1
|
Wu J, Zheng Z, Wang J, Xiao W, Shi L, Fan L. Iron Status and Risk of Periodontitis and Dental Caries: A Mendelian Randomization Study. Int Dent J 2025; 75:1441-1449. [PMID: 39741062 PMCID: PMC11976561 DOI: 10.1016/j.identj.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Previous studies have indicated a potential relationship between iron status and oral health outcomes, specifically periodontitis and dental caries. This study employed Mendelian randomization (MR) to investigate the causal effects of iron status on these oral health conditions. The focus of this study was on key iron biomarkers, namely serum iron, ferritin, transferrin saturation (TSAT), and total iron-binding capacity (TIBC). METHODS This two-sample MR analysis employed genome-wide association study (GWAS) data. The instrumental variables (IVs) were selected based on their genome-wide significance and independence from confounders. The statistical analyses employed the inverse variance weighted (IVW) method, MR-Egger regression, weighted median, and weighted mode. Additionally, sensitivity analyses were conducted to verify the reliability of the causal association results. RESULTS The MR analysis indicated a suggestive negative causal relationship between TIBC and periodontitis, with an odds ratios of 0.875 and a 95% CI of 0.766-0.998, with a P-value of .047. No significant other associations were found. The results of sensitivity analyses demonstrated the robustness of these findings. CONCLUSION This MR study suggested a potential negative association between TIBC and periodontitis, highlighting the importance of considering iron status in the clinical management of chronic periodontitis. However, more standardized, multi-population studies are needed to confirm this causality.
Collapse
Affiliation(s)
- Jiaqi Wu
- Department of Prosthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Ziyang Zheng
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Jinghan Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Weiwei Xiao
- Department of Prosthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Liang Shi
- Department of Prosthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Liyuan Fan
- Department of Prosthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Rojas-Torres J, Quijón MEG, Henríquez-Vidal A, Devia-Rubio L, Martínez-Duran L. Permanent and decidua dentition as chronological biomarkers of heavy metal contamination: A review of the forensic literature. J Trace Elem Med Biol 2024; 84:127435. [PMID: 38547726 DOI: 10.1016/j.jtemb.2024.127435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 05/27/2024]
Abstract
STATEMENT OF PROBLEM Contamination with heavy metals (HM) has great environmental consequences in the environment due to lack of biodegradation, in addition, accumulation in living beings causes defects in tissues and organs, deteriorating their function and inducing a wide spectrum of diseases. Human biomonitoring consists of the periodic measurement of a certain chemical substance or metabolite in a particular population, using matrices that can be acute or chronic. Teeth are chronic matrices that have great characteristics of resistance and chronological storage of information. This review aims to identify the mechanisms, spatial location, and affinity of HM within teeth, along with understanding its applicability as a chronological record matrix in the face of HM contamination. MATERIAL AND METHODS A systematic search review was performed using the PubMed/Medline, Web of Science, and Scopus metasearch engines, and the terms "teeth" OR "dental" OR "tooth" AND "heavy metals" were intersected. Complete articles are included in Spanish, English and Portuguese without time restrictions, involving studies in humans or in vitro; Letters to the editor, editorials and those that did not refer to information on the incorporation and relationship of HM with the teeth were excluded. RESULTS 837 published articles were detected, 91 were adjusted to the search objective, and 6 were manually included. Teeth are structures with a great capacity for information retention in the face of HM contamination due to low physiological turnover and their long processes of marked formations by developmental biorhythm milestones such as the neonatal line (temporal reference indicator). The contamination mechanisms inside the tooth are linked to the affinity of hydroxyapatite for HM; this incorporation can be in the soft matrix during the apposition phase or as part of the chemical exchanges between hydroxyapatite and the elements of the environment. CONCLUSION The teeth present unique characteristics of great resistance and affinity for HM, as well as a chronological biomarker for human biomonitoring, so they can be used as means of expertise or evidence to confirm or rule out a fact of environmental characteristics in the legal field.
Collapse
Affiliation(s)
- Javier Rojas-Torres
- Forensic Dentistry Lab, Centro de Investigación en Odontología Legal y Forense -CIO-, Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile; Programa de Doctorado en Ciencias mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile.
| | - María Eugenia González Quijón
- Chemical Engineering Department, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile; Center of Waste Management and Bioenergy-BIOREN, University of La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile
| | - Andrés Henríquez-Vidal
- Forensic Dentistry Lab, Centro de Investigación en Odontología Legal y Forense -CIO-, Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Leslie Devia-Rubio
- Forensic Dentistry Lab, Centro de Investigación en Odontología Legal y Forense -CIO-, Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis Martínez-Duran
- Programa de Doctorado en Ciencias mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile; Laboratorio de Farmacología Molecular y Química medicinal, departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; Receptomics and Brain Disorders Lab, Department of Human Physiology, Sport and Exercise, Faculty of Medicine, University of Malaga, Edificio Lopez-Penalver, Jimenez Fraud 10, Málaga 29071, Spain
| |
Collapse
|
3
|
Muñoz-Prieto A, Cerón JJ, Tecles F, Cuervo MM, Contreras-Aguilar MD, Ayala I, Oudada-Guillén A, Pardo-Marín L, Hansen S. Measurement of Trace Elements (Zinc, Copper, Magnesium, and Iron) in the Saliva of Horses: Validation Data and Changes in Equine Gastric Ulcer Syndrome (EGUS). Animals (Basel) 2024; 14:1724. [PMID: 38929343 PMCID: PMC11201168 DOI: 10.3390/ani14121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The objective of this study was to evaluate the possible use of spectrophotometric assays for the measurement of trace elements, including Zinc (Zn), Copper (Cu), Magnesium (Mg), and iron (Fe) in the saliva of horses and study their possible changes in equine gastric ulcer syndrome (EGUS). EGUS is a highly prevalent disease, with a current high incidence due to the increase in intensive management conditions. There are two EGUS diseases: equine squamous gastric disease (ESGD) and equine glandular gastric disease (EGGD), which can appear individually or together. For this purpose, automated spectrophotometric assays for measuring these analytes in horse saliva were analytically validated. Then, these analytes were measured in the saliva of horses with only ESGD, only EGGD, both ESGD and EGGD and a group of healthy horses. The methods used to measure the analytes were precise and accurate. Horses diagnosed with EGGD presented significantly lower levels of Zn and Mg. Fe concentrations were significantly lower in the saliva of horses with ESGD and EGGD. Overall, these results indicate that there are changes in trace elements in saliva in EGUS that could reflect the physiopathological mechanisms involved in this process and open the possibility of using trace elements as biomarkers of this syndrome.
Collapse
Affiliation(s)
- Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (J.J.C.); (F.T.); (M.D.C.-A.); (I.A.); (A.O.-G.); (L.P.-M.)
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (J.J.C.); (F.T.); (M.D.C.-A.); (I.A.); (A.O.-G.); (L.P.-M.)
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (J.J.C.); (F.T.); (M.D.C.-A.); (I.A.); (A.O.-G.); (L.P.-M.)
| | - María Martín Cuervo
- Department of Animal Medicine, Faculty of Veterinary, University of Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain;
| | - Maria Dolores Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (J.J.C.); (F.T.); (M.D.C.-A.); (I.A.); (A.O.-G.); (L.P.-M.)
| | - Ignacio Ayala
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (J.J.C.); (F.T.); (M.D.C.-A.); (I.A.); (A.O.-G.); (L.P.-M.)
| | - Adrián Oudada-Guillén
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (J.J.C.); (F.T.); (M.D.C.-A.); (I.A.); (A.O.-G.); (L.P.-M.)
| | - Luis Pardo-Marín
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (J.J.C.); (F.T.); (M.D.C.-A.); (I.A.); (A.O.-G.); (L.P.-M.)
| | - Sanni Hansen
- Section Medicine and Surgery, Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark;
| |
Collapse
|
4
|
Zhang L, Tsai IC, Ni Z, Chen B, Zhang S, Cai L, Xu Q. Copper Chelation Therapy Attenuates Periodontitis Inflammation through the Cuproptosis/Autophagy/Lysosome Axis. Int J Mol Sci 2024; 25:5890. [PMID: 38892077 PMCID: PMC11172687 DOI: 10.3390/ijms25115890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Periodontitis development arises from the intricate interplay between bacterial biofilms and the host's immune response, where macrophages serve pivotal roles in defense and tissue homeostasis. Here, we uncover the mitigative effect of copper chelator Tetrathiomolybdate (TTM) on periodontitis through inhibiting cuproptosis, a newly identified form of cell death which is dependent on copper. Our study reveals concurrent cuproptosis and a macrophage marker within murine models. In response to lipopolysaccharide (LPS) stimulation, macrophages exhibit elevated cuproptosis-associated markers, which are mitigated by the administration of TTM. TTM treatment enhances autophagosome expression and mitophagy-related gene expression, countering the LPS-induced inhibition of autophagy flux. TTM also attenuates the LPS-induced fusion of autophagosomes and lysosomes, the degradation of lysosomal acidic environments, lysosomal membrane permeability increase, and cathepsin B secretion. In mice with periodontitis, TTM reduces cuproptosis, enhances autophagy flux, and decreases Ctsb levels. Our findings underscore the crucial role of copper-chelating agent TTM in regulating the cuproptosis/mitophagy/lysosome pathway during periodontitis inflammation, suggesting TTM as a promising approach to alleviate macrophage dysfunction. Modulating cuproptosis through TTM treatment holds potential for periodontitis intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiong Xu
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; (L.Z.); (I.-C.T.); (Z.N.); (B.C.); (S.Z.); (L.C.)
| |
Collapse
|
5
|
Jia B, Zhang B, Li J, Qin J, Huang Y, Huang M, Ming Y, Jiang J, Chen R, Xiao Y, Du J. Emerging polymeric materials for treatment of oral diseases: design strategy towards a unique oral environment. Chem Soc Rev 2024; 53:3273-3301. [PMID: 38507263 DOI: 10.1039/d3cs01039b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Oral diseases are prevalent but challenging diseases owing to the highly movable and wet, microbial and inflammatory environment. Polymeric materials are regarded as one of the most promising biomaterials due to their good compatibility, facile preparation, and flexible design to obtain multifunctionality. Therefore, a variety of strategies have been employed to develop materials with improved therapeutic efficacy by overcoming physicobiological barriers in oral diseases. In this review, we summarize the design strategies of polymeric biomaterials for the treatment of oral diseases. First, we present the unique oral environment including highly movable and wet, microbial and inflammatory environment, which hinders the effective treatment of oral diseases. Second, a series of strategies for designing polymeric materials towards such a unique oral environment are highlighted. For example, multifunctional polymeric materials are armed with wet-adhesive, antimicrobial, and anti-inflammatory functions through advanced chemistry and nanotechnology to effectively treat oral diseases. These are achieved by designing wet-adhesive polymers modified with hydroxy, amine, quinone, and aldehyde groups to provide strong wet-adhesion through hydrogen and covalent bonding, and electrostatic and hydrophobic interactions, by developing antimicrobial polymers including cationic polymers, antimicrobial peptides, and antibiotic-conjugated polymers, and by synthesizing anti-inflammatory polymers with phenolic hydroxy and cysteine groups that function as immunomodulators and electron donors to reactive oxygen species to reduce inflammation. Third, various delivery systems with strong wet-adhesion and enhanced mucosa and biofilm penetration capabilities, such as nanoparticles, hydrogels, patches, and microneedles, are constructed for delivery of antibiotics, immunomodulators, and antioxidants to achieve therapeutic efficacy. Finally, we provide insights into challenges and future development of polymeric materials for oral diseases with promise for clinical translation.
Collapse
Affiliation(s)
- Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Beibei Zhang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianhua Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yisheng Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Yue Ming
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Jingjing Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yufen Xiao
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
6
|
Liu N, He Y, Chen X, Qiu G, Wu Y, Shen Y. Changes in cuproptosis-related gene expression in periodontitis: An integrated bioinformatic analysis. Life Sci 2024; 338:122388. [PMID: 38181851 DOI: 10.1016/j.lfs.2023.122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Periodontitis causes inflammatory destruction of tooth-supporting tissues; however, the complex mechanism underlying its etiology remains unclear. Cuproptosis is a type of cell death caused by an imbalance in intracellular copper homeostasis that leads to excess copper. However, changes in the expression and biological function of cuproptosis-related genes (CRGs) in periodontitis are not yet fully understood. This study investigated the comprehensive effects of differentially expressed CRGs (DE-CRGs) on periodontitis via bioinformatic analysis. Nine DE-CRGs were discovered using normal and periodontitis gingival samples, and single-cell RNA sequencing data were analyzed to identify them changes in diverse cell clusters. We then detected the correlation between DE-CRGs and immune infiltration, immune factors, mitochondrial dysfunction, diagnostic efficacy, and predicted drugs. Moreover, changes of DE-CRG in whole periodontitis tissue and a human gingival fibroblast cell line (HGF-1) were confirmed and copper content changes in HGF-1 cells were investigated. Most DE-CRG expression trends were reversed between the periodontal tissues and cell clusters, which may be related to the proportion of cell clusters changes caused periodontitis. Furthermore, most DE-CRG trends in periodontitis cell clusters were inconsistent with the effects of cuproptosis. In HGF-1 cells treated with Porphyromonas gingivalis lipopolysaccharide (Pg-LPS), the intracellular copper content increased by more than threefold, indicating that although some periodontitis cells had excess copper, the amount may not have been sufficient to trigger cuproptosis. Additionally, DE-CRGs were closely associated with multiple biological functions, antibiotic drugs, and natural herbal medicines. Our findings may provide an overview of DE-CRGs in the pathogenesis and treatment of periodontitis.
Collapse
Affiliation(s)
- Na Liu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Yeqing He
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Xiaomin Chen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Guopeng Qiu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Ying Wu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China.
| |
Collapse
|
7
|
Nguyen MD, Nguyen KN, Malo S, Banerjee I, Wu D, Du-Thumm L, Dauphin-Ducharme P. Electrochemical Aptamer-Based Biosensors for Measurements in Undiluted Human Saliva. ACS Sens 2023; 8:4625-4635. [PMID: 37992319 DOI: 10.1021/acssensors.3c01624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Although blood remains a gold standard diagnostic fluid for most health exams, it involves an unpleasant and relatively invasive sampling procedure (finger pricking or venous draw). Saliva contains many relevant and useful biomarkers for diagnostic purposes, and its collection, in contrast, is noninvasive and can be obtained with minimal effort. Current saliva analyses are, however, achieved using chromatography or lateral flow assays, which, despite their high accuracy and sensitivity, can demand expensive laboratory-based instruments operated by trained personnel or offer only semiquantitative results. In response, we investigated electrochemical aptamer-based (E-AB) biosensors, a reagentless sensing platform, to allow for continuous and real-time measurements directly in undiluted, unstimulated human whole saliva. As a proof-of-concept study, we developed E-AB biosensors capable of detecting low-molecular-weight analytes (glucose and adenosine monophosphate (AMP)). To our knowledge, we report the first E-AB sensor for glucose, an approach that is inherently independent of its chemical reactivity in contrast to home glucometers. For these three sensors, we evaluated their figures of merits, stability, and reusability over short- and long-term exposure directly in saliva. In doing so, we found that E-AB sensors allow rapid and convenient molecular measurements in whole saliva with unprecedented sensitivities in the pico- to nanomolar regime and could be regenerated and reused up to 7 days when washed and stored in phosphate-buffered saline at room temperature. We envision that salivary molecular measurements using E-AB sensors are a promising alternative to invasive techniques and can be used for improved point-of-care clinical diagnosis and at-home measurements.
Collapse
Affiliation(s)
- Minh-Dat Nguyen
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Khoa-Nam Nguyen
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Samuel Malo
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Indrani Banerjee
- Colgate, Research and Development Center, Piscataway, New Jersey 08854, United States
| | - Donghui Wu
- Colgate, Research and Development Center, Piscataway, New Jersey 08854, United States
| | - Laurence Du-Thumm
- Colgate, Research and Development Center, Piscataway, New Jersey 08854, United States
| | | |
Collapse
|
8
|
Liu S, Ge J, Chu Y, Cai S, Gong A, Wu J, Zhang J. Identification of hub cuproptosis related genes and immune cell infiltration characteristics in periodontitis. Front Immunol 2023; 14:1164667. [PMID: 37215133 PMCID: PMC10196202 DOI: 10.3389/fimmu.2023.1164667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Periodontitis is an inflammatory disease and its molecular mechanisms is not clear. A recently discovered cell death pathway called cuproptosis, may related to the disease. Methods The datasets GSE10334 of human periodontitis and control were retrieved from the Gene Expression Omnibus database (GEO) for analysis.Following the use of two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature removal (SVM-RFE) were used to find CRG-based signature. Then the Receiver operating characteristic (ROC) curves was used to evaluate the gene signature's discriminatory ability. The CIBERSORT deconvolution algorithm was used to study the link between hub genes and distinct types of immune cells. Next, the association of the CRGs with immune cells in periodontitis and relevant clusters of cuproptosis were found. The link between various clusters was ascertained by the GSVA and CIBERSORT deconvolution algorithm. Finally, An external dataset (GSE16134) was used to confirm the diagnosis capacity of the identified biomarkers. In addition, clinical samples were examined using qRT-PCR and immunohistochemistry to verifiy the expression of genes related to cuprotosis in periodontitis and the signature may better predict the periodontitis. Results 15 periodontitis-related DE-CRGs were found,then 11-CRG-based signature was found by using of LASSO and SVM-RFE. ROC curves also supported the value of signature. CIBERSORT results of immune cell signature in periodontitis showed that signature genes is a crucial component of the immune response.The relevant clusters of cuproptosis found that the NFE2L2, SLC31A1, FDX1,LIAS, DLD, DLAT, and DBT showed a highest expression levels in Cluster2 ,while the NLRP3, MTF1, and DLST displayed the lowest level in Cluster 2 but the highest level in Cluster1. The GSVA results also showed that the 11 cuproptosis diagnostic gene may regulate the periodontitis by affecting immune cells. The external dataset (GSE16134) confirm the diagnosis capacity of the identified biomarkers, and clinical samples examined by qRT-PCR and immunohistochemistry also verified that these cuprotosis related signiture genes in periodontitis may better predict the periodontitis. Conclusion These findings have important implications for the cuproptosis and periodontitis, and highlight further research is needed to better understand the mechanisms underlying this relationship between the cuproptosis and periodontitis.
Collapse
Affiliation(s)
- Shuying Liu
- Department of Stomatology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaying Ge
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiting Chu
- Department of Stomatology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuangyu Cai
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aixiu Gong
- Department of Stomatology, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Wu
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinghan Zhang
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Ortín-Bustillo A, Escribano D, Martínez-Subiela S, Tvarijonaviciute A, Muñoz-Prieto A, López-Arjona M, Cerón JJ, Tecles F. Trace Elements and Ferritin in Pig Saliva: Variations during Fattening, Time of Sampling, Effect of Dirtiness and Stability under Different Storage Conditions. Antioxidants (Basel) 2023; 12:antiox12030649. [PMID: 36978897 PMCID: PMC10045741 DOI: 10.3390/antiox12030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The objective of this study was to evaluate the possible changes of zinc (Zn), copper (Cu), iron (Fe) and ferritin during the entire productive cycle in fattening pigs and at different diurnal sampling times. Moreover, the possible effects of the presence of pen contaminants and storage stability at different temperature conditions were assessed. The analytes changed along the different phases of the fattening productive cycle, showing, in general, higher values at the initial phases. In addition, statistically significant variations were found in Zn and Cu measurements at different sampling times of the day. In the spectrophotometric assays, the values of all analytes significantly increased after adding high concentrations of feces or feed. However, when low concentrations of feces or feed were added, only Cu showed a significant increase. Overall, the salivary levels of Zn, Cu, Fe and ferritin in pigs can change during different fattening phases and the different hours of the day. These analytes were more stable at −80 °C and, if saliva is contaminated with feces or feed, it can lead to an increase in these analytes.
Collapse
Affiliation(s)
- Alba Ortín-Bustillo
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
- Department of Animal Production, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Marina López-Arjona
- Department of Animal and Food Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - José J. Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
- Correspondence: ; Tel.: +34-868-887-082
| |
Collapse
|
10
|
Salivary Antioxidant Capacity and Magnesium in Generalized Anxiety Disorder. Metabolites 2023; 13:metabo13010073. [PMID: 36676998 PMCID: PMC9862115 DOI: 10.3390/metabo13010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/22/2023] Open
Abstract
Generalized anxiety disorder (GAD) is a prevalent disorder. The search for biomarkers may contribute to new knowledge about molecular pathogenesis and treatment. Since oxidative stress and micronutrient imbalance play a key role in the development of mental disorders, we aimed to study salivary antioxidant capacity and magnesium in patients with GAD in an anxiety model of solving problems with increasing complexity. The study subgroup consisted of 15 patients with GAD, and 17 healthy volunteers of the same age made up the control subgroup. Participants took a test with six levels of difficulty, which included false feedback. In this test, the participants were asked to remember the colors of balloons and react when the color changed. The reaction time, the number of correct answers, as well as biochemical parameters such as the antioxidant capacity of saliva and salivary magnesium, were assessed. There was no difference in the results of the quest between the subgroups; however, anxious participants spent more time at the moment of experimental frustration due to incorrect feedback and additional negative psycho-emotional load. Antioxidant capacity did not differ between the subgroups both before and after the experimental session. Average antioxidant capacity also did not change significantly at the endpoint of the experiment. However, the endpoint antioxidant capacity correlated negatively with the reaction time in anxious patients in the second block (where the false feedback as a frustrating factor appeared). Magnesium was initially significantly higher in the group of anxious participants and decreased at the experiment endpoint; in healthy patients, there were no changes in salivary magnesium at the endpoint. In conclusion, the compensatory potential of oxidative metabolism and magnesium in patients with GAD was spent with additional psycho-emotional stress, in contrast to healthy individuals, but it was sufficient to avoid exhaustion during experimental frustrating exposure.
Collapse
|
11
|
Automated assays for trace elements and ferritin measurement in saliva of pigs: Analytical validation and a pilot application to evaluate different iron status. Res Vet Sci 2022; 152:410-416. [PMID: 36116417 DOI: 10.1016/j.rvsc.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022]
Abstract
The aim of this study was to validate automated methods to measure iron (Fe), zinc (Zn), copper (Cu) and ferritin in pig saliva samples. A complete analytical validation was performed of all assays. In addition, these methods were applied to saliva of Fe supplemented (n = 22) and non-supplemented (n = 20) piglets. All assays were able to measure these biomarkers in pig saliva with adequate precision, accuracy and high sensitivity and, in case of trace elements without needing a deproteinization pre-process. The group of piglets supplemented with Fe presented significantly higher levels of ferritin and Zn in saliva. In conclusion, the automated assays evaluated were able to measure Fe, Zn, Cu and ferritin in saliva of pigs, and in case of trace elements, they have the advantage of not needing a deproteinization pre-treatment and thus these analytes can be measured in a simple and fast manner.
Collapse
|
12
|
Wishney M, Mahadevan S, Cornwell JA, Savage T, Proschogo N, Darendeliler MA, Zoellner H. Toxicity of Orthodontic Brackets Examined by Single Cell Tracking. TOXICS 2022; 10:460. [PMID: 36006139 PMCID: PMC9413677 DOI: 10.3390/toxics10080460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Subtle toxic effects may be masked in traditional assays that average or summate the response of thousands of cells. We overcome this by using the recent method of single cell tracking in time-lapse recordings. This follows the fate and behavior of individual cells and their progeny and provides unambiguous results for multiple simultaneous biological responses. Further, single cell tracking permits correlation between progeny relationships and cell behavior that is not otherwise possible, including disruption by toxins and toxicants of similarity between paired sister cells. Notably, single cell tracking seems not to have been previously used to study biomaterials toxicity. The culture medium was pre-conditioned by 79 days incubation with orthodontic brackets from seven separate commercial sources. Metal levels were determined by Inductively Coupled Plasma Mass Spectrometry. Metal levels varied amongst conditioned media, with elevated Cr, Mn, Ni, and Cu and often Mo, Pb, Zn, Pd, and Ag were occasionally found. The effect on human dermal fibroblasts was determined by single cell tracking. All bracket-conditioned media reduced cell division (p < 0.05), while some reduced cell migration (p < 0.05). Most bracket-conditioned media increased the rate of asynchronous sister cell division (p < 0.05), a seemingly novel measure for toxicity. No clear effect on cell morphology was seen. We conclude that orthodontic brackets have cytotoxic effects, and that single cell tracking is effective for the study of subtle biomaterials cytotoxicity.
Collapse
Affiliation(s)
- Morgan Wishney
- Discipline of Orthodontics, Sydney Dental School, Faculty of Medicine and Health, University of Sydney, Sydney Dental Hospital, Surry Hills, NSW 2010, Australia
| | - Swarna Mahadevan
- The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Westmead Centre for Oral Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - James Anthony Cornwell
- The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Westmead Centre for Oral Health, Westmead Hospital, Westmead, NSW 2145, Australia
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tom Savage
- School of Geosciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Nick Proschogo
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | - M. Ali Darendeliler
- Discipline of Orthodontics, Sydney Dental School, Faculty of Medicine and Health, University of Sydney, Sydney Dental Hospital, Surry Hills, NSW 2010, Australia
| | - Hans Zoellner
- The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Westmead Centre for Oral Health, Westmead Hospital, Westmead, NSW 2145, Australia
- Biomedical Engineering, Faculty of Engineering, The University of Sydney, Camperdown, NSW 2006, Australia
- Graduate School of Biomedical Engineering, University of NSW, Kensington, NSW 2052, Australia
- Strongarch Pty Ltd., Pennant Hills, NSW 2120, Australia
| |
Collapse
|
13
|
Models for Oral Biology Research. Biomedicines 2022; 10:biomedicines10050952. [PMID: 35625688 PMCID: PMC9138227 DOI: 10.3390/biomedicines10050952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
|
14
|
Romano F, Iaderosa G, Corana M, Perotto S, Baima G, Di Scipio F, Abbadessa G, Mariani GM, Aimetti M, Berta GN. Comparing Ionic Profile of Gingival Crevicular Fluid and Saliva as Distinctive Signature of Severe Periodontitis. Biomedicines 2022; 10:biomedicines10030687. [PMID: 35327490 PMCID: PMC8945093 DOI: 10.3390/biomedicines10030687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Although increasing evidence is emerging on the contribution of chemical elements in periodontal health, no studies have concomitantly evaluated the ionic profile in gingival crevicular fluid (GCF) and saliva in relation to the underlying periodontal status. Our hypothesis is that these biofluids have distinctive ionic content. Therefore, the aim of this cross-sectional study was to analyze the elemental composition of GCF and saliva in order to explore which biological matrix and which combination of elements could discriminate between periodontitis and periodontal health. Twelve ions were analyzed in GCF and unstimulated saliva from 54 subjects (18 periodontally healthy, 18 untreated severe periodontitis and 18 treated severe periodontitis) using inductively coupled plasma–mass spectrometry (ICP-MS) and inductively coupled plasma–optical emission spectroscopy (ICP-OES). These analytical techniques were able to determine levels of sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg), while the other elements were below the detection threshold. Na and K ions were detected at elevated concentration in untreated periodontitis compared with treated periodontitis and healthy periodontium. Ca was increased in untreated periodontitis, but the difference was not significant. In saliva, only Na was significantly associated with periodontitis. The combination of Na and K in GCF enabled the correct assignment of a subject to the periodontitis or healthy group. Based on these preliminary results, GCF demonstrated higher clustering potential than saliva.
Collapse
Affiliation(s)
- Federica Romano
- Department of Surgical Sciences, C.I.R. Dental School, Section of Periodontology, University of Turin, 10126 Turin, Italy; (F.R.); (G.I.); (M.C.); (S.P.); (G.B.); (G.M.M.)
| | - Giovanni Iaderosa
- Department of Surgical Sciences, C.I.R. Dental School, Section of Periodontology, University of Turin, 10126 Turin, Italy; (F.R.); (G.I.); (M.C.); (S.P.); (G.B.); (G.M.M.)
| | - Matteo Corana
- Department of Surgical Sciences, C.I.R. Dental School, Section of Periodontology, University of Turin, 10126 Turin, Italy; (F.R.); (G.I.); (M.C.); (S.P.); (G.B.); (G.M.M.)
| | - Stefano Perotto
- Department of Surgical Sciences, C.I.R. Dental School, Section of Periodontology, University of Turin, 10126 Turin, Italy; (F.R.); (G.I.); (M.C.); (S.P.); (G.B.); (G.M.M.)
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, Section of Periodontology, University of Turin, 10126 Turin, Italy; (F.R.); (G.I.); (M.C.); (S.P.); (G.B.); (G.M.M.)
| | - Federica Di Scipio
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.D.S.); (G.A.)
| | - Giuliana Abbadessa
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.D.S.); (G.A.)
| | - Giulia Maria Mariani
- Department of Surgical Sciences, C.I.R. Dental School, Section of Periodontology, University of Turin, 10126 Turin, Italy; (F.R.); (G.I.); (M.C.); (S.P.); (G.B.); (G.M.M.)
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, Section of Periodontology, University of Turin, 10126 Turin, Italy; (F.R.); (G.I.); (M.C.); (S.P.); (G.B.); (G.M.M.)
- Correspondence: (M.A.); (G.N.B.)
| | - Giovanni Nicolao Berta
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.D.S.); (G.A.)
- Correspondence: (M.A.); (G.N.B.)
| |
Collapse
|
15
|
Mester A, Moldovan M, Cuc S, Petean I, Tomuleasa C, Piciu A, Dinu C, Bran S, Onisor F. Structural Changes in Resin-Based Composites in Saliva of Patients with Leukemia before Starting Chemotherapeutic Regimen. Polymers (Basel) 2022; 14:polym14030569. [PMID: 35160558 PMCID: PMC8839500 DOI: 10.3390/polym14030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The aim of this in vitro study was to assess the morphological characteristics and stability of dental composites immersed in saliva collected from patients with leukemia. Material and Methods: A total number of five patients without systemic disease and 20 patients with leukemia (acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and chronic myeloid leukemia (CML)) were included for saliva sampling. Composite disks were immersed in the leukemia, control, and artificial environments for 7 days. At the end of the experiment, atomic force microscopy (AFM), color stability (ΔE), and saliva elements analysis were performed. Statistical significance was considered for a p-value under 0.05. Results: The most changed surface resulted for ALL with a roughness that was almost double that of the untreated sample and was significantly increased compared to the healthy saliva. The effect of CLL was not as intense as observed for acute leukemia, but was significantly over the control. ALL seemed to modify structural components of the saliva, which were able to deteriorate the surface of the composite. ALL saliva promoted a significant dissolution of the initial feature of the samples and promoted nano-particle clusterization. All dental composites showed clinically acceptable color change values (ΔE < 3.3) in all four-leukemia salivas; CLL and CML showed large color differences for all composites. The total concentrations of P, Na, and K showed wide ranges of variations, while the coefficient of variation in Fe, Cu, and Mg showed narrow variations between the salvias’ investigated. The salivary concentration of zinc decreased considerably in the CLL and CML environments compared to the ALL and AML environments. Fe and Cu were significantly increased in the CML environment. Conclusions: Control and artificial salivas have a mild erosive effect on the surface of dental composites. The acute stage of the disease seems to deteriorate the surface roughness rather than its morphology, however, in the chronic stage, it is the surface morphology that mostly deteriorates.
Collapse
Affiliation(s)
- Alexandru Mester
- Department of Oral Health, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| | - Marioara Moldovan
- Department of Polymer Composites, Institute of Chemistry “Raluca Ripan”, University Babes-Bolyai, 400294 Cluj-Napoca, Romania
- Correspondence: (M.M.); (S.C.); (C.D.)
| | - Stanca Cuc
- Department of Polymer Composites, Institute of Chemistry “Raluca Ripan”, University Babes-Bolyai, 400294 Cluj-Napoca, Romania
- Correspondence: (M.M.); (S.C.); (C.D.)
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, University Babes-Bolyai, 400294 Cluj-Napoca, Romania;
| | - Ciprian Tomuleasa
- Department of Hematology, Institute of Oncology “Ion Chiricuta”, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| | - Andra Piciu
- Department of Medical Oncology, Institute of Oncology “Ion Chiricuta”, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| | - Cristian Dinu
- Department of Maxillofacial Surgery and Implantology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (S.B.); (F.O.)
- Correspondence: (M.M.); (S.C.); (C.D.)
| | - Simion Bran
- Department of Maxillofacial Surgery and Implantology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (S.B.); (F.O.)
| | - Florin Onisor
- Department of Maxillofacial Surgery and Implantology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (S.B.); (F.O.)
| |
Collapse
|
16
|
Oral Diagnostic Methods for the Detection of Periodontal Disease. Diagnostics (Basel) 2021; 11:diagnostics11030571. [PMID: 33810094 PMCID: PMC8005070 DOI: 10.3390/diagnostics11030571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is a common immune-inflammatory oral disease. Early detection plays an important role in its prevention and progression. Saliva is a reliable medium that mirrors periodontal health and is easily obtainable for identifying periodontal biomarkers in point-of-care diagnostics. The aim of this study is to evaluate the effectiveness of diagnostic salivary tests to determine periodontal status. Whole saliva (stimulated/unstimulated) from twenty healthy and twenty stage III grade B generalized periodontitis patients was tested for lactoferrin, alkaline phosphatase, calcium, density, osmolarity, pH, phosphate, buffer capacity, salivary flow rate and dynamic viscosity. A semi-quantitative urinary strip test was used to evaluate markers of inflammation in saliva (erythrocytes, leukocytes, urobilinogen, nitrite, glucose, bilirubin, and ketones), clinical periodontal parameters and pathogenic bacteria. Concentrations of lactoferrin, hemoglobin, and leukocytes were found to be significantly higher in the stimulated and unstimulated saliva in periodontitis patients compared to healthy patients, whereas alkaline phosphatase levels were higher in unstimulated saliva of periodontitis patients (p < 0.05). Periodontal biomarker analysis using test strips may be considered rapid and easy tool for distinguishing between periodontitis and healthy patients. The increase in lactoferrin, hemoglobin, and leucocytes-determined by strip tests-may provide a non-invasive method of periodontal diagnosis.
Collapse
|