1
|
Mahmood NMS, Mahmud AMR, Maulood IM. Vascular actions of Ang 1-7 and Ang 1-8 through EDRFs and EDHFs in non-diabetes and diabetes mellitus. Nitric Oxide 2025; 156:9-26. [PMID: 40032212 DOI: 10.1016/j.niox.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in regulating vascular homeostasis, while angiotensin 1-8 (Ang 1-8) traditionally dominates as a vasoconstrictor factor. However, the discovery of angiotensin 1-7 (Ang 1-7) and Ang 1-8 has revealed counter-regulatory mechanisms mediated through endothelial-derived relaxing factors (EDRFs) and endothelial-derived hyperpolarizing factors (EDHFs). This review delves into the vascular actions of Ang 1-7 and Ang 1-8 in both non-diabetes mellitus (non-DM) and diabetes mellitus (DM) conditions, highlighting their effects on vascular endothelial cell (VECs) function as well. In a non-DM vasculature context, Ang 1-8 demonstrate dual effect including vasoconstriction and vasodilation, respectively. Additionally, Ang 1-7 induces vasodilation upon nitric oxide (NO) production as a prominent EDRFs in distinct mechanisms. Further research elucidating the precise mechanisms underlying the vascular actions of Ang 1-7 and Ang 1-8 in DM will facilitate the development of tailored therapeutic interventions aimed at preserving vascular health and preventing cardiovascular complications.
Collapse
Affiliation(s)
- Nazar M Shareef Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Almas M R Mahmud
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ismail M Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
2
|
Manea SA, Vlad ML, Lazar AG, Muresian H, Simionescu M, Manea A. SET7 lysine methyltransferase mediates the up-regulation of NADPH oxidase expression, oxidative stress, and NLRP3 inflammasome priming in atherosclerosis. J Transl Med 2025; 23:339. [PMID: 40098010 PMCID: PMC11912627 DOI: 10.1186/s12967-025-06338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Dysregulation of histone methylation-based epigenetic mechanisms leads to either transient or long-lasting transcriptomic alterations in vascular and immune cells with important consequences on atherosclerotic plaque development and stability. We hypothesized that the epigenetic enzyme SET7 lysine methyltransferase contributes to the up-regulation of NADPH oxidase (Nox) and NLRP3 inflammasome expression in atherosclerosis. METHODS To test this hypothesis, we examined human non-atherosclerotic and atherosclerotic tissue samples, apolipoprotein E-deficient (ApoE-/-) mice, and human macrophages (Mac) employing real-time PCR, Western blot, immunofluorescence microscopy, and histological techniques. Male ApoE-/- mice with established atherosclerosis were randomized to receive concomitant with the high-fat diet, 5 mg/kg (R)-PFI-2, a selective SET7 pharmacological inhibitor, or its vehicle, every other day for 4 weeks. RESULTS The results revealed that SET7 mRNA and protein, and H3K4me1 levels were significantly elevated in human carotid atherosclerotic lesions, aorta of atherosclerotic mice, and in cultured pro-inflammatory Mac. In the atherosclerotic mice, pharmacological blockade of SET7 catalytic activity with the specific inhibitor, significantly reduced atherosclerotic plaque development, decreased the aortic up-regulation of mRNA and protein levels of Nox catalytic subunits, mitigated the formation of NT-/4HNE-protein adducts, attenuated NLRP3 gene and protein expression, and reduced pro-caspase-1 and pro-IL18 cleavage. In polarized pro-inflammatory human M1-Mac, SET7-oriented pharmacological intervention reduced the transcriptional up-regulation of Nox catalytic subunits, NLRP3, caspase-1, IL1β, and IL18, and the secretion IL1β and TNFα. Transient overexpression of SET7 in human endothelial cells enhanced mRNA levels of Nox1, Nox2, Nox4, Nox5, and p22phox. CONCLUSION The novel results show that SET7 regulates important mechanisms leading to enhanced formation of reactive oxygen species and pro-inflammatory cytokines release in atherosclerosis. The data recommend SET7 as a promising target for pharmacological interventions and as supportive therapeutic strategy in atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, Bucharest, 050568, Romania
| | - Mihaela-Loredana Vlad
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, Bucharest, 050568, Romania
| | - Alexandra-Gela Lazar
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, Bucharest, 050568, Romania
| | - Horia Muresian
- Cardiovascular Surgery Department, University Hospital Bucharest, Bucharest, Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, Bucharest, 050568, Romania
| | - Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, Bucharest, 050568, Romania.
| |
Collapse
|
3
|
Caturano A, Rocco M, Tagliaferri G, Piacevole A, Nilo D, Di Lorenzo G, Iadicicco I, Donnarumma M, Galiero R, Acierno C, Sardu C, Russo V, Vetrano E, Conte C, Marfella R, Rinaldi L, Sasso FC. Oxidative Stress and Cardiovascular Complications in Type 2 Diabetes: From Pathophysiology to Lifestyle Modifications. Antioxidants (Basel) 2025; 14:72. [PMID: 39857406 PMCID: PMC11759781 DOI: 10.3390/antiox14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly increases the risk of cardiovascular disease, which is the leading cause of morbidity and mortality among diabetic patients. A central pathophysiological mechanism linking T2DM to cardiovascular complications is oxidative stress, defined as an imbalance between reactive oxygen species (ROS) production and the body's antioxidant defenses. Hyperglycemia in T2DM promotes oxidative stress through various pathways, including the formation of advanced glycation end products, the activation of protein kinase C, mitochondrial dysfunction, and the polyol pathway. These processes enhance ROS generation, leading to endothelial dysfunction, vascular inflammation, and the exacerbation of cardiovascular damage. Additionally, oxidative stress disrupts nitric oxide signaling, impairing vasodilation and promoting vasoconstriction, which contributes to vascular complications. This review explores the molecular mechanisms by which oxidative stress contributes to the pathogenesis of cardiovascular disease in T2DM. It also examines the potential of lifestyle modifications, such as dietary changes and physical activity, in reducing oxidative stress and mitigating cardiovascular risks in this high-risk population. Understanding these mechanisms is critical for developing targeted therapeutic strategies to improve cardiovascular outcomes in diabetic patients.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Ilaria Iadicicco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Mariarosaria Donnarumma
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Carlo Acierno
- Azienda Ospedaliera Regionale San Carlo, 85100 Potenza, Italy;
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Vincenzo Russo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20099 Milan, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| |
Collapse
|
4
|
Zeng Y, Buonfiglio F, Li J, Pfeiffer N, Gericke A. Mechanisms Underlying Vascular Inflammaging: Current Insights and Potential Treatment Approaches. Aging Dis 2025:AD.2024.0922. [PMID: 39812546 DOI: 10.14336/ad.2024.0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammaging refers to chronic, low-grade inflammation that becomes more common with age and plays a central role in the pathophysiology of various vascular diseases. Key inflammatory mediators involved in inflammaging contribute to endothelial dysfunction and accelerate the progression of atherosclerosis. In addition, specific pathological mechanisms and the role of inflammasomes have emerged as critical drivers of immune responses within the vasculature. A comprehensive understanding of these processes may lead to innovative treatment strategies that could significantly improve the management of age-related vascular diseases. Emerging therapeutic approaches, including cytokine inhibitors, senolytics, and specialized pro-resolving mediators, aim to counteract inflammaging and restore vascular health. This review seeks to provide an in-depth exploration of the molecular pathways underlying vascular inflammaging and highlight potential therapeutic interventions.
Collapse
|
5
|
Upadhyay RK, Kumar K, Vishwakarma VK, Singh N, Narang R, Parakh N, Yadav M, Yadav S, Kumar S, Goyal A, Yadav HN. Delineating the NOX-Mediated Promising Therapeutic Strategies for the Management of Various Cardiovascular Disorders: A Comprehensive Review. Curr Vasc Pharmacol 2025; 23:12-30. [PMID: 39313896 DOI: 10.2174/0115701611308870240910115023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/21/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024]
Abstract
Cardiovascular disorders (CVDs) are reported to occur with very high rates of incidence and exhibit high morbidity and mortality rates across the globe. Therefore, research is focused on searching for novel therapeutic targets involving multiple pathophysiological mechanisms. Oxidative stress plays a critical role in the development and progression of various CVDs, such as hypertension, pulmonary hypertension, heart failure, arrhythmia, atherosclerosis, ischemia- reperfusion injury, and myocardial infarction. Among multiple pathways generating reactive oxygen species (ROS), Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases of the NOX family as the major source of ROS generation and plays an intricate role in the development and progression of CVDs. Therefore, exploring the role of different NADPH oxidase isoforms in various cardiovascular pathologies has attracted attention to current cardiovascular research. Focusing on NADPH oxidases to reduce oxidative stress in managing diverse CVDs may offer unique therapeutic approaches to prevent and treat various heart conditions. The current review article highlights the role of different NADPH oxidase isoforms in the pathophysiology of various CVDs. Moreover, the focus is also to emphasize different experimental studies that utilized various NADPH oxidase isoform modulators to manage other disorders. The present review article considers new avenues for researchers/scientists working in the field of cardiovascular pharmacology utilizing NADPH oxidase isoform modulators.
Collapse
Affiliation(s)
- Rohit Kumar Upadhyay
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kuldeep Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, (Punjab)-147002-India
| | - Rajiv Narang
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neeraj Parakh
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Mayank Yadav
- Department of CTVS, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sangeeta Yadav
- Department of Pharmacology, Dr. B.R. Ambedkar Centre for Biomedical Research, New Delhi, 110085-India
| | - Sachin Kumar
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, 280406, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
6
|
Abu-Alghayth MH, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Bahaa MM, Afifi M, Al-Farga A, Wahsh E, Batiha GES. Atheroprotective role of vinpocetine: an old drug with new indication. Inflammopharmacology 2024; 32:3669-3678. [PMID: 39141151 PMCID: PMC11550280 DOI: 10.1007/s10787-024-01529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/22/2024] [Indexed: 08/15/2024]
Abstract
Endothelial dysfunction is considered one of the main causes of atherosclerosis and elevated blood pressure. Atherosclerosis (AS) formation is enhanced by different mechanisms including cytokine generation, vascular smooth muscle cell proliferation, and migration. One of the recent treatment toward endothelial dysfunction is vinpocetine (VPN). VPN is an ethyl apovincaminate used in the management of different cerebrovascular disorders and endothelial dysfunction through inhibition of atherosclerosis formation. VPN is a potent inhibitor of phosphodiesterase enzyme 1 (PDE1) as well it has anti-inflammatory and antioxidant effects through inhibition of the expression of nuclear factor kappa B (NF-κB). VPN has been shown to be effective against development and progression of AS. However, the underlying molecular mechanism was not fully clarified. Consequently, objective of the present narrative review was to clarify the mechanistic role of VPN in AS. Most of pro-inflammatory cytokines released from macrophages are inhibited by the action of VPN via NF-κB-dependent mechanism. VPN blocks monocyte adhesion and migration by inhibiting the expression of pro-inflammatory cytokines. As well, VPN is effective in reducing oxidative stress, a cornerstone in the pathogenesis of AS, through inhibition of NF-κB and PDE1. VPN promotes plaque stability and prevent erosion and rupture of atherosclerotic plaque. In conclusion, VPN through mitigation of inflammatory and oxidative stress with plaque stability effects could be effective agent in the management of endothelial dysfunction through inhibition of atherosclerosis mediators.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, 67714, Bisha, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana highway, Mohali, Punjab, India
- Department of Research and Development, Funogen, 11741, Athens, Greece
- Department of Research and Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Mohammed Afifi
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Eman Wahsh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Arish Campus, Arish, 45511, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
7
|
Speer H, Ali MM, D'Cunha NM, Naumovski N, Praet SFE, Hickner RC, McKune AJ. Skeletal muscle reactive oxygen species and microvascular endothelial function in age-related hypertension: a study protocol using a microdialysis technique. J Physiol 2024. [PMID: 39520694 DOI: 10.1113/jp287187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Increased reactive oxygen species (ROS) generation and microvascular endothelial disruptions occur with natural ageing, but often transpire before the detection of cardiometabolic conditions including hypertension. Age-related increases in blood pressure are driven by complex systemic changes with poorly understood integrated mechanisms. The deconditioning experienced by ageing skeletal muscle from mid-life is associated with reduced microvascular blood flow and increased peripheral resistance, suggesting that vasodilatory decrements in the muscle may precede the age-related increases in blood pressure. Structural and functional changes within the vascular and skeletal muscle systems with advancing age can influence redox homeostasis, and vice versa, further compounding microvascular endothelial dysfunction. Therefore, comparisons between the microvascular environments of healthy and hypertensive cohorts can provide insights into the changes that occur during significant periods of functional decline. This comprehensive study protocol describes a microdialysis technique to assess the interactions of microvascular health and functional changes in the muscle, which currently cannot be otherwise addressed. Here, we detail an experimental protocol to simultaneously detect skeletal muscle ROS (H2O2 and indirect O2 -), determine nutritive blood flow and assess microvascular endothelial function in response to acetylcholine stimulation. We expect that healthy middle-aged individuals should not have increased ROS generation in the muscle at rest, compared to their hypertensive or older counterparts, but may exhibit perturbed microvascular function. The described technique allows for intricate exploration of microvascular physiology that will provide a critically novel insight into benchmarking potential age-related mechanisms involved in the development of age-related hypertension, and aid in early identification and prevention. KEY POINTS: Increased reactive oxygen species (ROS) production and microvascular endothelial dysfunction precede the onset of age-related cardiometabolic and vascular conditions such as hypertension. The profound structural and functional changes that occur within the vasculature and in skeletal muscle from middle age prompt a need to mechanistically explore the microvascular environment in healthy and hypertensive individuals. Using a novel microdialysis technique, we detail an experimental protocol to simultaneously detect skeletal muscle ROS (H2O2 and indirect O2 -), determine nutritive blood flow and assess microvascular endothelial function in response to acetylcholine stimulation. With this technique and study protocol, we can reveal functional insights into potential perturbations in ROS generation at rest and the microvascular endothelium, which play important roles in the development of age-related hypertension.
Collapse
Affiliation(s)
- Hollie Speer
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, ACT, Australia
| | - Mostafa M Ali
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, Florida, USA
| | - Nathan M D'Cunha
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, ACT, Australia
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | - Nenad Naumovski
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, ACT, Australia
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT, Australia
- Department of Nutrition-Dietetics, School of Health and Education, Harokopio University, Athens, Greece
| | - Stephan F E Praet
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia
| | - Robert C Hickner
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, Florida, USA
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Andrew J McKune
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, ACT, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
8
|
Papageorgiou A, Sofiou FI, Lembessis P, Traikov LL, Karela NR, Angouras DC, Philippou A. Mitochondrial Mutations in Cardiovascular Diseases: Preliminary Findings. Genes (Basel) 2024; 15:1442. [PMID: 39596642 PMCID: PMC11593694 DOI: 10.3390/genes15111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Mitochondria are the main organelles for ATP synthesis able to produce energy for several different cellular activities. Cardiac cells require high amounts of energy and, thus, they contain a high number of mitochondria. Consequently, mitochondrial dysfunction in these cells is a crucial factor for the development of cardiovascular diseases. Mitochondria constitute central regulators of cellular metabolism and energy production, producing approximately 90% of the cells' energy needs in the form of ATP via oxidative phosphorylation. The mitochondria have their own circular, double-stranded DNA encoding 37 genes. Any mitochondrial DNA sequence anomaly may result in defective oxidative phosphorylation and lead to cardiac dysfunction. Methods: In this study, we investigated the potential association between mitochondrial DNA mutation and cardiovascular disease. Cardiac tissue and serum samples were collected from seven patients undergoing coronary artery bypass grafting. Total DNA was extracted from cardiac muscle tissue specimens and serum and each sample was subjected to polymerase chain reaction (PCR) to amplify the NADH dehydrogenase 1 (ND1) gene, which is part of the mitochondrial complex I enzyme complex and was screened for mutations. Results: We identified one patient with a homoplasmic A to G substitution mutation in cardiac tissue DNA and two patients with heteroplasmic A3397G mutation in serum DNA. Specifically, amplicon sequence analysis revealed a homoplasmic A3397G substitution in the ND1 gene in a tissue sample of the patient with ID number 1 and a heteroplasmic mutation in A3397G in serum samples of patients with ID numbers 3 and 6, respectively. The A to G substitution changes the amino acid from methionine (ATA) to valine (GTA) at position 31 of the ND1 gene. Conclusions: The detection of this novel mutation in patients with coronary artery disease may contribute to our understanding of the association between mitochondrial dysfunction and the disease, implying that mitochondria may be key players in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Anastasios Papageorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.)
- Department of Medical Physics and Biophysics, Medical University, 1431 Sofia, Bulgaria (L.L.T.)
| | - Fragkiski-Ioanna Sofiou
- Department of Medical Physics and Biophysics, Medical University, 1431 Sofia, Bulgaria (L.L.T.)
| | - Panagiotis Lembessis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.)
| | - Lubomir L. Traikov
- Department of Medical Physics and Biophysics, Medical University, 1431 Sofia, Bulgaria (L.L.T.)
| | - Nina-Rafailia Karela
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.)
| | - Dimitrios C. Angouras
- Department of Cardiac Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.)
| |
Collapse
|
9
|
Taiyab A, Ashraf A, Sulaimani MN, Rathi A, Shamsi A, Hassan MI. Role of MTH1 in oxidative stress and therapeutic targeting of cancer. Redox Biol 2024; 77:103394. [PMID: 39418911 PMCID: PMC11532495 DOI: 10.1016/j.redox.2024.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer cells maintain high levels of reactive oxygen species (ROS) to drive their growth, but ROS can trigger cell death through oxidative stress and DNA damage. To survive enhanced ROS levels, cancer cells activate their antioxidant defenses. One such defense is MTH1, an enzyme that prevents the incorporation of oxidized nucleotides into DNA, thus preventing DNA damage and allowing cancer to proliferate. MTH1 levels are often elevated in many cancers, and thus, inhibiting MTH1 is an attractive strategy for suppressing tumor growth and metastasis. Targeted MTH1 inhibition can induce DNA damage in cancer cells, exploiting their vulnerability to oxidative stress and selectively targeting them for destruction. Targeting MTH1 is promising for cancer treatment because normal cells have lower ROS levels and are less dependent on these pathways, making the approach both effective and specific to cancer. This review aims to investigate the potential of MTH1 as a therapeutic target, especially in cancer treatment, offering detailed insights into its structure, function, and role in disease progression. We also discussed various MTH1 inhibitors that have been developed to selectively induce oxidative damage in cancer cells, though their effectiveness varies. In addition, this review provide deeper mechanistic insights into the role of MTH1 in cancer prevention and oxidative stress management in various diseases.
Collapse
Affiliation(s)
- Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, P.O. Box 346, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
10
|
Stachowicz A, Wiśniewska A, Czepiel K, Pomierny B, Skórkowska A, Kuśnierz-Cabala B, Surmiak M, Kuś K, Wood ME, Torregrossa R, Whiteman M, Olszanecki R. Mitochondria-targeted hydrogen sulfide donor reduces atherogenesis by changing macrophage phenotypes and increasing UCP1 expression in vascular smooth muscle cells. Biomed Pharmacother 2024; 180:117527. [PMID: 39405912 DOI: 10.1016/j.biopha.2024.117527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
Atherosclerosis is a leading cause of morbidity and mortality in the Western countries. Mounting evidence points to the role of mitochondrial dysfunction in the pathogenesis of atherosclerosis. Recently, it has been shown that mitochondrial hydrogen sulfide (H2S) can complement the bioenergetic role of Krebs cycle leading to improved mitochondrial function. However, controlled, direct delivery of H2S to mitochondria was not investigated as a therapeutic strategy in atherosclerosis. Therefore, the aim of our study was to comprehensively evaluate the influence of prolonged treatment with mitochondrial H2S donor AP39 on the development of atherosclerotic lesions in apolipoprotein E knockout (apoE-/-) mice. Our results indicated that AP39 reduced atherosclerosis in apoE-/- mice and stabilized atherosclerotic lesions through decreased total macrophage content and increased collagen depositions. Moreover, AP39 reduced proinflammatory M1-like macrophages and increased anti-inflammatory M2-like macrophages in atherosclerotic lesions. It also upregulated pathways related to mitochondrial function, such as cellular respiration, fatty acid β-oxidation and thermogenesis while downregulated pathways associated with immune system, platelet aggregation and complement and coagulation cascades in the aorta. Furthermore, treatment with AP39 increased the expression of mitochondrial brown fat uncoupling protein 1 (UCP1) in vascular smooth muscle cells (VSMCs) in atherosclerotic lesions and upregulated mRNA expression of other thermogenesis-related genes in the aorta but not perivascular adipose tissue (PVAT) of apoE-/- mice. Finally, AP39 treatment decreased markers of activated endothelium and increased endothelial nitric oxide synthase (eNOS) expression and activation. Taken together, mitochondrial H2S donor AP39 could provide potentially a novel therapeutic approach to the treatment/prevention of atherosclerosis.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/drug therapy
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Hydrogen Sulfide/metabolism
- Macrophages/metabolism
- Macrophages/drug effects
- Mitochondria/drug effects
- Mitochondria/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Uncoupling Protein 1/metabolism
- Uncoupling Protein 1/genetics
- Mice
- Phenotype
- Mice, Inbred C57BL
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Apolipoproteins E/genetics
- Apolipoproteins E/deficiency
- Apolipoproteins E/metabolism
- Mice, Knockout, ApoE
- Mice, Knockout
Collapse
Affiliation(s)
- Aneta Stachowicz
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland.
| | - Anna Wiśniewska
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Czepiel
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Bartosz Pomierny
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland; Imaging Laboratory, Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Poland
| | - Alicja Skórkowska
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland; Imaging Laboratory, Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Poland
| | - Beata Kuśnierz-Cabala
- Department of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Kuś
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Mark E Wood
- School of Biosciences, University of Exeter, Exeter, UK
| | | | | | - Rafał Olszanecki
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
11
|
Fakfum P, Chuljerm H, Parklak W, Roytrakul S, Phaonakrop N, Lerttrakarnnon P, Kulprachakarn K. Plasma Proteomics of Type 2 Diabetes, Hypertension, and Co-Existing Diabetes/Hypertension in Thai Adults. Life (Basel) 2024; 14:1269. [PMID: 39459569 PMCID: PMC11509282 DOI: 10.3390/life14101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/31/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
The study explored proteomics to better understand the relationship between type 2 diabetes (T2DM) and hypertension (HT) in Thai adults, using shotgun proteomics and bioinformatics analysis. Plasma samples were taken from 61 subjects: 14 healthy subjects (mean age = 40.85 ± 7.12), 13 with T2DM (mean age = 57.38 ± 6.03), 16 with HT (mean age = 66.87 ± 10.09), and 18 with coexisting T2DM/HT (mean age = 58.22 ± 10.65). Proteins were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein-protein interactions were analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) version 11.5. We identified six unique proteins in T2DM patients, including translationally controlled 1 (TPT1) and nibrin (NBN), which are associated with the DNA damage response. In HT patients, seven unique proteins were identified, among them long-chain fatty acid-CoA ligase (ASCL), which functions in the stimulation of triacylglycerol and cholesterol synthesis, and NADPH oxidase activator 1 (NOXA1), which is involved in high blood pressure via angiotensin II-induced reactive oxygen species (ROS)-generating systems. In coexisting T2DM/HT patients, six unique proteins were identified, of which two-microtubule-associated protein 1A (MAP1A)-might be involved in dementia via RhoB-p53 and diacylglycerol kinase beta (DGKB), associated with lipid metabolism. This study identified new candidate proteins that are possibly involved in the pathology of these diseases.
Collapse
Affiliation(s)
- Puriwat Fakfum
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.F.); (H.C.); (W.P.)
| | - Hataichanok Chuljerm
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.F.); (H.C.); (W.P.)
| | - Wason Parklak
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.F.); (H.C.); (W.P.)
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (N.P.)
| | - Narumon Phaonakrop
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (N.P.)
| | - Peerasak Lerttrakarnnon
- Aging and Aging Palliative Care Research Cluster, Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanokwan Kulprachakarn
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.F.); (H.C.); (W.P.)
| |
Collapse
|
12
|
Zheng F, Ye C, Lei JZ, Ge R, Li N, Bo JH, Chen AD, Zhang F, Zhou H, Wang JJ, Chen Q, Li YH, Zhu GQ, Han Y. Intervention of Asprosin Attenuates Oxidative Stress and Neointima Formation in Vascular Injury. Antioxid Redox Signal 2024; 41:488-504. [PMID: 38814824 DOI: 10.1089/ars.2023.0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Aims: Asprosin, a newly discovered hormone, is linked to insulin resistance. This study shows the roles of asprosin in vascular smooth muscle cell (VSMC) proliferation, migration, oxidative stress, and neointima formation of vascular injury. Methods: Mouse aortic VSMCs were cultured, and platelet-derived growth factor-BB (PDGF-BB) was used to induce oxidative stress, proliferation, and migration in VSMCs. Vascular injury was induced by repeatedly moving a guidewire in the lumen of the carotid artery in mice. Results: Asprosin overexpression promoted VSMC oxidative stress, proliferation, and migration, which were attenuated by toll-like receptor 4 (TLR4) knockdown, antioxidant (N-Acetylcysteine, NAC), NADPH oxidase 1 (NOX1) inhibitor ML171, or NOX2 inhibitor GSK2795039. Asprosin overexpression increased NOX1/2 expressions, whereas asprosin knockdown increased heme oxygenase-1 (HO-1) and NADPH quinone oxidoreductase-1 (NQO-1) expressions. Asprosin inhibited nuclear factor E2-related factor 2 (Nrf2) nuclear translocation. Nrf2 activator sulforaphane increased HO-1 and NQO-1 expressions and prevented asprosin-induced NOX1/2 upregulation, oxidative stress, proliferation, and migration. Exogenous asprosin protein had similar roles to asprosin overexpression. PDGF-BB increased asprosin expressions. PDGF-BB-induced oxidative stress, proliferation, and migration were enhanced by Nrf2 inhibitor ML385 but attenuated by asprosin knockdown. Vascular injury increased asprosin expression. Local asprosin knockdown in the injured carotid artery promoted HO-1 and NQO-1 expressions but attenuated the NOX1 and NOX2 upregulation, oxidative stress, neointima formation, and vascular remodeling in mice. Innovation and Conclusion: Asprosin promotes oxidative stress, proliferation, and migration of VSMCs via TLR4-Nrf2-mediated redox imbalance. Inhibition of asprosin expression attenuates VSMC proliferation and migration, oxidative stress, and neointima formation in the injured artery. Asprosin might be a promising therapeutic target for vascular injury. Antioxid. Redox Signal. 41, 488-504.
Collapse
Affiliation(s)
- Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jian-Zhen Lei
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Rui Ge
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Na Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jin-Hua Bo
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ai-Dong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hong Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jue-Jin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, People's Republic China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, People's Republic China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Possible role of LCZ696 in atherosclerosis: new inroads and perspective. Mol Cell Biochem 2024; 479:1895-1908. [PMID: 37526794 DOI: 10.1007/s11010-023-04816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
LCZ696 blocks both angiotensin receptor type 1 (ATR1) and neprilysin (NEP), which are intricate in the degradation of natriuretic peptides (NPs) and other endogenous peptides. It has been shown NEP inhibitors and LCZ696 could be effectively in the management of atherosclerosis (AS). However, the underlying mechanism of LCZ696 in AS is needed to be clarified entirely. Hence, this review is directed to reconnoiter the mechanistic role of LCZ696 in AS. The anti-inflammatory role of LCZ696 is related to the inhibition of transforming growth factor beta (TGF-β)-activated kinase 1 (TAK) and nod-like receptor pyrin 3 receptor (NLRP3) inflammasome. Moreover, LCZ696, via inhibition of pro-inflammatory cytokines, oxidative stress, apoptosis and endothelial dysfunction can attenuate the development and progression of AS. In conclusion, LCZ696 could be effective in the management of AS through modulation of inflammatory and oxidative signaling. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AL Beheira, Egypt.
| |
Collapse
|
14
|
Alomair BM, Al-Kuraishy HM, Al-Gareeb AI, Alshammari MA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Increased thyroid stimulating hormone (TSH) as a possible risk factor for atherosclerosis in subclinical hypothyroidism. Thyroid Res 2024; 17:13. [PMID: 38880884 PMCID: PMC11181570 DOI: 10.1186/s13044-024-00199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Primary hypothyroidism (PHT) is associated with an increased risk for the development of atherosclerosis (AS) and other cardiovascular disorders. PHT induces atherosclerosis (AS) through the induction of endothelial dysfunction, and insulin resistance (IR). PHT promotes vasoconstriction and the development of hypertension. However, patients with subclinical PHT with normal thyroid hormones (THs) are also at risk for cardiovascular complications. In subclinical PHT, increasing thyroid stimulating hormone (TSH) levels could be one of the causative factors intricate in the progression of cardiovascular complications including AS. Nevertheless, the mechanistic role of PHT in AS has not been fully clarified in relation to increased TSH. Therefore, in this review, we discuss the association between increased TSH and AS, and how increased TSH may be involved in the pathogenesis of AS. In addition, we also discuss how L-thyroxine treatment affects the development of AS.
Collapse
Affiliation(s)
- Basil Mohammed Alomair
- Assistant Professor, Internal Medicine and Endocrinology, Department of Medicine, College of Medicine, Jouf University, Sakakah, 04631, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majed Ayed Alshammari
- Department of Medicine, Prince Mohammed Bin Abdulaziz Medical City, Al Jouf-Sakkaka, 42421, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Vienna, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, 2770, NSW, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal, 42283, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
15
|
Alshehri AA, Al-Kuraishy HM, Al-Gareeb AI, Jawad SF, Khawagi WY, Alexiou A, Papadakis M, Assiri AA, Elhadad H, El-Saber Batiha G. The anti-inflammatory properties of vinpocetine mediates its therapeutic potential in management of atherosclerosis. J Inflamm (Lond) 2024; 21:19. [PMID: 38858751 PMCID: PMC11165849 DOI: 10.1186/s12950-024-00394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Atherosclerosis (AS) formation is enhanced by different mechanisms including cytokine generation, vascular smooth muscle cell proliferation, and migration. One of the recent treatments towards endothelial dysfunction and AS is Vinpocetine (VPN). VPN is a potent inhibitor of phosphodiesterase enzyme 1 (PDE-1) and has anti-inflammatory and antioxidant effects through inhibition the expression of nuclear factor kappa B (NF-κB). VPN has been shown to be effective against the development and progression of AS. However, the underlying molecular mechanism was not fully clarified. Consequently, objective of the present review was to discuss the mechanistic role of VPN in the pathogenesis AS. Most of pro-inflammatory cytokines that released from macrophages are inhibited by action of VPN through NF-κB-dependent mechanism. VPN blocks monocyte adhesion and migration by constraining the expression and action of pro-inflammatory cytokines. As well, VPN is effective in reducing of oxidative stress a cornerstone in the pathogenesis of AS through inhibition of NF-κB and PDE1. VPN promotes plaque stability and prevents the erosion and rupture of atherosclerotic plaque. In conclusion, VPN through mitigation of inflammatory and oxidative stress, and improvement of plaque stability effects could be effective agent in the management of AS.
Collapse
Affiliation(s)
- Abdullah A Alshehri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Al Huwaya, Taif, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir ibn Hayyan Medical University, PO.Box13, Al-Ameer Qu./Najaf, Iraq
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon, 51001, Iraq
| | - Wael Y Khawagi
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Al Huwaya, Taif, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Universityof Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Abdullah A Assiri
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University Abha, Abha, Saudi Arabia
| | - Heba Elhadad
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| |
Collapse
|
16
|
Ostrowska-Leśko M, Herbet M, Pawłowski K, Korga-Plewko A, Poleszak E, Dudka J. Pathological Changes and Metabolic Adaptation in the Myocardium of Rats in Response to Chronic Variable Mild Stress. Int J Mol Sci 2024; 25:5899. [PMID: 38892086 PMCID: PMC11172974 DOI: 10.3390/ijms25115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic variable mild stress (CVS) in rats is a well-established paradigm for inducing depressive-like behaviors and has been utilized extensively to explore potential therapeutic interventions for depression. While the behavioral and neurobiological effects of CVS have been extensively studied, its impact on myocardial function remains largely unexplored. To induce the CVS model, rats were exposed to various stressors over 40 days. Behavioral assessments confirmed depressive-like behavior. Biochemical analyses revealed alterations in myocardial metabolism, including changes in NAD+ and NADP+, and NADPH concentrations. Free amino acid analysis indicated disturbances in myocardial amino acid metabolism. Evaluation of oxidative DNA damage demonstrated an increased number of abasic sites in the DNA of rats exposed to CVS. Molecular analysis showed significant changes in gene expression associated with glucose metabolism, oxidative stress, and cardiac remodeling pathways. Histological staining revealed minor morphological changes in the myocardium of CVS-exposed rats, including increased acidophilicity of cells, collagen deposition surrounding blood vessels, and glycogen accumulation. This study provides novel insights into the impact of chronic stress on myocardial function and metabolism, highlighting potential mechanisms linking depression and cardiovascular diseases. Understanding these mechanisms may aid in the development of targeted therapeutic strategies to mitigate the adverse cardiovascular effects of depression.
Collapse
Affiliation(s)
- Marta Ostrowska-Leśko
- Department of Toxicology, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland; (M.H.); (J.D.)
| | - Mariola Herbet
- Department of Toxicology, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland; (M.H.); (J.D.)
| | - Kamil Pawłowski
- Department of Toxicology, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland; (M.H.); (J.D.)
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, 1 Chodźko Street, 20-093 Lublin, Poland
| | - Jarosław Dudka
- Department of Toxicology, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland; (M.H.); (J.D.)
| |
Collapse
|
17
|
Anlar GG, Anwardeen N, Al Ashmar S, Pedersen S, Elrayess MA, Zeidan A. Metabolomics Profiling of Stages of Coronary Artery Disease Progression. Metabolites 2024; 14:292. [PMID: 38921428 PMCID: PMC11205943 DOI: 10.3390/metabo14060292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 06/27/2024] Open
Abstract
Coronary artery disease (CAD) and atherosclerosis pose significant global health challenges, with intricate molecular changes influencing disease progression. Hypercholesterolemia (HC), hypertension (HT), and diabetes are key contributors to CAD development. Metabolomics, with its comprehensive analysis of metabolites, offers a unique perspective on cardiovascular diseases. This study leveraged metabolomics profiling to investigate the progression of CAD, focusing on the interplay of hypercholesterolemia, hypertension, and diabetes. We performed a metabolomic analysis on 221 participants from four different groups: (I) healthy individuals, (II) individuals with hypercholesterolemia (HC), (III) individuals with both HC and hypertension (HT) or diabetes, and (IV) patients with self-reported coronary artery disease (CAD). Utilizing data from the Qatar Biobank, we combined clinical information, metabolomic profiling, and statistical analyses to identify key metabolites associated with CAD risk. Our data identified distinct metabolite profiles across the study groups, indicating changes in carbohydrate and lipid metabolism linked to CAD risk. Specifically, levels of mannitol/sorbitol, mannose, glucose, and ribitol increased, while pregnenediol sulfate, oleoylcarnitine, and quinolinate decreased with higher CAD risk. These findings suggest a significant role of sugar, steroid, and fatty acid metabolism in CAD progression and point to the need for further research on the correlation between quinolinate levels and CAD risk, potentially guiding targeted treatments for atherosclerosis. This study provides novel insights into the metabolomic changes associated with CAD progression, emphasizing the potential of metabolites as predictive biomarkers.
Collapse
Affiliation(s)
- Gulsen Guliz Anlar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Najeha Anwardeen
- Biomedical Research Center (BRC), QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.E.)
| | - Sarah Al Ashmar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Shona Pedersen
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Mohamed A. Elrayess
- Biomedical Research Center (BRC), QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.E.)
| | - Asad Zeidan
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| |
Collapse
|
18
|
Liang Z, Sun G, Zhang J, Zhang Q, Li X, Qin S, Lv S, Ding J, Zhang Q, Xia Y, Lu D. Protein phosphatase 4 mediates palmitic acid-induced endothelial dysfunction by decreasing eNOS phosphorylation at serine 633 in HUVECs. Exp Cell Res 2024; 437:113998. [PMID: 38513962 DOI: 10.1016/j.yexcr.2024.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/30/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Plasma saturated free fatty acid (FFA)-induced endothelial dysfunction (ED) contributes to the pathogenesis of atherosclerosis and cardiovascular diseases. However, the mechanism underlying saturated FFA-induced ED remains unclear. This study demonstrated that palmitic acid (PA) induced ED by activating the NADPH oxidase (NOX)/ROS signaling pathway to activate protein phosphatase 4 (PP4) and protein phosphatase 2A (PP2A), thereby reducing endothelial nitric oxide synthase (eNOS) phosphorylation at Ser633 and Ser1177, respectively. Okadaic acid (OA) and fostriecin (FST), which are inhibitors of PP2A, inhibited the PA-induced decreases in eNOS phosphorylation at Ser633 and Ser1177. The antioxidants N-acetylcysteine (NAC) and apocynin (APO) or knockdown of gp91phox or p67phox (NOX subunits) restored PA-mediated downregulation of PP4R2 protein expression and eNOS Ser633 phosphorylation. Knockdown of the PP4 catalytic subunit (PP4c) specifically increased eNOS Ser633 phosphorylation, while silencing the PP2A catalytic subunit (PP2Ac) restored only eNOS Ser1177 phosphorylation. Furthermore, PA dramatically decreased the protein expression of the PP4 regulatory subunit R2 (PP4R2) but not the other regulatory subunits. PP4R2 overexpression increased eNOS Ser633 phosphorylation, nitric oxide (NO) production, cell migration and tube formation but did not change eNOS Ser1177 phosphorylation levels. Coimmunoprecipitation (Co-IP) suggested that PP4R2 and PP4c interacted with the PP4R3α and eNOS proteins. In summary, PA decreases PP4R2 protein expression through the Nox/ROS pathway to activate PP4, which contributes to ED by dephosphorylating eNOS at Ser633. The results of this study suggest that PP4 is a novel therapeutic target for ED and ED-associated vascular diseases.
Collapse
Affiliation(s)
- Zhengwei Liang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Gang Sun
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Junshi Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Qian Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Xiaoyu Li
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Si Qin
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Sha Lv
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Jing Ding
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yong Xia
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, United States.
| | - Deqin Lu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
19
|
Solanki K, Bezsonov E, Orekhov A, Parihar SP, Vaja S, White FA, Obukhov AG, Baig MS. Effect of reactive oxygen, nitrogen, and sulfur species on signaling pathways in atherosclerosis. Vascul Pharmacol 2024; 154:107282. [PMID: 38325566 DOI: 10.1016/j.vph.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease in which fats, lipids, cholesterol, calcium, proliferating smooth muscle cells, and immune cells accumulate in the intima of the large arteries, forming atherosclerotic plaques. A complex interplay of various vascular and immune cells takes place during the initiation and progression of atherosclerosis. Multiple reports indicate that tight control of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) production is critical for maintaining vascular health. Unrestricted ROS and RNS generation may lead to activation of various inflammatory signaling pathways, facilitating atherosclerosis. Given these deleterious consequences, it is important to understand how ROS and RNS affect the signaling processes involved in atherogenesis. Conversely, RSS appears to exhibit an atheroprotective potential and can alleviate the deleterious effects of ROS and RNS. Herein, we review the literature describing the effects of ROS, RNS, and RSS on vascular smooth muscle cells, endothelial cells, and macrophages and focus on how changes in their production affect the initiation and progression of atherosclerosis. This review also discusses the contribution of ROS, RNS, and RSS in mediating various post-translational modifications, such as oxidation, nitrosylation, and sulfation, of the molecules involved in inflammatory signaling.
Collapse
Affiliation(s)
- Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Evgeny Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia; Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia; Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; The Cell Physiology and Pathology Laboratory, Turgenev State University of Orel, Orel, Russia
| | - Alexander Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Suraj P Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shivani Vaja
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Fletcher A White
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India.
| |
Collapse
|
20
|
Rybarczyk A, Formanowicz D, Formanowicz P. Key Therapeutic Targets to Treat Hyperglycemia-Induced Atherosclerosis Analyzed Using a Petri Net-Based Model. Metabolites 2023; 13:1191. [PMID: 38132873 PMCID: PMC10744714 DOI: 10.3390/metabo13121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Chronic superphysiological glucose concentration is a hallmark of diabetes mellitus (DM) and a cause of damage to many types of cells. Atherosclerosis coexists with glucose metabolism disturbances, constituting a significant problem and exacerbating its complications. Atherosclerosis in DM is accelerated, so it is vital to slow its progression. However, from the complex network of interdependencies, molecules, and processes involved, choosing which ones should be inhibited without blocking the pathways crucial for the organism's functioning is challenging. To conduct this type of analysis, in silicotesting comes in handy. In our study, to identify sites in the network that need to be blocked to have an inhibitory effect on atherosclerosis in hyperglycemia, which is toxic for the human organism, we created a model using Petri net theory and performed analyses. We have found that blocking isoforms of protein kinase C (PKC)-PKCβ and PKCγ-in diabetic patients can contribute to the inhibition of atherosclerosis progression. In addition, we have discovered that aldose reductase inhibition can slow down atherosclerosis progression, and this has been shown to reduce PKC (β and γ) expression in DM. It has also been observed that diminishing oxidative stress through the inhibitory effect on the AGE-RAGE axis may be a promising therapeutic approach in treating hyperglycemia-induced atherosclerosis. Moreover, the blockade of NADPH oxidase, the key enzyme responsible for the formation of reactive oxygen species (ROS) in blood vessels, only moderately slowed down atherosclerosis development. However, unlike aldose reductase blockade, or direct PKC (β and γ), the increased production of mitochondrial ROS associated with mitochondrial dysfunction effectively stopped after NADPH oxidase blockade. The results obtained may constitute the basis for further in-depth research.
Collapse
Affiliation(s)
- Agnieszka Rybarczyk
- Institute of Computing Science, Poznan University of Technology, 60-695 Poznan, Poland;
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Faculty of Electrical Engineering, Gdynia Maritime University, 81-225 Gdynia, Poland
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| | - Piotr Formanowicz
- Institute of Computing Science, Poznan University of Technology, 60-695 Poznan, Poland;
| |
Collapse
|
21
|
Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM. From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front Pharmacol 2023; 14:1269581. [PMID: 37927596 PMCID: PMC10622810 DOI: 10.3389/fphar.2023.1269581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Increased production and buildup of reactive oxygen species (ROS) can lead to various health issues, including metabolic problems, cancers, and neurological conditions. Our bodies counteract ROS with biological antioxidants such as SOD, CAT, and GPx, which help prevent cellular damage. However, if there is an imbalance between ROS and these antioxidants, it can result in oxidative stress. This can cause genetic and epigenetic changes at the molecular level. This review delves into how ROS plays a role in disorders caused by oxidative stress. We also look at animal models used for researching ROS pathways. This study offers insights into the mechanism, pathology, epigenetic changes, and animal models to assist in drug development and disease understanding.
Collapse
Affiliation(s)
- Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aimi Syamima Abdul Manap
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Ibrahim Albokhadaim
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sameer M. Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
22
|
Nakhlband A, Garjani A, Saeedi N, Omidi Y, Ghaffari S, Barar J, Eskandani M. Atherosclerosis preventive effects of marrubiin against (TNF-α)-induced oxidative stress and apoptosis. J Cardiovasc Thorac Res 2023; 15:174-180. [PMID: 38028719 PMCID: PMC10590460 DOI: 10.34172/jcvtr.2023.31704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/04/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Atherosclerosis is a complicated cascade of inflammatory processes, oxidative stress, and apoptosis, making it the most prevalent cardiovascular disease. The onset and progression of cardiovascular diseases are greatly influenced by oxidative stress. Targeting oxidative stress is an effective strategy for treating such diseases. Marrubiin is a bioactive furan labdane diterpenoid acts as a strong antioxidant to protect against oxidative damage. This study aimed to investigate the protective effects of marrubiin against oxidative stress and apoptosis in a cellular model of the vascular system. Methods Human umbilical vein endothelial cells were treated with varying concentration of marrubiin and its IC50 value was determined. The antioxidant potential of marrubiin was assessed by measuring the intracellular level of glutathione (GSH) using a colorimetric technique. Since apoptosis plays a significant role in the plaque rupture, the study also evaluated the protective effects of marrubiin on the expression of key genes involved in apoptotic pathways. Results Cells treated with marrubiin showed increased GSH levels compared to cell therapy control cells, indicating marrubiin's ability to counteract the effects of TNF-α's on GSH levels. Furthermore real-time PCR analysis demonstrated that marrubiin upregulated Bcl-xl while downregulating caspase3 and Nox4 in treated cells. These findings suggest that marrubiin protects against apoptosis and oxidative stress. Conclusion Based on our findings, marrubiin is recommended as a preventive/therapeutic treatment for diseases caused by elevated intracellular reactive oxygen species levels in cardiovascular diseases.
Collapse
Affiliation(s)
- Ailar Nakhlband
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Garjani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Yu J, Qiu J, Zhang Z, Cui X, Guo W, Sheng M, Gao M, Wang D, Xu L, Ma X. Redox Biology in Adipose Tissue Physiology and Obesity. Adv Biol (Weinh) 2023; 7:e2200234. [PMID: 36658733 DOI: 10.1002/adbi.202200234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Indexed: 01/21/2023]
Abstract
Reactive oxygen species (ROS), a by-product of mitochondrial oxidative phosphorylation and cellular metabolism, is vital for cellular survival, proliferation, damage, and senescence. In recent years, studies have shown that ROS levels and redox status in adipose tissue are strongly associated with obesity and metabolic diseases. Although it was previously considered that excessive production of ROS and impairment of antioxidant capability leads to oxidative stress and potentially contributes to increased adiposity, it has become increasingly evident that an adequate amount of ROS is vital for adipocyte differentiation and thermogenesis. In this review, by providing a systematic overview of the recent understanding of the key factors of redox systems, endogenous mechanisms for redox homeostasis, advanced techniques for dynamic redox monitoring, as well as exogenous stimuli for redox production in adipose tissues and obesity, the importance of redox biology in metabolic health is emphasized.
Collapse
Affiliation(s)
- Jian Yu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiangdi Cui
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Maozheng Sheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Mingyuan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Xinran Ma
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, P. R. China
| |
Collapse
|
24
|
Wang X, Wei C, Fan W, Sun L, Zhang Y, Sun Q, Liu Y, Liu J. Advanced Lung Cancer Inflammation Index for Predicting Prognostic Risk for Patients with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. J Inflamm Res 2023; 16:3631-3641. [PMID: 37641701 PMCID: PMC10460579 DOI: 10.2147/jir.s421021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Purpose The decreased advanced lung cancer inflammation index (ALI), defined as body mass index (BMI) * albumin (Alb)/neutrophil-to-lymphocyte ratio (NLR), is an independent prognostic risk factor for overall survival in gastric, lung, and colorectal cancers. This study aimed to investigate the value of ALI in predicting the risk of major adverse cardiovascular events (MACEs) in patients with acute coronary syndrome (ACS). Patients and Methods A total of 1624 patients with ACS undergoing percutaneous coronary intervention (PCI) were consecutively enrolled between January 2016 and December 2018. Follow-up data were collected at 1, 3, 6, and 12 months and annually thereafter. The primary endpoints were MACEs. All endpoints were defined as all-cause mortality, recurrent angina pectoris, restenosis/intra stent thrombosis, stroke, heart failure, and all-cause bleeding. Results The MACEs group and non-MACEs group showed significant differences in patients with age >65 years (28 [50.0%] vs 319 [23.7%]), history of heart failure (16 [28.6%] vs 127 [9.4%]), history of ischemic stroke (14 [25.0%] vs 186 [13.8%]), history of cardiogenic shock (6 [10.71%] vs 16 [1.19%]), left ventricular ejection fraction <40% (8 [14.29%] vs 33 [2.46%]), and ALI <343.96 (44 [78.65%] vs 680 [50.60%]) (all p<0.001). The optimal cut-off value for ALI was 334.96. The area under the curve (AUC) of the 1-, 2-, 3-, and 5-year was 0.560, 0.577, 0.665, and 0.749, respectively. The survival rate was significantly lower in the low ALI group than in the high ALI group (log-rank p<0.001). Low ALI was an independent risk factor for the long-term prognosis of patients with ACS after PCI, univariate HR: 3.671, 95% CI: 1.938-6.953, p<0.001; multivariate HR: 3.009, 95% CI: 1.57-5.769, p=0.001. Conclusion ALI score less than 334.96 is an independent prognostic risk factor for patients with ACS undergoing PCI and may be a novel marker for clinical practice.
Collapse
Affiliation(s)
- Xinchen Wang
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, The Chengde Institute of Cardiovascular Diseases, Chengde, Hebei, 067000, People’s Republic of China
| | - Chen Wei
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, The Chengde Institute of Cardiovascular Diseases, Chengde, Hebei, 067000, People’s Republic of China
| | - Wenjun Fan
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, The Chengde Institute of Cardiovascular Diseases, Chengde, Hebei, 067000, People’s Republic of China
| | - Lixian Sun
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, The Chengde Institute of Cardiovascular Diseases, Chengde, Hebei, 067000, People’s Republic of China
| | - Ying Zhang
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, The Chengde Institute of Cardiovascular Diseases, Chengde, Hebei, 067000, People’s Republic of China
| | - Qiyu Sun
- Department of Clinical Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Yixiang Liu
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, The Chengde Institute of Cardiovascular Diseases, Chengde, Hebei, 067000, People’s Republic of China
| | - Jingyi Liu
- Department of Cardiology, The Affiliated Hospital of Chengde Medical University, The Chengde Institute of Cardiovascular Diseases, Chengde, Hebei, 067000, People’s Republic of China
| |
Collapse
|
25
|
Wu C, Mao J, Wang X, Yang R, Wang C, Li C, Zhou X. Advances in treatment strategies based on scavenging reactive oxygen species of nanoparticles for atherosclerosis. J Nanobiotechnology 2023; 21:271. [PMID: 37592345 PMCID: PMC10433664 DOI: 10.1186/s12951-023-02058-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
The development of atherosclerosis (AS) is closely linked to changes in the plaque microenvironment, which consists primarily of the cells that form plaque and the associated factors they secrete. The onset of inflammation, lipid deposition, and various pathological changes in cellular metabolism that accompany the plaque microenvironment will promote the development of AS. Numerous studies have shown that oxidative stress is an important condition that promotes AS. The accumulation of reactive oxygen species (ROS) is oxidative stress's most important pathological change. In turn, the effects of ROS on the plaque microenvironment are complex and varied, and these effects are ultimately reflected in the promotion or inhibition of AS. This article reviews the effects of ROS on the microenvironment of atherosclerotic plaques and their impact on disease progression over the past five years and focuses on the progress of treatment strategies based on scavenging ROS of nanoparticles for AS. Finally, we also discuss the prospects and challenges of AS treatment.
Collapse
Affiliation(s)
- Chengxi Wu
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, Sichuan, 646000, China
| | - Jingying Mao
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, Sichuan, 646000, China
| | - Xueqin Wang
- Department of Thyroid Surgery, people's Hospital of Deyang, Deyang, Sichuan, 618000, China
| | - Ronghao Yang
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, Sichuan, 646000, China
| | - Chenglong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, Sichuan, 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, Sichuan, 646000, China.
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
26
|
Xia L, Shen Y, Liu S, Du J. Iron overload triggering ECM-mediated Hippo/YAP pathway in follicle development: a hypothetical model endowed with therapeutic implications. Front Endocrinol (Lausanne) 2023; 14:1174817. [PMID: 37223010 PMCID: PMC10200985 DOI: 10.3389/fendo.2023.1174817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023] Open
Abstract
Disruption of iron homeostasis plays a negative role in follicle development. The dynamic changes in follicle growth are dependent on Hippo/YAP signaling and mechanical forces. However, little is known about the liaison between iron overload and the Hippo/YAP signalling pathway in term of folliculogenesis. Here, based on the available evidence, we established a hypothesized model linking excessive iron, extracellular matrix (ECM), transforming growth factor-β (TGF-β) and Hippo/Yes-associated protein (YAP) signal regarding follicle development. Hypothetically, the TGF-β signal and iron overload may play a synergistic role in ECM production via YAP. We speculate that the dynamic homeostasis of follicular iron interacts with YAP, increasing the risk of ovarian reserve loss and may enhance the sensitivity of follicles to accumulated iron. Hence, therapeutic interventions targeting iron metabolism disorders, and Hippo/YAP signal may alter the consequences of the impaired developmental process based on our hypothesis, which provides potential targets and inspiration for further drug discovery and development applied to clinical treatment.
Collapse
Affiliation(s)
- Lingjin Xia
- National Health Commission of the People's Republic of China (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Yupei Shen
- National Health Commission of the People's Republic of China (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Du
- National Health Commission of the People's Republic of China (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Li K, Li K, Yao Q, Shui X, Zheng J, He Y, Lei W. The potential relationship of coronary artery disease and hyperuricemia: A cardiometabolic risk factor. Heliyon 2023; 9:e16097. [PMID: 37215840 PMCID: PMC10199191 DOI: 10.1016/j.heliyon.2023.e16097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Coronary arterial disease (CAD) is the leading cause of mortality in the world. Hyperuricemia has recently emerged as a novel independent risk factor of CAD, in addition to the traditional risk factors such as hyperlipidemia, smoking, and obesity. Several clinical studies have shown that hyperuricemia is strongly associated with the risk, progression and poor prognosis of CAD, as well as verifying an association with traditional CAD risk factors. Uric acid or enzymes in the uric acid production pathway are associated with inflammation, oxidative stress, regulation of multiple signaling pathways and the renin-angiotensin-aldosterone system (RAAS), and these pathophysiological alterations are currently the main mechanisms of coronary atherosclerosis formation. The risk of death from CAD can be effectively reduced by the uric acid-lowering therapy, but the interventional treatment of uric acid levels in patients with CAD remains controversial due to the diversity of co-morbidities and the complexity of causative factors. In this review, we analyze the association between hyperuricemia and CAD, elucidate the possible mechanisms by which uric acid induces or exacerbates CAD, and discuss the benefits and drawbacks of uric acid-lowering therapy. This review could provide theoretical references for the prevention and management of hyperuricemia-associated CAD.
Collapse
Affiliation(s)
- Kaiyue Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Kongwei Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qingmei Yao
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | - Yuan He
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
28
|
Sun J, Liu Y, Chen C, Quarm AK, Xi S, Sun T, Zhang D, Qian J, Ding H, Gao J. Cyclophilin D-mediated angiotensin II-induced NADPH oxidase 4 activation in endothelial mitochondrial dysfunction that can be rescued by gallic acid. Eur J Pharmacol 2023; 940:175475. [PMID: 36563952 DOI: 10.1016/j.ejphar.2022.175475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Vascular endothelial dysfunction plays a central role in the most dreadful human diseases, including stroke, tumor metastasis, and the coronavirus disease 2019 (COVID-19). Strong evidence suggests that angiotensin II (Ang II)-induced mitochondrial dysfunction is essential for endothelial dysfunction pathogenesis. However, the precise molecular mechanisms remain obscure. Here, polymerase-interacting protein 2 (Poldip 2) was found in the endothelial mitochondrial matrix and no effects on Poldip 2 and NADPH oxidase 4 (NOX 4) expression treated by Ang II. Interestingly, we first found that Ang II-induced NOX 4 binds with Poldip 2 was dependent on cyclophilin D (CypD). CypD knockdown (KD) significantly inhibited the binding of NOX 4 to Poldip 2, and mitochondrial ROS generation in human umbilical vein endothelial cells (HUVECs). Similar results were also found in cyclosporin A (CsA) treated HUVECs. Our previous study suggested a crosstalk between extracellular regulated protein kinase (ERK) phosphorylation and CypD expression, and gallic acid (GA) inhibited mitochondrial dysfunction in neurons depending on regulating the ERK-CypD axis. Here, we confirmed that GA inhibited Ang II-induced NOX 4 activation and mitochondrial dysfunction via ERK/CypD/NOX 4/Poldip 2 pathway, which provide novel mechanistic insight into CypD act as a key regulator of the NOX 4/Poldip 2 axis in Ang II-induced endothelial mitochondrial dysfunction and GA might be beneficial in the treatment of wide variety of diseases, such as COVID-19, which is worthy further research.
Collapse
Affiliation(s)
- Jing Sun
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China; Department of Traditional Chinese Medicine & Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Yunxi Liu
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chen Chen
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Anthony Kwesi Quarm
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Siyu Xi
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tingkai Sun
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Dingqi Zhang
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jinjun Qian
- Department of Neurology, The Fourth People's Hospital of Zhenjiang, Zhenjiang, 212001, PR China
| | - Hongqun Ding
- Department of Clinical Laboratory Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing Gao
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
29
|
Natural Bioactive Compounds Targeting NADPH Oxidase Pathway in Cardiovascular Diseases. Molecules 2023; 28:molecules28031047. [PMID: 36770715 PMCID: PMC9921542 DOI: 10.3390/molecules28031047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, in both developed and developing countries. According to the WHO report, the morbidity and mortality caused by CVD will continue to rise with the estimation of death going up to 22.2 million in 2030. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) production induces endothelial nitric oxide synthase (eNOS) uncoupling and mitochondrial dysfunction, resulting in sustained oxidative stress and the development of cardiovascular diseases. Seven distinct members of the family have been identified of which four (namely, NOX1, 2, 4 and 5) may have cardiovascular functions. Currently, the treatment and management plan for patients with CVDs mainly depends on the drugs. However, prolonged use of prescribed drugs may cause adverse drug reactions. Therefore, it is crucial to find alternative treatment options with lesser adverse effects. Natural products have been gaining interest as complementary therapy for CVDs over the past decade due to their wide range of medicinal properties, including antioxidants. These might be due to their potent active ingredients, such as flavonoid and phenolic compounds. Numerous natural compounds have been demonstrated to have advantageous effects on cardiovascular disease via NADPH cascade. This review highlights the potential of natural products targeting NOX-derived ROS generation in treating CVDs. Emphasis is put on the activation of the oxidases, including upstream or downstream signalling events.
Collapse
|
30
|
Kopp W. Pathogenesis of (smoking-related) non-communicable diseases-Evidence for a common underlying pathophysiological pattern. Front Physiol 2022; 13:1037750. [PMID: 36589440 PMCID: PMC9798240 DOI: 10.3389/fphys.2022.1037750] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Non-communicable diseases, like diabetes, cardiovascular diseases, cancer, stroke, chronic obstructive pulmonary disease, osteoporosis, arthritis, Alzheimer's disease and other more are a leading cause of death in almost all countries. Lifestyle factors, especially poor diet and tobacco consumption, are considered to be the most important influencing factors in the development of these diseases. The Western diet has been shown to cause a significant distortion of normal physiology, characterized by dysregulation of the sympathetic nervous system, renin-angiotensin aldosterone system, and immune system, as well as disruption of physiological insulin and oxidant/antioxidant homeostasis, all of which play critical roles in the development of these diseases. This paper addresses the question of whether the development of smoking-related non-communicable diseases follows the same pathophysiological pattern. The evidence presented shows that exposure to cigarette smoke and/or nicotine causes the same complex dysregulation of physiology as described above, it further shows that the factors involved are strongly interrelated, and that all of these factors play a key role in the development of a broad spectrum of smoking-related diseases. Since not all smokers develop one or more of these diseases, it is proposed that this disruption of normal physiological balance represents a kind of pathogenetic "basic toolkit" for the potential development of a range of non-communicable diseases, and that the decision of whether and what disease will develop in an individual is determined by other, individual factors ("determinants"), such as the genome, epigenome, exposome, microbiome, and others. The common pathophysiological pattern underlying these diseases may provide an explanation for the often poorly understood links between non-communicable diseases and disease comorbidities. The proposed pathophysiological process offers new insights into the development of non-communicable diseases and may influence the direction of future research in both prevention and therapy.
Collapse
|
31
|
Attanzio A, Restivo I, Tutone M, Tesoriere L, Allegra M, Livrea MA. Redox Properties, Bioactivity and Health Effects of Indicaxanthin, a Bioavailable Phytochemical from Opuntia ficus indica, L.: A Critical Review of Accumulated Evidence and Perspectives. Antioxidants (Basel) 2022; 11:antiox11122364. [PMID: 36552572 PMCID: PMC9774763 DOI: 10.3390/antiox11122364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Phytochemicals from plant foods are considered essential to human health. Known for their role in the adaptation of plants to their environment, these compounds can induce adaptive responses in cells, many of which are directed at maintaining the redox tone. Indicaxanthin is a long-known betalain pigment found in the genus Opuntia of cactus pear and highly concentrated in the edible fruits of O. ficus indica, L. whose bioactivity has been overlooked until recently. This review summarizes studies conducted so far in vitro and in vivo, most of which have been performed in our laboratory. The chemical and physicochemical characteristics of Indicaxanthin are reflected in the molecule's reducing properties and antioxidant effects and help explain its ability to interact with membranes, modulate redox-regulated cellular pathways, and possibly bind to protein molecules. Measurement of bioavailability in volunteers has been key to exploring its bioactivity; amounts consistent with dietary intake, or plasma concentration after dietary consumption of cactus pear fruit, have been used in experimental setups mimicking physiological or pathophysiological conditions, in cells and in animals, finally suggesting pharmacological potential and relevance of Indicaxanthin as a nutraceutical. In reporting experimental results, this review also aimed to raise questions and seek insights for further basic research and health promotion applications.
Collapse
|
32
|
Windfelder AG, Müller FHH, Mc Larney B, Hentschel M, Böhringer AC, von Bredow CR, Leinberger FH, Kampschulte M, Maier L, von Bredow YM, Flocke V, Merzendorfer H, Krombach GA, Vilcinskas A, Grimm J, Trenczek TE, Flögel U. High-throughput screening of caterpillars as a platform to study host-microbe interactions and enteric immunity. Nat Commun 2022; 13:7216. [PMID: 36433960 PMCID: PMC9700799 DOI: 10.1038/s41467-022-34865-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Mammalian models of human disease are expensive and subject to ethical restrictions. Here, we present an independent platform for high-throughput screening, using larvae of the tobacco hornworm Manduca sexta, combining diagnostic imaging modalities for a comprehensive characterization of aberrant phenotypes. For validation, we use bacterial/chemical-induced gut inflammation to generate a colitis-like phenotype and identify significant alterations in morphology, tissue properties, and intermediary metabolism, which aggravate with disease progression and can be rescued by antimicrobial treatment. In independent experiments, activation of the highly conserved NADPH oxidase DUOX, a key mediator of gut inflammation, leads to similar, dose-dependent alterations, which can be attenuated by pharmacological interventions. Furthermore, the developed platform could differentiate pathogens from mutualistic gastrointestinal bacteria broadening the scope of applications also to microbiomics and host-pathogen interactions. Overall, larvae-based screening can complement mammals in preclinical studies to explore innate immunity and host-pathogen interactions, thus representing a substantial contribution to improve mammalian welfare.
Collapse
Affiliation(s)
- Anton G Windfelder
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Frank H H Müller
- Radiology and Nuclear Medicine Ludwigshafen, Ludwigshafen, Germany
| | - Benedict Mc Larney
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Anna Christina Böhringer
- Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Siegen, Germany
| | | | - Florian H Leinberger
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany
| | - Marian Kampschulte
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Lorenz Maier
- Department of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
| | - Yvette M von Bredow
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany
| | - Vera Flocke
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans Merzendorfer
- Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Siegen, Germany
| | - Gabriele A Krombach
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Institute for Insect Biotechnology, Department of Applied Entomology, Justus Liebig University Giessen, Giessen, Germany
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Department, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical Center, New York, NY, USA
| | - Tina E Trenczek
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany.
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
33
|
Xiao S, Kuang C. Identification of crucial genes that induce coronary atherosclerosis through endothelial cell dysfunction in AMI-identifying hub genes by WGCNA. Am J Transl Res 2022; 14:8166-8174. [PMID: 36505315 PMCID: PMC9730117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/30/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To identify the most relevant genes of cardiovascular disease in acute myocardial infarction patients using weighted gene co-expression network analysis (WGCNA). METHODS The microarray dataset of GSE66360 was downloaded from the Gene Expression Omnibus (GEO) website. The differential genes with adjusted P < 0.05 and |log2 fold change (FC)| > 0.5 were included in the analysis. The weighed gene co-expression network analysis (WGCNA) was used to build a gene co-expression network and identify the most significant module. Cytoscape was used to filter the hub genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the hub genes. The key genes were defined as having high statistical and biological significance. RESULTS A total of 4751 differentially expressed genes (DEGs) were screened from the dataset. The purple module had the highest significance in AMI. There were 47 hub genes identified from the module. The GO terms "amyloid beta protein metabolism" and "carbohydrate metabolism" and the KEGG terms "phagosome-related pathways" and "Staphylococcus aureus-associated pathways" were the pathways strongly enriched in AMI. Fatty acid translocase cluster of differentiation (CD36), formyl peptide receptor type 2 (FPR2), integrin subunit alpha M (ITGAM), and oxidized low density lipoprotein receptor 1 (OLR1) were considered key genes in AMI. CONCLUSION Our research suggested that the underlying mechanism was related to inflammation and lipid formation. The hub genes identified were CD36, FPR2, ITGAM, and OLR1.
Collapse
|
34
|
Endothelial and Vascular Smooth Muscle Dysfunction in Hypertension. Biochem Pharmacol 2022; 205:115263. [PMID: 36174768 DOI: 10.1016/j.bcp.2022.115263] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/11/2022]
Abstract
The development of essential hypertension involves several factors. Vascular dysfunction, characterized by endothelial dysfunction, low-grade inflammation and structural remodeling, plays an important role in the initiation and maintenance of essential hypertension. Although the mechanistic pathways by which essential hypertension develops are poorly understood, several pharmacological classes available on the clinical settings improve blood pressure by interfering in the cardiac output and/or vascular function. This review is divided in two major sections. The first section depicts the major molecular pathways as renin angiotensin aldosterone system (RAAS), endothelin, nitric oxide signalling pathway and oxidative stress in the development of vascular dysfunction. The second section describes the role of some pharmacological classes such as i) RAAS inhibitors, ii) dual angiotensin receptor-neprilysin inhibitors, iii) endothelin-1 receptor antagonists, iv) soluble guanylate cyclase modulators, v) phosphodiesterase type 5 inhibitors and vi) sodium-glucose cotransporter 2 inhibitors in the context of hypertension. Some classes are already approved in the treatment of hypertension, but others are not yet approved. However, due to their potential benefits these classes were included.
Collapse
|
35
|
Mutengo KH, Masenga SK, Mwesigwa N, Patel KP, Kirabo A. Hypertension and human immunodeficiency virus: A paradigm for epithelial sodium channels? Front Cardiovasc Med 2022; 9:968184. [PMID: 36093171 PMCID: PMC9452753 DOI: 10.3389/fcvm.2022.968184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/10/2022] [Indexed: 02/03/2023] Open
Abstract
Hypertension is a risk factor for end organ damage and death and is more common in persons with HIV compared to the general population. Several mechanisms have been studied in the pathogenesis of hypertension. Current evidence suggests that the epithelial sodium channel (ENaC) plays a key role in regulating blood pressure through the transport of sodium and water across membranes in the kidney tubules, resulting in retention of sodium and water and an altered fluid balance. However, there is scarcity of information that elucidates the role of ENaC in HIV as it relates to increasing the risk for development or pathogenesis of hypertension. This review summarized the evidence to date implicating a potential role for altered ENaC activity in contributing to hypertension in patients with HIV.
Collapse
Affiliation(s)
- Katongo H. Mutengo
- School of Medicine and Health Sciences, HAND Research Group, Mulungushi University, Livingstone Campus, Livingstone, Zambia,School of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Sepiso K. Masenga
- School of Medicine and Health Sciences, HAND Research Group, Mulungushi University, Livingstone Campus, Livingstone, Zambia,School of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Naome Mwesigwa
- Department of Medicine and Dentistry, Kampala International University, Kampala, Uganda
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Annet Kirabo,
| |
Collapse
|
36
|
Frąk W, Wojtasińska A, Lisińska W, Młynarska E, Franczyk B, Rysz J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines 2022; 10:biomedicines10081938. [PMID: 36009488 PMCID: PMC9405799 DOI: 10.3390/biomedicines10081938] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are disorders associated with the heart and circulatory system. Atherosclerosis is its major underlying cause. CVDs are chronic and can remain hidden for a long time. Moreover, CVDs are the leading cause of global morbidity and mortality, thus creating a major public health concern. This review summarizes the available information on the pathophysiological implications of CVDs, focusing on coronary artery disease along with atherosclerosis as its major cause and arterial hypertension. We discuss the endothelium dysfunction, inflammatory factors, and oxidation associated with atherosclerosis. Mechanisms such as dysfunction of the endothelium and inflammation, which have been identified as critical pathways for development of coronary artery disease, have become easier to diagnose in recent years. Relatively recently, evidence has been found indicating that interactions of the molecular and cellular elements such as matrix metalloproteinases, elements of the immune system, and oxidative stress are involved in the pathophysiology of arterial hypertension. Many studies have revealed several important inflammatory and genetic risk factors associated with CVDs. However, further investigation is crucial to improve our knowledge of CVDs progression and, more importantly, accelerate basic research to improve our understanding of the mechanism of pathophysiology.
Collapse
|
37
|
HHcy Induces Pyroptosis and Atherosclerosis via the Lipid Raft-Mediated NOX-ROS-NLRP3 Inflammasome Pathway in apoE -/- Mice. Cells 2022; 11:cells11152438. [PMID: 35954287 PMCID: PMC9368640 DOI: 10.3390/cells11152438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Lipid rafts play important roles in signal transduction, particularly in responses to inflammatory processes. The current study aimed to identify whether lipid raft-mediated inflammation contributes to hyperhomocysteinemia (HHcy)-accelerated atherosclerosis (AS), and to investigate the underlying mechanisms. THP-1-derived macrophages were used for in vitro experiments. ApoE−/− mice were fed a high-fat diet for 12 weeks to establish an AS model, and a high-fat plus high-methionine diet was used to induce HHcy. We found that homocysteine (Hcy) increased the expression of p22phox and p67phox and promoted their recruitment into lipid rafts (indicating the assembly of the NOX complex), thereby increasing ROS generation and NOX activity, NLRP3 inflammasome activation, and pyroptosis. Mechanistically, Hcy activated the NOX-ROS-NLRP3 inflammasome pathway and induced pyroptosis by increasing the expression of acid sphingomyelinase (ASM) to promote the formation of lipid raft clustering. Importantly, lipid raft-mediated pyroptosis was confirmed in HHcy mice, and HHcy-promoted macrophage recruitment in atherosclerotic lesions and HHcy-aggravated AS were blocked by the lipid raft disruptor methyl-β-cyclodextrin. The study findings indicate that Hcy promotes lipid raft clustering via the upregulation of ASM, which mediates the assembly of the NOX complex, causing an increase in ROS generation, NLRP3 inflammasome activation, and pyroptosis, and contributes to HHcy-induced AS.
Collapse
|
38
|
Zhao C, Tang J, Li X, Yan Z, Zhao L, Lang W, Yuan C, Zhou C. Beneficial effects of procyanidin B2 on adriamycin-induced nephrotic syndrome mice: the multi-action mechanism for ameliorating glomerular permselectivity injury. Food Funct 2022; 13:8436-8464. [PMID: 35861207 DOI: 10.1039/d1fo03616e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite considerable advances in prevention, diagnosis, and therapy, nephrotic syndrome (NS) remains a significant cause of high morbidity and mortality globally. As a result, there is an urgent need to identify novel effective preventative and therapeutic agents for NS. NS is implicated in glomerular permselectivity injury, which can be attributed to oxidative distress, inflammation, lipid nephrotoxicity, podocyte apoptosis, autophagy dysfunction, and slit diaphragm (SLD) dysfunction. In addition to its well-documented antioxidant potency, procyanidin B2 (PB2) may exhibit pleiotropic effects by targeting various canonical signaling events, such as NF-κB, PPARs, PI3K/Akt, mTOR, and the caspase family. As a result, PB2 may be a promising therapeutic target against NS. To test this hypothesis, we established an Adriamycin (ADR)-induced NS mouse model to evaluate the pleiotropic renoprotective effects of PB2 on NS. Here, we demonstrated that PB2 improves podocyte injury via inhibition of NOX4/ROS and Hsp90/NF-κB to exhibit antioxidant and anti-inflammatory potency, respectively. We also show that PB2 indirectly activates the PI3K/Akt axis by regulating SLD protein levels, resulting in normalized podocyte apoptosis and autophagy function. Further, loss of albumin (ALB) induces lipid nephrotoxicity, which we found to be alleviated by PB2 via activation of PPARα/β-mediated lipid homeostasis and the cholesterol efflux axis. Interestingly, our results also suggested that PB2 reduces electrolyte abnormalities and edema. In addition, PB2 may contribute protective effects against trace element dys-homeostasis, which, through alleviating serum ALB loss, leads to a protective effect on glomerular permselectivity injury. Taken together, our results reveal that the identified mechanisms of PB2 on NS are multifactorial and involve inhibition of oxidative distress and inflammatory responses, as well as improvements in podocyte apoptosis and autophagy dysfunction, amelioration of lipid nephrotoxicity, and modulation of electrolyte abnormalities and edema. Thus, we provide a theoretical basis for the clinical application of PB2 against NS.
Collapse
Affiliation(s)
- Chuanping Zhao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| | - Jiamei Tang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| | - Xiaoya Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| | - Zihan Yan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| | - Liangliang Zhao
- Department of Monitoring and Analysis, Baoding Environmental Monitoring Center of Hebei Province, 224 Dongfeng Road, Lianchi District, Baoding, 071000, China
| | - Wenbo Lang
- Department of Monitoring and Analysis, Baoding Environmental Monitoring Center of Hebei Province, 224 Dongfeng Road, Lianchi District, Baoding, 071000, China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Chengyan Zhou
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| |
Collapse
|
39
|
Berlanga-Acosta J, Fernández-Mayola M, Mendoza-Marí Y, García-Ojalvo A, Martinez-Jimenez I, Rodriguez-Rodriguez N, Playford RJ, Reyes-Acosta O, Lopez-Marín L, Guillén-Nieto G. Intralesional Infiltrations of Arteriosclerotic Tissue Cells-Free Filtrate Reproduce Vascular Pathology in Healthy Recipient Rats. Int J Mol Sci 2022; 23:1511. [PMID: 35163435 PMCID: PMC8835913 DOI: 10.3390/ijms23031511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Lower-extremity arterial disease is a major health problem with increasing prevalence, often leading to non-traumatic amputation, disability and mortality. The molecular mechanisms underpinning abnormal vascular wall remodeling are not fully understood. We hypothesized on the existence of a vascular tissue memory that may be transmitted through soluble signaling messengers, transferred from humans to healthy recipient animals, and consequently drive the recapitulation of arterial wall thickening and other vascular pathologies. We examined the effects of the intralesional infiltration for 6 days of arteriosclerotic popliteal artery-derived homogenates (100 µg of protein) into rats' full-thickness wounds granulation tissue. Animals infiltrated with normal saline solution or healthy brachial arterial tissue homogenate obtained from traumatic amputation served as controls. The significant thickening of arteriolar walls was the constant outcome in two independent experiments for animals receiving arteriosclerotic tissue homogenates. This material induced other vascular morphological changes including an endothelial cell phenotypic reprogramming that mirrored the donor's vascular histopathology. The immunohistochemical expression pattern of relevant vascular markers appeared to match between the human tissue and the corresponding recipient rats. These changes occurred within days of administration, and with no cross-species limitation. The identification of these "vascular disease drivers" may pave novel research avenues for atherosclerosis pathobiology.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Maday Fernández-Mayola
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Yssel Mendoza-Marí
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Ariana García-Ojalvo
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Indira Martinez-Jimenez
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Nadia Rodriguez-Rodriguez
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Raymond J. Playford
- School of Biomedical Sciences, University of West London, St Marys Rd, Ealing, London W5 5RF, UK;
| | - Osvaldo Reyes-Acosta
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Laura Lopez-Marín
- Department of Pathology, Institute for Arteriosclerosis Research, Institute of Nephrology “Dr. Abelardo Buch”, Calle 26 y Línea del Ferrocarril, Vedado, Havana 10400, Cuba;
| | - Gerardo Guillén-Nieto
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| |
Collapse
|
40
|
Gallo G, Volpe M, Savoia C. Endothelial Dysfunction in Hypertension: Current Concepts and Clinical Implications. Front Med (Lausanne) 2022; 8:798958. [PMID: 35127755 PMCID: PMC8811286 DOI: 10.3389/fmed.2021.798958] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022] Open
Abstract
Endothelium plays a fundamental role in the cardiovascular system, forming an interface between blood and adjacent tissues by regulating the vascular tone through the synthesis of nitric oxide, prostaglandins and other relaxing factors. Endothelial dysfunction is characterized by vasoconstriction, cell proliferation and shifting toward a proinflammatory and prothrombic state. In hypertension endothelial dysfunction may be involved in the initiation and development of vascular inflammation, vascular remodeling, and atherosclerosis and is independently associated with increased cardiovascular risk. Different conditions such as impaired vascular shear stress, inflammation and oxidative stress, activation of the renin angiotensin system have been described as important pathophysiological mechanisms involved in the development of endothelial dysfunction. The release of extracellular vesicles by neighboring cells in the vascular wall has emerged as an important regulator of endothelial function and with potential antihypertensive properties and beneficial effects by counteracting the hypertension mediated organ damage. Furthermore, macrovesicles are emerging as an innovative therapeutic approach for vascular protection, allowing the delivery of bioactive molecules, such as miRNA and drugs interacting with the renin angiotensin system. In this review we summarize the available evidence about the pathophysiological implications of endothelial dysfunction in cardiovascular diseases, focusing on hypertension and its sequelae, and the potential innovative therapeutic strategies targeting the endothelium with the aim to improve vascular function and remodeling.
Collapse
|
41
|
Wang Y, Zhao Y, Ye T, Yang L, Shen Y, Li H. Ferroptosis Signaling and Regulators in Atherosclerosis. Front Cell Dev Biol 2022; 9:809457. [PMID: 34977044 PMCID: PMC8716792 DOI: 10.3389/fcell.2021.809457] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis (AS) is a major cause of cardiovascular diseases such as coronary heart disease, heart failure and stroke. Abnormal lipid metabolism, oxidative stress and inflammation are the main features of AS. Ferroptosis is an iron-driven programmed cell death characterized by lipid peroxidation, which have been proved to participate in the development and progression of AS by different signal pathways. NRF2-Keap1 pathway decreases ferroptosis associated with AS by maintaining cellular iron homeostasis, increasing the production glutathione, GPX4 and NADPH. The p53 plays different roles in ferroptosis at different stages of AS in a transcription-dependent and transcription- independent manner. The Hippo pathway is involved in progression of AS, which has been proved the activation of ferroptosis. Other transcription factors, such as ATF3, ATF4, STAT3, also involved in the occurrence of ferroptosis and AS. Certain proteins or enzymes also have a regulatory role in AS and ferroptosis. In this paper, we review the mechanism of ferroptosis and its important role in AS in an attempt to find a new relationship between ferroptosis and AS and provide new ideas for the future treatment of AS.
Collapse
Affiliation(s)
- Yuqin Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yajie Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ting Ye
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, China
| | - Yanna Shen
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Hong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
42
|
Radovanovic J, Banjac K, Obradovic M, Isenovic ER. Antioxidant enzymes and vascular diseases. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a fundamental role in regulating endothelial function and vascular tone in the physiological conditions of a vascular system. However, oxidative stress has detrimental effects on human health, and numerous studies confirmed that high ROS/RNS production contributes to the initiation and progression of cardiovascular diseases. The antioxidant defense has an essential role in the homeostatic functioning of the vascular endothelial system. Endogenous antioxidative defense includes various molecules and enzymes such as superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase. Together all these antioxidative enzymes are essential for defense against harmful ROS features. ROS are mainly generated from redox-active compounds involved in the mitochondrial respiratory chain. Thus, targeting antioxidative enzymes and mitochondria oxidative balance may be a promising approach for vascular diseases occurrence and treatment. This review summarized the most recent research on the regulation of antioxidative enzymes in vascular diseases.
Collapse
Affiliation(s)
- Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 522 Belgrade, Serbia
| | - Katarina Banjac
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 522 Belgrade, Serbia
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 522 Belgrade, Serbia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 522 Belgrade, Serbia
| |
Collapse
|
43
|
Wu N, Zheng F, Li N, Han Y, Xiong XQ, Wang JJ, Chen Q, Li YH, Zhu GQ, Zhou YB. RND3 attenuates oxidative stress and vascular remodeling in spontaneously hypertensive rat via inhibiting ROCK1 signaling. Redox Biol 2021; 48:102204. [PMID: 34883403 PMCID: PMC8661704 DOI: 10.1016/j.redox.2021.102204] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022] Open
Abstract
Superoxide and vascular smooth muscle cells (VSMCs) migration and proliferation play crucial roles in the vascular remodeling. Vascular remodeling contributes to the development and complications of hypertension. Rho family GTPase 3 (RND3 or RhoE), an atypical small Rho-GTPase, is known to be involved in cancer development and metastasis. However, the roles of RND3 in superoxide production and cardiovascular remodeling are unknown. Here, we uncovered the critical roles of RND3 in attenuating superoxide production, VSMCs migration and proliferation, and vascular remodeling in hypertension and its underline mechanisms. VSMCs were isolated and prepared from thoracic aorta of Male Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). RND3 mRNA and protein expressions in arteries and VSMCs were down-regulated in SHR. RND3 overexpression in VSMCs reduced NAD(P)H oxidase (NOX) activity, NOX1 and NOX2 expressions, mitochondria superoxide generation, and H2O2 production in SHR. Moreover, the RND3 overexpression inhibited VSMCs migration and proliferation in SHR, which were similar to the effects of NOX1 inhibitor ML171 plus NOX2 inhibitor GSK2795039. Rho-associated kinase 1 (ROCK1) and RhoA expressions and myosin phosphatase targeting protein 1 (MYPT1) phosphorylation in VSMCs were increased in SHR, which were prevented by RND3 overexpression. ROCK1 overexpression promoted NOX1 and NOX2 expressions, superoxide and H2O2 production, VSMCs migration and proliferation in both WKY and SHR, which were attenuated by RND3 overexpression. Adenoviral-mediated RND3 overexpression in SHR attenuated hypertension, vascular remodeling and oxidative stress. These results indicate that RND3 attenuates VSMCs migration and proliferation, hypertension and vascular remodeling in SHR via inhibiting ROCK1-NOX1/2 and mitochondria superoxide signaling.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Na Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao-Qing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Jue-Jin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China; Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China.
| | - Ye-Bo Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
44
|
Bonilha I, Hajduch E, Luchiari B, Nadruz W, Le Goff W, Sposito AC. The Reciprocal Relationship between LDL Metabolism and Type 2 Diabetes Mellitus. Metabolites 2021; 11:metabo11120807. [PMID: 34940565 PMCID: PMC8708656 DOI: 10.3390/metabo11120807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus and insulin resistance feature substantial modifications of the lipoprotein profile, including a higher proportion of smaller and denser low-density lipoprotein (LDL) particles. In addition, qualitative changes occur in the composition and structure of LDL, including changes in electrophoretic mobility, enrichment of LDL with triglycerides and ceramides, prolonged retention of modified LDL in plasma, increased uptake by macrophages, and the formation of foam cells. These modifications affect LDL functions and favor an increased risk of cardiovascular disease in diabetic individuals. In this review, we discuss the main findings regarding the structural and functional changes in LDL particles in diabetes pathophysiology and therapeutic strategies targeting LDL in patients with diabetes.
Collapse
Affiliation(s)
- Isabella Bonilha
- Cardiology Division, Atherosclerosis and Vascular Biology Laboratory (AtheroLab), State University of Campinas (Unicamp), Campinas 13083-887, Brazil; (I.B.); (B.L.)
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France;
| | - Beatriz Luchiari
- Cardiology Division, Atherosclerosis and Vascular Biology Laboratory (AtheroLab), State University of Campinas (Unicamp), Campinas 13083-887, Brazil; (I.B.); (B.L.)
| | - Wilson Nadruz
- Cardiology Division, Cardiovascular Pathophysiology Laboratory, State University of Campinas (Unicamp), Campinas 13083-887, Brazil;
| | - Wilfried Le Goff
- Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, ICAN, Inserm, Sorbonne Université, F-75013 Paris, France;
| | - Andrei C. Sposito
- Cardiology Division, Atherosclerosis and Vascular Biology Laboratory (AtheroLab), State University of Campinas (Unicamp), Campinas 13083-887, Brazil; (I.B.); (B.L.)
- Correspondence: ; Tel.: +55-19-3521-7098; Fax: +55-19-3289-410
| |
Collapse
|
45
|
Yang R, Tan C, Najafi M. Cardiac inflammation and fibrosis following chemo/radiation therapy: mechanisms and therapeutic agents. Inflammopharmacology 2021; 30:73-89. [PMID: 34813027 DOI: 10.1007/s10787-021-00894-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
The incidence of cardiovascular disorders is one of the most concerns among people who underwent cancer therapy. The heart side effects of cancer therapy may occur during treatment to some years after the end of treatment. Some epidemiological studies confirm that heart diseases are one of the most common reasons for mortality among patients that were received treatment for cancer. Experimental studies and also clinical investigations indicate that inflammatory changes such as pericarditis, myocarditis, and also fibrosis are key mechanisms of cardiac diseases following chemotherapy/radiotherapy. It seems that chronic oxidative stress, massive cell death, and chronic overproduction of pro-inflammatory and pro-fibrosis cytokines are the key mechanisms of cardiovascular diseases following cancer therapy. Furthermore, infiltration of inflammatory cells and upregulation of some enzymes such as NADPH Oxidases are a hallmark of heart diseases after cancer therapy. In the current review, we aim to explain how radiation or chemotherapy can induce inflammatory and fibrosis-related diseases in the heart. We will explain the cellular and molecular mechanisms of cardiac inflammation and fibrosis following chemo/radiation therapy, and then review some adjuvants to reduce the risk of inflammation and fibrosis in the heart.
Collapse
Affiliation(s)
- Run Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Road, Changsha, Hunan, People's Republic of China
| | - Changming Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Road, Changsha, Hunan, People's Republic of China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
46
|
Kimura Y, Tsukui D, Kono H. Uric Acid in Inflammation and the Pathogenesis of Atherosclerosis. Int J Mol Sci 2021; 22:ijms222212394. [PMID: 34830282 PMCID: PMC8624633 DOI: 10.3390/ijms222212394] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Hyperuricemia is a common metabolic syndrome. Elevated uric acid levels are risk factors for gout, hypertension, and chronic kidney diseases. Furthermore, various epidemiological studies have also demonstrated an association between cardiovascular risks and hyperuricemia. In hyperuricemia, reactive oxygen species (ROS) are produced simultaneously with the formation of uric acid by xanthine oxidases. Intracellular uric acid has also been reported to promote the production of ROS. The ROS and the intracellular uric acid itself regulate several intracellular signaling pathways, and alterations in these pathways may result in the development of atherosclerotic lesions. In this review, we describe the effect of uric acid on various molecular signals and the potential mechanisms of atherosclerosis development in hyperuricemia. Furthermore, we discuss the efficacy of treatments for hyperuricemia to protect against the development of atherosclerosis.
Collapse
Affiliation(s)
- Yoshitaka Kimura
- Department of Internal Medicine, Faculty of Medicine, Teikyo University of Medicine, Tokyo 173-8605, Japan; (Y.K.); (D.T.)
- Department of Microbiology and Immunology, Faculty of Medicine, Teikyo University of Medicine, Tokyo 173-8605, Japan
| | - Daisuke Tsukui
- Department of Internal Medicine, Faculty of Medicine, Teikyo University of Medicine, Tokyo 173-8605, Japan; (Y.K.); (D.T.)
| | - Hajime Kono
- Department of Internal Medicine, Faculty of Medicine, Teikyo University of Medicine, Tokyo 173-8605, Japan; (Y.K.); (D.T.)
- Correspondence: ; Tel.: +81-3-3964-1211
| |
Collapse
|
47
|
ROS-Based Nanoparticles for Atherosclerosis Treatment. MATERIALS 2021; 14:ma14226921. [PMID: 34832328 PMCID: PMC8619986 DOI: 10.3390/ma14226921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Atherosclerosis (AS), a chronic arterial disease, is the leading cause of death in western developed countries. Considering its long-term asymptomatic progression and serious complications, the early prevention and effective treatment of AS are particularly important. The unique characteristics of nanoparticles (NPs) make them attractive in novel therapeutic and diagnostic applications, providing new options for the treatment of AS. With the assistance of reactive oxygen species (ROS)-based NPs, drugs can reach specific lesion areas, prolong the therapeutic effect, achieve targeted controlled release and reduce adverse side effects. In this article, we reviewed the mechanism of AS and the generation and removal strategy of ROS. We further discussed ROS-based NPs, and summarized their biomedical applications in scavenger and drug delivery. Furthermore, we highlighted the recent advances, challenges and future perspectives of ROS-based NPs for treating AS.
Collapse
|
48
|
Hasheminasabgorji E, Jha JC. Dyslipidemia, Diabetes and Atherosclerosis: Role of Inflammation and ROS-Redox-Sensitive Factors. Biomedicines 2021; 9:biomedicines9111602. [PMID: 34829831 PMCID: PMC8615779 DOI: 10.3390/biomedicines9111602] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
The prevalence of diabetes is growing at an alarming rate with increased disability, morbidity, and often premature mortality because of the various complications of this disorder. Chronic hyperglycemia, dyslipidemia, and other metabolic alterations lead to the development and progression of macro- and microvascular complications of diabetes including cardiovascular, retinal and kidney disease. Despite advances in glucose and lipid lowering treatments, a large number of diabetic individuals develop one or more types of these complications, ultimately leading to end-organ damage over the time. Atherosclerosis is the major macro-vascular complications of diabetes and the primary underlying cause of cardiovascular disease (CVD) posing heavy burden on the health care system. In this review, we discuss the involvement of dyslipidemia in the progression of atherosclerosis by activating the pro-inflammatory cytokines and oxidative stress-related factors. In addition, we also provide information on various pharmacological agents that provides protection against diabetic atherosclerosis by reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Elham Hasheminasabgorji
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran;
| | - Jay C. Jha
- Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
- Correspondence:
| |
Collapse
|
49
|
Recalcati S, Cairo G. Macrophages and Iron: A Special Relationship. Biomedicines 2021; 9:biomedicines9111585. [PMID: 34829813 PMCID: PMC8615895 DOI: 10.3390/biomedicines9111585] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Macrophages perform a variety of different biological functions and are known for their essential role in the immune response. In this context, a principal function is phagocytic clearance of pathogens, apoptotic and senescent cells. However, the major targets of homeostatic phagocytosis by macrophages are old/damaged red blood cells. As such, macrophages play a crucial role in iron trafficking, as they recycle the large quantity of iron obtained by hemoglobin degradation. They also seem particularly adapted to handle and store amounts of iron that would be toxic to other cell types. Here, we examine the specific and peculiar iron metabolism of macrophages.
Collapse
|
50
|
Salusin-β in Intermediate Dorsal Motor Nucleus of the Vagus Regulates Sympathetic-Parasympathetic Balance and Blood Pressure. Biomedicines 2021; 9:biomedicines9091118. [PMID: 34572305 PMCID: PMC8467440 DOI: 10.3390/biomedicines9091118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
The dorsal motor nucleus of the vagus (DMV) is known to control vagal activity. It is unknown whether the DMV regulates sympathetic activity and whether salusin-β in the DMV contributes to autonomic nervous activity. We investigated the roles of salusin-β in DMV in regulating sympathetic-parasympathetic balance and its underline mechanisms. Microinjections were carried out in the DMV and hypothalamic paraventricular nucleus (PVN) in male adult anesthetized rats. Renal sympathetic nerve activity (RSNA), blood pressure and heart rate were recorded. Immunohistochemistry for salusin-β and reactive oxidative species (ROS) production in the DMV were examined. Salusin-β was expressed in the intermediate DMV (iDMV). Salusin-β in the iDMV not only inhibited RSNA but also enhanced vagal activity and thereby reduced blood pressure and heart rate. The roles of salusin-β in causing vagal activation were mediated by NAD(P)H oxidase-dependent superoxide anion production in the iDMV. The roles of salusin-β in inhibiting RSNA were mediated by not only the NAD(P)H oxidase-originated superoxide anion production in the iDMV but also the γ-aminobutyric acid (GABA)A receptor activation in PVN. Moreover, endogenous salusin-β and ROS production in the iDMV play a tonic role in inhibiting RSNA. These results indicate that salusin-β in the iDMV inhibits sympathetic activity and enhances vagal activity, and thereby reduces blood pressure and heart rate, which are mediated by NAD(P)H oxidase-dependent ROS production in the iDMV. Moreover, GABAA receptor in the PVN mediates the effect of salusin-β on sympathetic inhibition. Endogenous salusin-β and ROS production in the iDMV play a tonic role in inhibiting sympathetic activity.
Collapse
|