ tropism metastasis and to establish models for prediction of its metastatic organs. METHODS We performed targeted next-generation sequencing (NGS) to detect genes related to lung cancer in 272 patients with primary advanced NSCLC from Northeast China. We adopted Fisher test, multivariate logistic regression analysis to identify metastasis-related gene mutations and to establish prediction models. RESULTS Mutations of EGFR (p = 0.0003, OR = 2.554) (especially EGFR L858R [p = 0.02, OR = 2.009]), ATM (p = 0.008, OR = 11.032), and JAK2 (p = 0.009, OR = Inf) were positively and of TP53 exon4mut (p = 0.001, OR = 0.173) was negatively correlated with lung metastasis, and those of CSF1R (p = 0.01, OR = Inf), KIT (p = 0.03, OR = 4.746), MYC (p = 0.05, OR = 7.938), and ERBB2 (p = 0.02, OR = 2.666) were positively correlated with pleural dissemination; those of TP53 (p = 0.01, OR = 0.417) was negatively, while of SMAD4 (p = 0.03, OR = 4.957) was positively correlated with brain metastasis of NSCLC. Additionally, smoking history (p = 0.004, OR = 0.004) was negatively correlated with pleural dissemination of NSCLC. Furthermore, models for prediction of lung metastasis (AUC = 0.706), pleural dissemination (AUC = 0.651), and brane metastasis (AUC = 0.629) were established. CONCLUSION Taken together, this study revealed nine mutant genes and smoking history associated with organ tropism metastases of NSCLC and provided three models for the prediction of metastatic organs. This study enables us to predict the organs to which non-small cell lung cancer metastasizes before it does develop.
Collapse
Affiliation(s)
- Shuchen Chen
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Wanyi Huang
- School and Hospital of StomatologyChina Medical University, Liaoning Provincial Key Laboratory of Oral DiseasesShenyangChina,Department of Aging Science and Pharmacology, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Zhenzhen Liu
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Meizi Jin
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Jielin Li
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Lihui Meng
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Ting Li
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Yuzhu Diao
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Hong Gao
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Chengyu Hong
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Jian Zheng
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Fei Li
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| | - Yue Zhang
- Hangzhou Jichenjunchuang Medical Laboratory Co. Ltd.HangzhouChina
| | - Dan Bi
- Hangzhou Jichenjunchuang Medical Laboratory Co. Ltd.HangzhouChina
| | - Lin Teng
- Hangzhou Jichenjunchuang Medical Laboratory Co. Ltd.HangzhouChina
| | - Xiaoling Li
- Department of Thoracic Medicine, Cancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangChina
| |
Collapse
|
32
|
Fernandes GMDM, Serafim Junior V, Galbiatti-Dias ALS, Ferreira LAM, Castanhole-Nunes MMU, Kawasaki-Oyama RS, Maniglia JV, Pavarino EC, Goloni-Bertollo EM. Treatment effects of the EGFR pathway drugs on head and neck cancer stem cells. Am J Cancer Res 2022; 12:4196-4210. [PMID: 36225637 PMCID: PMC9548020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023] Open
Abstract
(1) Head and neck cancer (HNC) is the sixth most common cancer worldwide and show low survival rates and drug resistance, which can be due to the presence of cancer stem cells (CSCs), a small cell population with metastatic potential, invasion and self-renewal ability. (2) Here, seven tumor cells were sorted as CD44+/CD117+/CD133+ or ALDH+, considered as HNC stem cells (HNCSCs), and as CD44-/CD117-/CD133- or ALDH-, considered non-HNCSCs after both cells sorted criteria was compared to evaluate cell migration, invasion, and colony forming assays. These subpopulations were treated with Cetuximab, Paclitaxel, or a combination of both drugs and evaluated for cell viability. Quantitative PCR and western blot were performed to evaluate EGFR, TRKB, KRAS and HIF-1α gene and protein expression. (3) HNCSCs presented more colonies and appeared to be more sensitive to the drug combination when compared with non-HNCSCs, regardless cells sorted criteria and primary tumor subsite. The EGFR, TRKB, KRAS and HIF-1α genes and proteins were upregulated in CSCs compared with non-HNCSCs, thus explaining the drug resistance. (4) This study contributes to the better development of specific therapeutic protocols based on Cetuximab and Paclitaxel drugs in the treatment of HNC in the presence of CSCs and cell proliferation biomarkers.
Collapse
Affiliation(s)
- Glaucia Maria de Mendonça Fernandes
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Vilson Serafim Junior
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Ana Lívia Silva Galbiatti-Dias
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Leticia Antunes Muniz Ferreira
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Márcia Maria Urbanin Castanhole-Nunes
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Rosa Sayoko Kawasaki-Oyama
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - José Victor Maniglia
- Department of Otolaryngology and Head and Neck Surgery, Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Erika Cristina Pavarino
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Eny Maria Goloni-Bertollo
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
33
|
Funkhouser AT, Strigenz AM, Blair BB, Miller AP, Shealy JC, Ewing JA, Martin JC, Funk CR, Edenfield WJ, Blenda AV. KIT Mutations Correlate with Higher Galectin Levels and Brain Metastasis in Breast and Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14112781. [PMID: 35681762 PMCID: PMC9179545 DOI: 10.3390/cancers14112781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
To investigate a potential role for galectins as biomarkers that enable diagnosis or prognostication of breast or non-small cell lung cancer, the serum levels of galectins -1, -3, -7, -8, and -9 of cancer patients determined by ELISA assays were compared to the mutation status of 50 known cancer-critical genes, which were determined using multiplex PCR in tumors of the same patients. Mutations in the KIT proto-oncogene, which codes for the c-Kit protein, a receptor tyrosine kinase, correlated with higher levels of galectins -1, -3, -8, and -9 in breast cancer patients and galectin-1 in non-small cell lung cancer patients. Mutations in the KIT gene were more likely found in brain metastases from both of these primary cancers. The most common KIT mutation in our panel was p.M541L, a missense mutation in the transmembrane domain of the c-Kit protein. These results demonstrate an association between KIT oncogenic signaling and elevated serum galectins in patients with metastatic disease. Changes in protein trafficking and the glycocalyx composition of cancer cells may explain the observed alterations in galectin expression. This study can be useful for the targeted selection of receptor tyrosine kinase and galectin inhibitor anti-cancer treatments.
Collapse
Affiliation(s)
- Avery T Funkhouser
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Alexander M Strigenz
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Bailey B Blair
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Andrew P Miller
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Jonah C Shealy
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Joseph A Ewing
- Data Support Core, Prisma Health, Greenville, SC 29605, USA
| | - Julie C Martin
- Prisma Health Cancer Institute, Prisma Health, Greenville, SC 29605, USA
| | - Christopher R Funk
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Anna V Blenda
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
- Prisma Health Cancer Institute, Prisma Health, Greenville, SC 29605, USA
| |
Collapse
|
34
|
Vignjević Petrinović S, Jauković A, Milošević M, Bugarski D, Budeč M. Targeting Stress Erythropoiesis Pathways in Cancer. Front Physiol 2022; 13:844042. [PMID: 35694408 PMCID: PMC9174937 DOI: 10.3389/fphys.2022.844042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer-related anemia (CRA) is a common multifactorial disorder that adversely affects the quality of life and overall prognosis in patients with cancer. Safety concerns associated with the most common CRA treatment options, including intravenous iron therapy and erythropoietic-stimulating agents, have often resulted in no or suboptimal anemia management for many cancer patients. Chronic anemia creates a vital need to restore normal erythropoietic output and therefore activates the mechanisms of stress erythropoiesis (SE). A growing body of evidence demonstrates that bone morphogenetic protein 4 (BMP4) signaling, along with glucocorticoids, erythropoietin, stem cell factor, growth differentiation factor 15 (GDF15) and hypoxia-inducible factors, plays a pivotal role in SE. Nevertheless, a chronic state of SE may lead to ineffective erythropoiesis, characterized by the expansion of erythroid progenitor pool, that largely fails to differentiate and give rise to mature red blood cells, further aggravating CRA. In this review, we summarize the current state of knowledge on the emerging roles for stress erythroid progenitors and activated SE pathways in tumor progression, highlighting the urgent need to suppress ineffective erythropoiesis in cancer patients and develop an optimal treatment strategy as well as a personalized approach to CRA management.
Collapse
Affiliation(s)
- Sanja Vignjević Petrinović
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Milošević
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirela Budeč
- Laboratory for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
35
|
Synaptophysin, CD117, and GATA3 as a Diagnostic Immunohistochemical Panel for Small Cell Neuroendocrine Carcinoma of the Urinary Tract. Cancers (Basel) 2022; 14:cancers14102495. [PMID: 35626098 PMCID: PMC9139575 DOI: 10.3390/cancers14102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Although SCNEC is based on its characteristic histology, immunohistochemistry (IHC) is commonly employed to confirm neuroendocrine differentiation (NED). The challenge here is that SCNEC may yield negative results for traditional neuroendocrine markers. To establish an IHC panel for NED, 17 neuronal, basal, and luminal markers were examined on a tissue microarray construct generated from 47 cases of 34 patients with SCNEC as a discovery cohort. A decision tree algorithm was employed to analyze the extent and intensity of immunoreactivity and to develop a diagnostic model. An external cohort of eight cases and transmission electron microscopy (TEM) were used to validate the model. Among the 17 markers, the decision tree diagnostic model selected 3 markers to classify NED with 98.4% accuracy in classification. The extent of synaptophysin (>5%) was selected as the initial parameter, the extent of CD117 (>20%) as the second, and then the intensity of GATA3 (≤1.5, negative or weak immunoreactivity) as the third for NED. The importance of each variable was 0.758, 0.213, and 0.029, respectively. The model was validated by the TEM and using the external cohort. The decision tree model using synaptophysin, CD117, and GATA3 may help confirm NED of traditional marker-negative SCNEC.
Collapse
|
36
|
Maghrabi M, Farag DA, Shakweer M, Negm M, El-Sissy NA. Immunohistochemical Study of Cancer Stem Cell marker, Tight Junction Protein, and Lymphatic Density in Malignant Salivary Gland Tumors. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: CD117/c-kit, is a powerful stem cell marker for malignant salivary gland tumors in which dysregulation of c-kit is closely associated with impairment of cell adhesion molecules and cancer metastasis.
Objective: The main purpose of this work is to evaluate the immunohistochemical expression of c-kit, and claudin-1 and measure the density of lymph vessels (LVD) in common malignant salivary gland tumors by using podoplanin (D2-40) antibody.
Materials and Methods: Immunohistochemical staining with streptavidin peroxidase was used to analysis the expression of c-kit, claudin-1 and stained podoplanin (D2-40) lymphatic vessels on fifty archival paraffin blocks of malignant salivary gland tumor (MSGTs) cases included 20 cases of AdCC, 11 cases of MEC, 10 cases of CXPA, 6 cases of AcCC, and 3 cases of PAC.
Results: The immunopositivity of c-kit (CD117) was detected in 44/50 (88%) of studied cases, whereas, claudin-1 protein was observed in 35 (70%) of our specimens of MSGTs. Count down of stained lymph vessels between examined cases was, MEC on the top, followed by CXPA, AdCC, PAC and AcCC. A direct correlation was observed between c-kit and lymphatic density, on the other hand, the inverse correlation was found d between c-kit and cld-1, as well as, between cld-1 and lymphatic density
Conclusion: Up regulation of cancer stem cell marker c-kit (CD117) expression is associated with decrease of tight junction protein cld-1 and increase the density of stained lymphatic vessels by podoplanin (D2-40) antibody which confirms the using of c-kit inhibitor to improve treatment strategy of malignant salivary gland tumors.
Collapse
|
37
|
Foster BM, Shi L, Harris KS, Patel C, Surratt VE, Langsten KL, Kerr BA. Bone Marrow-Derived Stem Cell Factor Regulates Prostate Cancer-Induced Shifts in Pre-Metastatic Niche Composition. Front Oncol 2022; 12:855188. [PMID: 35515124 PMCID: PMC9063312 DOI: 10.3389/fonc.2022.855188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal metastasis is the leading cause of morbidity and mortality in prostate cancer, with 80% of advanced prostate cancer patients developing bone metastases. Before metastasis, bone remodeling occurs, stimulating pre-metastatic niche formation and bone turnover, and platelets govern this process. Stem cell factor (SCF, Kit Ligand) is increased in advanced prostate cancer patient platelet releasates. Further, SCF and its receptor, CD117/c-kit, correlate with metastatic prostate cancer severity. We hypothesized that bone-derived SCF plays an important role in prostate cancer tumor communication with the bone inducing pre-metastatic niche formation. We generated two cell-specific SCF knockout mouse models deleting SCF in either mature osteoblasts or megakaryocytes and platelets. Using two syngeneic androgen-insensitive murine prostate cancer cell lines, RM1 (Ras and Myc co-activation) and mPC3 (Pten and Trp53 deletion), we examined the role of bone marrow-derived SCF in primary tumor growth and bone microenvironment alterations. Platelet-derived SCF was required for mPC3, but not RM1, tumor growth, while osteoblast-derived SCF played no role in tumor size in either cell line. While exogenous SCF induced proangiogenic protein secretion by RM1 and mPC3 prostate cancer cells, no significant changes in tumor angiogenesis were measured by immunohistochemistry. Like our previous studies, tumor-induced bone formation occurred in mice bearing RM1 or mPC3 neoplasms, demonstrated by bone histomorphometry. RM1 tumor-bearing osteoblast SCF knockout mice did not display tumor-induced bone formation. Bone stromal cell composition analysis by flow cytometry showed significant shifts in hematopoietic stem cell (HSC), mesenchymal stem cell (MSC), and osteoblast cell percentages in mice bearing RM1 or mPC3 tumors. There were no significant changes in the percentage of macrophages, osteoclasts, or osteocytes. Our study demonstrates that megakaryocyte/platelet-derived SCF regulates primary mPC3 tumor growth, while SCF originating from osteoblasts plays a role in bone marrow-derived progenitor cell composition and pre-metastatic niche formation. Further, we show that both the source of SCF and the genetic profile of prostate cancer determine the effects of SCF. Thus, targeting the SCF/CD117 signaling axis with tyrosine kinase inhibitors could affect primary prostate carcinomas or play a role in reducing bone metastasis dependent on the gene deletions or mutations driving the patients' prostate cancer.
Collapse
Affiliation(s)
- Brittni M. Foster
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Koran S. Harris
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Chirayu Patel
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Victoria E. Surratt
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kendall L. Langsten
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Bethany A. Kerr
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| |
Collapse
|
38
|
de Toledo MA, Fu X, Kluge F, Götz K, Schmitz S, Wanek P, Schüler HM, Pannen K, Chatain N, Koschmieder S, Brümmendorf TH, Zenke M. CRISPR/Cas9-engineered human ES cells harboring heterozygous and homozygous c-KIT knockout. Stem Cell Res 2022; 60:102732. [DOI: 10.1016/j.scr.2022.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/25/2022] [Indexed: 10/19/2022] Open
|
39
|
Patel C, Shi L, Whitesides JF, Foster BM, Fajardo RJ, Quillen EE, Kerr BA. A New Method of Bone Stromal Cell Characterization by Flow Cytometry. Curr Protoc 2022; 2:e400. [PMID: 35349226 PMCID: PMC8981709 DOI: 10.1002/cpz1.400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The bone microenvironment cellular composition plays an essential role in bone health and is disrupted in bone pathologies, such as osteoporosis, osteoarthritis, and cancer. Flow cytometry protocols for hematopoietic stem cell lineages are well defined and well established. Additionally, a consensus for mesenchymal stem cell flow markers has been developed. However, flow cytometry markers for bone-residing cells-osteoblasts, osteoclasts, and osteocytes-have not been proposed. Here, we describe a novel partial digestion method to separate these cells from the bone matrix and present new markers for enumerating these cells by flow cytometry. We optimized bone digestion and analyzed markers across murine, nonhuman primate, and human bone. The isolation and staining protocols can be used with either cell sorting or flow cytometry. Our method allows for the enumeration and collection of hematopoietic and mesenchymal lineage cells in the bone microenvironment combined with bone-residing stromal cells. Thus, we have established a multi-fluorochrome bone marrow cell-typing methodology. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Partial digestion for murine long bone stromal cell isolation Alternate Protocol 1: Partial digestion for primate vertebrae stromal cell isolation Alternate Protocol 2: Murine vertebrae crushing for bone stromal cell isolation Basic Protocol 2: Staining of bone stromal cells Support Protocol 1: Fluorescence minus one control, isotype control, and antibody titration Basic Protocol 3: Cell sorting of bone stromal cells Alternate Protocol 3: Flow cytometry analysis of bone stromal cells Support Protocol 2: Preparing compensation beads.
Collapse
Affiliation(s)
- Chirayu Patel
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - John F. Whitesides
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Brittni M. Foster
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Roberto J. Fajardo
- University of the Incarnate Word School of Osteopathic Medicine, San Antonio, TX 78235
| | - Ellen E. Quillen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Bethany A. Kerr
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157,Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157,Corresponding Author: Telephone: 336-716-0320; Fax: 336-716-0255; Twitter: @BethanyKerrLab;
| |
Collapse
|
40
|
KIT Expression Is Regulated by DNA Methylation in Uveal Melanoma Tumors. Int J Mol Sci 2021; 22:ijms221910748. [PMID: 34639089 PMCID: PMC8509522 DOI: 10.3390/ijms221910748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Uveal melanoma (UM) is an ocular tumor with a dismal prognosis. Despite the availability of precise molecular and cytogenetic techniques, clinicopathologic features with limited accuracy are widely used to predict metastatic potential. In 51 UM tissues, we assessed a correlation between the expression of nine proteins evaluated by immunohistochemistry (IHC) (Melan-A, S100, HMB45, Cyclin D1, Ki-67, p53, KIT, BCL2, and AIFM1) and the presence of UM-specific chromosomal rearrangements measured by multiplex ligation-dependent probe amplification (MLPA), to find IHC markers with increased prognostic information. Furthermore, mRNA expression and DNA methylation values were extracted from the whole-genome data, achieved by analyzing 22 fresh frozen UM tissues. KIT positivity was associated with monosomy 3, increasing the risk of poor prognosis more than 17-fold (95% CI 1.53–198.69, p = 0.021). A strong negative correlation was identified between mRNA expression and DNA methylation values for 12 of 20 analyzed positions, five located in regulatory regions of the KIT gene (r = −0.658, p = 0.001; r = −0.662, p = 0.001; r = −0.816; p < 0.001; r = −0.689, p = 0.001; r = −0.809, p < 0.001, respectively). DNA methylation β values were also inversely associated with KIT protein expression (p = 0.001; p = 0.001; p = 0.015; p = 0.025; p = 0.002). Our findings, showing epigenetic deregulation of KIT expression, may contribute to understanding the past failure to therapeutically target KIT in UM.
Collapse
|
41
|
Banerjee S, Yoon H, Ting S, Tang CM, Yebra M, Wenzel AT, Yeerna H, Mesirov JP, Wechsler-Reya RJ, Tamayo P, Sicklick JK. KIT low Cells Mediate Imatinib Resistance in Gastrointestinal Stromal Tumor. Mol Cancer Ther 2021; 20:2035-2048. [PMID: 34376580 PMCID: PMC8492542 DOI: 10.1158/1535-7163.mct-20-0973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/06/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
Gastrointestinal stromal tumor (GIST) is commonly driven by oncogenic KIT mutations that are effectively targeted by imatinib (IM), a tyrosine kinase inhibitor (TKI). However, IM does not cure GIST, and adjuvant therapy only delays recurrence in high-risk tumors. We hypothesized that GIST contains cells with primary IM resistance that may represent a reservoir for disease persistence. Here, we report a subpopulation of CD34+KITlow human GIST cells that have intrinsic IM resistance. These cells possess cancer stem cell-like expression profiles and behavior, including self-renewal and differentiation into CD34+KIThigh progeny that are sensitive to IM treatment. We also found that TKI treatment of GIST cell lines led to induction of stem cell-associated transcription factors (OCT4 and NANOG) and concomitant enrichment of the CD34+KITlow cell population. Using a data-driven approach, we constructed a transcriptomic-oncogenic map (Onco-GPS) based on the gene expression of 134 GIST samples to define pathway activation during GIST tumorigenesis. Tumors with low KIT expression had overexpression of cancer stem cell gene signatures consistent with our in vitro findings. Additionally, these tumors had activation of the Gas6/AXL pathway and NF-κB signaling gene signatures. We evaluated these targets in vitro and found that primary IM-resistant GIST cells were effectively targeted with either single-agent bemcentinib (AXL inhibitor) or bardoxolone (NF-κB inhibitor), as well as with either agent in combination with IM. Collectively, these findings suggest that CD34+KITlow cells represent a distinct, but targetable, subpopulation in human GIST that may represent a novel mechanism of primary TKI resistance, as well as a target for overcoming disease persistence following TKI therapy.
Collapse
Affiliation(s)
- Sudeep Banerjee
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego, California
- Department of Surgery, University of California, Los Angeles, California
- Moores Cancer Center, University of California, San Diego, California
| | - Hyunho Yoon
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego, California
- Moores Cancer Center, University of California, San Diego, California
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Stephanie Ting
- Moores Cancer Center, University of California, San Diego, California
- Department of Medicine, Division of Medical Genetics, University of California, San Diego, California
| | - Chih-Min Tang
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego, California
- Moores Cancer Center, University of California, San Diego, California
| | - Mayra Yebra
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego, California
- Moores Cancer Center, University of California, San Diego, California
| | - Alexander T Wenzel
- Moores Cancer Center, University of California, San Diego, California
- Department of Medicine, Division of Medical Genetics, University of California, San Diego, California
| | - Huwate Yeerna
- Moores Cancer Center, University of California, San Diego, California
- Department of Medicine, Division of Medical Genetics, University of California, San Diego, California
| | - Jill P Mesirov
- Moores Cancer Center, University of California, San Diego, California
- Department of Medicine, Division of Medical Genetics, University of California, San Diego, California
| | | | - Pablo Tamayo
- Moores Cancer Center, University of California, San Diego, California
- Department of Medicine, Division of Medical Genetics, University of California, San Diego, California
- UCSD Center for Novel Therapeutics, La Jolla, California
| | - Jason K Sicklick
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego, California.
- Moores Cancer Center, University of California, San Diego, California
| |
Collapse
|
42
|
Foster BM, Langsten KL, Mansour A, Shi L, Kerr BA. Tissue distribution of stem cell factor in adults. Exp Mol Pathol 2021; 122:104678. [PMID: 34450114 PMCID: PMC8516741 DOI: 10.1016/j.yexmp.2021.104678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/22/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
Stem cell factor (SCF) is an essential cytokine during development and is necessary for gametogenesis, hematopoiesis, mast cell development, stem cell function, and melanogenesis. Here, we measure SCF concentration and distribution in adult humans and mice using gene expression analysis, tissue staining, and organ protein lysates. We demonstrate continued SCF expression in many cell types and tissues into adulthood. Tissues with high expression in adult humans included stomach, spleen, kidney, lung, and pancreas. In mice, we found high SCF expression in the esophagus, ovary, uterus, kidney, and small intestine. Future studies may correlate our findings of increased, organ-specific SCF concentrations within adult tissues with increased risk of SCF/CD117-related disease.
Collapse
Affiliation(s)
- Brittni M Foster
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Kendall L Langsten
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Ammar Mansour
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Bethany A Kerr
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, United States of America.
| |
Collapse
|
43
|
Crook T, Patil D, Nagarkar R, Gaya A, Plowman N, Limaye S, Srivastava N, Akolkar D, Ranade A, Bhatt A, Datta V, Bose C, Apurwa S, Patil S, Kumar P, Srinivasan A, Datar R. Angiogenesis Inhibitors in Personalized Combination Regimens for the Treatment of Advanced Refractory Cancers. FRONTIERS IN MOLECULAR MEDICINE 2021; 1:749283. [PMID: 39087078 PMCID: PMC11285706 DOI: 10.3389/fmmed.2021.749283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 08/02/2024]
Abstract
Background: Angiogenic factors are commonly activated in solid tumors and present a viable therapeutic target. However, anticancer treatment with angiogenesis inhibitors (AGI) is limited to a few cancers, mostly as monotherapy and not selected based on molecular indications. We aimed to determine whether patient-specific combination regimens with AGI and other anticancer agents when selected based on multi-analyte tumor interrogation (ETA: Encyclopedic Tumor Analysis) can expand the scope of AGIs in advanced refractory solid organ cancers with improved treatment responses. Methods: We evaluated treatment outcomes in 60 patients with advanced, refractory solid organ cancers who received ETA-guided combination regimens of AGI with other targeted, endocrine or cytotoxic agents. Radiological evaluation of treatment response was followed by determination of Objective Response Rate (ORR), Disease Control Rate (DCR), Progression Free Survival (PFS) and Overall Survival (OS). Results: Among the 60 patients, Partial Response (PR) was observed in 28 cases (46.7%), Stable Disease (SD) was observed in 29 cases (48.3%) and Disease Progression (PD, within 60 days) was observed in 3 cases (5.0%). The ORR was 46.7% and DCR was 95.0%. At the most recent follow-up the median PFS (mPFS) was 5.0 months and median OS (mOS) was 8.9 months. There were no Grade 4 therapy related adverse events or treatment related deaths. Conclusion: ETA-guided patient-specific combination regimens with AGI and other anti-neoplastic agents, can yield improved outcomes over AGI monotherapy. Trial Registration: Details of all trials are available at WHO-ICTRP: https://apps.who.int/trialsearch/. RESILIENT ID CTRI/2018/02/011,808. LIQUID IMPACT ID CTRI/2019/02/017,548.
Collapse
Affiliation(s)
| | | | | | | | | | - Sewanti Limaye
- Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, India
| | | | | | | | | | | | | | | | | | - Prashant Kumar
- Institute of Bioinformatics, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
- Somaiya Vidyavihar University, Mumbai, India
| | | | | |
Collapse
|
44
|
Koshiol J, Argirion I, Liu Z, Kim Lam T, O'Brien TR, Yu K, McGlynn KA, Petrick JL, Pinto L, Chen CJ, Hildesheim A, Pfeiffer RM, Lee MH, Yang HI. Immunologic markers and risk of hepatocellular carcinoma in hepatitis B virus- and hepatitis C virus-infected individuals. Aliment Pharmacol Ther 2021; 54:833-842. [PMID: 34286851 DOI: 10.1111/apt.16524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/09/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Clinical and experimental studies suggest immunologic proteins contribute to hepatocellular carcinoma (HCC) development. AIM To evaluate circulating immunologic markers and HCC risk. METHODS From a Taiwanese cohort of chronically hepatitis B virus (HBV)-infected individuals followed over time (REVEAL-HBV), we sampled 175 who developed HCC, 117 cirrhosis only, and 165 non-cirrhotic controls. From a similar Taiwanese cohort of chronically hepatitis C virus (HCV)-infected individuals (REVEAL-HCV), we included 94 individuals who developed HCC, 68 cirrhosis only and 100 non-cirrhotic controls. We compared pre-diagnostic plasma levels of 102 markers in HCC cases to non-cirrhotic and cirrhotic controls using polytomous logistic regression. A priori markers included insulin-like growth factor binding protein-3 (IGFBP-3), intercellular adhesion molecule 1 (ICAM-1) and interleukin 6 (IL-6). P-values for other markers were corrected for multiple testing (false discovery rate = 10%). RESULTS In both REVEAL-HBV and REVEAL-HCV, increasing levels of ICAM-1 were associated with increased risk of HCC compared to non-cirrhotic controls (P-trend 0.02 and 0.001, respectively). In both REVEAL-HBV and REVEAL-HCV, two novel markers [C-X-C motif chemokine 11 (CXCL11) and hepatocyte growth factor (HGF)] were positively associated [strongest odds ratioquartile 4 versus 1 (OR) 4.55 for HGF in HCV], while two [complement factor H related 5 (CFHR5) and stem cell factor (SCF)] were negatively associated (strongest ORQ4vQ1 0.14 for SCF in HCV) with development of HCC compared to non-cirrhotic controls. CONCLUSIONS We confirmed the association for ICAM-1 and identified 4 additional proteins associated with HBV- and HCV-related HCC. These findings highlight the importance of immunologic processes in HBV- and HCV-related HCC.
Collapse
Affiliation(s)
- Jill Koshiol
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ilona Argirion
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Tram Kim Lam
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA
| | - Thomas R O'Brien
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kelly Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jessica L Petrick
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.,School of Medicine, Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Ligia Pinto
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Leidos, Biomedical Research, Inc, Frederick, MD, USA
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Epidemiology and Preventative Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mei-Hsuan Lee
- National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
45
|
Kim JO, Kim KH, Baek EJ, Park B, So MK, Ko BJ, Ko HJ, Park SG. A novel anti-c-Kit antibody-drug conjugate to treat wild-type and activating-mutant c-Kit-positive tumors. Mol Oncol 2021; 16:1290-1308. [PMID: 34407310 PMCID: PMC8936518 DOI: 10.1002/1878-0261.13084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
c‐Kit overexpression and activating mutations, which are reported in various cancers, including gastrointestinal stromal tumor (GIST), small‐cell lung cancer (SCLC), acute myeloid leukemia, acral melanoma, and systemic mastocytosis (SM), confer resistance to tyrosine kinase inhibitors (TKIs). To overcome TKI resistance, an anti‐c‐Kit antibody–drug conjugate was developed in this study to treat wild‐type and mutant c‐Kit‐positive cancers. NN2101, a fully human IgG1, was conjugated to DM1, a microtubule inhibitor, through N‐succinimidyl‐4‐(N‐maleimidomethyl) cyclohexane‐1‐carboxylate (SMCC) (to give NN2101‐DM1). The antitumor activity of NN2101‐DM1 was evaluated in vitro and in vivo using various cancer cell lines. NN2101‐DM1 exhibited potent growth‐inhibitory activities against c‐Kit‐positive cancer cell lines. In a mouse xenograft model, NN2101‐DM1 exhibited potent growth‐inhibitory activities against imatinib‐resistant GIST and SM cells. In addition, NN2101‐DM1 exhibited a significantly higher anti‐cancer effect than carboplatin/etoposide against SCLC cells where c‐Kit does not mediate cancer pathogenesis. Furthermore, the combination of NN2101‐DM1 with imatinib in imatinib‐sensitive GIST cells induced complete remission compared with treatment with NN2101‐DM1 or imatinib alone in mouse xenograft models. These results suggest that NN2101‐DM1 is a potential therapeutic agent for wild‐type and mutant c‐Kit‐positive cancers.
Collapse
Affiliation(s)
- Jin-Ock Kim
- College of Pharmacy, Ajou University, Suwon-si, Korea
| | | | - Eun Ji Baek
- College of Pharmacy, Ajou University, Suwon-si, Korea
| | - Bomi Park
- College of Pharmacy, Ajou University, Suwon-si, Korea
| | - Min Kyung So
- New Drug Development Center, Osong Medical Innovation Foundation, Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medicinal Sciences, Sungshin Women's University, Seoul, Korea
| | | | - Sang Gyu Park
- College of Pharmacy, Ajou University, Suwon-si, Korea.,Novelty Nobility, Seongnam-si, Korea
| |
Collapse
|
46
|
Masoumi J, Jafarzadeh A, Abdolalizadeh J, Khan H, Philippe J, Mirzaei H, Mirzaei HR. Cancer stem cell-targeted chimeric antigen receptor (CAR)-T cell therapy: Challenges and prospects. Acta Pharm Sin B 2021; 11:1721-1739. [PMID: 34386318 PMCID: PMC8343118 DOI: 10.1016/j.apsb.2020.12.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/03/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) with their self-renewal ability are accepted as cells which initiate tumors. CSCs are regarded as interesting targets for novel anticancer therapeutic agents because of their association with tumor recurrence and resistance to conventional therapies, including radiotherapy and chemotherapy. Chimeric antigen receptor (CAR)-T cells are engineered T cells which express an artificial receptor specific for tumor associated antigens (TAAs) by which they accurately target and kill cancer cells. In recent years, CAR-T cell therapy has shown more efficiency in cancer treatment, particularly regarding blood cancers. The expression of specific markers such as TAAs on CSCs in varied cancer types makes them as potent tools for CAR-T cell therapy. Here we review the CSC markers that have been previously targeted with CAR-T cells, as well as the CSC markers that may be used as possible targets for CAR-T cell therapy in the future. Furthermore, we will detail the most important obstacles against CAR-T cell therapy and suggest solutions.
Collapse
Affiliation(s)
- Javad Masoumi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan 77181759111, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Jeandet Philippe
- Research Unit “Induced Resistance and Plant Bioprotection”, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences University of Reims Champagne-Ardenne, BP 1039, 51687, Reims Cedex 2, France
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan 8713781147, Iran
- Corresponding authors. Tel./fax: +98 31 55540022; Tel./fax: +98 21 66419536.
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Corresponding authors. Tel./fax: +98 31 55540022; Tel./fax: +98 21 66419536.
| |
Collapse
|
47
|
Su Y, Chen R, Han Z, Xu R, Ma L, Wufuli R, Liu H, Wang F, Ma L, Chen R, Liu J. Clinical and Prognostic Significance of CD117 in Non-Small Cell Lung Cancer: A Systemic Meta-Analysis. Pathobiology 2021; 88:267-276. [PMID: 34107476 DOI: 10.1159/000514386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/24/2020] [Indexed: 12/09/2022] Open
Abstract
The aim of this study was to assess the relationship of cluster of differentiation 117 (CD117) expression with the clinicopathological characteristics and the prognosis in patients with non-small cell lung cancer (NSCLC). No meta-analysis concerning the correlation of CD117 expression with clinical and prognostic values of the patients with NSCLC is reported. A systematic literature search was conducted to achieve eligible studies. The combined odds ratios (ORs) or hazard ratios (HRs: multivariate Cox analysis) with their 95% confidence intervals (CIs) were calculated in this analysis. Final 17 eligible studies with 4,893 NSCLC patients using immunohistochemical detection were included in this meta-analysis. CD117 expression was not correlated with gender (male vs. female), clinical stage (stages 3-4 vs. stages 1-2), tumor grade (grade 3 vs. grades 1-2), T-stage (T-stages 3-4 vs. T-stages 0-2), distal metastasis, and disease-free survival (DFS) of NSCLC (all p values >0.05). CD117 expression was associated with lymph node metastasis (positive vs. negative: OR = 0.74, 95% CI = 0.56-0.97, p = 0.03), histological type (adenocarcinoma (AC) versus squamous cell carcinoma (SCC): OR = 1.74, 95% CI = 1.26-2.39, p = 0.001), and a worse overall survival (OS) (HR = 1.89, 95% CI = 1.22-2.92, p = 0.004). The expression of CD117 was significantly higher in AC than in SCC. CD117 may be an independent prognostic indicator for worse OS in NSCLC.
Collapse
Affiliation(s)
- Ying Su
- Department of Oncology, People's Hospital of Xinjiang Uygur, Urumqi, China
| | - Ru Chen
- Department of Oncology, People's Hospital of Xinjiang Uygur, Urumqi, China
| | - Zhongcheng Han
- Department of Oncology, People's Hospital of Xinjiang Uygur, Urumqi, China
| | - Rong Xu
- Department of Oncology, People's Hospital of Xinjiang Uygur, Urumqi, China
| | - Lili Ma
- Department of Oncology, People's Hospital of Xinjiang Uygur, Urumqi, China
| | - Reyina Wufuli
- Department of Oncology, People's Hospital of Xinjiang Uygur, Urumqi, China
| | - Hongbo Liu
- Department of Oncology, People's Hospital of Xinjiang Uygur, Urumqi, China
| | - Fang Wang
- Department of Oncology, People's Hospital of Xinjiang Uygur, Urumqi, China
| | - Lei Ma
- Department of Oncology, People's Hospital of Xinjiang Uygur, Urumqi, China
| | - Rui Chen
- Department of Oncology, People's Hospital of Xinjiang Uygur, Urumqi, China
| | - Jiang Liu
- Department of Oncology, People's Hospital of Xinjiang Uygur, Urumqi, China
| |
Collapse
|
48
|
Therapeutic Strategies for Targeting Ovarian Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22105059. [PMID: 34064635 PMCID: PMC8151268 DOI: 10.3390/ijms22105059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is a fatal gynecological malignancy. Although first-line chemotherapy and surgical operation are effective treatments for ovarian cancer, its clinical management remains a challenge owing to intrinsic or acquired drug resistance and relapse at local or distal lesions. Cancer stem cells (CSCs) are a small subpopulation of cells inside tumor tissues, and they can self-renew and differentiate. CSCs are responsible for the cancer malignancy involved in relapses as well as resistance to chemotherapy and radiation. These malignant properties of CSCs are regulated by cell surface receptors and intracellular pluripotency-associated factors triggered by internal or external stimuli from the tumor microenvironment. The malignancy of CSCs can be attenuated by individual or combined restraining of cell surface receptors and intracellular pluripotency-associated factors. Therefore, targeted therapy against CSCs is a feasible therapeutic tool against ovarian cancer. In this paper, we review the prominent roles of cell surface receptors and intracellular pluripotency-associated factors in mediating the stemness and malignancy of ovarian CSCs.
Collapse
|
49
|
Motohara T, Yoshida GJ, Katabuchi H. The hallmarks of ovarian cancer stem cells and niches: Exploring their harmonious interplay in therapy resistance. Semin Cancer Biol 2021; 77:182-193. [PMID: 33812986 DOI: 10.1016/j.semcancer.2021.03.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
The concept of a "cancer stem cell" has evolved over the past decades, and research on cancer stem cell biology has entered into a stage of remarkable progress. Cancer stem cells are a major determining factor contributing to the establishment of phenotypic and functional intratumoral heterogeneity in synchronization with their surrounding "cancer stem cell niches." They serve as the driving force for cancer initiation, metastasis, and therapeutic resistance in various types of malignancies. In verity, reciprocal interplay between ovarian cancer stem cells and their niches involves a complex but ingeniously orchestrated tumor microenvironment within the intraperitoneal milieu and especially contribute to chemotherapy resistance in patients with advanced ovarian cancer. Herein, we review the principles of our current understanding of the biological features of ovarian cancer stem cells, focusing mainly on the precise mechanisms underlying acquired chemotherapy resistance. Furthermore, we highlight the specific roles of various cancer-associated stromal and immune cells in creating possible cancer stem cell niches that regulate ovarian cancer stemness.
Collapse
Affiliation(s)
- Takeshi Motohara
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan.
| | - Go J Yoshida
- Department of Immunological Diagnosis, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| |
Collapse
|
50
|
Ahn R, Ursini-Siegel J. Clinical Potential of Kinase Inhibitors in Combination with Immune Checkpoint Inhibitors for the Treatment of Solid Tumors. Int J Mol Sci 2021; 22:ijms22052608. [PMID: 33807608 PMCID: PMC7961781 DOI: 10.3390/ijms22052608] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Oncogenic kinases contribute to immunosuppression and modulate the tumor microenvironment in solid tumors. Increasing evidence supports the fundamental role of oncogenic kinase signaling networks in coordinating immunosuppressive tumor microenvironments. This has led to numerous studies examining the efficacy of kinase inhibitors in inducing anti-tumor immune responses by increasing tumor immunogenicity. Kinase inhibitors are the second most common FDA-approved group of drugs that are deployed for cancer treatment. With few exceptions, they inevitably lead to intrinsic and/or acquired resistance, particularly in patients with metastatic disease when used as a monotherapy. On the other hand, cancer immunotherapies, including immune checkpoint inhibitors, have revolutionized cancer treatment for malignancies such as melanoma and lung cancer. However, key hurdles remain to successfully incorporate such therapies in the treatment of other solid cancers. Here, we review the recent literature on oncogenic kinases that regulate tumor immunogenicity, immune suppression, and anti-tumor immunity. Furthermore, we discuss current efforts in clinical trials that combine kinase inhibitors and immune checkpoint inhibitors to treat breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Ryuhjin Ahn
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC H3A 0G4, Canada
- Department of Oncology, McGill University, 546 Pine Avenue West, Montréal, QC H2W 1S6, Canada
- Correspondence: ; Tel.: +514-340-8222 (ext. 26557); Fax: +514-340-7502
| |
Collapse
|