1
|
Panahizadeh R, Panahi P, Asghariazar V, Makaremi S, Noorkhajavi G, Safarzadeh E. A literature review of recent advances in gastric cancer treatment: exploring the cross-talk between targeted therapies. Cancer Cell Int 2025; 25:23. [PMID: 39856676 PMCID: PMC11762578 DOI: 10.1186/s12935-025-03655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) ranks fourth in global mortality rates and fifth in prevalence, making it one of the most common cancers worldwide. Recent clinical studies have highlighted the potential of immunotherapies as a promising approach to treating GC. This study aims to shed light on the most impactful therapeutic strategies in the context of GC immunotherapy, highlighting both established and emerging approaches. MAIN BODY This review examines over 160 clinical studies conducted globally, focusing on the effectiveness of various immunotherapy modalities, including cancer vaccines, adoptive cell therapy, immune checkpoint inhibitors (ICIs), and monoclonal antibodies (mAbs). A comprehensive search of peer-reviewed literature was performed using databases such as Web of Science, PubMed, and Scopus. The selection criteria included peer-reviewed articles published primarily within the last 10 years, with a focus on studies that provided insights into targeted therapies and their mechanisms of action, clinical efficacy, and safety profiles. The findings indicate that these immunotherapy strategies can enhance treatment outcomes for GC, aligning with current treatment guidelines. ICIs like pembrolizumab and nivolumab have shown significant survival benefits in specific GC subgroups. Cancer vaccines and CAR-T cell therapies demonstrate potential, while mAbs targeting HER2 and VEGFR pathways enhance outcomes in combination regimens. We discuss the latest advancements and challenges in targeted therapy and immunotherapy for GC. Given the evolving nature of this field, this research emphasizes significant evidence-based therapies and those currently under evaluation rather than providing an exhaustive overview. Challenges include resistance mechanisms, immunosuppressive tumor environments, and inconsistent results from combination therapies. Biomarker-driven approaches and further research into emerging modalities like CAR-T cells and cancer vaccines are critical for optimizing treatments. CONCLUSIONS Immunotherapy is reshaping GC management by improving survival and quality of life. Ongoing research and clinical evaluations are crucial for refining personalized and effective therapies.
Collapse
Affiliation(s)
- Reza Panahizadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Padideh Panahi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shima Makaremi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ghasem Noorkhajavi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, 85991-56189, Iran.
| |
Collapse
|
2
|
Quan L, Liu J, Wang Y, Yang F, Yang Z, Ju J, Shuai Y, Wei T, Yue J, Wang X, Meng J, Yuan P. Exploring risk factors for endocrine-related immune-related adverse events: Insights from meta-analysis and Mendelian randomization. Hum Vaccin Immunother 2024; 20:2410557. [PMID: 39377304 PMCID: PMC11469449 DOI: 10.1080/21645515.2024.2410557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
This study utilized meta-analysis and Mendelian randomization (MR) to identify risk factors for endocrine-related immune-related adverse events (EirAEs) and to ascertain whether EirAEs confer better prognosis of immunotherapy. The meta-analysis identified several risk factors for EirAEs, including elevated baseline TSH (OR = 1.30, 95% CI 1.10-1.53), positive TgAb (OR = 14.23, p < .001), positive TPOAb (OR = 3.75, p < .001), prior thyroid-related medical history (OR = 4.19), increased BMI (OR = 1.11), combination immune checkpoint inhibitors (ICIs) therapy with targeted treatment (OR = 2.71, 95% CI 2.11-3.47), and dual ICI therapy (OR = 3.26, 95% CI 2.22-4.79). MR analysis further supported causalities between extreme BMI, hypothyroidism, and irAEs from a genetic perspective. In addition, cancer patients who experienced EirAEs exhibited significantly prolonged PFS (HR = 0.84, 95% CI 0.73-0.97) and OS (HR = 0.59, 95% CI 0.45-0.76) compared to those without. These findings provide valuable insights for clinical decision-making among healthcare professionals and offer direction for future research in this field.
Collapse
Affiliation(s)
- Liuliu Quan
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinsong Liu
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxin Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fan Yang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zixuan Yang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Ju
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - You Shuai
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tong Wei
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Yue
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Wang
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaqi Meng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Peng Yuan
- Department of VIP Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Saha S, Ghosh S, Ghosh S, Nandi S, Nayak A. Unraveling the complexities of colorectal cancer and its promising therapies - An updated review. Int Immunopharmacol 2024; 143:113325. [PMID: 39405944 DOI: 10.1016/j.intimp.2024.113325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Colorectal cancer (CRC) continues to be a global health concern, necessitating further research into its complex biology and innovative treatment approaches. The etiology, pathogenesis, diagnosis, and treatment of colorectal cancer are summarized in this thorough review along with recent developments. The multifactorial nature of colorectal cancer is examined, including genetic predispositions, environmental factors, and lifestyle decisions. The focus is on deciphering the complex interactions between signaling pathways such as Wnt/β-catenin, MAPK, TGF-β as well as PI3K/AKT that participate in the onset, growth, and metastasis of CRC. There is a discussion of various diagnostic modalities that span from traditional colonoscopy to sophisticated molecular techniques like liquid biopsy and radiomics, emphasizing their functions in early identification, prognostication, and treatment stratification. The potential of artificial intelligence as well as machine learning algorithms in improving accuracy as well as efficiency in colorectal cancer diagnosis and management is also explored. Regarding therapy, the review provides a thorough overview of well-known treatments like radiation, chemotherapy, and surgery as well as delves into the newly-emerging areas of targeted therapies as well as immunotherapies. Immune checkpoint inhibitors as well as other molecularly targeted treatments, such as anti-epidermal growth factor receptor (anti-EGFR) as well as anti-vascular endothelial growth factor (anti-VEGF) monoclonal antibodies, show promise in improving the prognosis of colorectal cancer patients, in particular, those suffering from metastatic disease. This review focuses on giving readers a thorough understanding of colorectal cancer by considering its complexities, the present status of treatment, and potential future paths for therapeutic interventions. Through unraveling the intricate web of this disease, we can develop a more tailored and effective approach to treating CRC.
Collapse
Affiliation(s)
- Sayan Saha
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Shreya Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Suman Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Sumit Nandi
- Department of Pharmacology, Gupta College of Technological Sciences, Asansol, West Bengal 713301, India
| | - Aditi Nayak
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India.
| |
Collapse
|
4
|
Azarian M, Ramezani Farani M, C Cho W, Asgharzadeh F, Yang YJ, Moradi Binabaj M, M Tambuwala M, Farahani N, Hushmandi K, Huh YS. Advancements in colorectal cancer treatment: The role of metal-based and inorganic nanoparticles in modern therapeutic approaches. Pathol Res Pract 2024; 264:155706. [PMID: 39527908 DOI: 10.1016/j.prp.2024.155706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Recent advances in the treatment of colorectal cancer (CRC) have highlighted the integration of metal-based nanoparticles into sophisticated therapeutic strategies. This examination delves into the potential applications of these nanoparticles, particularly in augmenting the effectiveness of photodynamic therapy (PDT) and targeted drug delivery systems. Metal nanoparticles, such as gold (Au), silver (Ag), and copper (Cu), possess distinctive characteristics that make them valuable in cancer treatment. Beyond their role as drug carriers, these nanoparticles actively engage in therapeutic processes like apoptosis induction, enhancement of photothermal effects, and generation of reactive oxygen species (ROS) crucial for tumor cell eradication. The utilization of metal nanoparticles in CRC therapy addresses significant challenges encountered with conventional treatments, such as drug resistance and systemic toxicity. For example, engineered Au nanoparticles enable targeted drug delivery, reducing off-target effects and maximizing therapeutic efficacy against cancerous cells. Their capacity to absorb near-infrared light allows for localized hyperthermia, effectively eliminating cancerous tissues. Similarly, Cu nanoparticles exhibit potential in overcoming drug resistance by enhancing the efficacy of traditional chemotherapeutic agents through ROS production and improved drug stability. This review underscores the significance of precision medicine in CRC care. Through the integration of metal nanoparticles alongside complementary biomarkers and personalized treatment strategies, a more efficient and tailored therapeutic approach can be achieved. The synergistic effect of PDT in combination with metal nanoparticles introduces a novel methodology to CRC treatment, offering a dual-action mechanism that enhances tumor targeting while minimizing undesirable effects. In conclusion, the integration of metal-based nanoparticles in CRC therapy marks a significant progress in oncological treatments. Continued research is imperative to comprehensively grasp their mechanisms, optimize their clinical utility, and address potential safety considerations. This thorough assessment aims to pave the way for future advancements in CRC treatment through the application of nanotechnology and personalized medicine strategies.
Collapse
Affiliation(s)
- Maryam Azarian
- Department of Bioanalytical Ecotoxicology,UFZ- Helmholtz Centre for Environmental Research, Leipzig, Germany; Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Fereshteh Asgharzadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yu-Jeong Yang
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Maryam Moradi Binabaj
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, United Kingdom
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
5
|
Shen T, Sun X, Yang S, Wang W, Chen Z, Lin Y, Li S, Peng H, Zeng L, Li G, Li X, Wang B, Ning J, Wen H, Lei B, Zhang L. Innovative Oral Nano/Gene Delivery System Based on Engineered Modified Saccharomyces cerevisiae for Colorectal Cancer Therapy. ACS NANO 2024; 18:28212-28227. [PMID: 39363565 DOI: 10.1021/acsnano.4c08044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The efficient delivery of RNA-based drugs to solid tumors remains a formidable obstacle. We aim to develop a safe and efficient oral drug delivery system compatible with RNA-based drugs that is urgently needed to overcome challenges such as enzymatic degradation and gastrointestinal barriers to facilitate effective treatment for treating colorectal cancer (CRC). To address these challenges, we utilized engineered modified Saccharomyces cerevisiae to evaluate the delivery efficacy of miR21-antagomir for treating CRC in preclinical mouse models, including adenomatosis polyposis coli mutant transgenic mice ApcMin/+ and in situ tumor-bearing mice. An orally deliverable gene delivery system, YS@NPs21, was designed. This gene delivery system demonstrated effectively suppressed tumor growth in both ApcMin/+ and in situ tumor-bearing mice models. This system exhibited tumor-targeting capability, effective inhibition of tumor growth, and low toxicity toward nontumor cells. Successful implementation of this innovative oral drug delivery system could offer a straightforward, safe, and RNA drug-compatible approach to CRC treatment, ultimately improving patient outcomes and reducing medical costs.
Collapse
Affiliation(s)
- Tianli Shen
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuejun Sun
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Wei Wang
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zilu Chen
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyao Lin
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sihua Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Hang Peng
- Department of General Surgery, Shaanxi Provincial People's Hospital of Xi'an Jiaotong University, Xi'an 710068, China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Gan Li
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuqi Li
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jingya Ning
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Haimei Wen
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Bo Lei
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Long Zhang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
6
|
Hamid MA, Pammer LM, Lentner TK, Doleschal B, Gruber R, Kocher F, Gasser E, Jöbstl A, Seeber A, Amann A. Immunotherapy for Microsatellite-Stable Metastatic Colorectal Cancer: Can we close the Gap between Potential and Practice? Curr Oncol Rep 2024; 26:1258-1270. [PMID: 39080202 PMCID: PMC11480176 DOI: 10.1007/s11912-024-01583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 10/17/2024]
Abstract
PURPOSE OF REVIEW This review will explore various strategies to rendering MSS mCRCs susceptible to ICI. Moreover, we will provide an overview of potential biomarkers that may aid to better patient selection, and discuss ongoing efforts in this area of research. RECENT FINDINGS Colorectal cancer (CRC) ranks among the top three most common cancers worldwide. While significant advances in treatment strategies have improved the prognosis for patients in the early stages of the disease, treatment options for metastatic CRC (mCRC) remain limited. Although immune checkpoint inhibitors (ICI) have revolutionized the treatment of several malignancies, its efficacy in mCRC is largely confined to patients exhibiting a high microsatellite instability status (MSI-H). However, the vast majority of mCRC patients do not exhibit a MSI-H, but are microsatellite stable (MSS). In these patients ICIs are largely ineffective. So far, ICIs do not play a crucial role in patients with MSS mCRC, despite the promising data for inducing long-term remissions in other tumour entities. For this reason, novel treatment strategies are needed to overcome the primary resistance upon ICI in patients with MSS.
Collapse
Affiliation(s)
- Marwa Abdel Hamid
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Gastroenterology and Hepatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa K Lentner
- Clinical Department for Internal Medicine, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Bernhard Doleschal
- Department of Internal Medicine I for Hematology With Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Rebecca Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Elisabeth Gasser
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Jöbstl
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
7
|
Dang T, Guan X, Cui L, Ruan Y, Chen Z, Zou H, Lan Y, Liu C, Zhang Y. Epigenetics and immunotherapy in colorectal cancer: progress and promise. Clin Epigenetics 2024; 16:123. [PMID: 39252116 PMCID: PMC11385519 DOI: 10.1186/s13148-024-01740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor with the third and second highest incidence and mortality rates among various malignant tumors. Despite significant advancements in the present therapy for CRC, the majority of CRC cases feature proficient mismatch repair/microsatellite stability and have no response to immunotherapy. Therefore, the search for new treatment options holds immense importance in the diagnosis and treatment of CRC. In recent years, clinical research on immunotherapy combined with epigenetic therapy has gradually increased, which may bring hope for these patients. This review explores the role of epigenetic regulation in exerting antitumor effects through its action on immune cell function and highlights the potential of certain epigenetic genes that can be used as markers of immunotherapy to predict therapeutic efficacy. We also discuss the application of epigenetic drug sensitization immunotherapy to develop new treatment options combining epigenetic therapy and immunotherapy.
Collapse
Affiliation(s)
- Tianjiao Dang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xin Guan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Luying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Zhuo Chen
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Haoyi Zou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Ya Lan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China.
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150001, Heilongjiang, People's Republic of China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China.
| |
Collapse
|
8
|
Li Y, Cheng X. Enhancing Colorectal Cancer Immunotherapy: The Pivotal Role of Ferroptosis in Modulating the Tumor Microenvironment. Int J Mol Sci 2024; 25:9141. [PMID: 39273090 PMCID: PMC11395055 DOI: 10.3390/ijms25179141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant challenge in oncology, with increasing incidence and mortality rates worldwide, particularly among younger adults. Despite advancements in treatment modalities, the urgent need for more effective therapies persists. Immunotherapy has emerged as a beacon of hope, offering the potential for improved outcomes and quality of life. This review delves into the critical interplay between ferroptosis, an iron-dependent form of regulated cell death, and immunotherapy within the CRC context. Ferroptosis's influence extends beyond tumor cell fate, reshaping the tumor microenvironment (TME) to enhance immunotherapy's efficacy. Investigations into Ferroptosis-related Genes (OFRGs) reveal their pivotal role in modulating immune cell infiltration and TME composition, closely correlating with tumor responsiveness to immunotherapy. The integration of ferroptosis inducers with immunotherapeutic strategies, particularly through novel approaches like ferrotherapy and targeted co-delivery systems, showcases promising avenues for augmenting treatment efficacy. Furthermore, the expression patterns of OFRGs offer novel prognostic tools, potentially guiding personalized and precision therapy in CRC. This review underscores the emerging paradigm of leveraging ferroptosis to bolster immunotherapy's impact, highlighting the need for further research to translate these insights into clinical advancements. Through a deeper understanding of the ferroptosis-immunotherapy nexus, new therapeutic strategies can be developed, promising enhanced efficacy and broader applicability in CRC treatment, ultimately improving patient outcomes and quality of life in the face of this formidable disease.
Collapse
Affiliation(s)
- Yanqing Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Xiaofei Cheng
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
9
|
Yu B, Kang J, Lei H, Li Z, Yang H, Zhang M. Immunotherapy for colorectal cancer. Front Immunol 2024; 15:1433315. [PMID: 39238638 PMCID: PMC11375682 DOI: 10.3389/fimmu.2024.1433315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Colorectal cancer is the third most common cancer and the second most lethal cancer in the world. The main cause of the disease is due to dietary and behavioral factors. The treatment of this complex disease is mainly based on traditional treatments, including surgery, radiotherapy, and chemotherapy. Due to its high prevalence and high morbidity, more effective treatments with fewer side effects are urgently needed. In recent years, immunotherapy has become a potential therapeutic alternative and one of the fastest-developing treatments. Immunotherapy inhibits tumor growth by activating or enhancing the immune system to recognize and attack cancer cells. This review presents the latest immunotherapies for immune checkpoint inhibitors, cell therapy, tumor-infiltrating lymphocytes, and oncolytic viruses. Some of these have shown promising results in clinical trials and are used in clinical treatment.
Collapse
Affiliation(s)
- Bing Yu
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Jian Kang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hong Lei
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Zhe Li
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hao Yang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Meng Zhang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| |
Collapse
|
10
|
Gonzalez-Gutierrez L, Motiño O, Barriuso D, de la Puente-Aldea J, Alvarez-Frutos L, Kroemer G, Palacios-Ramirez R, Senovilla L. Obesity-Associated Colorectal Cancer. Int J Mol Sci 2024; 25:8836. [PMID: 39201522 PMCID: PMC11354800 DOI: 10.3390/ijms25168836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Colorectal cancer (CRC) affects approximately 2 million people worldwide. Obesity is the major risk factor for CRC. In addition, obesity contributes to a chronic inflammatory stage that enhances tumor progression through the secretion of proinflammatory cytokines. In addition to an increased inflammatory response, obesity-associated cancer presents accrued molecular factors related to cancer characteristics, such as genome instability, sustained cell proliferation, telomere dysfunctions, angiogenesis, and microbial alteration, among others. Despite the evidence accumulated over the last few years, the treatments for obesity-associated CRC do not differ from the CRC treatments in normal-weight individuals. In this review, we summarize the current knowledge on obesity-associated cancer, including its epidemiology, risk factors, molecular factors, and current treatments. Finally, we enumerate possible new therapeutic targets that may improve the conditions of obese CRC patients. Obesity is key for the development of CRC, and treatments resulting in the reversal of obesity should be considered as a strategy for improving antineoplastic CRC therapies.
Collapse
Affiliation(s)
- Lucia Gonzalez-Gutierrez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Omar Motiño
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Daniel Barriuso
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Juan de la Puente-Aldea
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Lucia Alvarez-Frutos
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Roberto Palacios-Ramirez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Laura Senovilla
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| |
Collapse
|
11
|
Elsayed A, Plüss L, Nideroest L, Rotta G, Thoma M, Zangger N, Peissert F, Pfister SK, Pellegrino C, Dakhel Plaza S, De Luca R, Manz MG, Oxenius A, Puca E, Halin C, Neri D. Optimizing the Design and Geometry of T Cell-Engaging Bispecific Antibodies Targeting CEA in Colorectal Cancer. Mol Cancer Ther 2024; 23:1010-1020. [PMID: 38638035 DOI: 10.1158/1535-7163.mct-23-0766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Metastatic colorectal cancer remains a leading cause of cancer-related deaths, with a 5-year survival rate of only 15%. T cell-engaging bispecific antibodies (TCBs) represent a class of biopharmaceuticals that redirect cytotoxic T cells toward tumor cells, thereby turning immunologically "cold" tumors into "hot" ones. The carcinoembryonic antigen (CEA) is an attractive tumor-associated antigen that is overexpressed in more than 98% of patients with colorectal cancer. In this study, we report the comparison of four different TCB formats employing the antibodies F4 (targeting human CEA) and 2C11 (targeting mouse CD3ε). These formats include both antibody fragment-based and IgG-based constructs, with either one or two binding specificities of the respective antibodies. The 2 + 1 arrangement, using an anti-CEA single-chain diabody fused to an anti-CD3 single-chain variable fragment, emerged as the most potent design, showing tumor killing at subnanomolar concentrations across three different CEA+ cell lines. The in vitro activity was three times greater in C57BL/6 mouse colon adenocarcinoma cells (MC38) expressing high levels of CEA compared with those expressing low levels, highlighting the impact of CEA density in this assay. The optimal TCB candidate was tested in two different immunocompetent mouse models of colorectal cancer and showed tumor growth retardation. Ex vivo analysis of tumor infiltrates showed an increase in CD4+ and CD8+ T cells upon TCB treatment. This study suggests that bivalent tumor targeting, monovalent T-cell targeting, and a short spatial separation are promising characteristics for CEA-targeting TCBs.
Collapse
Affiliation(s)
- Abdullah Elsayed
- Philochem AG, Otelfingen, Switzerland
- Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Louis Plüss
- Philochem AG, Otelfingen, Switzerland
- Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Larissa Nideroest
- Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | | - Marina Thoma
- Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Nathan Zangger
- Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | | | | - Christian Pellegrino
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | | | | | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Annette Oxenius
- Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | | - Cornelia Halin
- Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Dario Neri
- Philochem AG, Otelfingen, Switzerland
- Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
- Philogen SpA, Siena, Italy
| |
Collapse
|
12
|
Jin X, Zhang J, Zhang Y, He J, Wang M, Hei Y, Guo S, Xu X, Liu Y. Different origin-derived exosomes and their clinical advantages in cancer therapy. Front Immunol 2024; 15:1401852. [PMID: 38994350 PMCID: PMC11236555 DOI: 10.3389/fimmu.2024.1401852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
- The Second Affiliated Hospital of Xi‘an Medical University, Xi’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Jing He
- Laboratory of Obstetrics and Gynecology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yu Hei
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Shutong Guo
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiangrong Xu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
13
|
Wójcik M, Juhas U, Mohammadi E, Mattisson J, Drężek-Chyła K, Rychlicka-Buniowska E, Bruhn-Olszewska B, Davies H, Chojnowska K, Olszewski P, Bieńkowski M, Jankowski M, Rostkowska O, Hellmann A, Pęksa R, Kowalski J, Zdrenka M, Kobiela J, Zegarski W, Biernat W, Szylberg Ł, Remiszewski P, Mieczkowski J, Filipowicz N, Dumanski JP. Loss of Y in regulatory T lymphocytes in the tumor micro-environment of primary colorectal cancers and liver metastases. Sci Rep 2024; 14:9458. [PMID: 38658633 PMCID: PMC11043399 DOI: 10.1038/s41598-024-60049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Male sex is a risk factor for colorectal cancer (CRC) with higher illness burden and earlier onset. Thus, we hypothesized that loss of chromosome Y (LOY) in the tumor micro-environment (TME) might be involved in oncogenesis. Previous studies show that LOY in circulating leukocytes of aging men was associated with shorter survival and non-hematological cancer, as well as higher LOY in CD4 + T-lymphocytes in men with prostate cancer vs. controls. However, nothing is known about LOY in leukocytes infiltrating TME and we address this aspect here. We studied frequency and functional effects of LOY in blood, TME and non-tumorous tissue. Regulatory T-lymphocytes (Tregs) in TME had the highest frequency of LOY (22%) in comparison to CD4 + T-lymphocytes and cytotoxic CD8 + T-lymphocytes. LOY score using scRNA-seq was also linked to higher expression of PDCD1, TIGIT and IKZF2 in Tregs. PDCD1 and TIGIT encode immune checkpoint receptors involved in the regulation of Tregs function. Our study sets the direction for further functional research regarding a probable role of LOY in intensifying features related to the suppressive phenotype of Tregs in TME and consequently a possible influence on immunotherapy response in CRC patients.
Collapse
Affiliation(s)
- Magdalena Wójcik
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Ulana Juhas
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Elyas Mohammadi
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Jonas Mattisson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kinga Drężek-Chyła
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | | | - Bożena Bruhn-Olszewska
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hanna Davies
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Katarzyna Chojnowska
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Paweł Olszewski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Jankowski
- Surgical Oncology, Ludwik Rydygier's Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- Department of Surgical Oncology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Olga Rostkowska
- Department of Oncological, Transplant and General Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Hellmann
- Department of Oncological, Transplant and General Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Rafał Pęksa
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek Kowalski
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Jarek Kobiela
- Department of Oncological, Transplant and General Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Wojciech Zegarski
- Surgical Oncology, Ludwik Rydygier's Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- Department of Surgical Oncology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Piotr Remiszewski
- Department of Oncological, Transplant and General Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Jakub Mieczkowski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Natalia Filipowicz
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| | - Jan P Dumanski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Wickenberg M, Mercier R, Yap M, Walker J, Baker K, LaPointe P. Hsp90 inhibition leads to an increase in surface expression of multiple immunological receptors in cancer cells. Front Mol Biosci 2024; 11:1334876. [PMID: 38645275 PMCID: PMC11027010 DOI: 10.3389/fmolb.2024.1334876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone important for maintaining protein homeostasis (proteostasis) in the cell. Hsp90 inhibitors are being explored as cancer therapeutics because of their ability to disrupt proteostasis. Inhibiting Hsp90 increases surface density of the immunological receptor Major Histocompatibility Complex 1 (MHC1). Here we show that this increase occurs across multiple cancer cell lines and with both cytosol-specific and pan-Hsp90 inhibitors. We demonstrate that Hsp90 inhibition also alters surface expression of both IFNGR and PD-L1, two additional immunological receptors that play a significant role in anti-tumour or anti-immune activity in the tumour microenvironment. Hsp90 also negatively regulates IFN-γ activity in cancer cells, suggesting it has a unique role in mediating the immune system's response to cancer. Our data suggests a strong link between Hsp90 activity and the pathways that govern anti-tumour immunity. This highlights the potential for the use of an Hsp90 inhibitor in combination with another currently available cancer treatment, immune checkpoint blockade therapy, which works to prevent immune evasion of cancer cells. Combination checkpoint inhibitor therapy and the use of an Hsp90 inhibitor may potentiate the therapeutic benefits of both treatments and improve prognosis for cancer patients.
Collapse
Affiliation(s)
- Madison Wickenberg
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Megan Yap
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - John Walker
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kristi Baker
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Lin J, Ran Y, Wu T, Wang Z, Zhao J, Tian Y. A New Method for Constructing Macrophage-Associated Predictors of Treatment Efficacy Based on Single-Cell Sequencing Analysis. J Immunother 2024; 47:33-48. [PMID: 37982646 DOI: 10.1097/cji.0000000000000497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/19/2023] [Indexed: 11/21/2023]
Abstract
Tumor-associated macrophages (TAMs) are highly infiltrated in the tumor microenvironment (TME) of colorectal cancer (CRC) and play a vital role in CRC's development as well as prognosis. The required data were obtained from the Gene Expression Omnibus database and The Cancer Genome Atlas. Univariate Cox regression and least absolute shrinkage operator analyses were executed for model construction. TME assessment and immune prediction were performed using the ESTIMATE software package and the single sample genome enrichment analysis algorithm. The results show patients with low a TAMs risk score (TRS) had a better prognosis in both The Cancer Genome Atlas and Gene Expression Omnibus cohorts. Patients with low TRS were more sensitive to 3 chemotherapeutic agents: oxaliplatin, paclitaxel, and cisplatin ( P <0.05). TME assessment showed that the low TRS group had less infiltration of M2 macrophages and regulatory T cells, but CD4 + T cells, NK cells, and dendritic cells occupy a greater proportion of TME. Low TRS group patients have a low StromalScore and ImmuneScore but have high TumorPurity. The immune checkpoint TIM-3 gene HAVCR2 expression was significantly higher in the high TRS group. Finally, we created a nomogram including TRS for forecasting survival, and TRS was significantly associated with the clinical stage of the patients. In conclusion, the TRS serves as a reliable prognostic indicator of CRC; it predicts patient outcomes to immunotherapy and chemotherapy and provides genomic evidence for the subsequent development of modulated TAMs for treating CRC.
Collapse
Affiliation(s)
- Jianxiu Lin
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Ran
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tengfei Wu
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zishan Wang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jinjin Zhao
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yun Tian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Yao N, Li W, Duan N, Xu G, Yu G, Qu J. Exploring the landscape of drug resistance in gastrointestinal cancer immunotherapy: A review. Medicine (Baltimore) 2024; 103:e36957. [PMID: 38215151 PMCID: PMC10783409 DOI: 10.1097/md.0000000000036957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/21/2023] [Indexed: 01/14/2024] Open
Abstract
Gastrointestinal (GI) cancers pose a significant challenge due to high prevalence and mortality. While advancements in detection and conventional treatments have been made, prognosis often remains poor, particularly for advanced-stage cancers. Immunotherapy has emerged as a transformative approach, leveraging the body immune system against cancer, including immune checkpoint inhibitors (ICIs), cancer vaccines, and adoptive cell transfer. These modalities have shown promise, achieving sustained responses and improved survival in some patients. However, their efficacy in GI cancers is less pronounced, hindered by drug resistance mechanisms that are either intrinsic or acquired over time. This review examines the latest understanding of immunotherapy in GI cancers, focusing on ICIs, cancer vaccines, and adoptive cell transfer, along with their associated outcomes and limitations. It delves into the mechanisms behind drug resistance, including alterations in immune checkpoints, the immunosuppressive tumor microenvironment, and genetic/epigenetic changes. The role of the gut microbiome is also considered as an emerging factor in resistance. To combat drug resistance, strategies such as enhancing immune response, targeting the tumor microenvironment, and modulating resistance mechanisms are explored. The review underscores the potential of ferroptosis induction as a novel approach. Looking forward, it highlights the need for personalized immunotherapies, understanding the influence of the gut microbiome, and further exploration of ferroptosis in overcoming resistance. While challenges persist, the continuous evolution in GI cancer immunotherapy research promises innovative treatments that could significantly improve patient outcomes.
Collapse
Affiliation(s)
- Nan Yao
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Wenqiang Li
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Ning Duan
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Guoshuai Xu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Guoyong Yu
- Department of Nephrology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
17
|
Villa M, Sanin DE, Apostolova P, Corrado M, Kabat AM, Cristinzio C, Regina A, Carrizo GE, Rana N, Stanczak MA, Baixauli F, Grzes KM, Cupovic J, Solagna F, Hackl A, Globig AM, Hässler F, Puleston DJ, Kelly B, Cabezas-Wallscheid N, Hasselblatt P, Bengsch B, Zeiser R, Sagar, Buescher JM, Pearce EJ, Pearce EL. Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment. Nat Commun 2024; 15:451. [PMID: 38200005 PMCID: PMC10781727 DOI: 10.1038/s41467-024-44689-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8+ T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8+ T cell pool. CD8+ T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8+ T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E2 (PGE2), which drives mitochondrial depolarization in CD8+ T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE2 sensing promotes CD8+ T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE2-autophagy-glutathione axis defines the metabolic adaptation of CD8+ T cells to the intestinal microenvironment, to ultimately influence the T cell pool.
Collapse
Affiliation(s)
- Matteo Villa
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany.
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria.
| | - David E Sanin
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Petya Apostolova
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine I (Hematology and Oncology), University Medical Center Freiburg, 79106, Freiburg, Germany
| | - Mauro Corrado
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Agnieszka M Kabat
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carmine Cristinzio
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Annamaria Regina
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Department of Life Sciences, University of Trieste, 34128, Trieste, Italy
| | - Gustavo E Carrizo
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Nisha Rana
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Michal A Stanczak
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Francesc Baixauli
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Katarzyna M Grzes
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Jovana Cupovic
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Francesca Solagna
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Alexandra Hackl
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Anna-Maria Globig
- Department of Medicine II, University Medical Center Freiburg, 79106, Freiburg, Germany
| | - Fabian Hässler
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Daniel J Puleston
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Beth Kelly
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | | | - Peter Hasselblatt
- Department of Medicine II, University Medical Center Freiburg, 79106, Freiburg, Germany
| | - Bertram Bengsch
- Department of Medicine II, University Medical Center Freiburg, 79106, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I (Hematology and Oncology), University Medical Center Freiburg, 79106, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Sagar
- Department of Medicine II, University Medical Center Freiburg, 79106, Freiburg, Germany
| | - Joerg M Buescher
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Edward J Pearce
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- CIBSS Centre for Integrative Biological Signalling Studies, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Erika L Pearce
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany.
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- CIBSS Centre for Integrative Biological Signalling Studies, Freiburg, Germany.
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
18
|
Rastin F, Javid H, Oryani MA, Rezagholinejad N, Afshari AR, Karimi-Shahri M. Immunotherapy for colorectal cancer: Rational strategies and novel therapeutic progress. Int Immunopharmacol 2024; 126:111055. [PMID: 37992445 DOI: 10.1016/j.intimp.2023.111055] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023]
Abstract
There are increasing incidences and mortality rates for colorectal cancer in the world. It is common for chemotherapy and radiation given to patients with colorectal cancer to cause toxicities that limit their effectiveness and cause cancer cells to become resistant to these treatments. Additional targeted treatments are needed to improve patient's quality of life and outcomes. Immunotherapy has rapidly emerged as an incredibly exciting and promising avenue for cancer treatment in recent years. This innovative approach provides novel options for tackling solid tumors, effectively establishing itself as a new cornerstone in cancer treatment. Specifically, in the realm of colorectal cancer (CRC), there is great promise in developing new drugs that target immune checkpoints, offering a hopeful and potentially transformative solution. While immunotherapy of CRC has made significant advances, there are still obstacles and limitations. CRC patients have a poor response to treatment because of the immune-suppressing function of their tumor microenvironment (TME). In addition to blocking inhibitory immune checkpoints, checkpoint-blocking antibodies may also boost immune responses against tumors. The review summarizes recent advances in immune checkpoint inhibitors (ICIs) for CRC, including CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3.
Collapse
Affiliation(s)
- Farangis Rastin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir-R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
19
|
Meng L, Wu H, Wu J, Ding P, He J, Sang M, Liu L. Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis 2024; 15:3. [PMID: 38177102 PMCID: PMC10766988 DOI: 10.1038/s41419-023-06389-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Current treatment strategies for cancer, especially advanced cancer, are limited and unsatisfactory. One of the most substantial advances in cancer therapy, in the last decades, was the discovery of a new layer of immunotherapy approach, immune checkpoint inhibitors (ICIs), which can specifically activate immune cells by targeting immune checkpoints. Immune checkpoints are a type of immunosuppressive molecules expressed on immune cells, which can regulate the degree of immune activation and avoid autoimmune responses. ICIs, such as anti-PD-1/PD-L1 drugs, has shown inspiring efficacy and broad applicability across various cancers. Unfortunately, not all cancer patients benefit remarkably from ICIs, and the overall response rates to ICIs remain relatively low for most cancer types. Moreover, the primary and acquired resistance to ICIs pose serious challenges to the clinical application of cancer immunotherapy. Thus, a deeper understanding of the molecular biological properties and regulatory mechanisms of immune checkpoints is urgently needed to improve clinical options for current therapies. Recently, circular RNAs (circRNAs) have attracted increasing attention, not only due to their involvement in various aspects of cancer hallmarks, but also for their impact on immune checkpoints in shaping the tumor immune microenvironment. In this review, we systematically summarize the current status of immune checkpoints in cancer and the existing regulatory roles of circRNAs on immune checkpoints. Meanwhile, we also aim to settle the issue in an evidence-oriented manner that circRNAs involved in cancer hallmarks regulate the effects and resistance of ICIs by targeting immune checkpoints.
Collapse
Affiliation(s)
- Lingjiao Meng
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jinchen He
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Meixiang Sang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
- Science and Education Department, Shanghai Electric Power Hospital, Shanghai, 20050, China.
| | - Lihua Liu
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China.
| |
Collapse
|
20
|
Zhang H, Zhu M, Zhao A, Shi T, Xi Q. B7-H3 regulates anti-tumor immunity and promotes tumor development in colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189031. [PMID: 38036107 DOI: 10.1016/j.bbcan.2023.189031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract and one of the most common causes of cancer-related deaths worldwide. Immune checkpoint inhibitors have become a milestone in many cancer treatments with significant curative effects. However, its therapeutic effect on colorectal cancer is still limited. B7-H3 is a novel immune checkpoint molecule of the B7/CD28 family and is overexpressed in a variety of solid tumors including colorectal cancer. B7-H3 was considered as a costimulatory molecule that promotes anti-tumor immunity. However, more and more studies support that B7-H3 is a co-inhibitory molecule and plays an important immunosuppressive role in colorectal cancer. Meanwhile, B7-H3 promoted metabolic reprogramming, invasion and metastasis, and chemoresistance in colorectal cancer. Therapies targeting B7-H3, including monoclonal antibodies, antibody drug conjugations, and chimeric antigen receptor T cells, have great potential to improve the prognosis of colorectal cancer patients.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Anjing Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
21
|
Chen C, Jiang X, Zhao Z. Inhibition or promotion, the potential role of arginine metabolism in immunotherapy for colorectal cancer. ALL LIFE 2023. [DOI: 10.1080/26895293.2022.2163306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Chengyang Chen
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xia Jiang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zengren Zhao
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
22
|
Zhu W, Wu C, Hu S, Liu S, Zhao S, Zhang D, Qiu G, Cheng X, Huang J. Chemokine- and chemokine receptor-based signature predicts immunotherapy response in female colorectal adenocarcinoma patients. Sci Rep 2023; 13:21358. [PMID: 38049474 PMCID: PMC10695967 DOI: 10.1038/s41598-023-48623-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
The clinical significance and comprehensive characteristics of chemokines and chemokine receptors in female patients with advanced colorectal adenocarcinoma have not ever been reported. Our study explored the expression profiles of chemokines and chemokine receptors and constructed a chemokine- and chemokine receptor-based signature in female patients with advanced colorectal adenocarcinoma. Four independent cohorts containing 1335 patients were enrolled in our study. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses were performed to construct the signature. CIBERSORT was used to evaluate the landscape of immune cell infiltration. Thirty-two pairs of tissue specimens of female advanced colorectal cancer (CRC) patients and two CRC cell lines were used to validate the signature in vitro. Quantitative real-time PCR and western blotting were performed to validate the mRNA and protein expression levels of signature genes. EdU and colony formation assays were performed to examine proliferative ability. Transwell and wound healing assays were used to evaluate cell invasion and migration capacity. During the signature construction and validation process, we found that the signature was more applicable to female patients with advanced colorectal adenocarcinoma. Hence, the subsequent study mainly focused on the particular subgroup. Enrichment analyses revealed that the signature was closely related to immunity. The landscape of immune cell infiltration presented that the signature was significantly associated with T cells CD8 and neutrophils. Gene set enrichment analysis (GSEA) confirmed that the high-risk group was chiefly enriched in the tumor-promoting related pathways and biological processes, whereas the low-risk group was mainly enriched in anti-tumor immune response pathways and biological processes. The signature was closely correlated with CTLA4, PDL1, PDL2, TMB, MSI, and TIDE, indicating that our signature could serve as a robust biomarker for immunotherapy and chemotherapy response. ROC curves verified that our signature had more robust prognostic power than all immune checkpoints and immunotherapy-related biomarkers. Finally, we used 32 pairs of tissue specimens and 2 CRC cell lines to validate our signature in vitro. We first provided a robust prognostic chemokine- and chemokine receptor-based signature, which could serve as a novel biomarker for immunotherapy and chemotherapy response to guide individualized treatment for female patients with advanced colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Wenjie Zhu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Changlei Wu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shiqi Hu
- Queen Mary College, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Sicheng Liu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shimin Zhao
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dongdong Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guisheng Qiu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiufeng Cheng
- Department of Critical Care Medicine, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Huang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
23
|
Yao S, Han Y, Yang M, Jin K, Lan H. It's high-time to re-evaluate the value of induced-chemotherapy for reinforcing immunotherapy in colorectal cancer. Front Immunol 2023; 14:1241208. [PMID: 37920463 PMCID: PMC10619163 DOI: 10.3389/fimmu.2023.1241208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Immunotherapy has made significant advances in the treatment of colorectal cancer (CRC), revolutionizing the therapeutic landscape and highlighting the indispensable role of the tumor immune microenvironment. However, some CRCs have shown poor response to immunotherapy, prompting investigation into the underlying reasons. It has been discovered that certain chemotherapeutic agents possess immune-stimulatory properties, including the induction of immunogenic cell death (ICD), the generation and processing of non-mutated neoantigens (NM-neoAgs), and the B cell follicle-driven T cell response. Based on these findings, the concept of inducing chemotherapy has been introduced, and the combination of inducing chemotherapy and immunotherapy has become a standard treatment option for certain cancers. Clinical trials have confirmed the feasibility and safety of this approach in CRC, offering a promising method for improving the efficacy of immunotherapy. Nevertheless, there are still many challenges and difficulties ahead, and further research is required to optimize its use.
Collapse
Affiliation(s)
- Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yuejun Han
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Mengxiang Yang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Lin Y, Luo S, Luo M, Lu X, Li Q, Xie M, Huang Y, Liao X, Zhang Y, Li Y, Liang R. Homologous recombination repair gene mutations in colorectal cancer favors treatment of immune checkpoint inhibitors. Mol Carcinog 2023; 62:1271-1283. [PMID: 37232365 DOI: 10.1002/mc.23562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapy is insensitive for Colorectal cancer (CRC) patients with microsatellite stable (MSS). Genomic data of three CRC cohort, n = 35), and the Cancer Genome Atlas (TCGA CRC cohort, n = 377), were analyzed. A cohort treated with ICIs from Memorial Sloan Kettering Cancer Center (MSKCC CRC cohort, n = 110) and two cases from the local hospital were characterized the impact of the HRR mutation on prognosis of CRC. Homologous recombination repair (HRR) gene mutations were more common in CN and HL cohorts (27.85%; 48.57%) than in TCGA CRC cohort (15.92%), especially in the MSS populations, the frequencies of HRR mutation were higher in CN and HL cohort (27.45%, 51.72%) than in TCGA cohort (6.85%). HRR mutations were associated with high tumor mutational burden (TMB-H). Although HRR mutation uncorrelated with an improved overall survival in the MSKCC CRC cohort (p = 0.97), HRR mutated patients had a significantly improved OS compared to the HRR wildtype population particularly in MSS subgroups (p = 0.0407) under ICI treatment. It probably contributed by a higher neoantigen and increased CD4+ T cell infiltration which found in the TCGA MSS HRR mutated CRC cohort. The similar phenomenon on cases was observed that MSS metastatic CRC patient with HRR mutation seemed more sensitive to ICI after multi-line chemotherapy in clinical practice than HRR wildtype. This finding suggests the feasibility of HRR mutation as an immunotherapy response predictor in MSS CRC, which highlights a potential therapeutic approach for these patients.
Collapse
Affiliation(s)
- Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Shanshan Luo
- Department of Gastrointestinal Gland Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Min Luo
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Xuerou Lu
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Qian Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Mingzhi Xie
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Yu Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Xiaoli Liao
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Yumei Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Rong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
25
|
Chandrasekar SV, Singh A, Ranjan A. Overcoming Resistance to Immune Checkpoint Inhibitor Therapy Using Calreticulin-Inducing Nanoparticle. Pharmaceutics 2023; 15:1693. [PMID: 37376141 PMCID: PMC10302072 DOI: 10.3390/pharmaceutics15061693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Nanoparticles (NPs) have the ability to transform poorly immunogenic tumors into activated 'hot' targets. In this study, we investigated the potential of a liposome-based nanoparticle (CRT-NP) expressing calreticulin as an in-situ vaccine to restore sensitivity to anti-CTLA4 immune checkpoint inhibitor (ICI) in CT26 colon tumors. We found that a CRT-NP with a hydrodynamic diameter of approximately 300 nm and a zeta potential of approximately +20 mV induced immunogenic cell death (ICD) in CT-26 cells in a dose-dependent manner. In the mouse model of CT26 xenograft tumors, both CRT-NP and ICI monotherapy caused moderate reductions in tumor growth compared to the untreated control group. However, the combination therapy of CRT-NP and anti-CTLA4 ICI resulted in remarkable suppression of tumor growth rates (>70%) compared to untreated mice. This combination therapy also reshaped the tumor microenvironment (TME), achieving the increased infiltration of antigen-presenting cells (APCs) such as dendritic cells and M1 macrophages, as well as an abundance of T cells expressing granzyme B and a reduction in the population of CD4+ Foxp3 regulatory cells. Our findings indicate that CRT-NPs can effectively reverse immune resistance to anti-CTLA4 ICI therapy in mice, thereby improving the immunotherapeutic outcome in the mouse model.
Collapse
Affiliation(s)
| | | | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary, Oklahoma State University, Stillwater, OK 74078, USA; (S.V.C.)
| |
Collapse
|
26
|
Giacomelli M, Monti M, Pezzola DC, Lonardi S, Bugatti M, Missale F, Cioncada R, Melocchi L, Giustini V, Villanacci V, Baronchelli C, Manenti S, Imberti L, Giurisato E, Vermi W. Immuno-Contexture and Immune Checkpoint Molecule Expression in Mismatch Repair Proficient Colorectal Carcinoma. Cancers (Basel) 2023; 15:3097. [PMID: 37370706 DOI: 10.3390/cancers15123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal carcinoma (CRC) represents a lethal disease with heterogeneous outcomes. Only patients with mismatch repair (MMR) deficient CRC showing microsatellite instability and hyper-mutated tumors can obtain clinical benefits from current immune checkpoint blockades; on the other hand, immune- or target-based therapeutic strategies are very limited for subjects with mismatch repair proficient CRC (CRCpMMR). Here, we report a comprehensive typing of immune infiltrating cells in CRCpMMR. We also tested the expression and interferon-γ-modulation of PD-L1/CD274. Relevant findings were subsequently validated by immunohistochemistry on fixed materials. CRCpMMR contain a significantly increased fraction of CD163+ macrophages (TAMs) expressing TREM2 and CD66+ neutrophils (TANs) together with decrease in CD4-CD8-CD3+ double negative T lymphocytes (DNTs); no differences were revealed by the analysis of conventional and plasmacytoid dendritic cell populations. A fraction of tumor-infiltrating T-cells displays an exhausted phenotype, co-expressing PD-1 and TIM-3. Remarkably, expression of PD-L1 on fresh tumor cells and TAMs was undetectable even after in vitro stimulation with interferon-γ. These findings confirm the immune suppressive microenvironment of CRCpMMR characterized by dense infiltration of TAMs, occurrence of TANs, lack of DNTs, T-cell exhaustion, and interferon-γ unresponsiveness by host and tumor cells. Appropriate bypass strategies should consider these combinations of immune escape mechanisms in CRCpMMR.
Collapse
Affiliation(s)
- Mauro Giacomelli
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Diego Cesare Pezzola
- Department of Surgery, Surgery Division II, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mattia Bugatti
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Francesco Missale
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Department of Head & Neck Oncology & Surgery Otorhinolaryngology, Antoni Van Leeuwenhoek-Nederlands Kanker Instituut, 1066 CX Amsterdam, The Netherlands
| | - Rossella Cioncada
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Laura Melocchi
- Department of Pathology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Viviana Giustini
- CREA Laboratory, AIL Center for Hemato-Oncologic Research, Diagnostic Department, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Vincenzo Villanacci
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Carla Baronchelli
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Stefania Manenti
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, 25123 Brescia, Italy
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - William Vermi
- Department of Pathology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Department of Pathology and Immunology, School of Medicine, Washington University, Saint Louis, MO 63130, USA
| |
Collapse
|
27
|
Mishra R, Sukhbaatar A, Mori S, Kodama T. Metastatic lymph node targeted CTLA4 blockade: a potent intervention for local and distant metastases with minimal ICI-induced pneumonia. J Exp Clin Cancer Res 2023; 42:132. [PMID: 37259163 DOI: 10.1186/s13046-023-02645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/14/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) elicits a strong and durable therapeutic response, but its application is limited by disparate responses and its associated immune-related adverse events (irAEs). Previously, in a murine model of lymph node (LN) metastasis, we showed that intranodal administration of chemotherapeutic agents using a lymphatic drug delivery system (LDDS) elicits stronger therapeutic responses in comparison to systemic drug delivery approaches, while minimizing systemic toxicity, due to its improved pharmacokinetic profile at the intended site. Importantly, the LN is a reservoir of immunotherapeutic targets. We therefore hypothesized that metastatic LN-targeted ICB can amplify anti-tumor response and uncouple it from ICB-induced irAEs. METHODS To test our hypothesis, models of LN and distant metastases were established with luciferase expressing LM8 cells in MXH10/Mo-lpr/lpr mice, a recombinant inbred strain of mice capable of recapitulating ICB-induced interstitial pneumonia. This model was used to interrogate ICB-associated therapeutic response and immune related adverse events (irAEs) by in vivo imaging, high-frequency ultrasound imaging and histopathology. qPCR and flowcytometry were utilized to uncover the mediators of anti-tumor immunity. RESULTS Tumor-bearing LN (tbLN)-directed CTLA4 blockade generated robust anti-tumor response against local and systemic metastases, thereby improving survival. The anti-tumor effects were accompanied by an upregulation of effector CD8T cells in the tumor-microenvironment and periphery. In comparison, non-specific CTLA4 blockade was found to elicit weaker anti-tumor effect and exacerbated ICI-induced irAEs, especially interstitial pneumonia. Together these data highlight the importance of tbLN-targeted checkpoint blockade for efficacious response. CONCLUSIONS Intranodal delivery of immune checkpoint inhibitors to metastatic LN can potentiate therapeutic response while minimizing irAEs stemming from systemic lowering of immune activation threshold.
Collapse
Affiliation(s)
- Radhika Mishra
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
28
|
Li J, Xu X. Immune Checkpoint Inhibitor-Based Combination Therapy for Colorectal Cancer: An Overview. Int J Gen Med 2023; 16:1527-1540. [PMID: 37131870 PMCID: PMC10149070 DOI: 10.2147/ijgm.s408349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common diseases in the world. Tumor immunotherapy is an innovative cancer treatment that acts by activating the human body's autoimmune system. Immune checkpoint block has been shown to be effective in DNA deficient mismatch repair/microsatellite instability-high CRC. However, the therapeutic effect for proficient mismatch repair/microsatellite stability patients still requires further study and optimization. At present, the main CRC strategy is to combine other therapeutic methods, such as chemotherapy, targeted therapy, and radiotherapy. Here, we review the current status and the latest progress of immune checkpoint inhibitors in the treatment of CRC. At the same time, we consider therapeutic opportunities for transforming cold to hot, as well as perspectives on possible future therapies, which may be in great demand for drug-resistant patients.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, People’s Republic of China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, People’s Republic of China
| |
Collapse
|
29
|
Villa M, Sanin DE, Apostolova P, Corrado M, Kabat AM, Cristinzio C, Regina A, Carrizo GE, Rana N, Stanczak MA, Baixauli F, Grzes KM, Cupovic J, Solagna F, Hackl A, Globig AM, Hässler F, Puleston DJ, Kelly B, Cabezas-Wallscheid N, Hasselblatt P, Bengsch B, Zeiser R, Sagar, Buescher JM, Pearce EJ, Pearce EL. Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532431. [PMID: 36993703 PMCID: PMC10054978 DOI: 10.1101/2023.03.13.532431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Immune cells must adapt to different environments during the course of an immune response. We studied the adaptation of CD8 + T cells to the intestinal microenvironment and how this process shapes their residency in the gut. CD8 + T cells progressively remodel their transcriptome and surface phenotype as they acquire gut residency, and downregulate expression of mitochondrial genes. Human and mouse gut-resident CD8 + T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We found that the intestinal microenvironment is rich in prostaglandin E 2 (PGE 2 ), which drives mitochondrial depolarization in CD8 + T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE 2 sensing promotes CD8 + T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell population. Thus, a PGE 2 -autophagy-glutathione axis defines the metabolic adaptation of CD8 + T cells to the intestinal microenvironment, to ultimately influence the T cell pool.
Collapse
|
30
|
Merhi M, Ahmad F, Taib N, Inchakalody V, Uddin S, Shablak A, Dermime S. The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Semin Cancer Biol 2023; 89:1-17. [PMID: 36621515 DOI: 10.1016/j.semcancer.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
31
|
The Immunosuppressive Effect of TNFR2 Expression in the Colorectal Cancer Microenvironment. Biomedicines 2023; 11:biomedicines11010173. [PMID: 36672682 PMCID: PMC9856189 DOI: 10.3390/biomedicines11010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common causes of death among cancers worldwide. Its incidence has been increasing among the young population. Many risk factors contribute to the development and progression of CRC and about 70% of them are sporadic. The CRC microenvironment is highly heterogeneous and represents a very complex immunosuppressive platform. Many cytokines and their receptors are vital participants in this immunosuppressive microenvironment. Tumor necrosis factors (TNFs) and TNF receptor 2 (TNFR2) are critical players in the development of CRC. TNFR2 was observed to have increased the immunosuppressive activity of CRC cells via regulatory T cells (T regs) and myeloid-derived suppressor cells (MDSC) in the CRC microenvironment. However, the exact mechanism of TNFR2 in regulating the CRC prognosis remains elusive. Here, we discuss the role of TNFR2 in immune escape mechanism of CRC in the immunosuppressive cells, including Tregs and MDSCs, and the complex signaling pathways that facilitate the development of CRC. It is suggested that extensive studies on TNFR2 downstream signaling must be done, since TNFR2 has a high potential to be developed into a therapeutic agent and cancer biomarker in the future.
Collapse
|
32
|
Vatankhah F, Salimi N, Khalaji A, Baradaran B. Immune checkpoints and their promising prospect in cholangiocarcinoma treatment in combination with other therapeutic approaches. Int Immunopharmacol 2023; 114:109526. [PMID: 36481527 DOI: 10.1016/j.intimp.2022.109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Cholangiocarcinoma (CCA) is one of the malignant tumors that has shown rapid development in incidence and mortality in recent years. Like other types of cancer, patients with CCA experience alterations in the expression of immune checkpoints, indicating the importance of immune checkpoint inhibitors in treating CCA. The results of TCGA analysis in this study revealed a marginal difference in the expression of important immune checkpoints, Programmed cell death 1 (PD-1) and Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and their ligands in CCA samples compared to normal ones. This issue showed the importance of combination therapy in this cancer. This review considers CCA treatment and covers several therapeutic modalities or combined treatment strategies. We also cover the most recent developments in the field and outline the important areas of immune checkpoint molecules as prognostic variables and therapeutic targets in CCA.
Collapse
Affiliation(s)
- Fatemeh Vatankhah
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Salimi
- School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Amirreza Khalaji
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Jiang M, Liu M, Liu G, Ma J, Zhang L, Wang S. Advances in the structural characterization of complexes of therapeutic antibodies with PD-1 or PD-L1. MAbs 2023; 15:2236740. [PMID: 37530414 PMCID: PMC10399482 DOI: 10.1080/19420862.2023.2236740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023] Open
Abstract
Antibody-based immune checkpoint blockade (ICB)-based therapeutics have become effective clinical applications for cancers. Applications of monoclonal antibodies (mAbs) to de-activate the PD-1-PD-L1 pathway could effectively reverse the phenotype of depleted activated thymocytes (T cells) to recover their anti-tumoral activities. High-resolution structures of the complexes of the therapeutic monoclonal antibodies with PD-1 or PD-L1 have revealed the key inter-molecular interactions and provided valuable insights into the fundamental mechanisms by which these antibodies inhibit PD-L1-PD-1 binding. Each anti-PD-1 mAb exhibits a unique blockade mechanism, such as interference with large PD-1-PD-L1 contacting interfaces, steric hindrance by overlapping a small area of this site, or binding to an N-glycosylated site. In contrast, all therapeutic anti-PD-L1 mAbs bind to a similar area of PD-L1. Here, we summarized advances in the structural characterization of the complexes of commercial mAbs that target PD-1 or PD-L1. In particular, we focus on the unique characteristics of those mAb structures, epitopes, and blockade mechanisms. It is well known that the use of antibodies as anti-tumor drugs has increased recently and both PD-1 and PD-L1 have attracted substantial attention as target for antibodies derived from new technologies. By focusing on structural characterization, this review aims to aid the development of novel antibodies targeting PD-1 or PD-L1 in the future.
Collapse
Affiliation(s)
- Mengzhen Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Man Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Guodi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiawen Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
34
|
Impact of Liver Metastases and Number of Metastatic Sites on Immune-Checkpoint Inhibitors Efficacy in Patients with Different Solid Tumors: A Retrospective Study. Biomedicines 2022; 11:biomedicines11010083. [PMID: 36672591 PMCID: PMC9855949 DOI: 10.3390/biomedicines11010083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/31/2022] Open
Abstract
Background: ICIs have dramatically improved patient outcomes in different malignancies. However, the impact of liver metastases (LM) and number of metastatic sites (MS) remains unclear in patients treated with single-agent anti-PD(L)1. Methods: We aimed to assess the prognostic impact of LM and MS number on progression-free survival (PFS) and overall survival (OS) in a large single-arm retrospective multicentric cohort (IMMUCARE) of patients treated with anti-PD(L)-1 for different solid tumors. Results: A total of 759 patients were enrolled from January 2012 to October 2018. The primary tumor types were non-small cell lung cancer (71%), melanoma (19%), or urologic cancer (10%). At the time of ICI initiation, 167 patients (22%) had LM and 370 patients (49%) had more than MS. LM was associated with a shorter median PFS of 1.9 months (95% CI: 1.8−2.5) vs. 4.0 months (95% CI: 3.6−5.4) in patients without LM (p < 0.001). The median OS of patients with LM was of 5.2 months (95% CI: 4.0−7.7) compared with 12.8 months (95% CI: 11.2−15.1) (p < 0.001). Interestingly, LM were not associated with shorter PFS, or OS compared to other MS types (brain, bone, or lung) in patients with only one MS. Patients with multiple MS also had poor clinical outcomes compared to patients with only one MS. The presence of LM and MS number were independent prognostic factors on overall survival. Conclusion: The presence of LM or multiple MS were associated with poorer survival outcomes in patients treated with anti-PD(L)-1.
Collapse
|
35
|
Jung M, Lee JA, Yoo SY, Bae JM, Kang GH, Kim JH. Intratumoral spatial heterogeneity of tumor-infiltrating lymphocytes is a significant factor for precisely stratifying prognostic immune subgroups of microsatellite instability-high colorectal carcinomas. Mod Pathol 2022; 35:2011-2022. [PMID: 35869301 DOI: 10.1038/s41379-022-01137-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
Although the density of tumor-infiltrating lymphocytes (TILs) is known to be linked to prognosis in various cancers, the prognostic impact and immunologic significance of the spatial heterogeneity of TILs have been rarely investigated. In this study, CD3+ and CD8+ TILs were quantified in independent cohorts (discovery, n = 73; and external validation, n = 93) of colorectal carcinomas (CRCs) with microsatellite instability-high (MSI-H) utilizing whole-slide image analysis of CD3/CD8 immunohistochemistry. The Shannon and Simpson indices, which measure intratumoral patch-to-patch evenness of TIL densities, were used to quantitatively assess the spatial heterogeneity of TILs in each case. To uncover immune-related gene expression signatures of spatial heterogeneity-based TIL subgroups of MSI-H CRCs, representative cases were subjected to GeoMx digital spatial profiler (DSP) analysis. As expected, a low density of TILs was significantly associated with poor disease-free survival (DFS) in MSI-H CRCs. The TIL-low tumors were further classified into two subgroups based on the spatial heterogeneity of TILs: TIL-low/heterogeneity-high and TIL-low/heterogeneity-low subgroups. In both discovery and validation cohorts, the TIL-low/heterogeneity-high, TIL-low/heterogeneity-low, and TIL-high subgroups were significantly associated with poor, intermediate, and good DFS, respectively. In the DSP analysis, the TIL-low/heterogeneity-high subgroup showed higher spatial diversity in the expression of immune-related genes than that of the TIL-low/heterogeneity-low subgroup and exhibited upregulation of genes related to immune checkpoints, chemokine/cytokine receptors, and myeloid cells. TIL-low/heterogeneity-high tumors were also enriched with gene sets related to good response to immune checkpoint inhibitor therapy. In conclusion, TIL-low MSI-H CRCs are prognostically heterogeneous and can be divided into prognostically and immunologically distinct subgroups by considering the spatial heterogeneity of TILs. Our data suggest that intratumoral spatial heterogeneity of TILs can be used as a key element for clinically relevant immunologic subtyping of tumors.
Collapse
Affiliation(s)
- Minsun Jung
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Yeon Yoo
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Seegene Medical Foundation, Seoul, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Zheng Z, Bian C, Wang H, Su J, Meng L, Xin Y, Jiang X. Prediction of immunotherapy efficacy and immunomodulatory role of hypoxia in colorectal cancer. Ther Adv Med Oncol 2022; 14:17588359221138383. [PMID: 36425871 PMCID: PMC9679351 DOI: 10.1177/17588359221138383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/26/2022] [Indexed: 11/26/2023] Open
Abstract
Immunotherapy has been used in the clinical treatment of colorectal cancer (CRC); however, most patients fail to achieve satisfactory survival benefits. Biomarkers with high specificity and sensitivity are being increasingly developed to predict the efficacy of CRC immunotherapy. In addition to DNA alteration markers, such as microsatellite instability/mismatch repair and tumor mutational burden, immune cell infiltration and immune checkpoints (ICs), epigenetic changes and no-coding RNA, and gut microbiomes all show potential predictive ability. Recently, the hypoxic tumor microenvironment (TME) has been identified as a key factor mediating CRC immune evasion and resistance to treatment. Hypoxia-inducible factor-1α is the central transcription factor in the hypoxia response that drives the expression of a vast number of survival genes by binding to the hypoxia response element in cancer and immune cells in the TME. Hypoxia regulates angiogenesis, immune cell infiltration and activation, expression of ICs, and secretion of various immune molecules in the TME and is closely associated with the immunotherapeutic efficacy of CRC. Currently, various agents targeting hypoxia have been found to improve the TME and enhance the efficacy of immunotherapy. We reviewed current markers commonly used in CRC to predict therapeutic efficacy and the mechanisms underlying hypoxia-induced angiogenesis and tumor immune evasion. Exploring the mechanisms by which hypoxia affects the TME will assist the discovery of new immunotherapeutic predictive biomarkers and development of more effective combinations of agents targeting hypoxia and immunotherapy.
Collapse
Affiliation(s)
- Zhuangzhuang Zheng
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Chenbin Bian
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Huanhuan Wang
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jing Su
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Xin Jiang
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| |
Collapse
|
37
|
Xia C, Cai Y, Ren S, Xia C. Role of microbes in colorectal cancer therapy: Cross-talk between the microbiome and tumor microenvironment. Front Pharmacol 2022; 13:1051330. [PMID: 36438840 PMCID: PMC9682563 DOI: 10.3389/fphar.2022.1051330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 08/10/2023] Open
Abstract
The human gut microbiota is associated with the development and progression of colorectal cancer, and manipulation of the gut microbiota is a novel strategy for the prevention and treatment of colorectal cancer. Some bacteria have antitumor activity against colorectal cancer, where specific bacteria can improve the tumor microenvironment, activate immune cells including dendritic cells, helper T cells, natural killer cells, and cytotoxic T cells, and upregulate the secretion of pro-tumor immune cytokines such as interleukin-2 and interferon. In this paper, we summarize some bacteria with potential benefits in colorectal cancer and describe their roles in the tumor microenvironment, demonstrate the application of gut microbes in combination with immunosuppressive agents, and provide suggestions for further experimental studies and clinical practice applications.
Collapse
Affiliation(s)
- Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Shuangyi Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Sové RJ, Verma BK, Wang H, Ho WJ, Yarchoan M, Popel AS. Virtual clinical trials of anti-PD-1 and anti-CTLA-4 immunotherapy in advanced hepatocellular carcinoma using a quantitative systems pharmacology model. J Immunother Cancer 2022; 10:e005414. [PMID: 36323435 PMCID: PMC9639136 DOI: 10.1136/jitc-2022-005414] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and is the third-leading cause of cancer-related death worldwide. Most patients with HCC are diagnosed at an advanced stage, and the median survival for patients with advanced HCC treated with modern systemic therapy is less than 2 years. This leaves the advanced stage patients with limited treatment options. Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein 1 (PD-1) or its ligand, are widely used in the treatment of HCC and are associated with durable responses in a subset of patients. ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) also have clinical activity in HCC. Combination therapy of nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4) is the first treatment option for HCC to be approved by Food and Drug Administration that targets more than one immune checkpoints. METHODS In this study, we used the framework of quantitative systems pharmacology (QSP) to perform a virtual clinical trial for nivolumab and ipilimumab in HCC patients. Our model incorporates detailed biological mechanisms of interactions of immune cells and cancer cells leading to antitumor response. To conduct virtual clinical trial, we generate virtual patient from a cohort of 5,000 proposed patients by extending recent algorithms from literature. The model was calibrated using the data of the clinical trial CheckMate 040 (ClinicalTrials.gov number, NCT01658878). RESULTS Retrospective analyses were performed for different immune checkpoint therapies as performed in CheckMate 040. Using machine learning approach, we predict the importance of potential biomarkers for immune blockade therapies. CONCLUSIONS This is the first QSP model for HCC with ICIs and the predictions are consistent with clinically observed outcomes. This study demonstrates that using a mechanistic understanding of the underlying pathophysiology, QSP models can facilitate patient selection and design clinical trials with improved success.
Collapse
Affiliation(s)
- Richard J Sové
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Babita K Verma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Won Jin Ho
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Yarchoan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Deng H, Zhang J, Zheng Y, Li J, Xiao Q, Wei F, Han W, Xu X, Zhang Y. CCDC25 may be a potential diagnostic and prognostic marker of hepatocellular carcinoma: Results from microarray analysis. Front Surg 2022; 9:878648. [PMID: 36211267 PMCID: PMC9537757 DOI: 10.3389/fsurg.2022.878648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHepatocellular carcinoma (HCC) is a tumor with a high recurrence rate, poor prognosis, and rapid progression. Therefore, it is necessary to find a novel biomarker for HCC. Coiled-coil domain containing 25 (CCDC25) has been identified as a target molecule that mediates liver metastasis in colon cancer. However, the molecular mechanisms of CCDC25 in HCC are unknown. This study aimed to explore the role of CCDC25 in HCC.MethodsThe expression of CCDC25 in HCC was identified through The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Receiver operating characteristic curve (ROC) curves were drawn to evaluate the diagnostic value of CCDC25 for HCC. The effect of CCDC25 on the prognosis of HCC was analyzed by using the Kaplan–Meier plotter. Co-expressed genes and Gene Set Enrichment Analysis (GSEA) were used to explore the related functions and regulatory signaling pathways of CCDC25. Moreover, we employed the Tumor Immune Estimation Resource (TIMER) database and CIBERSORT algorithm to investigate the relationship between CCDC25 and the tumor immune microenvironment (TME) in HCC. Meanwhile, the effect of CCDC25 on the sensitivity of HCC patients to chemotherapy drugs was evaluated. Finally, we explored the prognostic methylation sites of CCDC25 using the MethSurv database.ResultsCCDC25 expression was low in HCC. Low CCDC25 expression was significantly associated with poor overall survival of HCC and may be comparable to the ability of AFP to diagnose HCC. Dysregulation of glucose metabolism, fatty acid metabolism, amino acid metabolism, ubiquitination modification, and apoptosis inhibition caused by CCDC25 downregulation may be the causes and results of HCC. In addition, CCDC25 was positively correlated with the infiltration level of various adaptive antitumor immune cells. The levels of immune cell infiltration and immune checkpoint expression were lower in the samples with high CCDC25 expression. What is more, we found that downregulated CCDC25 may increase the sensitivity or resistance of HCC patients to multiple drugs, including sorafenib. We also identified a methylation site for CCDC25, which may be responsible for poor prognosis and low CCDC25 expression in HCC patients. Finally, CCDC25 may be associated with HCC ferroptosis.ConclusionsCCDC25 may be a potential diagnostic and prognostic marker for HCC and is associated with immune infiltration and ferroptosis.
Collapse
Affiliation(s)
- Hongyang Deng
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiaxing Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yijun Zheng
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Jipin Li
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Qi Xiao
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Fengxian Wei
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Wei Han
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaodong Xu
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Youcheng Zhang
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
- Correspondence: Youcheng Zhang
| |
Collapse
|
40
|
Maslankova J, Vecurkovska I, Rabajdova M, Katuchova J, Kicka M, Gayova M, Katuch V. Regulation of transforming growth factor-β signaling as a therapeutic approach to treating colorectal cancer. World J Gastroenterol 2022. [PMID: 36156927 DOI: 10.3748/wjg.v28.i33.4744.pmid:36156927;pmcid:pmc9476856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
According to data from 2020, Slovakia has long been among the top five countries with the highest incidence rate of colorectal cancer (CRC) worldwide, and the rate is continuing to rise every year. In approximately 80% of CRC cases, allelic loss (loss of heterozygosity, LOH) occurs in the long arm of chromosome 18q. The most important genes that can be silenced by 18q LOH or mutations are small mothers against decapentaplegic homolog (SMAD) 2 and SMAD4, which are intracellular mediators of transforming growth factor (TGF)-β superfamily signals. TGF-β plays an important role in the pro-oncogenic processes, including such properties as invasion, epithelial-mesenchymal transition (commonly known as EMT), promotion of angiogenesis, and immunomodulatory effects. Several recent studies have reported that activation of TGF-β signaling is related to drug resistance in CRC. Because the mechanisms of drug resistance are different between patients in different stages of CRC, personalized treatment is more effective. Therefore, knowledge of the activation and inhibition of factors that affect the TGF-β signaling pathway is very important.
Collapse
Affiliation(s)
- Jana Maslankova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Ivana Vecurkovska
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Jana Katuchova
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia.
| | - Milos Kicka
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Michala Gayova
- Department of Burns and Reconstructive Surgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| | - Vladimir Katuch
- Department of Neurosurgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| |
Collapse
|
41
|
Maslankova J, Vecurkovska I, Rabajdova M, Katuchova J, Kicka M, Gayova M, Katuch V. Regulation of transforming growth factor-β signaling as a therapeutic approach to treating colorectal cancer. World J Gastroenterol 2022; 28:4744-4761. [PMID: 36156927 PMCID: PMC9476856 DOI: 10.3748/wjg.v28.i33.4744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
According to data from 2020, Slovakia has long been among the top five countries with the highest incidence rate of colorectal cancer (CRC) worldwide, and the rate is continuing to rise every year. In approximately 80% of CRC cases, allelic loss (loss of heterozygosity, LOH) occurs in the long arm of chromosome 18q. The most important genes that can be silenced by 18q LOH or mutations are small mothers against decapentaplegic homolog (SMAD) 2 and SMAD4, which are intracellular mediators of transforming growth factor (TGF)-β superfamily signals. TGF-β plays an important role in the pro-oncogenic processes, including such properties as invasion, epithelial-mesenchymal transition (commonly known as EMT), promotion of angiogenesis, and immunomodulatory effects. Several recent studies have reported that activation of TGF-β signaling is related to drug resistance in CRC. Because the mechanisms of drug resistance are different between patients in different stages of CRC, personalized treatment is more effective. Therefore, knowledge of the activation and inhibition of factors that affect the TGF-β signaling pathway is very important.
Collapse
Affiliation(s)
- Jana Maslankova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Ivana Vecurkovska
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Jana Katuchova
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Milos Kicka
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Michala Gayova
- Department of Burns and Reconstructive Surgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| | - Vladimir Katuch
- Department of Neurosurgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| |
Collapse
|
42
|
Zhang W, Zhang J, Liu T, Xing J, Zhang H, Wang D, Tang D. Bidirectional effects of intestinal microbiota and antibiotics: a new strategy for colorectal cancer treatment and prevention. J Cancer Res Clin Oncol 2022; 148:2387-2404. [PMID: 35661254 DOI: 10.1007/s00432-022-04081-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Colorectal cancer (CRC) is the third most common cancer worldwide, and its incidence and mortality rates are increasing every year. The intestinal microbiota has been called the "neglected organ" and there is growing evidence that the intestinal microbiota and its metabolites can be used in combination with immunotherapy, radiotherapy and chemotherapy to greatly enhance the treatment of colorectal cancer and to address some of the side effects and adverse effects of these therapies. Antibiotics have great potential to eliminate harmful microbiota, control infection, and reduce colorectal cancer side effects. However, the use of antibiotics has been a highly controversial issue, and numerous retrospective studies have shown that the use of antibiotics affects the effectiveness of treatment (especially immunotherapy). Understanding the bi-directional role of the gut microbiota and antibiotics will further enhance our research into the diagnosis and treatment of cancer. METHODS We searched the "PubMed" database and selected the following keywords "intestinal microbiota, antibiotics, treatment, prevention, colorectal cancer". In this review, we discuss the role of the intestinal microbiota in immunotherapy, radiotherapy, chemotherapy, diagnosis, and prevention of CRC. We also conclude that the intestinal microbiota and antibiotics work together to promote the treatment of CRC through a bidirectional effect. RESULTS We found that the intestinal microbiota plays a key role in promoting immunotherapy, chemotherapy, radiotherapy, diagnosis and prevention of CRC. In addition, gut microbiota and antibiotic interactions could be a new strategy for CRC treatment. CONCLUSION The bi-directional role of the intestinal microbiota and antibiotics plays a key role in the prevention, diagnosis, and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Tian Liu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
43
|
Xie Y, Yan F, Wang X, Yu L, Yan H, Pu Q, Li W, Yang Z. Mechanisms and network pharmacological analysis of Yangyin Fuzheng Jiedu prescription in the treatment of hepatocellular carcinoma. Cancer Med 2022; 12:3237-3259. [PMID: 36043445 PMCID: PMC9939140 DOI: 10.1002/cam4.5064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/22/2022] [Accepted: 07/03/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE To identify the key drugs of Yangyin Fuzheng Jiedu prescription (YFJP) and investigate their therapeutic effects against hepatocellular carcinoma (HCC) and the potential mechanism using network pharmacology. METHODS The H22 tumor-bearing mouse model was established. Thirty male BALB/c mice were divided randomly into five groups. The mice were orally treated with either disassembled prescriptions of YFJP or saline solution continuously for 14 days. The mice were weighed every 2 days during treatment and the appearance of tumors was observed by photographing. The tumor inhibition rate and the spleen and thymus indexes were calculated. Hematoxylin and eosin and immunohistochemical staining were performed to observe the histological changes and tumor-infiltrating lymphocytes. Cell apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining. The proportion of CD8+ T cells and the expression of programmed cell death protein 1 (PD-1), T cell immunoglobulin domain and mucin domain-3 (Tim-3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT) were analyzed using flow cytometry. The production of serum cytokines was detected using the Milliplex® MAP mouse high sensitivity T cell panel kit. The active components of the key drugs and HCC-related target proteins were obtained from the corresponding databases. The putative targets for HCC treatment were screened by target mapping, and potential active components were screened by constructing a component-target network. The interactive targets of putative targets were obtained from the STRING database to construct the protein-protein interaction network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were performed based on potential targets. The gene-gene inner and component-target-pathway networks were constructed and analyzed to screen the key targets. Western blotting was used to evaluate the protein expression of the key targets in the tumor-bearing mouse model. The binding activity of the key targets and compounds was verified by molecular docking. RESULTS Among the three disassembled prescriptions of YFJP, the Fuzheng prescription (FZP) showed significant antitumor effects and inhibited weight loss during the treatment of H22 tumor-bearing mice. FZP increased the immune organ index and the levels of CD8+ and CD3+ T cells in the spleen and peripheral blood of H22 tumor-bearing mice. FZP also reduced the expression of PD-1, TIGIT, and TIM3 in CD8+ T cells and the production of IL-10, IL-4, IL-6, and IL-1β. Network pharmacology and experimental validation showed that the key targets of FZP in the treatment of HCC were PIK3CA, TP53, MAPK1, MAPK3, and EGFR. The therapeutic effect on HCC was evaluated based on HCC-related signaling pathways, including the PIK3-Akt signaling pathway, PD-L1 expression, and PD-1 checkpoint pathway in cancer. GO enrichment analysis indicated that FZP positively regulated the molecular functions of transferases and kinases on the cell surface through membrane raft, membrane microarea, and other cell components to inhibit cell death and programmed cell death. CONCLUSION FZP was found to be the key disassembled prescription of YFJP that exerted antitumor and immunoregulatory effects against HCC. FZP alleviated T cell exhaustion and improved the immunosuppressive microenvironment via HCC-related targets, pathways, and biological processes.
Collapse
Affiliation(s)
- Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Fengna Yan
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Xinhui Wang
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Lihua Yu
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Qing Pu
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Weihong Li
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingP.R. China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| |
Collapse
|
44
|
Zhang H, Wu Z, Hu D, Yan M, Sun J, Lai J, Bai L. Immunotherapeutic Targeting of NG2/CSPG4 in Solid Organ Cancers. Vaccines (Basel) 2022; 10:vaccines10071023. [PMID: 35891187 PMCID: PMC9321363 DOI: 10.3390/vaccines10071023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Neuro-glia antigen 2/chondroitin sulfate proteoglycan 4 (NG2/CSPG4, also called MCSP, HMW-MAA, MSK16, MCSPG, MEL-CSPG, or gp240) is a large cell-surface antigen and an unusual cell membrane integral glycoprotein frequently expressed on undifferentiated precursor cells in multiple solid organ cancers, including cancers of the liver, pancreas, lungs, and kidneys. It is a valuable molecule involved in cancer cell adhesion, invasion, spreading, angiogenesis, complement inhibition, and signaling. Although the biological significance underlying NG2/CSPG4 proteoglycan involvement in cancer progression needs to be better defined, based on the current evidence, NG2/CSPG4+ cells, such as pericytes (PCs, NG2+/CD146+/PDGFR-β+) and cancer stem cells (CSCs), are closely associated with the liver malignancy, hepatocellular carcinoma (HCC), pancreatic malignancy, and pancreatic ductal adenocarcinoma (PDAC) as well as poor prognoses. Importantly, with a unique method, we successfully purified NG2/CSPG4-expressing cells from human HCC and PDAC vasculature tissue blocks (by core needle biopsy). The cells appeared to be spheres that stably expanded in cultures. As such, these cells have the potential to be used as sources of target antigens. Herein, we provide new information on the possibilities of frequently selecting NG2/CSPG4 as a solid organ cancer biomarker or exploiting expressing cells such as CSCs, or the PG/chondroitin sulfate chain of NG2/CSPG4 on the cell membrane as specific antigens for the development of antibody- and vaccine-based immunotherapeutic approaches to treat these cancers.
Collapse
Affiliation(s)
- Hongyu Zhang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
| | - Zhenyu Wu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
| | - Deyu Hu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
- Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Min Yan
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
- Department of Nuclear Medicine, The First Affiliated Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Jing Sun
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
| | - Lianhua Bai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing 400038, China; (H.Z.); (Z.W.); (D.H.); (M.Y.); (J.S.); (J.L.)
- Bioengineering College, Chongqing University, Chongqing 400044, China
- Department of Nuclear Medicine, The First Affiliated Hospital, Shanxi Medical University, Taiyuan 030000, China
- Correspondence: ; Tel.: +86-23-68765709; Fax: +86-2365462170
| |
Collapse
|
45
|
Wang C, Tang Y, Ma H, Wei S, Hu X, Zhao L, Wang G. Identification of Hypoxia-Related Subtypes, Establishment of Prognostic Models, and Characteristics of Tumor Microenvironment Infiltration in Colon Cancer. Front Genet 2022; 13:919389. [PMID: 35783281 PMCID: PMC9247151 DOI: 10.3389/fgene.2022.919389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Immunotherapy is a treatment that can significantly improve the prognosis of patients with colon cancer, but the response to immunotherapy is different in patients with colon cancer because of the heterogeneity of colon carcinoma and the complex nature of the tumor microenvironment (TME). In the precision therapy mode, finding predictive biomarkers that can accurately identify immunotherapy-sensitive types of colon cancer is essential. Hypoxia plays an important role in tumor proliferation, apoptosis, angiogenesis, invasion and metastasis, energy metabolism, and chemotherapy and immunotherapy resistance. Thus, understanding the mechanism of hypoxia-related genes (HRGs) in colon cancer progression and constructing hypoxia-related signatures will help enrich our treatment strategies and improve patient prognosis. Methods: We obtained the gene expression data and corresponding clinical information of 1,025 colon carcinoma patients from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, respectively. We identified two distinct hypoxia subtypes (subtype A and subtype B) according to unsupervised clustering analysis and assessed the clinical parameters, prognosis, and TME cell-infiltrating characteristics of patients in the two subtypes. We identified 1,132 differentially expressed genes (DEGs) between the two hypoxia subtypes, and all patients were randomly divided into the training group (n = 513) and testing groups (n = 512). Following univariate Cox regression with DEGs, we construct the prognostic model (HRG-score) including six genes (S1PR3, ETV5, CD36, FOXC1, CXCL10, and MMP12) through the LASSO–multivariate cox method in the training group. We comprehensively evaluated the sensitivity and applicability of the HRG-score model from the training group and the testing group, respectively. We explored the correlation between HRG-score and clinical parameters, tumor microenvironment, cancer stem cells (CSCs), and MMR status. In order to evaluate the value of the risk model in clinical application, we further analyzed the sensitivity of chemotherapeutics and immunotherapy between the low-risk group and high-risk group and constructed a nomogram for improving the clinical application of the HRG-score. Result: Subtype A was significantly enriched in metabolism-related pathways, and subtype B was significantly enriched in immune activation and several tumor-associated pathways. The level of immune cell infiltration and immune checkpoint-related genes, stromal score, estimate score, and immune dysfunction and exclusion (TIDE) prediction score was significantly different in subtype A and subtype B. The level of immune checkpoint-related genes and TIDE score was significantly lower in subtype A than that in subtype B, indicating that subtype A might benefit from immune checkpoint inhibitors. Finally, an HRG-score signature for predicting prognosis was constructed through the training group, and the predictive capability was validated through the testing group. The survival analysis and correlation analysis of clinical parameters revealed that the prognosis of patients in the high-risk group was significantly worse than that in the low-risk group. There were also significant differences in immune status, mismatch repair status (MMR), and cancer stem cell index (CSC), between the two risk groups. The correlation analysis of risk scores with IC50 and IPS showed that patients in the low-risk group had a higher benefit from chemotherapy and immunotherapy than those in the high-risk group, and the external validation IMvigor210 demonstrated that patients with low risk were more sensitive to immunotherapy. Conclusion: We identified two novel molecular subgroups based on HRGs and constructed an HRG-score model consisting of six genes, which can help us to better understand the mechanisms of hypoxia-related genes in the progression of colon cancer and identify patients susceptible to chemotherapy or immunotherapy, so as to achieve precision therapy for colon cancer.
Collapse
Affiliation(s)
- Changjing Wang
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yujie Tang
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongqing Ma
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sisi Wei
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuhua Hu
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Guiying Wang, ; Lianmei Zhao,
| | - Guiying Wang
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Guiying Wang, ; Lianmei Zhao,
| |
Collapse
|
46
|
Zhang S, Wang Y, Zhang P, Ai L, Liu T. Cardiovascular Outcomes in the Patients With Colorectal Cancer: A Multi-Registry-Based Cohort Study of 197,699 Cases in the Real World. Front Cardiovasc Med 2022; 9:851833. [PMID: 35783821 PMCID: PMC9243221 DOI: 10.3389/fcvm.2022.851833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We aimed to investigate the mortality patterns and quantitatively assess the risks of cardiovascular death (CVD) in patients with colorectal cancer (CRC). We also established a competing-risk model to predict the probability of CVD for patients with CRC. PATIENTS AND METHODS Patients with CRC who diagnosed between 2007 and 2015 in the Surveillance, Epidemiology, and End Results (SEER) database were included in the present study. The cumulative incidence function (CIF) was used for CVD and other causes of death, and Gray's test was used to determine the subgroup difference in CIF. The Fine-Gray proportional subdistribution hazards model was used for identifying independent risk factors for CVD. A novel competing-risk model was established to evaluate the probability of CVD for patients with CRC. The performance of the nomogram was measured by concordance index (C-index), calibration curve, decision curve analysis (DCA), and risk stratification. RESULTS After a median follow-up of 37.00 months, 79,455 deaths occurred, of whom 56,185 (70.71%) succumbed to CRC and 23,270 (29.29%) patients died due to non-CRC, among which CVD accounted for 9,702 (41.69%), being the major cause of non-cancer deaths. The 1-, 3-, and 5-year cumulative rates for CVD were 12.20, 24.25, and 30.51%, respectively. In multivariate analysis, age, race, marital status, tumor size, tumor stage, advanced stage, surgery, and chemotherapy were independent risk factors of CVD among patients with CRC. The nomogram was well calibrated and had good discriminative ability, with a c-index of 0.719 (95% CI, 0.738-0.742) in the training cohort and 0.719 (95% CI, 0.622-0.668) in the validation cohort. DCA demonstrated that nomogram produced more benefit within wide ranges of threshold probabilities for 1-, 3-, and 5-year CVD, respectively. CONCLUSION This study was the first to analyze the CIF and risk factors for CVD among CRC based on a competing-risk model. We have also built the first 1-, 3-, and 5-year competing nomogram for predicting CVD. This nomogram had excellent performance and could help clinicians to provide individualized management in clinical practice.
Collapse
Affiliation(s)
- Shilong Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pengfei Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Luoyan Ai
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Centre for Evidence-Based Medicine, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Zhang M, Fang Z, Cui M, Liu K. Multifunctional Metal Complex-based Gene Delivery for tumor immune checkpoint blockade combination therapy. J Drug Target 2022; 30:753-766. [PMID: 35311603 DOI: 10.1080/1061186x.2022.2056186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Immune checkpoint blocking based on the PD-1/PD-L1 pathway has shown exciting results in various types of cancer. However, due to the off-target effect of PD-1/PD-L1 blocker, low tumor immunogenicity and tumor immunosuppressive microenvironment, a significant proportion of patients do not benefit from this treatment. Here, we constructed a novel multifunctional metal complex Fe/PEI-Tn by the coordination of polyethyleneimine (PEI) with Fe3+ and the modification of bifunctional peptides Tn containing the cell penetrating peptide (TAT) and nuclear localization signal peptide (NLS), which was coated with hyaluronic acid (HA) to prolong the circulation time in vivo. Fe/PEI-Tn can condensate PD-L1 trap plasmid (pPD-L1 trap) and mediate PD-L1 trap protein expression in tumor tissues in situ, thus blocking the PD-1/PD-L1 pathway. Besides, Fe/PEI-Tn metal complex itself can act as an immune adjuvant to activate macrophages, reverse the phenotype of pro-tumor M2-type macrophages, and promote anti-tumor immunity. Meanwhile, Fe/PEI-Tn treatment can induce damage in tumor cells and release tumor-specific antigens into tumor microenvironment, thus stimulating anti-tumor immune response. Studies showed that HA/Fe/PEI-Tn/pPD-L1 trap complexes could promote the immune activation of tumor tissues and effectively delay tumor growth. This strategy provides a new direction for tumor combination therapy based on PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Zhou Fang
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Mingxiao Cui
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Kehai Liu
- Department of Biopharmacy, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| |
Collapse
|
48
|
Dendritic cell-based cancer immunotherapy in the era of immune checkpoint inhibitors: From bench to bedside. Life Sci 2022; 297:120466. [PMID: 35271882 DOI: 10.1016/j.lfs.2022.120466] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) can present tumoral antigens to T-cells and stimulate T-cell-mediated anti-tumoral immune responses. In addition to uptaking, processing, and presenting tumoral antigens to T-cells, co-stimulatory signals have to be established between DCs with T-cells to develop anti-tumoral immune responses. However, most of the tumor-infiltrated immune cells are immunosuppressive in the tumor microenvironment (TME), paving the way for immune evasion of tumor cells. This immunosuppressive TME has also been implicated in suppressing the DC-mediated anti-tumoral immune responses, as well. Various factors, i.e., immunoregulatory cells, metabolic factors, tumor-derived immunosuppressive factors, and inhibitory immune checkpoint molecules, have been implicated in developing the immunosuppressive TME. Herein, we aimed to review the biology of DCs in developing T-cell-mediated anti-tumoral immune responses, the significance of immunoregulatory cells in the TME, metabolic barriers contributing to DCs dysfunction in the TME, tumor-derived immunosuppressive factors, and inhibitory immune checkpoint molecules in DC-based cell therapy outcomes. With reviewing the ongoing clinical trials, we also proposed a novel therapeutic strategy to increase the efficacy of DC-based cell therapy. Indeed, the combination of DC-based cell therapy with monoclonal antibodies against novel immune checkpoint molecules can be a promising strategy to increase the response rate of patients with cancers.
Collapse
|
49
|
Naccache R, Belkouchi Y, Lawrance L, Benatsou B, Hadchiti J, Cournede PH, Ammari S, Talbot H, Lassau N. Prediction of Early Response to Immunotherapy: DCE-US as a New Biomarker. Cancers (Basel) 2022; 14:cancers14051337. [PMID: 35267645 PMCID: PMC8909556 DOI: 10.3390/cancers14051337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Immune checkpoint inhibitors (ICI) have revolutionized cancer care. However, assessing the efficacy of these new molecules with targeted therapeutic responses may induce too much delay when using classical biomarkers derived from morphological imaging (CT). The objective of our study is to propose fast, cost-effective, convenient, and effective biomarkers using the perfusion parameters from dynamic contrast-enhanced ultrasound (DCE-US) for the evaluation of ICI early response. In a population of 63 patients with metastatic cancer eligible for immunotherapy, we demonstrate that a decrease of more than 45% in the area under the perfusion curve (AUC) between baseline and day 21 is significantly associated with better overall survival. Thus, AUC from DCE-US looks to be a promising new biomarker for the early evaluation of response to immunotherapy. Abstract Purpose: The objective of our study is to propose fast, cost-effective, convenient, and effective biomarkers using the perfusion parameters from dynamic contrast-enhanced ultrasound (DCE-US) for the evaluation of immune checkpoint inhibitors (ICI) early response. Methods: The retrospective cohort used in this study included 63 patients with metastatic cancer eligible for immunotherapy. DCE-US was performed at baseline, day 8 (D8), and day 21 (D21) after treatment onset. A tumor perfusion curve was modeled on these three dates, and change in the seven perfusion parameters was measured between baseline, D8, and D21. These perfusion parameters were studied to show the impact of their variation on the overall survival (OS). Results: After the removal of missing or suboptimal DCE-US, the Baseline-D8, the Baseline-D21, and the D8-D21 groups included 37, 53, and 33 patients, respectively. A decrease of more than 45% in the area under the perfusion curve (AUC) between baseline and D21 was significantly associated with better OS (p = 0.0114). A decrease of any amount in the AUC between D8 and D21 was also significantly associated with better OS (p = 0.0370). Conclusion: AUC from DCE-US looks to be a promising new biomarker for fast, effective, and convenient immunotherapy response evaluation.
Collapse
Affiliation(s)
- Raphael Naccache
- Department of Imaging, Institut Gustave Roussy, 94800 Villejuif, France; (B.B.); (J.H.); (S.A.); (N.L.)
- Correspondence: (R.N.); (Y.B.)
| | - Younes Belkouchi
- CVN INRIA, CentraleSupelec, Universite Paris-Saclay, 91190 Gif-Sur-Yvette, France;
- Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay, BIOMAPS, UMR 1281, Université Paris-Saclay, Inserm, CNRS, CEA, 94800 Villejuif, France;
- Correspondence: (R.N.); (Y.B.)
| | - Littisha Lawrance
- Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay, BIOMAPS, UMR 1281, Université Paris-Saclay, Inserm, CNRS, CEA, 94800 Villejuif, France;
| | - Baya Benatsou
- Department of Imaging, Institut Gustave Roussy, 94800 Villejuif, France; (B.B.); (J.H.); (S.A.); (N.L.)
- Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay, BIOMAPS, UMR 1281, Université Paris-Saclay, Inserm, CNRS, CEA, 94800 Villejuif, France;
| | - Joya Hadchiti
- Department of Imaging, Institut Gustave Roussy, 94800 Villejuif, France; (B.B.); (J.H.); (S.A.); (N.L.)
| | - Paul-Henry Cournede
- MICS Lab, CentraleSupelec, Universite Paris-Saclay, 91190 Gif-Sur-Yvette, France;
| | - Samy Ammari
- Department of Imaging, Institut Gustave Roussy, 94800 Villejuif, France; (B.B.); (J.H.); (S.A.); (N.L.)
- Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay, BIOMAPS, UMR 1281, Université Paris-Saclay, Inserm, CNRS, CEA, 94800 Villejuif, France;
| | - Hugues Talbot
- CVN INRIA, CentraleSupelec, Universite Paris-Saclay, 91190 Gif-Sur-Yvette, France;
| | - Nathalie Lassau
- Department of Imaging, Institut Gustave Roussy, 94800 Villejuif, France; (B.B.); (J.H.); (S.A.); (N.L.)
- Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay, BIOMAPS, UMR 1281, Université Paris-Saclay, Inserm, CNRS, CEA, 94800 Villejuif, France;
| |
Collapse
|
50
|
Ragone A, Salzillo A, Spina A, Naviglio S, Sapio L. Integrating Gemcitabine-Based Therapy With AdipoRon Enhances Growth Inhibition in Human PDAC Cell Lines. Front Pharmacol 2022; 13:837503. [PMID: 35273510 PMCID: PMC8902254 DOI: 10.3389/fphar.2022.837503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of all pancreatic cancers. Albeit its incidence does not score among the highest in cancer, PDAC prognosis is tremendously fatal. As a result of either aggressiveness or metastatic stage at diagnosis, chemotherapy constitutes the only marginally effective therapeutic approach. As gemcitabine (Gem) is still the cornerstone for PDAC management, the low response rate and the onset of resistant mechanisms claim for additional therapeutic strategies. The first synthetic orally active adiponectin receptor agonist AdipoRon (AdipoR) has recently been proposed as an anticancer agent in several tumors, including PDAC. To further address the AdipoR therapeutic potential, herein we investigated its pharmacodynamic interaction with Gem in human PDAC cell lines. Surprisingly, their simultaneous administration revealed a more effective action in contrasting PDAC cell growth and limiting clonogenic potential than single ones. Moreover, the combination AdipoR plus Gem persisted in being effective even in Gem-resistant MIA PaCa-2 cells. While a different ability in braking cell cycle progression between AdipoR and Gem supported their cooperating features in PDAC, mechanistically, PD98059-mediated p44/42 MAPK ablation hindered combination effectiveness. Taken together, our findings propose AdipoR as a suitable partner in Gem-based therapy and recognize the p44/42 MAPK pathway as potentially involved in combination outcomes.
Collapse
Affiliation(s)
| | | | | | - Silvio Naviglio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | |
Collapse
|