1
|
Bright R, Sivanantha S, Hayles A, Phuoc Ton T, Ninan N, Luo X, Vasilev K, Truong VK. In Vitro Assessment of Gallium Nanoalloy Hydrogels for Antimicrobial and Wound Healing Applications. ACS APPLIED BIO MATERIALS 2025; 8:1017-1026. [PMID: 39433303 DOI: 10.1021/acsabm.4c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Chronic and recurring wounds pose a significant challenge in modern healthcare, leading to substantial morbidity. These wounds allow pathogens to colonize, potentially resulting in local and systemic infections. Current interventions need to be revised and become increasingly less reliable due to the emergence of antibiotic resistance. In the present study, we aim to address these issues by fabricating hydrogels impregnated with gallium-based nanoalloys for their antimicrobial activity. Gallium liquid metal nanoparticles (approximately 100 nm in diameter) were alloyed in different combinations with bismuth and silver ions through a galvanic replacement reaction. These multimetallic hydrogels showed favorable antibacterial activity against the Gram-positive Staphylococcus aureus and the Gram-negative Pseudomonas aeruginosa, as observed with fluorescence microscopy and inhibition assays. The multimetallic hydrogels showed no toxicity against murine macrophages or human dermal fibroblasts and enhanced in vitro wound healing. The development of these innovative gallium-based hydrogels represents a promising strategy to combat chronic wounds and their associated complications, offering an effective alternative to current antimicrobial treatments amidst rising antibiotic resistance.
Collapse
Affiliation(s)
- Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Soroopan Sivanantha
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Andrew Hayles
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Tan Phuoc Ton
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Neethu Ninan
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Xuan Luo
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
2
|
Kennewell TL, Haidari H, Mashtoub S, Howarth GS, Wormald PJ, Cowin AJ, Vreugde S, Kopecki Z. Deferiprone and Gallium-Protoporphyrin Chitogel as an antimicrobial treatment: Preclinical studies demonstrating antimicrobial activity for S. aureus infected cutaneous wounds. Int J Biol Macromol 2024; 276:133874. [PMID: 39013511 DOI: 10.1016/j.ijbiomac.2024.133874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Staphylococcus aureus (S. aureus) is one of the most common wound pathogens with increased resistance towards currently available antimicrobials. S. aureus biofilms lead to increase wound chronicity and delayed healing. Chitosan-dextran hydrogel (Chitogel) loaded with the hydroxypyridinone-derived iron chelator Deferiprone (Def) and the heme analogue Gallium-Protoporphyrin (GaPP) have previously been shown to have antimicrobial effects in clinical sinusitis. In this study, the efficacy of Chitogel loaded with Def, GaPP and a combination of Def and GaPP, were investigated in an S. aureus biofilm infected wound murine model over 10 days of treatment. Bacterial wound burden was monitored daily showing a significant decrease in bacterial bioburden on days 6 and 8 when treated with Def-GaPP Chitogel (log10 1.0 and 1.2 reduction vs control, respectively). The current study demonstrates that the combination of Def-GaPP delivered in a Chitogel in vivo is not only effective in reducing S. aureus biofilm infection, but also improves cutaneous healing via effects on reduced inflammation, promotion of anti-inflammatory macrophage phenotype and marked early collagen deposition in the wound bed. This delivery platform presents a promising alternative non-toxic, antibacterial, wound-promoting treatment as a novel approach for the management of S. aureus wound infections that warrants further clinical investigation.
Collapse
Affiliation(s)
- T L Kennewell
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - H Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - S Mashtoub
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; Department of Gastroenterology, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - G S Howarth
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - P J Wormald
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
| | - A J Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - S Vreugde
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
| | - Z Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia.
| |
Collapse
|
3
|
Mazumder JA, Ahmad A, Ali J, Noori R, Bhuyan T, Sardar M, Sheehan D. Biomimetic green synthesis of ZnO nanoflowers using α-amylase: from antimicrobial to toxicological evaluation. Sci Rep 2024; 14:16566. [PMID: 39019931 PMCID: PMC11254910 DOI: 10.1038/s41598-024-66140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Biologically mediated synthesis of nanomaterials has emerged as an ecologically benign and biocompatible approach. Our study explores enzymatic synthesis, utilizing α-amylase to synthesize ZnO nanoflowers (ZnO-NFs). X-ray diffraction and energy-dispersive X-ray spectroscopy revealed crystal structure and elemental composition. Dynamic light scattering analysis indicates that ZnO-NFs possess a size of 101 nm. Transmission electron microscopy showed a star-shaped morphology of ZnO-NFs with petal-like structures. ZnO-NFs exhibit potent photocatalytic properties, degrading 90% eosin, 87% methylene blue, and 81% reactive red dyes under UV light, with kinetics fitting the Langmuir-Hinshelwood pseudo-first-order rate law. The impact of pH and interfering substances on dye degradation was explored. ZnO-NFs display efficient bacteriocidal activity against different Gram-positive and negative strains, antibiofilm potential (especially with P. aeruginosa), and hemocompatibility up to 600 ppm, suggesting versatile potential in healthcare and environmental remediation applications.
Collapse
Affiliation(s)
- Jahirul Ahmed Mazumder
- Department of Chemistry, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Atika Ahmad
- Department of Chemistry, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Juned Ali
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Rubia Noori
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Tamanna Bhuyan
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri Bhoi, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - David Sheehan
- Department of Chemistry, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Heine N, Doll-Nikutta K, Stein F, Jakobi J, Ingendoh-Tsakmakidis A, Rehbock C, Winkel A, Barcikowski S, Stiesch M. Anti-biofilm properties of laser-synthesized, ultrapure silver-gold-alloy nanoparticles against Staphylococcus aureus. Sci Rep 2024; 14:3405. [PMID: 38336925 PMCID: PMC10858226 DOI: 10.1038/s41598-024-53782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Staphylococcus aureus biofilm-associated infections are a common complication in modern medicine. Due to inherent resilience of biofilms to antibiotics and the rising number of antibiotic-resistant bacterial strains, new treatment options are required. For this purpose, ultrapure, spherical silver-gold-alloy nanoparticles with homogenous elemental distribution were synthesized by laser ablation in liquids and analyzed for their antibacterial activity on different stages of S. aureus biofilm formation as well as for different viability parameters. First, the effect of nanoparticles against planktonic bacteria was tested with metabolic activity measurements. Next, nanoparticles were incubated with differently matured S. aureus biofilms, which were then analyzed by metabolic activity measurements and three dimensional live/dead fluorescent staining to determine biofilm volume and membrane integrity. It could be shown that AgAu NPs exhibit antibacterial properties against planktonic bacteria but also against early-stage and even mature biofilms, with a complete diffusion through the biofilm matrix. Furthermore, AgAu NPs primarily targeted metabolic activity, to a smaller extend membrane integrity, but not the biofilm volume. Additional molecular analyses using qRT-PCR confirmed the influence on different metabolic pathways, like glycolysis, stress response and biofilm formation. As this shows clear similarities to the mechanism of pure silver ions, the results strengthen silver ions to be the major antibacterial agent of the synthesized nanoparticles. In summary, the results of this study provide initial evidence of promising anti-biofilm characteristics of silver-gold-alloy nanoparticles and support the importance of further translation-oriented analyses in the future.
Collapse
Affiliation(s)
- Nils Heine
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
- Lower Saxony Centre of Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany.
| | - Katharina Doll-Nikutta
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Lower Saxony Centre of Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Frederic Stein
- Technical Chemistry I, University of Duisburg Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Jurij Jakobi
- Technical Chemistry I, University of Duisburg Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Alexandra Ingendoh-Tsakmakidis
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Lower Saxony Centre of Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Christoph Rehbock
- Technical Chemistry I, University of Duisburg Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Lower Saxony Centre of Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Stephan Barcikowski
- Technical Chemistry I, University of Duisburg Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
- Lower Saxony Centre of Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany.
| |
Collapse
|
5
|
Kennewell TL, Haidari H, Mashtoub S, Howarth GS, Bennett C, Cooksley CM, Wormald PJ, Cowin AJ, Vreugde S, Kopecki Z. Deferiprone-Gallium-Protoporphyrin Chitogel Decreases Pseudomonas aeruginosa Biofilm Infection without Impairing Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2024; 17:793. [PMID: 38399044 PMCID: PMC10889926 DOI: 10.3390/ma17040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Pseudomonas aeruginosa is one of the most common pathogens encountered in clinical wound infections. Clinical studies have shown that P. aeruginosa infection results in a larger wound area, inhibiting healing, and a high prevalence of antimicrobial resistance. Hydroxypyridinone-derived iron chelator Deferiprone (Def) and heme analogue Gallium-Protoporphyrin (GaPP) in a chitosan-dextran hydrogel (Chitogel) have previously been demonstrated to be effective against PAO1 and clinical isolates of P. aeruginosa in vitro. Moreover, this combination of these two agents has been shown to improve sinus surgery outcomes by quickly reducing bleeding and preventing adhesions. In this study, the efficacy of Def-GaPP Chitogel was investigated in a P. aeruginosa biofilm-infected wound murine model over 6 days. Two concentrations of Def-GaPP Chitogel were investigated: Def-GaPP high dose (10 mM Def + 500 µg/mL GaPP) and Def-GaPP low dose (5 mM Def + 200 µg/mL GaPP). The high-dose Def-GaPP treatment reduced bacterial burden in vivo from day 2, without delaying wound closure. Additionally, Def-GaPP treatment decreased wound inflammation, as demonstrated by reduced neutrophil infiltration and increased anti-inflammatory M2 macrophage presence within the wound bed to drive wound healing progression. Def-GaPP Chitogel treatment shows promising potential in reducing P. aeruginosa cutaneous infection with positive effects observed in the progression of wound healing.
Collapse
Affiliation(s)
- Tahlia L. Kennewell
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (T.L.K.); (H.H.); (A.J.C.)
| | - Hanif Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (T.L.K.); (H.H.); (A.J.C.)
| | - Suzanne Mashtoub
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia;
| | - Catherine Bennett
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (C.B.); (C.M.C.); (P.J.W.); (S.V.)
- Department of Surgery Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
| | - Clare M. Cooksley
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (C.B.); (C.M.C.); (P.J.W.); (S.V.)
- Department of Surgery Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
| | - Peter John Wormald
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (C.B.); (C.M.C.); (P.J.W.); (S.V.)
- Department of Surgery Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
| | - Allison J. Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (T.L.K.); (H.H.); (A.J.C.)
| | - Sarah Vreugde
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (C.B.); (C.M.C.); (P.J.W.); (S.V.)
- Department of Surgery Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (T.L.K.); (H.H.); (A.J.C.)
| |
Collapse
|
6
|
Xiang T, Guo Q, Jia L, Yin T, Huang W, Zhang X, Zhou S. Multifunctional Hydrogels for the Healing of Diabetic Wounds. Adv Healthc Mater 2024; 13:e2301885. [PMID: 37702116 DOI: 10.1002/adhm.202301885] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/10/2023] [Indexed: 09/14/2023]
Abstract
The healing of diabetic wounds is hindered by various factors, including bacterial infection, macrophage dysfunction, excess proinflammatory cytokines, high levels of reactive oxygen species, and sustained hypoxia. These factors collectively impede cellular behaviors and the healing process. Consequently, this review presents intelligent hydrogels equipped with multifunctional capacities, which enable them to dynamically respond to the microenvironment and accelerate wound healing in various ways, including stimuli -responsiveness, injectable self-healing, shape -memory, and conductive and real-time monitoring properties. The relationship between the multiple functions and wound healing is also discussed. Based on the microenvironment of diabetic wounds, antibacterial, anti-inflammatory, immunomodulatory, antioxidant, and pro-angiogenic strategies are combined with multifunctional hydrogels. The application of multifunctional hydrogels in the repair of diabetic wounds is systematically discussed, aiming to provide guidelines for fabricating hydrogels for diabetic wound healing and exploring the role of intelligent hydrogels in the therapeutic processes.
Collapse
Affiliation(s)
- Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qianru Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Lianghao Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tianyu Yin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wei Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xinyu Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
7
|
Niu Y, Zhang Y, Huo H, Jin X, Wang J. Effect of silver sulfadiazine on mature mixed bacterial biofilms on voice prostheses. J Otolaryngol Head Neck Surg 2023; 52:74. [PMID: 37990258 PMCID: PMC10664368 DOI: 10.1186/s40463-023-00672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/29/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Biofilm formation on voice prostheses disrupts the function and limits the lifespan of voice prostheses. There is still no effective clinical strategy for inhibiting or removing these biofilms. Silver sulfadiazine (SSD), as an exogenous antibacterial agent, has been widely used in the prevention and treatment of infection, however, its effect on voice prosthesis biofilms is unknown. The purpose of this study was to explore the effect of SSD on the mature mixed bacterial biofilms present on voice prostheses. METHODS Quantitative and qualitative methods, including the plate counting method, real-time fluorescence quantitative PCR, crystal violet staining, the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) (XTT) reduction assay, scanning electron microscopy, and laser confocal microscopy, were used to determine the effect of SSD on the number of bacterial colonies, biofilm formation ability, metabolic activity, and ultrastructure of biofilms in a mature mixed bacterial (Staphylococcus aureus, Streptococcus faecalis and Candida albicans) voice prosthesis biofilm model. The results were verified in vitro on mature mixed bacterial voice prosthesis biofilms from patients, and the possible mechanism of action was explored. RESULTS Silver sulfadiazine decreased the number of bacterial colonies on mature mixed bacterial voice prosthesis biofilm, significantly inhibited the biofilm formation ability and metabolic activity of mature voice prosthesis biofilms, inhibited the formation of the complex spatial structure of voice prosthesis biofilms, and inhibited the synthesis of polysaccharides and proteins in the biofilm extracellular matrix. The degree of inhibition and removal effect increased with SSD concentration. CONCLUSIONS Silver sulfadiazine can effectively inhibit and remove mature mixed bacterial voice prosthesis biofilms and decrease biofilm formation ability and metabolic activity; SSD may exert these effects by inhibiting the synthesis of polysaccharides and proteins among the extracellular polymeric substances of voice prosthesis biofilms.
Collapse
Affiliation(s)
- Yanyan Niu
- Department of Otolaryngology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# ShuaiFuYuan, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Yongli Zhang
- Department of Otolaryngology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# ShuaiFuYuan, Dongcheng District, Beijing, 100730, People's Republic of China
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Hong Huo
- Department of Otolaryngology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# ShuaiFuYuan, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Xiaofeng Jin
- Department of Otolaryngology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# ShuaiFuYuan, Dongcheng District, Beijing, 100730, People's Republic of China.
| | - Jian Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# ShuaiFuYuan, Dongcheng District, Beijing, 100730, People's Republic of China.
| |
Collapse
|
8
|
Virgo EP, Haidari H, Shaw ZL, Huang LZY, Kennewell TL, Smith L, Ahmed T, Bryant SJ, Howarth GS, Walia S, Cowin AJ, Elbourne A, Kopecki Z. Layered Black Phosphorus Nanoflakes Reduce Bacterial Burden and Enhance Healing of Murine Infected Wounds. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202300235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 02/09/2025]
Abstract
AbstractCurrent treatment modalities of cutaneous wound infections are largely ineffective, attributed to the increasing burden of antimicrobial resistance. S. aureus, a commonly wound‐associated pathogen continues to pose a clinical challenge, suggesting that new alternative therapeutic materials are urgently required to provide optimal treatment. A layered allotrope of phosphorus termed Black Phosphorus nanoflakes (BPNFs) has emerged as a potential alternative antibacterial material. However, wider deployment of this material requires extensive biological validation using the latest pre‐clinical models to understand its role in wound management. Here, the antibacterial potential of BPNFs against wound pathogens demonstrates over 99% killing efficiency at ambient conditions, while remaining non‐toxic to mammalian skin cells. In addition, in vivo validation of BPNFs using a preclinical model of S. aureus acute wound infection demonstrates that daily topical application significantly reduces infection (3‐log reduction) comparable to ciprofloxacin antibiotic control. Furthermore, the application of BPNFs also accelerates wound closure, increases wound re‐epithelization, and reduces tissue inflammation compared to controls, suggesting a potential role in alleviating the current challenges of infected cutaneous wounds. For the first time, this study demonstrates the potential role of BPNFs in ambient light conditions for clearing a clinically relevant wound infection with favorable wound healing properties.
Collapse
Affiliation(s)
- Emmeline P. Virgo
- School of Animal and Veterinary Sciences The University of Adelaide Roseworthy SA 5371 Australia
- Future Industries Institute University of South Australia Mawson Lakes SA 5095 Australia
| | - Hanif Haidari
- Future Industries Institute University of South Australia Mawson Lakes SA 5095 Australia
| | - Zo L. Shaw
- School of Engineering STEM College RMIT University Melbourne VIC 3001 Australia
| | - Louisa Z. Y. Huang
- School of Science STEM College RMIT University Melbourne VIC 3001 Australia
| | - Tahlia L. Kennewell
- Future Industries Institute University of South Australia Mawson Lakes SA 5095 Australia
| | - Luke Smith
- School of Animal and Veterinary Sciences The University of Adelaide Roseworthy SA 5371 Australia
- Future Industries Institute University of South Australia Mawson Lakes SA 5095 Australia
| | - Taimur Ahmed
- Pak‐Austria Fachhochschule Institute of Applied Sciences and Technology Haripur 22620 Pakistan
| | - Saffron J. Bryant
- School of Science STEM College RMIT University Melbourne VIC 3001 Australia
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences The University of Adelaide Roseworthy SA 5371 Australia
| | - Sumeet Walia
- School of Engineering STEM College RMIT University Melbourne VIC 3001 Australia
| | - Allison J. Cowin
- Future Industries Institute University of South Australia Mawson Lakes SA 5095 Australia
| | - Aaron Elbourne
- School of Science STEM College RMIT University Melbourne VIC 3001 Australia
| | - Zlatko Kopecki
- Future Industries Institute University of South Australia Mawson Lakes SA 5095 Australia
| |
Collapse
|
9
|
Hafeez R, Kanwal Z, Raza MA, Rasool S, Riaz S, Naseem S, Rabani S, Haider I, Ahmad N, Alomar SY. Role of Citrullus colocynthis and Psidium guajava Mediated Green Synthesized Silver Nanoparticles in Disease Resistance against Aeromonas hydrophila Challenge in Labeo rohita. Biomedicines 2023; 11:2349. [PMID: 37760791 PMCID: PMC10525728 DOI: 10.3390/biomedicines11092349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Green synthesis of metallic nanoparticles is an auspicious method of preparing nanoparticles using plant extracts that have lesser toxicity to animal cells and the host. In the present work, we analyzed the antibacterial activity of Citrullus colocynthis and Psidium guajava-mediated silver nanoparticles (Cc-AgNPs and Pg-AgNPs, respectively) against Aeromonas hydrophila (A. hydrophila) in an in vivo assay employing Labeo rohita (L. rohita). L. rohita were divided into six groups for both Cc-AgNPs and Pg-AgNPs treatments separately: Control, A. hydrophila infected, A. hydrophila + Ampicillin, A. hydrophila + Cc/Pg-AgNPs (25 µg/L), A. hydrophila + Cc/Pg-AgNPs (50 µg/L), and A. hydrophila + Cc/Pg-AgNPs (75 µg/L). Changes in different bio-indicators such as hematological, histological, oxidative stress, and cytokine analysis were observed. Interestingly, the infected fish treated with both types of AgNPs (Cc-AgNPs and Pg-AgNPs) exhibited a higher survival rate than the untreated infected fish and demonstrated signs of recovery from the infection, providing a compelling indication of the positive impact of phytosynthesized AgNPs. Disruptions in hematological and histological parameters were found in the infected fish. Both Cc-AgNPs and Pg-AgNPs showed recovery on the hematological and histological parameters. Analysis of oxidative stress and cytokine markers also revealed provoking evidence of the positive impact of Cc-AgNPs and Pg-AgNPs treatment against disease progression in the infected fish. The major finding of the study was that the higher concentrations of the nanoparticles (50 µg/L in the case of Cc-AgNPs and 75 µg/L in the case of Pg-AgNPs) were more effective in fighting against disease. In conclusion, our work presents novel insights for the use of green-synthesized AgNPs as economic and innocuous antibacterial candidates in aquaculture.
Collapse
Affiliation(s)
- Ramsha Hafeez
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan; (R.H.); (S.R.)
| | - Zakia Kanwal
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan; (R.H.); (S.R.)
| | - Muhammad Akram Raza
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (M.A.R.); (S.R.); (S.R.); (S.N.)
| | - Shafqat Rasool
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (M.A.R.); (S.R.); (S.R.); (S.N.)
| | - Saira Riaz
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (M.A.R.); (S.R.); (S.R.); (S.N.)
| | - Shahzad Naseem
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (M.A.R.); (S.R.); (S.R.); (S.N.)
| | - Shifa Rabani
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan; (R.H.); (S.R.)
| | - Imran Haider
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1012 Amsterdam, The Netherlands;
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Suliman Yousef Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
10
|
Oliveira AS, Saraiva LM, Carvalho SM. Staphylococcus epidermidis biofilms undergo metabolic and matrix remodeling under nitrosative stress. Front Cell Infect Microbiol 2023; 13:1200923. [PMID: 37469594 PMCID: PMC10352803 DOI: 10.3389/fcimb.2023.1200923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Staphylococcus epidermidis is a commensal skin bacterium that forms host- and antibiotic-resistant biofilms that are a major cause of implant-associated infections. Most research has focused on studying the responses to host-imposed stresses on planktonic bacteria. In this work, we addressed the open question of how S. epidermidis thrives on toxic concentrations of nitric oxide (NO) produced by host innate immune cells during biofilm assembly. We analyzed alterations of gene expression, metabolism, and matrix structure of biofilms of two clinical isolates of S. epidermidis, namely, 1457 and RP62A, formed under NO stress conditions. In both strains, NO lowers the amount of biofilm mass and causes increased production of lactate and decreased acetate excretion from biofilm glucose metabolism. Transcriptional analysis revealed that NO induces icaA, which is directly involved in polysaccharide intercellular adhesion (PIA) production, and genes encoding proteins of the amino sugar pathway (glmM and glmU) that link glycolysis to PIA synthesis. However, the strains seem to have distinct regulatory mechanisms to boost lactate production, as NO causes a substantial upregulation of ldh gene in strain RP62A but not in strain 1457. The analysis of the matrix components of the staphylococcal biofilms, assessed by confocal laser scanning microscopy (CLSM), showed that NO stimulates PIA and protein production and interferes with biofilm structure in a strain-dependent manner, but independently of the Ldh level. Thus, NO resistance is attained by remodeling the staphylococcal matrix architecture and adaptation of main metabolic processes, likely providing in vivo fitness of S. epidermidis biofilms contacting NO-proficient macrophages.
Collapse
|
11
|
Eghbalifam N, Shojaosadati SA, Hashemi-Najafabadi S. Role of bioactive magnetic nanoparticles in the prevention of wound pathogenic biofilm formation using smart nanocomposites. J Nanobiotechnology 2023; 21:161. [PMID: 37211593 DOI: 10.1186/s12951-023-01905-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Biofilm formation and its resistance to various antibiotics is a serious health problem in the treatment of wound infections. An ideal wound dressing should have characteristics such as protection of wound from microbial infection, suitable porosity (to absorb wound exudates), proper permeability (to maintain wound moisture), nontoxicity, and biocompatibility. Although silver nanoparticles (AgNPs) have been investigated as antimicrobial agents, their limitations in penetrating into the biofilm, affecting their efficiency, have consistently been an area for further research. RESULTS Consequently, in this study, the optimal amounts of natural and synthetic polymers combination, along with AgNPs, accompanied by iron oxide nanoparticles (IONPs), were utilized to fabricate a smart bionanocomposite that meets all the requirements of an ideal wound dressing. Superparamagnetic IONPs (with the average size of 11.8 nm) were synthesized through co-precipitation method using oleic acid to improve their stability. It was found that the addition of IONPs to bionanocomposites had a synergistic effect on their antibacterial and antibiofilm properties. Cytotoxicity assay results showed that nanoparticles does not considerably affect eukaryotic cells compared to prokaryotic cells. Based on the images obtained by confocal laser scanning microscopy (CLSM), significant AgNPs release was observed when an external magnetic field (EMF) was applied to the bionanocomposites loaded with IONPs, which increased the antibacterial activity and inhibited the formation of biofilm significantly. CONCLUSION These finding indicated that the nanocomposite recommended can have an efficient properties for the management of wounds through prevention and treatment of antibiotic-resistant biofilm.
Collapse
Affiliation(s)
- Naeimeh Eghbalifam
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, 14155-4838, Tehran, Iran
| | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, 14155-4838, Tehran, Iran.
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Fathil MAM, Katas H. Antibacterial, Anti-Biofilm and Pro-Migratory Effects of Double Layered Hydrogels Packaged with Lactoferrin-DsiRNA-Silver Nanoparticles for Chronic Wound Therapy. Pharmaceutics 2023; 15:pharmaceutics15030991. [PMID: 36986852 PMCID: PMC10054788 DOI: 10.3390/pharmaceutics15030991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Antimicrobial resistance and biofilm formation in diabetic foot infections worsened during the COVID-19 pandemic, resulting in more severe infections and increased amputations. Therefore, this study aimed to develop a dressing that could effectively aid in the wound healing process and prevent bacterial infections by exerting both antibacterial and anti-biofilm effects. Silver nanoparticles (AgNPs) and lactoferrin (LTF) have been investigated as alternative antimicrobial and anti-biofilm agents, respectively, while dicer-substrate short interfering RNA (DsiRNA) has also been studied for its wound healing effect in diabetic wounds. In this study, AgNPs were complexed with LTF and DsiRNA via simple complexation before packaging in gelatin hydrogels. The formed hydrogels exhibited 1668% maximum swellability, with a 46.67 ± 10.33 µm average pore size. The hydrogels demonstrated positive antibacterial and anti-biofilm effects toward the selected Gram-positive and Gram-negative bacteria. The hydrogel containing AgLTF at 125 µg/mL was also non-cytotoxic on HaCaT cells for up to 72 h of incubation. The hydrogels containing DsiRNA and LTF demonstrated superior pro-migratory effects compared to the control group. In conclusion, the AgLTF-DsiRNA-loaded hydrogel possessed antibacterial, anti-biofilm, and pro-migratory activities. These findings provide a further understanding and knowledge on forming multipronged AgNPs consisting of DsiRNA and LTF for chronic wound therapy.
Collapse
|
13
|
Nanomaterials and Coatings for Managing Antibiotic-Resistant Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020310. [PMID: 36830221 PMCID: PMC9952333 DOI: 10.3390/antibiotics12020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Biofilms are a global health concern responsible for 65 to 80% of the total number of acute and persistent nosocomial infections, which lead to prolonged hospitalization and a huge economic burden to the healthcare systems. Biofilms are organized assemblages of surface-bound cells, which are enclosed in a self-produced extracellular polymer matrix (EPM) of polysaccharides, nucleic acids, lipids, and proteins. The EPM holds the pathogens together and provides a functional environment, enabling adhesion to living and non-living surfaces, mechanical stability, next to enhanced tolerance to host immune responses and conventional antibiotics compared to free-floating cells. Furthermore, the close proximity of cells in biofilms facilitates the horizontal transfer of genes, which is responsible for the development of antibiotic resistance. Given the growing number and impact of resistant bacteria, there is an urgent need to design novel strategies in order to outsmart bacterial evolutionary mechanisms. Antibiotic-free approaches that attenuate virulence through interruption of quorum sensing, prevent adhesion via EPM degradation, or kill pathogens by novel mechanisms that are less likely to cause resistance have gained considerable attention in the war against biofilm infections. Thereby, nanoformulation offers significant advantages due to the enhanced antibacterial efficacy and better penetration into the biofilm compared to bulk therapeutics of the same composition. This review highlights the latest developments in the field of nanoformulated quorum-quenching actives, antiadhesives, and bactericides, and their use as colloid suspensions and coatings on medical devices to reduce the incidence of biofilm-related infections.
Collapse
|
14
|
Lipid Liquid Crystal Nanoparticles: Promising Photosensitizer Carriers for the Treatment of Infected Cutaneous Wounds. Pharmaceutics 2023; 15:pharmaceutics15020305. [PMID: 36839628 PMCID: PMC9964009 DOI: 10.3390/pharmaceutics15020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Cutaneous chronic wounds impose a silent pandemic that affects the lives of millions worldwide. The delayed healing process is usually complicated by opportunistic bacteria that infect wounds. Staphylococcus aureus is one of the most prevalent bacteria in infected cutaneous wounds, with the ability to form antibiotic-resistant biofilms. Recently, we have demonstrated the potential of gallium protoporphyrin lipid liquid crystalline nanoparticles (GaPP-LCNP) as a photosensitizer against S. aureus biofilms in vitro. Herein, we investigate the potential of GaPP-LCNP using a pre-clinical model of infected cutaneous wounds. GaPP-LCNP showed superior antibacterial activity compared to unformulated GaPP, reducing biofilm bacterial viability by 5.5 log10 compared to 2.5 log10 in an ex vivo model, and reducing bacterial viability by 1 log10 in vivo, while unformulated GaPP failed to reduce bacterial burden. Furthermore, GaPP-LCNP significantly promoted wound healing through reduction in the bacterial burden and improved early collagen deposition. These findings pave the way for future pre-clinical investigation and treatment optimizations to translate GaPP-LCNP towards clinical application.
Collapse
|
15
|
Moreno Ruiz YP, de Almeida Campos LA, Alves Agreles MA, Galembeck A, Macário Ferro Cavalcanti I. Advanced Hydrogels Combined with Silver and Gold Nanoparticles against Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:antibiotics12010104. [PMID: 36671305 PMCID: PMC9855178 DOI: 10.3390/antibiotics12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
The development of multidrug-resistant (MDR) microorganisms has increased dramatically in the last decade as a natural consequence of the misuse and overuse of antimicrobials. The World Health Organization (WHO) recognizes that this is one of the top ten global public health threats facing humanity today, demanding urgent multisectoral action. The UK government foresees that bacterial antimicrobial resistance (AMR) could kill 10 million people per year by 2050 worldwide. In this sense, metallic nanoparticles (NPs) have emerged as promising alternatives due to their outstanding antibacterial and antibiofilm properties. The efficient delivery of the NPs is also a matter of concern, and recent studies have demonstrated that hydrogels present an excellent ability to perform this task. The porous hydrogel structure with a high-water retention capability is a convenient host for the incorporation of the metallic nanoparticles, providing an efficient path to deliver the NPs properly reducing bacterial infections caused by MDR pathogenic microorganisms. This article reviews the most recent investigations on the characteristics, applications, advantages, and limitations of hydrogels combined with metallic NPs for treating MDR bacteria. The mechanisms of action and the antibiofilm activity of the NPs incorporated into hydrogels are also described. Finally, this contribution intends to fill some gaps in nanomedicine and serve as a guide for the development of advanced medical products.
Collapse
Affiliation(s)
- Yolice Patricia Moreno Ruiz
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Luís André de Almeida Campos
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - Maria Andressa Alves Agreles
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - André Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
- Correspondence: ; Tel.: +55-81-98648-2081
| |
Collapse
|
16
|
Haidari H, Melguizo-Rodríguez L, Cowin AJ, Kopecki Z. Therapeutic potential of antimicrobial peptides for treatment of wound infection. Am J Physiol Cell Physiol 2023; 324:C29-C38. [PMID: 36409176 DOI: 10.1152/ajpcell.00080.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Healing of cutaneous wounds is a fundamental process required to re-establish tissue integrity, repair skin barrier function, and restore skin homeostasis. Chronic wound infection, exacerbated by the growing development of resistance to conventional therapies, hinders the skin repair process and is a serious clinical problem affecting millions of people worldwide. In the past decade, the use of antimicrobial peptides (AMPs) has attracted increasing attention as a potential novel strategy for the treatment of chronic wound infections due to their unique multifaceted mechanisms of action, and AMPs have been demonstrated to function as potent host-defense molecules that can control microbial proliferation, modulate host-immune responses, and act as endogenous mediators of wound healing. To date over 3,200 AMPs have been discovered either from living organisms or through synthetic derivation, some of which have progressed to clinical trials for the treatment of burn and wound injuries. However, progress to routine clinical use has been hindered due to AMPs' susceptibility to wound and environmental factors including changes in pH, proteolysis, hydrolysis, oxidation, and photolysis. This review will discuss the latest research focused on the development and applications of AMPs for wound infections using the latest nanotechnological approaches to improve AMP delivery, and stability to present effective combinatorial treatment for clinical applications.
Collapse
Affiliation(s)
- Hanif Haidari
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Allison J Cowin
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Future Industries Institute and STEM Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Ouyang J, Bu Q, Tao N, Chen M, Liu H, Zhou J, Liu J, Deng B, Kong N, Zhang X, Chen T, Cao Y, Tao W. A facile and general method for synthesis of antibiotic-free protein-based hydrogel: Wound dressing for the eradication of drug-resistant bacteria and biofilms. Bioact Mater 2022; 18:446-458. [PMID: 35415296 PMCID: PMC8971583 DOI: 10.1016/j.bioactmat.2022.03.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Antibacterial protein hydrogels are receiving increasing attention in the aspect of bacteria-infected-wound healing. However, bacterial drug resistance and biofilm infections lead to hard healing of wounds, thus the construction of biological agents that can overcome these issues is essential. Here, a simple and universal method to construct antibiotic-free protein hydrogel with excellent biocompatibility and superior antibacterial activity against drug-resistant bacteria and biofilms was developed. The green industrial microbicide tetrakis (hydroxymethyl) phosphonium sulfate (THPS) as cross-linking agent can be quickly cross-linked with model protein bovine serum albumin (BSA) to form antibacterial hydrogel through simple mixing without any other initiators, subsequently promoting drug-resistance bacteria-infected wound healing. This simple gelatinization strategy allows at least ten different proteins to form hydrogels (e.g. BSA, human serum albumin (HSA), egg albumin, chymotrypsin, trypsin, lysozyme, transferrin, myohemoglobin, hemoglobin, and phycocyanin) under the same conditions, showing prominent universality. Furthermore, drug-resistance bacteria and biofilm could be efficiently destroyed by the representative BSA hydrogel (B-Hydrogel) with antibacterial activity, overcoming biofilm-induced bacterial resistance. The in vivo study demonstrated that the B-Hydrogel as wound dressing can promote reepithelization to accelerate the healing of methicillin-resistant staphylococcus aureus (MRSA)-infected skin wounds without inducing significant side-effect. This readily accessible antibiotic-free protein-based hydrogel not only opens an avenue to provide a facile, feasible and general gelation strategy, but also exhibits promising application in hospital and community MRSA disinfection and treatment.
Collapse
Affiliation(s)
- Jiang Ouyang
- The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Qingyue Bu
- The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Na Tao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Mingkai Chen
- The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Haijun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jinggong Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510006, China
| | - Bo Deng
- The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Tianfeng Chen
- The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, 171 77, Sweden
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
18
|
Haidari H, Vasilev K, Cowin AJ, Kopecki Z. Bacteria-Activated Dual pH- and Temperature-Responsive Hydrogel for Targeted Elimination of Infection and Improved Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51744-51762. [PMID: 36356210 DOI: 10.1021/acsami.2c15659] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibacterial treatment that provides on-demand release of therapeutics that can kill a broad spectrum of pathogens while maintaining long-term efficacy and without developing resistance or causing side effects is urgently required in clinical practice. Here, we demonstrate the development of a multistimuli-responsive hydrogel, prepared by cross-linking N-isopropylacrylamide with acrylic acid and loaded with ultrasmall silver nanoparticles (AgNPs), offering the on-demand release of Ag+ ions triggered by changes in the wound microenvironment. We demonstrate that this dual-responsive hydrogel is highly sensitive to a typical wound pH and temperature change, evidenced by the restricted release of Ag+ ions at acidic pH (<5.5) while significantly promoting the release in alkaline pH (>7.4) (>90% release). The pH-dependent release and antibacterial effect show minimal killing at pH 4 or 5.5 but dramatically activated at pH 7.4 and 10, eliminating >95% of the pathogens. The in vivo antibacterial efficacy and safety showed a high potency to clear Staphylococcus aureus wound infection while significantly accelerating the wound healing rate. This multifunctional hydrogel presents a promising bacteria-responsive delivery platform that serves as an on-demand carrier to not only reduce side effects but also significantly boost the antibacterial efficiency based on physiological needs. It offers great potential to improve the way wound infections are treated with direct clinical implications, providing a single platform for long-lasting application in wound management.
Collapse
Affiliation(s)
- Hanif Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
19
|
Garg D, Matai I, Agrawal S, Sachdev A. Hybrid gum tragacanth/sodium alginate hydrogel reinforced with silver nanotriangles for bacterial biofilm inhibition. BIOFOULING 2022; 38:965-983. [PMID: 36519335 DOI: 10.1080/08927014.2022.2156286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Biomaterial associated bacterial infections are indomitable to treatment due to the rise in antibiotic resistant strains, thereby triggering the need for new antibacterial agents. Herein, composite bactericidal hydrogels were formulated by incorporating silver nanotriangles (AgNTs) inside a hybrid polymer network of Gum Tragacanth/Sodium Alginate (GT/SA) hydrogels. Physico-chemical examination revealed robust mechanical strength, appreciable porosity and desirable in vitro enzymatic biodegradation of composite hydrogels. The antibacterial activity of AgNT-hydrogel was tested against planktonic and biofilm-forming Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. For all the strains, AgNT-hydrogel showed a dose-dependent decrease in bacterial growth. The addition of AgNT-hydrogels (40-80 mg ml-1) caused 87% inhibition of planktonic biomass and up to 74% reduction in biofilm formation. Overall, this study proposes a promising approach for designing antibacterial composite hydrogels to mitigate various forms of bacterial infection.
Collapse
Affiliation(s)
- Deepa Garg
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ishita Matai
- Department of Biotechnology, Amity University Punjab, Mohali, India
| | - Shruti Agrawal
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, India
| | - Abhay Sachdev
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
20
|
Zhou K, Zhang Z, Xue J, Shang J, Ding D, Zhang W, Liu Z, Yan F, Cheng N. Hybrid Ag nanoparticles/polyoxometalate-polydopamine nano-flowers loaded chitosan/gelatin hydrogel scaffolds with synergistic photothermal/chemodynamic/Ag + anti-bacterial action for accelerated wound healing. Int J Biol Macromol 2022; 221:135-148. [PMID: 36029962 DOI: 10.1016/j.ijbiomac.2022.08.151] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
Bacterial infections significantly slow the wound healing process, thus severely threatening human health. Furthermore, traditional antibiotics may promote the development of multidrug-resistant bacteria. Therefore, developing novel bactericides and therapeutic strategies for bacterial infections is important to enhance wound healing. Herein, a three-in-one bactericidal flower-like nanocomposite was assembled using Ag nanoparticles/phosphotungstic acid-polydopamine nano-flowers (AgNPs/POM-PDA). The nanocomposite exhibited photothermal therapy (PTT) when exposed to NIR light via photothermal conversion by PDA. The resultant photothermal effect accelerated and controlled the Ag+ released from AgNPs. The chemodynamic therapy (CDT) was obtained via POM catalytic Fenton-like reaction. The combined PTT/CDT/Ag+ treatment achieved excellent synergistic anti-bacterial activity against both gram-negative E. coli and gram-positive S. aureus. A multifunctional wound dressing was then obtained by embedding the AgNPs/POM-PDA flower-like nanocomposite into the chitosan (CS)/gelatin (GE) biocomposite hydrogel. The synergy of AgNPs/POM-PDA nanocomposites and CS/GE hydrogel remarkably accelerated wound healing in vivo due to the excellent biocompatibility, hydroabsorptivity, and breathability of the hydrogel. In this study, a multifunctional agent was developed to synergistically combat bacterial infections and accelerate wound healing.
Collapse
Affiliation(s)
- Kunpeng Zhou
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Zhengchao Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Jingwen Xue
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Jianmeng Shang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Dejun Ding
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Zhijun Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shangdong 261053, PR China.
| | - Fang Yan
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China.
| | - Ni Cheng
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
21
|
Jiang T, Li Q, Qiu J, Chen J, Du S, Xu X, Wu Z, Yang X, Chen Z, Chen T. Nanobiotechnology: Applications in Chronic Wound Healing. Int J Nanomedicine 2022; 17:3125-3145. [PMID: 35898438 PMCID: PMC9309282 DOI: 10.2147/ijn.s372211] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Wounds occur when skin integrity is broken and the skin is damaged. With progressive changes in the disease spectrum, the acute wounds caused by mechanical trauma have been become less common, while chronic wounds triggered with aging, diabetes and infection have become more frequent. Chronic wounds now affect more than 6 million people in the United States, amounting to 10 billion dollars in annual expenditure. However, the treatment of chronic wounds is associated with numerous challenges. Traditional remedies for chronic wounds include skin grafting, flap transplantation, negative-pressure wound therapy, and gauze dressing, all of which can cause tissue damage or activity limitations. Nanobiotechnology — which comprises a diverse array of technologies derived from engineering, chemistry, and biology — is now being applied in biomedical practice. Here, we review the design, application, and clinical trials for nanotechnology-based therapies for chronic wound healing, highlighting the clinical potential of nanobiotechnology in such treatments. By summarizing previous nanobiotechnology studies, we lay the foundation for future wound care via a nanotech-based multifunctional smart system.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qianyun Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jinmei Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuang Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zihan Wu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
22
|
Blackadar C, Choi KYG, Embree MF, Hennkens HM, Rodríguez-Rodríguez C, Hancock REW, Saatchi K, Häfeli UO. SPECT/CT Imaging of 111Ag for the Preclinical Evaluation of Silver-Based Antimicrobial Nanomedicines. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26382-26393. [PMID: 35653648 DOI: 10.1021/acsami.2c03609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the growing interest in developing silver-based antimicrobials, there is a need to better understand the behavior of silver within biological systems. To address this, we showed that single-photon emission computed tomography (SPECT) is a suitable method to noninvasively image 111Ag-labeled compounds in mice. Formed by neutron irradiation of palladium foil, 111Ag can be rapidly isolated with a high degree of purity and stably incorporated into antimicrobial silver nanoparticles. The imaging showed that nanoparticles are retained in the lungs for up to 48 h following intratracheal instillation, with limited uptake into the systemic circulation or organs of the reticuloendothelial system. Furthermore, in a mouse model of pulmonary Pseudomonas aeruginosa infection, the nanoparticles reduced the bacterial burden by 11.6-fold without inducing the production of pro-inflammatory mediators. Overall, SPECT imaging with 111Ag is a useful tool for noninvasively visualizing the biodistribution of silver-containing compounds in rodents. This knowledge of how silver nanoparticles distribute in vivo can be used to predict their therapeutic efficacy.
Collapse
Affiliation(s)
- Colin Blackadar
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T1Z3, Canada
| | - Ka-Yee Grace Choi
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Mary F Embree
- University of Missouri Research Reactor Center (MURR), 13513 Research Park Drive, Columbia, Missouri 65211, United States
| | - Heather M Hennkens
- University of Missouri Research Reactor Center (MURR), 13513 Research Park Drive, Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T1Z3, Canada
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T1Z1, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T1Z3, Canada
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T1Z3, Canada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| |
Collapse
|
23
|
Razdan K, Garcia-Lara J, Sinha VR, Singh KK. Pharmaceutical strategies for the treatment of bacterial biofilms in chronic wounds. Drug Discov Today 2022; 27:2137-2150. [PMID: 35489675 DOI: 10.1016/j.drudis.2022.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/28/2022] [Accepted: 04/21/2022] [Indexed: 01/10/2023]
Abstract
Biofilms are sessile communities of microorganisms, mainly bacteria, that grow on biotic and abiotic surfaces. These microorganisms are embedded within an extracellular polymeric substance that provides enhanced protection from antimicrobials. Chronic wounds provide an ideal habitat for biofilm formation. Bacteria can easily attach to wound debris and can infect the wound due to an impaired host immune response. This review highlights the mechanism of biofilm formation and the role of biofilms in the pathophysiology of chronic wounds. Our major focus is on various formulation strategies and delivery systems that are employed to eradicate or disperse biofilms, thereby effectively managing acute and chronic wounds. We also discuss clinical research that has studied or is studying the treatment of biofilm-infected chronic wounds. Teaser: Innovative pharmaceutical strategies such as hydrogels, nanofibers, films and various nanoscale materials can provide promising approaches for the treatment of biofilm-mediated chronic wound infections, offering the potential to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Karan Razdan
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; Pharmaceutics Division, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160014, India
| | - Jorge Garcia-Lara
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston PR1 2HE, UK; UCLan Research Centre for Translational Biosciences and Behavior, University of Central Lancashire, Preston PR1 2HE, UK
| | - V R Sinha
- Pharmaceutics Division, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160014, India.
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston PR1 2HE, UK; UCLan Research Centre for Translational Biosciences and Behavior, University of Central Lancashire, Preston PR1 2HE, UK.
| |
Collapse
|
24
|
Thorn CR, Wignall A, Kopecki Z, Kral A, Prestidge CA, Thomas N. Liquid Crystal Nanoparticles Enhance Tobramycin Efficacy in a Murine Model of Pseudomonas aeruginosa Biofilm Wound Infection. ACS Infect Dis 2022; 8:841-854. [PMID: 35255215 DOI: 10.1021/acsinfecdis.1c00606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic Pseudomonas aeruginosa wound infections are highly prevalent and often untreatable due to biofilm formation, resulting in high antimicrobial tolerance. Standard antibiotic therapy for P. aeruginosa infections involves tobramycin, yet it is highly ineffective as monotherapy as tobramycin cannot penetrate the biofilm to elicit its antimicrobial effect. Lipid liquid crystal nanoparticles (LCNPs) have previously been shown to increase the antimicrobial efficacy and penetration of tobramycin against P. aeruginosa biofilms in vitro and ex vivo. Here, for the first time, we have developed a chronic P. aeruginosa biofilm infection in full-thickness wounds in mice to examine the potential of LCNPs to improve the effect of tobramycin, preclinically. After three doses, administered once a day, tobramycin-LCNPs significantly reduced the P. aeruginosa bacterial load in murine wounds 1000-fold more than unformulated tobramycin, which in turn showed no significant difference to the saline control treatment. Consistent with the improved P. aeruginosa eradication, the tobramycin-LCNPs promoted wound healing. In comparison to previous in vitro and ex vivo data, we show a strong in vitro-in vivo correlation between P. aeruginosa biofilm infection models. The enhanced activity of tobramycin-LCNPs in vivo in the preclinical murine model demonstrates the strong potential of LCNPs as a next-generation formulation approach to improve the efficacy of tobramycin against P. aeruginosa biofilm wound infections.
Collapse
Affiliation(s)
- Chelsea R. Thorn
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
- The Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
- Biofilm Test Facility, Cancer Research Institute, University of South Australia, North Tce, Adelaide, SA 5000, Australia
| | - Anthony Wignall
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
| | - Zlatko Kopecki
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
- Future Industries Institute, UniSA, Mawson Lakes, SA 5095, Australia
| | - Anita Kral
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
- Centre for Cancer Biology, S.A. Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Clive A. Prestidge
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
| | - Nicky Thomas
- University of South Australia, Clinical and Health Science, North Tce, Adelaide, SA 5000, Australia
- The Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
- Biofilm Test Facility, Cancer Research Institute, University of South Australia, North Tce, Adelaide, SA 5000, Australia
| |
Collapse
|
25
|
Girija AR, Balasubramanian S, Cowin AJ. Nanomaterials-based drug delivery approaches for wound healing. Curr Pharm Des 2022; 28:711-726. [DOI: 10.2174/1381612828666220328121211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Wound healing is a complex and dynamic process that requires intricate synchronization between multiple cell types within appropriate extracellular microenvironment. Wound healing process involves four overlapping phases in a precisely regulated manner, consisting of hemostasis, inflammation, proliferation, and maturation. For an effective wound healing all four phases must follow in a sequential pattern within a time frame. Several factors might interfere with one or more of these phases in healing process, thus causing improper or impaired wound healing resulting in non-healing chronic wounds. The complications associated with chronic non-healing wounds, along with the limitations of existing wound therapies, have led to the development and emergence of novel and innovative therapeutic interventions. Nanotechnology presents unique and alternative approaches to accelerate the healing of chronic wounds by the interaction of nanomaterials during different phases of wound healing. This review focuses on recent innovative nanotechnology-based strategies for wound healing and tissue regeneration based on nanomaterials, including nanoparticles, nanocomposites and scaffolds. The efficacy of the intrinsic therapeutic potential of nanomaterials (including silver, gold, zinc oxide, copper, cerium oxide, etc.) and the ability of nanomaterials as carriers (liposomes, hydrogels, polymeric nanomaterials, nanofibers) as therapeutic agents associated with wound-healing applications have also been addressed. The significance of these nanomaterial-based therapeutic interventions for wound healing needs to be highlighted to engage researchers and clinicians towards this new and exciting area of bio-nanoscience. We believe that these recent developments will offer researchers an updated source on the use of nanomaterials as an advanced approach to improve wound healing.
Collapse
|
26
|
Mallick S, Nag M, Lahiri D, Pandit S, Sarkar T, Pati S, Nirmal NP, Edinur HA, Kari ZA, Ahmad Mohd Zain MR, Ray RR. Engineered Nanotechnology: An Effective Therapeutic Platform for the Chronic Cutaneous Wound. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:778. [PMID: 35269266 PMCID: PMC8911807 DOI: 10.3390/nano12050778] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 12/27/2022]
Abstract
The healing of chronic wound infections, especially cutaneous wounds, involves a complex cascade of events demanding mutual interaction between immunity and other natural host processes. Wound infections are caused by the consortia of microbial species that keep on proliferating and produce various types of virulence factors that cause the development of chronic infections. The mono- or polymicrobial nature of surface wound infections is best characterized by its ability to form biofilm that renders antimicrobial resistance to commonly administered drugs due to poor biofilm matrix permeability. With an increasing incidence of chronic wound biofilm infections, there is an urgent need for non-conventional antimicrobial approaches, such as developing nanomaterials that have intrinsic antimicrobial-antibiofilm properties modulating the biochemical or biophysical parameters in the wound microenvironment in order to cause disruption and removal of biofilms, such as designing nanomaterials as efficient drug-delivery vehicles carrying antibiotics, bioactive compounds, growth factor antioxidants or stem cells reaching the infection sites and having a distinct mechanism of action in comparison to antibiotics-functionalized nanoparticles (NPs) for better incursion through the biofilm matrix. NPs are thought to act by modulating the microbial colonization and biofilm formation in wounds due to their differential particle size, shape, surface charge and composition through alterations in bacterial cell membrane composition, as well as their conductivity, loss of respiratory activity, generation of reactive oxygen species (ROS), nitrosation of cysteines of proteins, lipid peroxidation, DNA unwinding and modulation of metabolic pathways. For the treatment of chronic wounds, extensive research is ongoing to explore a variety of nanoplatforms, including metallic and nonmetallic NPs, nanofibers and self-accumulating nanocarriers. As the use of the magnetic nanoparticle (MNP)-entrenched pre-designed hydrogel sheet (MPS) is found to enhance wound healing, the bio-nanocomposites consisting of bacterial cellulose and magnetic nanoparticles (magnetite) are now successfully used for the healing of chronic wounds. With the objective of precise targeting, some kinds of "intelligent" nanoparticles are constructed to react according to the required environment, which are later incorporated in the dressings, so that the wound can be treated with nano-impregnated dressing material in situ. For the effective healing of skin wounds, high-expressing, transiently modified stem cells, controlled by nano 3D architectures, have been developed to encourage angiogenesis and tissue regeneration. In order to overcome the challenge of time and dose constraints during drug administration, the approach of combinatorial nano therapy is adopted, whereby AI will help to exploit the full potential of nanomedicine to treat chronic wounds.
Collapse
Affiliation(s)
- Suhasini Mallick
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India;
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata 700156, India; (M.N.); (D.L.)
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata 700156, India; (M.N.); (D.L.)
| | - Soumya Pandit
- Department of Life Sciences, Sharda University, Noida 201310, India;
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda 732102, India;
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore 756001, India;
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation & Research (ABC), Balasore 756001, India
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand;
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
| | | | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia 741249, India;
| |
Collapse
|
27
|
Haidari H, Bright R, Kopecki Z, Zilm PS, Garg S, Cowin AJ, Vasilev K, Goswami N. Polycationic Silver Nanoclusters Comprising Nanoreservoirs of Ag + Ions with High Antimicrobial and Antibiofilm Activity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:390-403. [PMID: 34935355 DOI: 10.1021/acsami.1c21657] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silver-based nano-antibiotics are rapidly developing as promising alternatives to conventional antibiotics. Ideally, to remain potent against a wide range of drug-resistant and anaerobic bacteria, silver-based nano-antibiotics should easily penetrate through the bacterial cell walls and actively release silver ions. In this study, highly monodispersed, ultrasmall (<3 nm), polycationic silver nanoclusters (pAgNCs) are designed and synthesized for the elimination of a range of common Gram-negative and Gram-positive pathogens and their corresponding established and matured biofilms, including those composed of multiple species. The pAgNCs also show greatly enhanced antibacterial efficacy against anaerobic bacteria such as Fusobacterium nucleatum and Streptococcus sanguinis. These results demonstrate that the cationic nature facilitates better penetration to the bacterial cell membrane while the presence of a high percentage (>50%) of silver ions (i.e., Ag+ nanoreservoirs) on the cluster surface maintains their efficiency in both aerobic and anaerobic conditions. Significantly, the pAgNCs showed a strong capacity to significantly delay the development of bacterial resistance when compared to similar-sized negatively charged silver nanoparticles or conventional antibiotics. This study demonstrates a novel design strategy that can lay the foundation for the development of future highly potent nano-antibiotics effective against a broad spectrum of pathogens and biofilms needed in many everyday life applications and industries.
Collapse
Affiliation(s)
- Hanif Haidari
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5095, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Zlatko Kopecki
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5095, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Peter S Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5095, Australia
| | - Allison J Cowin
- Clinical & Health Sciences, University of South Australia, Adelaide, SA 5095, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Nirmal Goswami
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
28
|
Hasan N, Lee J, Ahn HJ, Hwang WR, Bahar MA, Habibie H, Amir MN, Lallo S, Son HJ, Yoo JW. Nitric Oxide-Releasing Bacterial Cellulose/Chitosan Crosslinked Hydrogels for the Treatment of Polymicrobial Wound Infections. Pharmaceutics 2021; 14:22. [PMID: 35056917 PMCID: PMC8779945 DOI: 10.3390/pharmaceutics14010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 01/15/2023] Open
Abstract
Polymicrobial wound infections are a major cause of infectious disease-related morbidity and mortality worldwide. In this study, we prepared a nitric oxide (NO)-releasing oxidized bacterial cellulose/chitosan (BCTO/CHI) crosslinked hydrogel to effectively treat polymicrobial wound infections. Linear polyethyleneimine diazeniumdiolate (PEI/NO) was used as the NO donor. The aldehyde group of BCTO and the amine of CHI were used as crosslinked hydrogel-based materials; their high NO loading capacity and antibacterial activity on the treatment of polymicrobial-infected wounds were investigated. The blank and NO-loaded crosslinked hydrogels, namely BCTO-CHI and BCTO-CHI-PEI/NO, were characterized according to their morphologies, chemical properties, and drug loading. BCTO-CHI-PEI/NO exhibited sustained drug release over four days. The high NO loading of BCTO-CHI-PEI/NO enhanced the bactericidal efficacy against multiple bacteria compared with BCTO-CHI. Furthermore, compared with blank hydrogels, BCTO-CHI-PEI/NO has a favorable rheological property due to the addition of a polymer-based NO donor. Moreover, BCTO-CHI-PEI/NO significantly accelerated wound healing and re-epithelialization in a mouse model of polymicrobial-infected wounds. We also found that both crosslinked hydrogels were nontoxic to healthy mammalian fibroblast cells. Therefore, our data suggest that the BCTO-CHI-PEI/NO developed in this study improves the efficacy of NO in the treatment of polymicrobial wound infections.
Collapse
Affiliation(s)
- Nurhasni Hasan
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (N.H.); (J.L.)
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (M.A.B.); (H.H.); (M.N.A.); (S.L.)
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (N.H.); (J.L.)
| | - Hye-Jin Ahn
- School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju 52828, Korea; (H.-J.A.); (W.R.H.)
| | - Wook Ryol Hwang
- School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju 52828, Korea; (H.-J.A.); (W.R.H.)
| | - Muhammad Akbar Bahar
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (M.A.B.); (H.H.); (M.N.A.); (S.L.)
| | - Habibie Habibie
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (M.A.B.); (H.H.); (M.N.A.); (S.L.)
| | - Muhammad Nur Amir
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (M.A.B.); (H.H.); (M.N.A.); (S.L.)
| | - Subehan Lallo
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (M.A.B.); (H.H.); (M.N.A.); (S.L.)
| | - Hong-Joo Son
- College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 627706, Korea;
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (N.H.); (J.L.)
| |
Collapse
|