1
|
Wang J, Chen B, Cheng C, Wang Q, Yang L, Li Z, Lv X. Timosaponin B II as a novel KEAP1-NRF2 inhibitor to alleviate alcoholic liver disease:Receptor structure-based virtual screening and biological evaluation. Chem Biol Interact 2025; 408:111390. [PMID: 39862944 DOI: 10.1016/j.cbi.2025.111390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/02/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Oxidative stress induced by excess ethanol is an important factor in the progression of alcoholic liver disease (ALD). In recent years, inhibiting Kelch-like ECH-associated protein 1 (KEAP1) to activate the antioxidant regulator Nuclear factor erythroid 2-related factor 2 (NRF2) has been considered an effective strategy for treating oxidative stress-related diseases, but its application in ALD remains insufficiently explored. This study aims to discover high-affinity inhibitors targeting the KEAP1 receptor. We conducted virtual screening of a compound library based on a structure-based pharmacophore model, ultimately identifying the candidate compound Timosaponin B II (TBII). Subsequently, we established ALD models in AML-12 cells and C57BL/6 mice, and evaluated the therapeutic effects and mechanisms of TBII on ALD using methods including Immunofluorescence, Western blotting, RT-qPCR, Biochemical assays, and histological staining. Results indicate that TBII significantly improved ethanol-induced liver injury, inhibited the elevation of serum Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), Total Cholesterol (T-CHO), and Triglycerides (TG) levels, and reduced lipid droplet accumulation in liver tissues. Furthermore, TBII treatment enhanced the antioxidant capacity of AML-12 cells and mouse liver, increasing Glutathione (GSH) and Superoxide Dismutase (SOD) levels while reducing Malondialdehyde (MDA) and Reactive Oxygen Species (ROS) levels. Mechanistic studies indicated that TBII inhibited the ethanol-induced increase in KEAP1 and reversed the ethanol-induced changes in NRF2 and its downstream targets. In conclusion, this study suggests that TBII may become a potential therapeutic agent for ALD by modulating the KEAP1-NRF2 pathway to alleviate oxidative stress and lipid metabolism abnormalities.
Collapse
Affiliation(s)
- Junjie Wang
- Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, PR China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, PR China
| | - Baoyi Chen
- Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, PR China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, PR China
| | - Chaofan Cheng
- Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, PR China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, PR China
| | - Qingqing Wang
- Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, PR China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, PR China
| | - Lili Yang
- Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, PR China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, PR China
| | - Zeng Li
- Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, PR China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, PR China.
| | - Xiongwen Lv
- Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, PR China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, PR China.
| |
Collapse
|
2
|
Kouam AF, Njingou I, Pekam Magoudjou NJ, Ngoumbe HB, Nfombouot Njitoyap PH, Zeuko'o EM, Njayou FN, Moundipa PF. Delayed treatment with hydro-ethanolic extract of Khaya grandifoliola protects mice from acetaminophen-hepatotoxicity through inhibition of c-Jun N-terminal kinase phosphorylation and mitochondrial dysfunction. PHARMACEUTICAL SCIENCE ADVANCES 2024; 2:100049. [DOI: 10.1016/j.pscia.2024.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
García-Muñoz AM, Victoria-Montesinos D, Ballester P, Cerdá B, Zafrilla P. A Descriptive Review of the Antioxidant Effects and Mechanisms of Action of Berberine and Silymarin. Molecules 2024; 29:4576. [PMID: 39407506 PMCID: PMC11478310 DOI: 10.3390/molecules29194576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Oxidative stress is a key factor in the development of chronic diseases such as type 2 diabetes, cardiovascular diseases, and liver disorders. Antioxidant therapies that target oxidative damage show significant promise in preventing and treating these conditions. Berberine, an alkaloid derived from various plants in the Berberidaceae family, enhances cellular defenses against oxidative stress through several mechanisms. It activates the AMP-activated protein kinase (AMPK) pathway, which reduces mitochondrial reactive oxygen species (ROS) production and improves energy metabolism. Furthermore, it boosts the activity of key antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), thus protecting cells from oxidative damage. These actions make berberine effective in managing diseases like type 2 diabetes, cardiovascular conditions, and neurodegenerative disorders. Silymarin, a flavonolignan complex derived from Silybum marianum, is particularly effective for liver protection. It activates the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, enhancing antioxidant enzyme expression and stabilizing mitochondrial membranes. Additionally, silymarin reduces the formation of ROS by chelating metal ions, and it also diminishes inflammation. This makes it beneficial for conditions like non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disorders. This review aims to highlight the distinct mechanisms by which berberine and silymarin exert their antioxidant effects.
Collapse
Affiliation(s)
| | | | - Pura Ballester
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain; (A.M.G.-M.); (D.V.-M.); (B.C.); (P.Z.)
| | | | | |
Collapse
|
4
|
Gan J, Ji X, Jin X, Zhou M, Yang C, Chen Z, Yin C, Dong Z. Silybin protected from avermectin-induced carp (Cyprinus carpio) nephrotoxicity by regulating PPAR-γ-involved inflammation, oxidative stress, ferroptosis and autophagy. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107011. [PMID: 38917644 DOI: 10.1016/j.aquatox.2024.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Avermectin, a widely used deworming drug, poses a significant threat to fisheries. Silybin is recognized for its antioxidant and anti-inflammatory properties. The kidney, being crucial for fish survival, plays a vital role in maintaining ion balance, nitrogen metabolism, and hormone regulation. While residual avermectin in water could pose a risk to carp (Cyprinus carpio), it remains unclear whether silybin can alleviate the renal tissue toxicity induced by avermectin in this species. In current study, we developed a model of long-term exposure of carp to avermectin to investigate the potential protective effect of silybin against avermectin-induced nephrotoxicity. The results indicated that avermectin induced renal inflammation, oxidative stress, ferroptosis, and autophagy in carp. Silybin suppressed the mRNA transcript levels of pro-inflammatory factors, increased catalase (CAT) activity, reduced glutathione (GSH) activity, diminished reactive oxygen species (ROS) accumulation in renal tissues, and promoted the activation of the Nrf2-Keap1 signaling pathway. Furthermore, the transcript levels of ferroptosis-associated proteins, including gpx4 and slc7a11, were significantly reduced, while those of cox2, ftl, and ncoa4 were elevated. The transcript levels of autophagy-related genes, including p62 and atg5, were also regulated. Network pharmacological analysis revealed that silybin inhibited ROS accumulation and mitigated avermectin-induced renal inflammation, oxidative stress, ferroptosis, and autophagy in carp through the involvement of PPAR-γ. Silybin exerted its anti-inflammatory effect through the NF-κB pathway and antioxidant effect through the Nrf2-Keap1 pathway, induced renal cell iron efflux through the SLC7A11/GSH/GPX4, and suppressed autophagy initiation via the PI3K/AKT pathway. This study provides evidence of the protective effect of silybin against avermectin-induced nephrotoxicity in carp, highlighting its potential as a therapeutic agent to alleviate the adverse effects of avermectin exposure in fish.
Collapse
Affiliation(s)
- Jiajie Gan
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaomeng Ji
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaohui Jin
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengyuan Zhou
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chenbeibei Yang
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ziyun Chen
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chaoyang Yin
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zibo Dong
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
5
|
Zarei Shandiz S, Erfani B, Hashemy SI. Protective effects of silymarin in glioblastoma cancer cells through redox system regulation. Mol Biol Rep 2024; 51:723. [PMID: 38833199 DOI: 10.1007/s11033-024-09658-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Glioblastoma multiforme, a deadly form of brain tumor, is characterized by aggressive growth and poor prognosis. Oxidative stress, a disruption in the balance between antioxidants and oxidants, is a crucial factor in its pathogenesis. Silymarin, a flavonoid extracted from milk thistle, has shown therapeutic potential in inhibiting cancer cell growth, promoting apoptosis, and reducing inflammation. It also regulates oxidative stress. This study aims to investigate the regulatory effects of silymarin on oxidative stress parameters, especially the transcription factor Nrf2 and its related enzymes in GBM cancer cells, to develop a new anti-cancer compound with low toxicity. METHODS AND RESULTS First, the cytotoxicity of silymarin on U-87 MG cells was investigated by MTT and the results showed an IC50 of 264.6 μM. Then, some parameters of the redox system were measured with commercial kits, and the obtained results showed that silymarin increased the activity of catalase and superoxide dismutase enzymes, as well as the total antioxidant capacity levels; while the malondialdehyde level that is an indicator of lipid peroxidation was decreased by this compound. The expression level of Nrf2 and HO-1 and glutaredoxin and thioredoxin enzymes were checked by real-time PCR method, and the expression level increased significantly after treatment. CONCLUSIONS Our findings suggest that silymarin may exert its cytotoxic and anticancer effects by enhancing the Nrf2/HO-1 pathway through antioxidant mechanisms in U-87 MG cells.
Collapse
Affiliation(s)
- Sara Zarei Shandiz
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Bahareh Erfani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Rodríguez-Negrete EV, Morales-González Á, Madrigal-Santillán EO, Sánchez-Reyes K, Álvarez-González I, Madrigal-Bujaidar E, Valadez-Vega C, Chamorro-Cevallos G, Garcia-Melo LF, Morales-González JA. Phytochemicals and Their Usefulness in the Maintenance of Health. PLANTS (BASEL, SWITZERLAND) 2024; 13:523. [PMID: 38498532 PMCID: PMC10892216 DOI: 10.3390/plants13040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Inflammation is the immune system's first biological response to infection, injury, or irritation. Evidence suggests that the anti-inflammatory effect is mediated by the regulation of various inflammatory cytokines, such as nitric oxide, interleukins, tumor necrosis factor alpha-α, interferon gamma-γ, as well as the non-cytokine mediator, prostaglandin E2. Currently, the mechanism of action and clinical usefulness of phytochemicals is known; their action on the activity of cytokines, free radicals, and oxidative stress. The latter are of great relevance in the development of diseases, such that the evidence collected demonstrates the beneficial effects of phytochemicals in maintaining health. Epidemiological evidence indicates that regular consumption of fruits and vegetables is related to a low risk of developing cancer and other chronic diseases.
Collapse
Affiliation(s)
- Elda Victoria Rodríguez-Negrete
- Servicio de Gastroenterología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico City 06720, Mexico;
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico;
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Unidad Profesional ”A. López Mateos”, Ciudad de México 07738, Mexico
| | - Eduardo Osiris Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico;
| | - Karina Sánchez-Reyes
- Servicio de Cirugía General, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico City 06720, Mexico;
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Gustavo A. Madero, Mexico City 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Gustavo A. Madero, Mexico City 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Carmen Valadez-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, San Agustín Tlaxiaca 42080, Mexico;
| | - German Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 07738, Mexico;
| | - Luis Fernando Garcia-Melo
- Laboratorio de Nanotecnología e Ingeniería Molecular, Área Electroquímica, Departamento de Química, CBI, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico;
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico;
| |
Collapse
|
7
|
Boira C, Chapuis E, Scandolera A, Reynaud R. Silymarin Alleviates Oxidative Stress and Inflammation Induced by UV and Air Pollution in Human Epidermis and Activates β-Endorphin Release through Cannabinoid Receptor Type 2. COSMETICS 2024; 11:30. [DOI: 10.3390/cosmetics11010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Background: Skin is exposed to ultraviolet radiation (UV) and air pollution, and recent works have demonstrated that these factors have additive effects in the disturbance of skin homeostasis. Nuclear-factor-erythroid-2-related factor 2 (Nrf2) and aryl hydrocarbon receptor (AHR) appear to be appropriate targets in the management of combined environmental stressors. The protective effects of silymarin (SM), an antioxidant and anti-inflammatory complex of flavonoids, were evaluated. Methods: Reactive oxygen species (ROS) and interleukin 1-alpha (IL-1a) were quantified in UV+urban-dust-stressed reconstructed human epidermis (RHE) treated with SM. A gene expression study was conducted on targets related to AHR and Nrf2. SM agonistic activity on cannabinoid receptor type 2 (CB2R) was evaluated on mast cells. The clinical study quantified the performance of SM and cannabidiol (CBD) in skin exposed to solar radiation and air pollution. Results: SM decreased morphological alterations, ROS, and IL-1a in UV+urban-dust-stressed RHE. AHR- and Nrf2-related genes were upregulated, which control the antioxidant effector and barrier function. Interleukin 8 gene expression was decreased. The clinical study confirmed SM improved the homogeneity and perceived well-being of urban skins exposed to UV, outperforming CBD. SM activated CB2R and the release of β-endorphin from mast cells. Conclusions: SM provides protection of skin from oxidative stress and inflammation caused by two major factors of exposome and appears mediated by AHR-Nrf2. SM activation of CB2R is opening a new understanding of SM’s anti-inflammatory properties.
Collapse
Affiliation(s)
- Cloé Boira
- Givaudan Active Beauty, 51110 Pomacle, France
| | | | | | | |
Collapse
|
8
|
Rahimi-Dehkordi N, Heidari-Soureshjani S, Sherwin CMT. The Effects and Safety of Silymarin on β-thalassemia in Children and Adolescents: A Systematic Review based on Clinical Trial Studies. Rev Recent Clin Trials 2024; 19:242-255. [PMID: 38818907 DOI: 10.2174/0115748871305325240511122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/06/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND β-thalassemia imposes significant complications on affected patients. Silymarin, a natural flavonoid complex, has potential therapeutic properties. OBJECTIVE This systematic review aims to comprehensively evaluate the literature on the mechanistic effects of Silymarin on β-thalassemia outcomes in children and adolescents. METHODS A systematic search of electronic databases, including MEDLINE/PubMed, Embase, Scopus, Cochrane Library, and Web of Science (WOS), was done to identify relevant clinical trials before January 2024. Various data were extracted, including study characteristics, outcomes measured (hematological parameters, oxidative stress markers, iron metabolism, and other outcomes), proposed mechanisms, and safety. RESULTS By iron chelation effects, Silymarin can reduce reactive oxygen species (ROS) production, increase intracellular antioxidant enzyme glutathione (GSH), and insert antioxidant effects. It also attenuated inflammation through reduced tumor necrosis factor-alpha (TNF-α), transforming growth factor-β1 (TGF-β1), interferon-gamma (IFNγ), C-reactive protein (CRP), interleukin 6 (IL-6), IL-17, and IL-23 levels and increase in IL-4 and IL-10 levels. By reducing iron overload conditions, Silymarin indicates modulatory effects on immune abnormalities, inhibits red blood cell (RBC) hemolysis, increases RBC count, and minimizes the need for a transfusion. Moreover, it reduces myocardial and hepatic siderosis, improves liver function tests, and modifies abnormal enzymes, particularly for aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin, and total protein levels. Silymarin also reduces iron overload, increases antioxidant and anti-inflammatory capacity in cardiomyocytes, and reveals antioxidant effects. CONCLUSION Silymarin indicates promising effects on various aspects of children and adolescents with β-thalassemia and has no serious side effects on the investigated dosage.
Collapse
Affiliation(s)
- Nasim Rahimi-Dehkordi
- Department of Pediatrics, School of Medicine, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Catherine M T Sherwin
- Pediatric Clinical Pharmacology and Toxicology, Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton Children's Hospital, One Children's Plaza, Dayton, Ohio, USA
| |
Collapse
|
9
|
Iloki Assanga SB, Lewis Luján LM, McCarty MF. Targeting beta-catenin signaling for prevention of colorectal cancer - Nutraceutical, drug, and dietary options. Eur J Pharmacol 2023; 956:175898. [PMID: 37481200 DOI: 10.1016/j.ejphar.2023.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
Progressive up-regulation of β-catenin signaling is very common in the transformation of colorectal epithelium to colorectal cancer (CRC). Practical measures for opposing such signaling hence have potential for preventing or slowing such transformation. cAMP/PKA activity in colon epithelium, as stimulated by COX-2-generated prostaglandins and β2-adrenergic signaling, boosts β-catenin activity, whereas cGMP/PKG signaling has the opposite effect. Bacterial generation of short-chain fatty acids (as supported by unrefined high-carbohydrate diets, berberine, and probiotics), dietary calcium, daily aspirin, antioxidants opposing cox-2 induction, and nicotine avoidance, can suppress cAMP production in colonic epithelium, whereas cGMP can be boosted via linaclotides, PDE5 inhibitors such as sildenafil or icariin, and likely high-dose biotin. Selective activation of estrogen receptor-β by soy isoflavones, support of adequate vitamin D receptor activity with UV exposure or supplemental vitamin D, and inhibition of CK2 activity with flavanols such as quercetin, can also oppose β-catenin signaling in colorectal epithelium. Secondary bile acids, the colonic production of which can be diminished by low-fat diets and berberine, can up-regulate β-catenin activity by down-regulating farnesoid X receptor expression. Stimulation of PI3K/Akt via insulin, IGF-I, TLR4, and EGFR receptors boosts β-catenin levels via inhibition of glycogen synthase-3β; plant-based diets can down-regulate insulin and IGF-I levels, exercise training and leanness can keep insulin low, anthocyanins and their key metabolite ferulic acid have potential for opposing TLR4 signaling, and silibinin is a direct antagonist for EGFR. Partially hydrolyzed phytate can oppose growth factor-mediated down-regulation of β-catenin by inhibiting Akt activation. Multifactorial strategies for safely opposing β-catenin signaling can be complemented with measures that diminish colonic mutagenesis and DNA hypomethylation - such as avoidance of heme-rich meat and charred or processed meats, consumption of phase II-inductive foods and nutraceuticals (e.g., Crucifera), and assurance of adequate folate status.
Collapse
Affiliation(s)
- Simon Bernard Iloki Assanga
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| | - Lidianys María Lewis Luján
- Technological Institute of Hermosillo (ITH), Ave. Tecnológico y Periférico Poniente S/N, Col. Sahuaro, Hermosillo, Sonora, C.P. 83170, México.
| | | |
Collapse
|
10
|
Ayazoglu Demir E, Mentese A, Kucuk H, Turkmen Alemdar N, Demir S. The therapeutic effect of silibinin against 5-fluorouracil-induced ovarian toxicity in rats. J Biochem Mol Toxicol 2023; 37:e23408. [PMID: 37335224 DOI: 10.1002/jbt.23408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
5-Fluorouracil (5-FU) is a fluoropyrimidine group antineoplastic drug with antimetabolite properties and ovotoxicity is one of the most important side effects. Silibinin (SLB) is a natural compound that is used worldwide and stands out with its antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the therapeutic effect of SLB in 5-FU-induced ovototoxicity using biochemical and histological analysis. This study was carried out in five main groups containing six rats in each group: control, SLB (5 mg/kg), 5-FU (100 mg/kg), 5-FU + SLB (2.5 mg/kg), and 5-FU + SLB (5 mg/kg). The levels of ovarian malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), superoxide dismutase (SOD), catalase (CAT), 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), and caspase-3 were determined using spectrophotometric methods. Hematoxylin and eosin staining method was employed for histopathological examination. MDA, TOS, 8-OHdG, TNF-α, MPO, and caspase-3 levels in 5-FU group were significantly increased compared with the control group, while the levels of TAS, SOD, and CAT were decreased (p < 0.05). SLB treatments statistically significantly restored this damage in a dose-dependent manner (p < 0.05). Although vascular congestion, edema, hemorrhage, follicular degeneration, and leukocyte infiltration were significantly higher in the 5-FU group compared with the control group, SLB treatments also statistically significantly restored these damages (p < 0.05). In conclusion, SLB has a therapeutic effect on the ovarian damage induced by 5-FU via decreasing the levels of oxidative stress, inflammation, and apoptosis. It may be helpful to consider the usefulness of SLB as an adjuvant therapy to counteract the side effects of chemotherapy.
Collapse
Affiliation(s)
- Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, Trabzon, Turkiye
| | - Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Hatice Kucuk
- Department of Pathology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon, Turkiye
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon, Turkiye
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize, Turkiye
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkiye
| |
Collapse
|
11
|
Oronsky B, Takahashi L, Gordon R, Cabrales P, Caroen S, Reid T. RRx-001: a chimeric triple action NLRP3 inhibitor, Nrf2 inducer, and nitric oxide superagonist. Front Oncol 2023; 13:1204143. [PMID: 37313460 PMCID: PMC10258348 DOI: 10.3389/fonc.2023.1204143] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
RRx-001 is a shape shifting small molecule with Fast Track designation for the prevention/amelioration of chemoradiation-induced severe oral mucositis (SOM) in newly diagnosed Head and Neck cancer. It has been intentionally developed or "engineered" as a chimeric single molecular entity that targets multiple redox-based mechanisms. Like an antibody drug conjugate (ADC), RRx-001 contains, at one end a "targeting" moiety, which binds to the NLRP3 inflammasome and inhibits it as well as Kelch-like ECH-associated protein 1 (KEAP1), the negative regulator of Nrf2, and, at the other end, a conformationally constrained, dinitro containing 4 membered ring, which fragments under conditions of hypoxia and reduction to release therapeutically active metabolites i.e., the payload. This "payload", which is delivered specifically to hypoperfused and inflamed areas, includes nitric oxide, nitric oxide related species and carbon-centered radicals. As observed with ADCs, RRx-001 contains a backbone amide "linker" attached to a binding site, which correlates with the Fab region of an antibody, and to the dinitroazetidine payload, which is microenvironmentally activated. However, unlike ADCs, whose large size impacts their pharmacokinetic properties, RRx-001 is a nonpolar small molecule that easily crosses cell membranes and the blood brain barrier (BBB) and distributes systemically. This short review is organized around the de novo design and in vivo pro-oxidant/pro-inflammatory and antioxidant/anti-inflammatory activity of RRx-001, which, in turn, depends on the reduced to oxidized glutathione ratio and the oxygenation status of tissues.
Collapse
Affiliation(s)
- Bryan Oronsky
- Drug Development, EpicentRx, Torrey Pines, CA, United States
| | - Lori Takahashi
- Drug Development, EpicentRx, Torrey Pines, CA, United States
| | - Richard Gordon
- Department of Translational Neuroscience, University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia
| | - Pedro Cabrales
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, United States
| | - Scott Caroen
- Drug Development, EpicentRx, Torrey Pines, CA, United States
| | - Tony Reid
- Drug Development, EpicentRx, Torrey Pines, CA, United States
| |
Collapse
|
12
|
Intranasal Delivery of a Silymarin Loaded Microemulsion for the Effective Treatment of Parkinson's Disease in Rats: Formulation, Optimization, Characterization, and In Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15020618. [PMID: 36839940 PMCID: PMC9961237 DOI: 10.3390/pharmaceutics15020618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
A mucoadhesive microemulsion of lipophilic silymarin (SLMMME) was developed to treat Parkinson's disease (PD). Optimization of the SLM microemulsion (ME) was performed using Central Composite Design (CCD). The composition of oil, surfactant, co-surfactant, and water was varied, as per the design, to optimize their ratio and achieve desirable droplet size, zeta potential, and drug loading. The droplet size, zeta potential, and drug loading of optimized SLMME were 61.26 ± 3.65 nm, -24.26 ± 0.2 mV, and 97.28 ± 4.87%, respectively. With the addition of chitosan, the droplet size and zeta potential of the developed ME were both improved considerably. In vitro cell toxicity investigations on a neuroblastoma cell line confirmed that SLMMME was non-toxic and harmless. In comparison to ME and drug solution, mucoadhesive ME had the most flow through sheep nasal mucosa. Further, the in vitro release showed significantly higher drug release, and diffusion of the SLM loaded in MEs than that of the silymarin solution (SLMS). The assessment of behavioral and biochemical parameters, as well as inflammatory markers, showed significant (p < 0.05) amelioration in their level, confirming the significant improvement in neuroprotection in rats treated with SLMMME compared to rats treated with naïve SLM.
Collapse
|
13
|
Yue S, Wang S, Liu X, Bian X, Ding C, Wu T, Li D, Zhou J. Ameliorative effect of silymarin on the quality of frozen-thawed boar spermatozoa. Reprod Domest Anim 2023; 58:298-306. [PMID: 36269155 DOI: 10.1111/rda.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/28/2022]
Abstract
Although Silymarin (SMN) has powerful antioxidant properties, little is known about its effects on the quality of frozen-thawed boar sperm. The present study aimed to evaluate the influences of SMN added to the thawing extender on boar sperm parameters essential for fertilization. The frozen-thawed semen was diluted in a Modena thawing extender supplemented with different concentrations of SMN (0, 5, 10, 20 and 50 μM respectively), and then the changes in quality parameters, antioxidant capacity, mitochondrial function and in vitro fertilization (IVF) capability of frozen-thawed sperm were assessed. Here we demonstrated that the motility, plasma membrane integrity and acrosomal integrity of frozen-thawed sperm improved efficiently by SMN (p < .05). In antioxidant parameters evaluation, the tROS level and MDA content of frozen-thawed spermatozoa were reduced in the 20 μM SMN group, while the T-AOC activity significantly increased (p < .05), indicating that the supplementation with SMN can promote the antioxidant capacity of frozen-thawed boar sperm. Besides, we also discovered that the addition of SMN significantly upregulated ATP content and enhanced the mitochondrial activity of sperm. More interestingly, SMN promoted the activities of mitochondrial respiratory chain complexes (MRCC) I, II, III and IV in frozen-thawed sperm significantly. Functionally, the higher penetration rate and increased total efficiency of fertilization were observed in the 20 μM SMN group. In summary, supplementation with SMN in the thawing medium ameliorates the quality of frozen-thawed boar sperm by enhancing mitochondrial respiratory capacity, producing large amounts of ATP and regulating ROS formation.
Collapse
Affiliation(s)
- Shunli Yue
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shunwei Wang
- Reproductive Medicine Center, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Xue Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaoqi Bian
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chang Ding
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tong Wu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Dantong Li
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jiabo Zhou
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
14
|
Surai PF. Silymarin as a vitagene modulator: effects on mitochondria integrity in stress conditions. MOLECULAR NUTRITION AND MITOCHONDRIA 2023:535-559. [DOI: 10.1016/b978-0-323-90256-4.00007-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Vargas-Mendoza N, Morales-González Á, Madrigal-Santillán EO, Angeles-Valencia M, Anguiano-Robledo L, González-López LL, Sosa-Gómez A, Fregoso-Aguilar T, Esquivel-Chirino C, Ruiz-Velazco-Benítez YA, Morales-González JA. Phytochemicals and modulation of exercise-induced oxidative stress: a novel overview of antioxidants. Am J Transl Res 2022; 14:8292-8314. [PMID: 36505319 PMCID: PMC9730074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022]
Abstract
The practice of physical exercise induces a series of physiological changes in the body at different levels, either acutely or chronically. During exercise, the increase in oxygen consumption promotes the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are necessary to maintain homeostasis. ROS/RNS activate cellular signaling pathways, such as the antioxidant cytoprotective systems, inflammation, and cell proliferation, which are crucial for cell survival. However, in exhaustive-extended physical exercise, workloads can exceed the endogenous antioxidant defenses, which may be related to impairment of muscle contraction, fatigue, and a decrease in athletic performance. This review addresses the role of some antioxidants from plant-derived extracts called phytochemicals that can mediate the response to oxidative stress induced by physical exercise by activating signaling pathways, such as Nrf2/Keap1/ARE, responsible for the endogenous antioxidant response and possibly having an impact on sports performance.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico NacionalCiudad de Mexico, Mexico
| | | | | | - Marcelo Angeles-Valencia
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico NacionalCiudad de Mexico, Mexico
| | - Liliana Anguiano-Robledo
- Escuela Superior de Medicina, Laboratorio de Farmacología Molecular, Instituto Politécnico NacionalCiudad de Mexico, Mexico
| | - Laura Ligia González-López
- Centro Interdisciplinario de Ciencias de la Salud Unidad Santo Tomas, Instituto Politécnico NacionalCiudad de Mexico, Mexico
| | - Alejandra Sosa-Gómez
- Centro Interdisciplinario de Ciencias de la Salud Unidad Santo Tomas, Instituto Politécnico NacionalCiudad de Mexico, Mexico
| | - Tomás Fregoso-Aguilar
- Laboratorio de Hormonas y Conducta, Departamento de Fisiología, ENCB Campus Zacatenco, Instituto Politécnico NacionalCiudad de Mexico, Mexico
| | - Cesar Esquivel-Chirino
- Área de Básicas Médicas, División de Estudios Profesionales, Facultad de Odontología, Universidad Nacional Autónoma de MéxicoCiudad de Mexico, Mexico
| | | | - José A Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico NacionalCiudad de Mexico, Mexico
| |
Collapse
|
16
|
Okovityi SV, Raikhelson KL, Prikhodko VA. Combined hepatoprotective pharmacotherapy for liver disease. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2022:5-20. [DOI: 10.31146/1682-8658-ecg-203-7-5-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Fixed-dose drug products as well as non-fixed hepatoprotective drug combinations are commonly used in modern clinical practice. Combined and concurrent drug use makes it possible to augment the pharmacological effects of individual agents, or extend the range of their potential indications. The drugs most commonly considered for combination therapy include essential phospholipids, glycyrrhizinic acid, ursodeoxycholic acid, silibinin, and S-adenosylmethionine. This paper discusses the rationale for combined use of liver-targeting drugs from a pathogenetic viewpoint, and provides a review of the evidence from clinical trials on combined pharmacotherapy for liver disease.
Collapse
Affiliation(s)
- Sergey V. Okovityi
- Scientific, Clinical and Educational Center of Gastroenterology and Hepatology, Saint Petersburg State University; Scientific, Clinical and Educational Center of Gastroenterology and Hepatology, Saint Petersburg State University
| | - Karina L. Raikhelson
- Scientific, Clinical and Educational Center of Gastroenterology and Hepatology, Saint Petersburg State University
| | | |
Collapse
|
17
|
Rodríguez-Vera D, Abad-García A, Vargas-Mendoza N, Pinto-Almazán R, Farfán-García ED, Morales-González JA, Soriano-Ursúa MA. Polyphenols as potential enhancers of stem cell therapy against neurodegeneration. Neural Regen Res 2022; 17:2093-2101. [PMID: 35259814 PMCID: PMC9083162 DOI: 10.4103/1673-5374.335826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
The potential of polyphenols for treating chronic-degenerative diseases (particularly neurodegenerative diseases) is attractive. However, the selection of the best polyphenol for each treatment, the mechanisms by which they act, and their efficacy are frequently discussed. In this review, the basics and the advances in the field, as well as suggestions for using natural and synthetic polyphenols alone or in a combinatorial strategy with stem cell assays, are compiled and discussed. Thus, stem cells exhibit several responses when polyphenols are added to their environment, which could provide us with knowledge for advancing the elucidation of the origin of neurodegeneration. But also, polyphenols are being included in the innovative strategies of novel therapies for treating neurodegenerative diseases as well as metabolic diseases related to neurodegeneration. In this regard, flavonoid compounds are suggested as the best natural polyphenols due to their several mechanisms for acting in ameliorative effects; but increasing reports are involving other polyphenols. Even if some facts limiting bioactivity prevent them from conventional use, some natural polyphenols and derivatives hold the promise for being improved compounds, judged by their induced effects. The current results suggest polyphenols as enhancers of stem cell therapy against the targeted diseases.
Collapse
Affiliation(s)
- Diana Rodríguez-Vera
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Antonio Abad-García
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Nancy Vargas-Mendoza
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, State of México, México
| | - Eunice D. Farfán-García
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - José A. Morales-González
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Marvin A. Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| |
Collapse
|
18
|
Boukazoula F, Ayari D. Effect of milk thistle ( Silybum marianum) supplementation on the serum levels of oxidative stress markers in male half marathon athletes. Biomarkers 2022; 27:461-469. [PMID: 35315713 DOI: 10.1080/1354750x.2022.2056921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
Abstract
CONTEXT Increased aerobic metabolism during exercise is a potential source of oxidative stress and the use of herbal medicines as a dietary supplement rich in antioxidants is an interesting and controversial concept that have been considered during the past decades. Objective: The purpose of the present study was to investigate the effects of Silybum marianum (SM) on exercise-induced oxidative stress in half marathon athletes. MATERIALS AND METHODS Phytochemical Analysis in aqueous extract of SM leaves and seeds were determined. Forty healthy male athletes were divided into four groups (n = 10): control group(G1), G2 supplemented with 100 mg of SM leaves/kg/day, G3 supplemented with 100 mg of SM seeds/kg/day, and G4 supplemented with 100 mg of SM leaves + seeds/kg/day. The effects of SM on malondialdehyde (MDA) and antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH)] were assessed. RESULTS Aqueous extract of SM leaves have good DPPH free radical scavenging activity and the highest content of total polyphenols. A significant increase of serum SOD, CAT, and GSH levels and reduction in the levels of MDA in the serum of athletes supplemented with aqueous extract of seeds and leaves of SM was detected. CONCLUSION SM supplement offered protection against exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Fouad Boukazoula
- Department of Basic Education, Institute of Science and Techniques of Physical and Sporting Activities, Mohamed-Cherif Messaadia University, Souk Ahras, Algeria
| | - Djamila Ayari
- Laboratory for Terrestrial and Aquatics Ecosystems, Department of Biology, Faculty of Natural Sciences and Life, Mohamed-Cherif Messadia University, Souk Ahras, Algeria
| |
Collapse
|
19
|
Xu W, Sun Y, Wang J, Wang B, Xu F, Xie Z, Wang Y. Controlled release of silibinin in GelMA hydrogels inhibits inflammation by inducing M2-type macrophage polarization and promotes vascularization in vitro. RSC Adv 2022; 12:13192-13202. [PMID: 35520139 PMCID: PMC9064440 DOI: 10.1039/d2ra00498d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 12/28/2022] Open
Abstract
A dry socket is one of the most common complications after tooth extraction. The main etiologies are the loss of blood clots in the socket and the inflammation reaction caused by infection. Current studies on how to prevent dry sockets could not solve these two etiologies at the same time. Recent studies have demonstrated the anti-inflammation role of silibinin. In this study, silibinin was engineered into GelMA hydrogels (Sil-GelMA) with a concentration of 30 mM. The surface characteristics were observed by scanning electron microscopy and the successful loading of silibinin was detected by FTIR spectrometry. The Sil-GelMA hydrogels presented the sustained release ability of silibinin and slow degradation performance of GelMA. Furthermore, silibinin inhibited the inflammatory reaction by inducing M2-type macrophage polarization, promoting the secretion of anti-inflammatory factors (CD206, IL-10) and inhibiting the secretion of anti-inflammatory factors (IL-1β, iNOS). Silibinin also increased the secretion of vascularization-related factor VEGF and promoted vascularization in vitro. This study suggested that the Sil-GelMA hydrogels not only had an anti-inflammatory effect, but also had the potential to promote vascularization. Based on these results, the Sil-GelMA hydrogels might provide a promising prospect for prevention of dry sockets in the future.
Collapse
Affiliation(s)
- Weijian Xu
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou 310006 China
| | - Yingjia Sun
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou 310006 China
| | - Jia Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine 166 Qiutaobei Road, Shangcheng District Hangzhou Zhejiang 310016 China
| | - Baixiang Wang
- Department of Oral Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou 310006 China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Zhijian Xie
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou 310006 China
| | - Yu Wang
- Department of Oral Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou 310006 China
| |
Collapse
|
20
|
Ganguly R, Kumar R, Pandey AK. Baicalin provides protection against fluoxetine-induced hepatotoxicity by modulation of oxidative stress and inflammation. World J Hepatol 2022; 14:729-743. [PMID: 35646277 PMCID: PMC9099103 DOI: 10.4254/wjh.v14.i4.729] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/17/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fluoxetine is one of the most widely prescribed anti-depressant drugs belonging to the category of selective serotonin reuptake inhibitors. Long-term fluoxetine treatment results in hepatotoxicity. Baicalin, a natural compound obtained from the Chinese herb Scutellaria baicalensis is known to have antioxidant, hepatoprotective and anti-inflammatory effects. However, the beneficial effects of baicalin against fluoxetine-induced hepatic damage have not previously been reported.
AIM To evaluate the protective action of baicalin in fluoxetine-induced liver toxicity and inflammation.
METHODS Male albino Wistar rats were divided into seven groups. Group 1 was the normal control. Oral fluoxetine was administered at 10 mg/kg body weight to groups 2, 3, 4 and 5. In addition, groups 3 and 4 were also co-administered oral baicalin (50 mg/kg and 100 mg/kg, respectively) while group 5 received silymarin (100 mg/kg), a standard hepatoprotective compound for comparison. Groups 6 and 7 were used as a positive control for baicalin (100 mg/kg) and silymarin (100 mg/kg), respectively. All treatments were carried out for 28 d. After sacrifice of the rats, biomarkers of oxidative stress [superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione-S-transferase (GST), advanced oxidation protein products (AOPP), malondialdehyde (MDA)], and liver injury [alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), total protein, albumin, bilirubin] were studied in serum and tissue using standard protocols and diagnostic kits. Inflammatory markers [tumor necrosis factor (TNF-α), interleukin (IL)-6, IL-10 and interferon (IFN)-γ] in serum were evaluated using ELISA-based kits. The effect of baicalin on liver was also analyzed by histopathological examination of tissue sections.
RESULTS Fluoxetine-treated rats showed elevated levels of the serum liver function markers (total bilirubin, ALT, AST, and ALP) and inflammatory markers (TNF-α, IL-6, IL-10 and IFN-γ), with a decline in total protein and albumin levels. Biochemical markers of oxidative stress such as SOD, CAT, GST, GSH, MDA and AOPP in the liver tissue homogenate were also altered indicating a surge in reactive oxygen species leading to oxidative damage. Histological examination of liver tissue also showed degeneration of hepatocytes. Concurrent administration of baicalin (50 and 100 mg/kg) restored the biomarkers of oxidative stress, inflammation and hepatic damage in serum as well as in liver tissues to near normal levels.
CONCLUSION These findings suggested that long-term treatment with fluoxetine leads to oxidative stress via the formation of free radicals that consequently cause inflammation and liver damage. Concurrent treatment with baicalin alleviated fluoxetine-induced hepatotoxicity and liver injury by regulating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Risha Ganguly
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
21
|
Liu Q, Li W, Zhang J, Zhao L, Ji C, Zhang J, Huang S, Ma Q. Lipoamide Alleviates Oxidized Fish Oil-Induced Host Inflammatory Response and Oxidative Damage in the Oviduct of Laying Hens. Front Vet Sci 2022; 9:875769. [PMID: 35498723 PMCID: PMC9040665 DOI: 10.3389/fvets.2022.875769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Fish oil (FO) is an important source of lipid in functional food and aquafeeds. However, the harmful effects of oxidized fish oil (OFO) on host metabolism and reproductive health are not yet clear. In addition, lipoamide (LAM) has been widely studied as an agent for alleviating various diseases associated with oxidative disruption. Therefore, in the current study, to investigate the effects of LAM in alleviating OFO-induced decline in reproductive performance and oxidative damage to the oviduct in laying hens. We constructed a 1% fresh FO model, a 1% OFO model, and a LAM model with 1% OFO (OFO + LAM) added at 100 mg/kg to explore the antioxidant effect of LAM. Herein, these results were evaluated by breeding performance, immune responses, estrogen, and antioxidant indices of serum samples, as well as the number of follicles and antioxidant parameters of oviducts. From the results, compared with the FO group, OFO significantly decreased the egg-laying rate, increased the contents of total protein (TP) and inflammatory factors [tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-8, and interferon γ (INF-γ)], and reduced the concentrations of anti-oxidation [total antioxidant (T-AOC), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), glutathione (GSH), glutathione reductase (GR), catalase (CAT), and hydroxyl radical scavenging activity (HRSA)] in serum samples, as well as reduced the levels of anti-oxidation indexes in oviduct tissues (p < 0.05). Of note, the supplementation of LAM could significantly increase the laying performance, improve the levels of serum immunoglobulins (IgA, IgG, and IgM), serum estrogen [progesterone (P) and estradiol (E2)], and serum antioxidant parameters (T-AOC, T-SOD, GSH-Px, GSH, GR, CAT, and HRSA) and decrease the concentrations of serum inflammatory cytokines (TNF-α, IL-6, IL-8, and INF-γ) in laying hens following OFO administration (p < 0.05). In addition, LAM could dramatically increase the contents of antioxidant factors (p < 0.05) in oviducts and enhance the secretion capacity of the uterine part. Taken together, OFO caused host metabolic dysfunction, oxidative damage, uterine morphological abnormalities, and alterations of ovarian function. These results suggested that LAM administration could alleviate host metabolic dysfunctions and inflammatory damage, and then ameliorate oxidative damage in the oviduct induced by OFO, ultimately improving reproductive function.
Collapse
|
22
|
Mogadem A, Naqvi A, Almamary MA, Ahmad WA, Jemon K, El-Alfy SH. Hepatoprotective effects of flexirubin, a novel pigment from Chryseobacterium artocarpi, against carbon tetrachloride-induced liver injury: An in vivo study and molecular modeling. Toxicol Appl Pharmacol 2022; 444:116022. [PMID: 35436475 DOI: 10.1016/j.taap.2022.116022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/02/2022] [Accepted: 04/09/2022] [Indexed: 12/31/2022]
|
23
|
Vargas-Mendoza N, Angeles-Valencia M, Morales-González Á, Madrigal-Santillán EO, Morales-Martínez M, Madrigal-Bujaidar E, Álvarez-González I, Gutiérrez-Salinas J, Esquivel-Chirino C, Chamorro-Cevallos G, Cristóbal-Luna JM, Morales-González JA. Oxidative Stress, Mitochondrial Function and Adaptation to Exercise: New Perspectives in Nutrition. Life (Basel) 2021; 11:1269. [PMID: 34833151 PMCID: PMC8624755 DOI: 10.3390/life11111269] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
Cells have the ability to adapt to stressful environments as a part of their evolution. Physical exercise induces an increase of a demand for energy that must be met by mitochondria as the main (ATP) provider. However, this process leads to the increase of free radicals and the so-called reactive oxygen species (ROS), which are necessary for the maintenance of cell signaling and homeostasis. In addition, mitochondrial biogenesis is influenced by exercise in continuous crosstalk between the mitochondria and the nuclear genome. Excessive workloads may induce severe mitochondrial stress, resulting in oxidative damage. In this regard, the objective of this work was to provide a general overview of the molecular mechanisms involved in mitochondrial adaptation during exercise and to understand if some nutrients such as antioxidants may be implicated in blunt adaptation and/or an impact on the performance of exercise by different means.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.A.-V.); (E.O.M.-S.)
| | - Marcelo Angeles-Valencia
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.A.-V.); (E.O.M.-S.)
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n Esquina Miguel Othón de Mendizabal, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico
| | - Eduardo Osiris Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.A.-V.); (E.O.M.-S.)
| | - Mauricio Morales-Martínez
- Licenciatura en Nutrición, Universidad Intercontinental, Insurgentes Sur 4303, Santa Úrsula Xitla, Alcaldía Tlalpan, Ciudad de México 14420, Mexico;
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Av. Wilfrido Massieu, Col., Lindavista, Ciudad de México 07738, Mexico; (E.M.-B.); (I.Á.-G.)
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Av. Wilfrido Massieu, Col., Lindavista, Ciudad de México 07738, Mexico; (E.M.-B.); (I.Á.-G.)
| | - José Gutiérrez-Salinas
- Laboratorio de Bioquímica y Medicina Experimental, Centro Médico Nacional “20 de Noviembre”, ISSSTE, Ciudad de México 03229, Mexico;
| | - César Esquivel-Chirino
- Área de Básicas Médicas, División de Estudios Profesionales, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, Ciudad de México 07738, Mexico; (G.C.-C.); (J.M.C.-L.)
| | - José Melesio Cristóbal-Luna
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, Ciudad de México 07738, Mexico; (G.C.-C.); (J.M.C.-L.)
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.A.-V.); (E.O.M.-S.)
| |
Collapse
|
24
|
Shi S, Wang L, van der Laan LJW, Pan Q, Verstegen MMA. Mitochondrial Dysfunction and Oxidative Stress in Liver Transplantation and Underlying Diseases: New Insights and Therapeutics. Transplantation 2021; 105:2362-2373. [PMID: 33577251 PMCID: PMC9005104 DOI: 10.1097/tp.0000000000003691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/06/2022]
Abstract
Mitochondria are essential organelles for cellular energy and metabolism. Like with any organ, the liver highly depends on the function of these cellular powerhouses. Hepatotoxic insults often lead to an impairment of mitochondrial activity and an increase in oxidative stress, thereby compromising the metabolic and synthetic functions. Mitochondria play a critical role in ATP synthesis and the production or scavenging of free radicals. Mitochondria orchestrate many cellular signaling pathways involved in the regulation of cell death, metabolism, cell division, and progenitor cell differentiation. Mitochondrial dysfunction and oxidative stress are closely associated with ischemia-reperfusion injury during organ transplantation and with different liver diseases, including cholestasis, steatosis, viral hepatitis, and drug-induced liver injury. To develop novel mitochondria-targeting therapies or interventions, a better understanding of mitochondrial dysfunction and oxidative stress in hepatic pathogenesis is very much needed. Therapies targeting mitochondria impairment and oxidative imbalance in liver diseases have been extensively studied in preclinical and clinical research. In this review, we provide an overview of how oxidative stress and mitochondrial dysfunction affect liver diseases and liver transplantation. Furthermore, we summarize recent developments of antioxidant and mitochondria-targeted interventions.
Collapse
Affiliation(s)
- Shaojun Shi
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Ling Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
25
|
Yang HL, Shi XW. Silybin Alleviates Experimental Autoimmune Encephalomyelitis by Suppressing Dendritic Cell Activation and Th17 Cell Differentiation. Front Neurol 2021; 12:659678. [PMID: 34557140 PMCID: PMC8452861 DOI: 10.3389/fneur.2021.659678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Silybin, a peculiar flavonoid compound derived from the fruit and seeds of Silybum marianum, exhibits strong anti-inflammatory activities. In the present study, we found that silybin effectively alleviated experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), via inhibition of dendritic cell (DC) activation and Th17 cell differentiation. Silybin treatment greatly ameliorated the disease severity and significantly declined inflammation and demyelination of the central nervous system (CNS) of EAE mice. Consistent with the disease development, silybin-treated bone marrow-derived DCs (BM-DCs) exhibited reduced costimulatory molecules (e.g., CD80 and CD86) and MHC II expression. These results demonstrated the distinguished bioactivity of silybin for suppressing DC activation, inhibiting pathogenic Th17 inflammatory cell responses, and, eventually, alleviating EAE severity. Taken together, our results show that silybin has high potential for the development of a novel therapeutic agent for the treatment of autoimmune diseases such as MS.
Collapse
Affiliation(s)
| | - Xiao-Wu Shi
- Xian Yang Central Blood Station, Xianyang, China
| |
Collapse
|
26
|
Vargas-Mendoza N, García-Machorro J, Angeles-Valencia M, Martínez-Archundia M, Madrigal-Santillán EO, Morales-González Á, Anguiano-Robledo L, Morales-González JA. Liver disorders in COVID-19, nutritional approaches and the use of phytochemicals. World J Gastroenterol 2021; 27:5630-5665. [PMID: 34629792 PMCID: PMC8473593 DOI: 10.3748/wjg.v27.i34.5630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has affected millions of people globally. It was declared a pandemic by the World Health Organization in March 2020. The hyperinflammatory response to the entry of SARS-CoV-2 into the host through angiotensin-converting enzyme 2 is the result of a "cytokine storm" and the high oxidative stress responsible for the associated symptomatology. Not only respiratory symptoms are reported, but gastrointestinal symptoms (diarrhea, vomiting, and nausea) and liver abnormalities (high levels of aspartate aminotransferase, alanine aminotransferase transaminases, and bilirubin) are observed in at least 30% of patients. Reduced food intake and a delay in medical services may lead to malnutrition, which increases mortality and poor outcomes. This review provides some strategies to identify malnutrition and establishes nutritional approaches for the management of COVID-19 and liver injury, taking energy and nutrient requirements and their impact on the immune response into account. The roles of certain phytochemicals in the prevention of the disease or as promising target drugs in the treatment of this disease are also considered.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- Laboratorio de Medicina de Conservacion, Instituto Politécnico Nacional, México 11340, Mexico
| | - Jazmín García-Machorro
- Laboratorio de Medicina de Conservacion, Instituto Politécnico Nacional, México 11340, Mexico
| | | | - Marlet Martínez-Archundia
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Instituto Politécnico Nacional, México 11340, Mexico
| | | | | | | | - José A Morales-González
- Laboratorio Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México 11340, Mexico
| |
Collapse
|
27
|
Sandoval-Gallegos EM, Ramírez-Moreno E, Vargas-Mendoza N, Arias-Rico J, Estrada-Luna D, Cuevas-Cancino JJ, Jiménez-Sánchez RC, Flores-Chávez OR, Baltazar-Téllez RM, Morales-González JA. Phytochemicals and Their Possible Mechanisms in Managing COVID-19 and Diabetes. APPLIED SCIENCES 2021; 11:8163. [DOI: 10.3390/app11178163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For the writing of this manuscript, we searched information published from 2000 to 2021, through PubMed, Web of Science, Springer, and Science Direct. Focusing on the effects related to respiratory diseases, in addition to possible direct effects towards SARS-CoV-2, coupled with diabetes. Diabetes is a metabolic disease that is characterized by affecting the function of glucose, in addition to insulin insufficiency. This leads to patients with such pathologies as being at greater risk for developing multiple complications and increase exposure to viruses infections. This is the case of severe acute respiratory disease coronavirus 19 (SARS-CoV-2), which gave rise to coronavirus disease 2019 (COVID-19), declared an international public health emergency in March of 2020 Currently, several strategies have been applied in order to prevent the majority of the consequences of COVID-19, especially in patients with chronic diseases such as diabetes. Among the possible treatment options, we found that the use of phytochemical compounds has exhibited beneficial effects for the prevention and inhibition of infection by SARS-CoV-2, as well as for the improvement of the manifestations of diabetes.
Collapse
Affiliation(s)
- Eli Mireya Sandoval-Gallegos
- Área Académica de Nutrición, Centro de Investigación Interdisciplinario, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - Esther Ramírez-Moreno
- Área Académica de Nutrición, Centro de Investigación Interdisciplinario, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - Nancy Vargas-Mendoza
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México Escuela Superior de Medicina, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, México City 11340, Mexico
| | - José Arias-Rico
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - Diego Estrada-Luna
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - José Javier Cuevas-Cancino
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - Reyna Cristina Jiménez-Sánchez
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - Olga Rocío Flores-Chávez
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - Rosa María Baltazar-Téllez
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México Escuela Superior de Medicina, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, México City 11340, Mexico
| |
Collapse
|
28
|
Battaglia CR, Cursano S, Calzia E, Catanese A, Boeckers TM. Corticotropin-releasing hormone (CRH) alters mitochondrial morphology and function by activating the NF-kB-DRP1 axis in hippocampal neurons. Cell Death Dis 2020; 11:1004. [PMID: 33230105 PMCID: PMC7683554 DOI: 10.1038/s41419-020-03204-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Neuronal stress-adaptation combines multiple molecular responses. We have previously reported that thorax trauma induces a transient loss of hippocampal excitatory synapses mediated by the local release of the stress-related hormone corticotropin-releasing hormone (CRH). Since a physiological synaptic activity relies also on mitochondrial functionality, we investigated the direct involvement of mitochondria in the (mal)-adaptive changes induced by the activation of neuronal CRH receptors 1 (CRHR1). We observed, in vivo and in vitro, a significant shift of mitochondrial dynamics towards fission, which correlated with increased swollen mitochondria and aberrant cristae. These morphological changes, which are associated with increased NF-kB activity and nitric oxide concentrations, correlated with a pronounced reduction of mitochondrial activity. However, ATP availability was unaltered, suggesting that neurons maintain a physiological energy metabolism to preserve them from apoptosis under CRH exposure. Our findings demonstrate that stress-induced CRHR1 activation leads to strong, but reversible, modifications of mitochondrial dynamics and morphology. These alterations are accompanied by bioenergetic defects and the reduction of neuronal activity, which are linked to increased intracellular oxidative stress, and to the activation of the NF-kB/c-Abl/DRP1 axis.
Collapse
Affiliation(s)
- Chiara R Battaglia
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,International Graduate School, Ulm University, Ulm, Germany
| | - Silvia Cursano
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,International Graduate School, Ulm University, Ulm, Germany
| | - Enrico Calzia
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany. .,DZNE, Ulm site, Ulm, Germany.
| |
Collapse
|
29
|
Lin X, Meng X, Song Z, Lin J. Nuclear factor erythroid 2-related factor 2 (Nrf2) as a potential therapeutic target for vitiligo. Arch Biochem Biophys 2020; 696:108670. [PMID: 33186606 DOI: 10.1016/j.abb.2020.108670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Vitiligo is an autoimmune disease of the skin which causes loss of melanocytes from the epidermis. Recently, it is demonstrated that oxidative stress (OS) plays a significant role in the immuno-pathogenesis of vitiligo. A major mechanism in the cellular defense against OS is activation of the nuclear factor erythroid2-related factor (Nrf2)-Kelch-like ECH-associated protein 1(Keap1)-antioxidant responsive element (ARE) signaling pathway. Recently it has been shown that vitiligo melanocytes have impaired Nrf2-ARE signaling. A number of drugs including those known as Nrf2 activators and those known to possess effects to activate Nrf2, have been used in treating vitiligo with certain therapeutic effects. Also, studies have shown that a number of compounds can protect melanocytes against OS via activating Nrf2. These compounds may be considered as candidates for developing new drugs for vitiligo in the future. Nrf2 can be considered as a potential therapeutic target for vitiligo.
Collapse
Affiliation(s)
- Xiran Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian, 116011, China.
| | - Xianmin Meng
- Department of Pathology and Laboratory Medicine, Axia Women's Health, 450 Cresson BLVD, Oaks, PA, 19456, USA.
| | - Zhiqi Song
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian, 116011, China.
| | - Jingrong Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian, 116011, China.
| |
Collapse
|
30
|
Silymarin Inhibits Glutamate Release and Prevents against Kainic Acid-Induced Excitotoxic Injury in Rats. Biomedicines 2020; 8:biomedicines8110486. [PMID: 33182349 PMCID: PMC7695262 DOI: 10.3390/biomedicines8110486] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Silymarin, a polyphenoic flavonoid derived from the seeds of milk thistle (Silybum marianum), exhibits neuroprotective effects. In this study, we used a model of rat cerebrocortical synaptosomes to investigate whether silymarin affects the release of glutamate, an essential neurotransmitter involved in excitotoxicity. Its possible neuroprotective effect on a rat model of kainic acid (KA)-induced excitotoxicity was also investigated. In rat cortical synaptosomes, silymarin reduced glutamate release and calcium elevation evoked by the K+ channel blocker 4-aminopyridine but did not affect glutamate release caused by the Na+ channel activator veratridine or the synaptosomal membrane potential. Decreased glutamate release by silymarin was prevented by removal of extracellular calcium and blocking of N- and P/Q-type Ca2+ channel or extracellular signal-regulated kinase 1/2 (ERK1/2) but not by blocking of intracellular Ca2+ release. Immunoblotting assay results revealed that silymarin reduced 4-aminopyridine-induced phosphorylation of ERK1/2. Moreover, systemic treatment of rats with silymarin (50 or 100 mg/kg) 30 min before systemic KA (15 mg/kg) administration attenuated KA-induced seizures, glutamate concentration elevation, neuronal damage, glial activation, and heat shock protein 70 expression as well as upregulated KA-induced decrease in Akt phosphorylation in the rat hippocampus. Taken together, the present study demonstrated that silymarin depressed synaptosomal glutamate release by suppressing voltage-dependent Ca2+ entry and ERK1/2 activity and effectively prevented KA-induced in vivo excitotoxicity.
Collapse
|
31
|
Vargas-Mendoza N, Ángeles-Valencia M, Madrigal-Santillán EO, Morales-Martínez M, Tirado-Lule JM, Solano-Urrusquieta A, Madrigal-Bujaidar E, Álvarez-González I, Fregoso-Aguilar T, Morales-González Á, Morales-González JA. Effect of Silymarin Supplementation on Physical Performance, Muscle and Myocardium Histological Changes, Bodyweight, and Food Consumption in Rats Subjected to Regular Exercise Training. Int J Mol Sci 2020; 21:7724. [PMID: 33086540 PMCID: PMC7590064 DOI: 10.3390/ijms21207724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Regular exercise induces physiological and morphological changes in the organisms, but excessive training loads may induce damage and impair recovery or muscle growth. The purpose of the study was to evaluate the impact of Silymarin (SM) consumption on endurance capacity, muscle/cardiac histological changes, bodyweight, and food intake in rats subjected to 60 min of regular exercise training (RET) five days per week. (2) Methods: Male Wistar rats were subjected to an eight-week RET treadmill program and were previously administered SM and vitamin C. Bodyweight and food consumption were measured and registered. The maximal endurance capacity (MEC) test was performed at weeks one and eight. After the last training session, the animals were sacrificed, and samples of quadriceps/gastrocnemius and cardiac tissue were obtained and process for histological analyzes. (3) Results: SM consumption improved muscle recovery, inflammation, and damaged tissue, and promoted hypertrophy, vascularization, and muscle fiber shape/appearance. MEC increased after eight weeks of RET in all trained groups; moreover, the SM-treated group was enhanced more than the group with vitamin C. There were no significant changes in bodyweight and in food and nutrient consumption along the study. (5) Conclusion: SM supplementation may enhance physical performance, recovery, and muscle hypertrophy during the eight-week RET program.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.Á.-V.); (E.O.M.-S.)
| | - Marcelo Ángeles-Valencia
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.Á.-V.); (E.O.M.-S.)
| | - Eduardo Osiris Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.Á.-V.); (E.O.M.-S.)
| | - Mauricio Morales-Martínez
- Licenciatura en Nutrición, Universidad Intercontinental, Insurgentes Sur 4303, Santa Úrsula Xitla, Alcaldía Tlalpan, Ciudad de México 14420, Mexico;
| | - Judith Margarita Tirado-Lule
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n Esquina Miguel Othón de Mendizabal, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Arturo Solano-Urrusquieta
- Hospital Militar de Zona, Secretaría de la Defensa Nacional, Periférico Boulevard Manuel Ávila Camacho s/n, Delegación Miguel Hidalgo, Ciudad de México 11200, Mexico;
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”. Av. Wilfrido Massieu. Col., Lindavista, Ciudad de México 07738, Mexico; (E.M.-B.); (I.Á.-G.)
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”. Av. Wilfrido Massieu. Col., Lindavista, Ciudad de México 07738, Mexico; (E.M.-B.); (I.Á.-G.)
| | - Tomás Fregoso-Aguilar
- Departamento de Fisiología, Laboratorio de Hormonas y Conducta, ENCB Campus Zacatenco, Instituto Politécnico Nacional, Ciudad de México 07700, Mexico;
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n Esquina Miguel Othón de Mendizabal, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.Á.-V.); (E.O.M.-S.)
| |
Collapse
|