1
|
Ravamehr-Lake D, Hoveyda S, Schlierf M, Ditlev JA, Deber CM. Interaction of CFTR Modulators with Mammalian Membrane Mimetics: The Role of Cholesterol. Biochemistry 2025; 64:1878-1886. [PMID: 40138627 DOI: 10.1021/acs.biochem.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Lumacaftor and Ivacaftor are two FDA-approved medications currently used to treat cystic fibrosis (CF), a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel located in epithelial cell membranes; however, the detailed mechanism(s) of their action remains to be elucidated. Both drugs, termed modulators, bind CFTR at a protein-lipid interface, yet Lumacaftor acts at the endoplasmic reticulum (ER), while Ivacaftor acts at the plasma membrane (PM). A major difference among biological membranes is their level of cholesterol (viz., the ER, 5% cholesterol; the Golgi apparatus, 12.5%; and the PM, 30%). Therefore, we investigated the ability of each molecule to interact with membranes of the corresponding cholesterol content to determine if lipid cholesterol content provides a physical basis for their observed localized activity. Using differential scanning calorimetry and a terbium-based liposome disruption assay, we show that both Lumacaftor (a corrector) and Ivacaftor (a potentiator) penetrate/diffuse through membranes containing high cholesterol concentrations, such as in Golgi and the PM. The results further suggest that (1) Lumacaftor resides within membranes containing 5% cholesterol, supporting the proposition that Lumacaftor acts as a corrector of the CFTR channel at the ER level where the nascent protein is in its initial folding stage; and (2) Ivacaftor is well-suited to penetrate the PM and reach its binding pocket on CFTR. Our findings provide evidence that membrane cholesterol levels significantly modulate CFTR corrector/potentiator activity and consequently may affect sensitivity to clinical therapeutics in CF patients.
Collapse
Affiliation(s)
- Dorna Ravamehr-Lake
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sahar Hoveyda
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
| | - Michael Schlierf
- B CUBE-Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Jonathon A Ditlev
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charles M Deber
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
2
|
Tang C, Pulliam C, Abiodun A, Parris A, Campbell A, Li J. Probing Antimicrobial Activity and Mechanism of Action of a Bile Acid-Derived Antibiotic. ACS OMEGA 2025; 10:1727-1734. [PMID: 39829505 PMCID: PMC11740247 DOI: 10.1021/acsomega.4c09804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Antibiotics have revolutionized medicine, saving countless lives since the introduction of penicillin. However, antimicrobial resistance has challenged their efficacy, prompting ongoing efforts to develop new antibiotics. This study explores the antimicrobial effects of a bile acid derivative, BA-3/4-Butyl. By analyzing the interactions of BA-3/4-Butyl with model bacterial (DOPC/DOPG) and mammalian (DOPC/cholesterol) membranes and by probing its mechanism of action against bacteria using a variety of assays and transmission electron microscopy (TEM) imaging, we reveal that BA-3/4-Butyl exerts its antimicrobial activity via membrane permeabilization. Our findings provide insights into how BA-3/4-Butyl compromises bacterial membranes without causing toxicity in its mammalian counterparts. This study advances the understanding of BA-3/4-Butyl's antimicrobial activity and potential mechanisms of action, ultimately aiding the development of similar novel therapeutic agents to help combat antimicrobial resistance.
Collapse
Affiliation(s)
- Colin
C. Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Conor Pulliam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alimi Abiodun
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Adam Parris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Andrew Campbell
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
3
|
Juhaniewicz-Debinska J. Melittin-Induced Structural Transformations in DMPG and DMPS Lipid Membranes: A Langmuir Monolayer and AFM Study. Molecules 2024; 29:6064. [PMID: 39770152 PMCID: PMC11677270 DOI: 10.3390/molecules29246064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, we explore the interactions between melittin, a cationic antimicrobial peptide, and model lipid membranes composed of the negatively charged phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) and 1,2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS). Using the Langmuir monolayer technique and atomic force microscopy (AFM), we reveal novel insights into these interactions. Our key finding is the observation of the ripple phase in the DMPS bilayer on mica, a phenomenon not previously reported for negatively charged single bilayers. This discovery is significant given the critical role of phosphatidylserine (PS) in cancer biology and the potential of melittin as an anticancer agent. We also highlight the importance of subphase composition, as melittin interacts preferentially with lipids in the liquid-condensed phase; thus, selecting the appropriate subphase composition is crucial because it affects lipid behavior and consequently melittin interactions. Our results show that melittin incorporates into lipid monolayers in both liquid-expanded and liquid-condensed phases, enhancing membrane fluidity and disorder, but is expelled from DMPS in the solid phase. AFM imaging further reveals that melittin induces substantial structural changes in the DMPG membrane and forms the ripple phase in the DMPS bilayers. Despite these alterations, melittin does not cause pore formation or membrane rupture, suggesting strong electrostatic adsorption on the membrane surface that prevents penetration. These findings highlight the differential impacts of melittin on lipid monolayers and bilayers and underscore its potential for interacting with membranes without causing disruption.
Collapse
Affiliation(s)
- Joanna Juhaniewicz-Debinska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
4
|
Marinho A, Reis S, Nunes C. On the design of cell membrane-coated nanoparticles to treat inflammatory conditions. NANOSCALE HORIZONS 2024; 10:38-55. [PMID: 39499543 DOI: 10.1039/d4nh00457d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Biomimetic-based drug delivery systems (DDS) attempt to recreate the complex interactions that occur naturally between cells. Cell membrane-coated nanoparticles (CMCNPs) have been one of the main strategies in this area to prevent opsonization and clearance. Moreover, coating nanoparticles with cell membranes allows them to acquire functions and properties inherent to the mother cells. In particular, cells from bloodstream show to have specific advantages depending on the cell type to be used for that application, specifically in cases of chronic inflammation. Thus, this review focuses on the biomimetic strategies that use membranes from blood cells to target and treat inflammatory conditions.
Collapse
Affiliation(s)
- Andreia Marinho
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.
- LAQV, REQUIMTE, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.
| | - Cláudia Nunes
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal
| |
Collapse
|
5
|
Conde-Torres D, Calvelo M, Rovira C, Piñeiro Á, Garcia-Fandino R. Unlocking the specificity of antimicrobial peptide interactions for membrane-targeted therapies. Comput Struct Biotechnol J 2024; 25:61-74. [PMID: 38695015 PMCID: PMC11061258 DOI: 10.1016/j.csbj.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 05/04/2024] Open
Abstract
Antimicrobial peptides (AMPs) are increasingly recognized as potent therapeutic agents, with their selective affinity for pathological membranes, low toxicity profile, and minimal resistance development making them particularly attractive in the pharmaceutical landscape. This study offers a comprehensive analysis of the interaction between specific AMPs, including magainin-2, pleurocidin, CM15, LL37, and clavanin, with lipid bilayer models of very different compositions that have been ordinarily used as biological membrane models of healthy mammal, cancerous, and bacterial cells. Employing unbiased molecular dynamics simulations and metadynamics techniques, we have deciphered the intricate mechanisms by which these peptides recognize pathogenic and pathologic lipid patterns and integrate into lipid assemblies. Our findings reveal that the transverse component of the peptide's hydrophobic dipole moment is critical for membrane interaction, decisively influencing the molecule's orientation and expected therapeutic efficacy. Our approach also provides insight on the kinetic and dynamic dependence on the peptide orientation in the axial and azimuthal angles when coming close to the membrane. The aim is to establish a robust framework for the rational design of peptide-based, membrane-targeted therapies, as well as effective quantitative descriptors that can facilitate the automated design of novel AMPs for these therapies using machine learning methods.
Collapse
Affiliation(s)
- Daniel Conde-Torres
- Center for Research in Biological Chemistry and Molecular Materials, Departamento de Química Orgánica, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Martín Calvelo
- Departament de Química Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Carme Rovira
- Departament de Química Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rebeca Garcia-Fandino
- Center for Research in Biological Chemistry and Molecular Materials, Departamento de Química Orgánica, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Pinigin KV. Local Stress in Cylindrically Curved Lipid Membrane: Insights into Local Versus Global Lateral Fluidity Models. Biomolecules 2024; 14:1471. [PMID: 39595647 PMCID: PMC11591742 DOI: 10.3390/biom14111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Lipid membranes, which are fundamental to cellular function, undergo various mechanical deformations. Accurate modeling of these processes necessitates a thorough understanding of membrane elasticity. The lateral shear modulus, a critical parameter describing membrane resistance to lateral stresses, remains elusive due to the membrane's fluid nature. Two contrasting hypotheses, local fluidity and global fluidity, have been proposed. While the former suggests a zero local lateral shear modulus anywhere within lipid monolayers, the latter posits that only the integral of this modulus over the monolayer thickness vanishes. These differing models lead to distinct estimations of other elastic moduli and affect the modeling of biological processes, such as membrane fusion/fission and membrane-mediated interactions. Notably, they predict distinct local stress distributions in cylindrically curved membranes. The local fluidity model proposes isotropic local lateral stress, whereas the global fluidity model predicts anisotropy due to anisotropic local lateral stretching of lipid monolayers. Using molecular dynamics simulations, this study directly investigates these models by analyzing local stress in a cylindrically curved membrane. The results conclusively demonstrate the existence of static local lateral shear stress and anisotropy in local lateral stress within the monolayers of the cylindrical membrane, strongly supporting the global fluidity model. These findings have significant implications for the calculation of surface elastic moduli and offer novel insights into the fundamental principles governing lipid membrane elasticity.
Collapse
Affiliation(s)
- Konstantin V Pinigin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| |
Collapse
|
7
|
Fellows A, John B, Wolf M, Thämer M. Extracting the Heterogeneous 3D Structure of Molecular Films Using Higher Dimensional SFG Microscopy. J Phys Chem Lett 2024; 15:10849-10857. [PMID: 39436358 PMCID: PMC11533227 DOI: 10.1021/acs.jpclett.4c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Ultrathin molecular films are widespread in both natural and industrial settings, where details of the molecular structure such as density, out-of-plane tilt angles, and in-plane directionality determine their physicochemical properties. Many of these films possess important molecular-to-macroscopic heterogeneity in these structural parameters, which have traditionally been difficult to characterize. Here, we show how extending sum-frequency generation (SFG) microscopy measurements to higher dimensionality by azimuthal-scanning can extract the spatial variation in the three-dimensional molecular structure at an interface. We extend the commonly applied theoretical assumptions used to analyze SFG signals to the study of systems possessing in-plane anisotropy. This theoretical framework is then applied to a phase-separated mixed lipid monolayer to investigate the variation in molecular density and 3D orientation across the chirally packed lipid domains. The results show little variation in out-of-plane structure but a distinct micron-scale region at the domain boundaries with a reduction in both density and in-plane ordering.
Collapse
Affiliation(s)
- Alexander
P. Fellows
- Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Ben John
- Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Martin Wolf
- Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Martin Thämer
- Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| |
Collapse
|
8
|
Stuart DD, Pike CD, Malinick AS, Cheng Q. Characterization of a Charged Biomimetic Lipid Membrane for Unique Antifouling Effects against Clinically Relevant Matrices in Biosensing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39375966 DOI: 10.1021/acsami.4c14563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Clinically relevant matrices such as human blood and serum can cause substantial interference in biosensing measurements, severely compromising the effectiveness of the sensors. We report the characterization of a positively charged lipid membrane that has demonstrated unique features to suppress the nonspecific signal for antifouling effects by using SPR, fluorescence recovery after photobleaching (FRAP), and MALDI-TOF-MS. The ethylphosphocholine (EPC) lipid membrane proved to be exceptionally effective at reducing irreversible interactions from human serum on a Protein A surface. The membrane formation conditions and their effects on membrane fluidity and mobility were characterized for understanding the antifouling functions when various capture molecules were immobilized. Specifically, EPC lipid membranes on a Protein A substrate appear to exhibit a strong interaction, likely through the electrostatic effect with the negatively charged proteins that resulted in a stable hydration layer. The strong interaction also limited lipid mobility, contributing to a robust, protective interface that remained undamaged in undiluted serum. Tailoring a surface with antifouling lipid membranes allows for a range of biosensing applications in highly complex biological media.
Collapse
Affiliation(s)
- Daniel D Stuart
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Caleb D Pike
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Alexander S Malinick
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
9
|
Altunayar-Unsalan C. DSC and FTIR study on the interaction between pentacyclic triterpenoid lupeol and DPPC membrane. J Bioenerg Biomembr 2024; 56:553-561. [PMID: 38918323 PMCID: PMC11455703 DOI: 10.1007/s10863-024-10030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Natural products are a great resource for physiologically active substances. It is widely recognized that a major percentage of current medications are derived from natural compounds or their synthetic analogues. Triterpenoids are widespread in nature and can prevent cancer formation and progression. Despite considerable interest in these triterpenoids, their interactions with lipid bilayers still need to be thoroughly investigated. The aim of this study is to examine the interactions of lupeol, a pentacyclic triterpenoid, with model membranes composed of 1,2‑dipalmitoyl‑sn‑glycerol‑3‑phosphocholine (DPPC) by using non-invasive techniques such as differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The DSC study demonstrated that the incorporation of lupeol into DPPC membranes shifts the Lβ'-to-Pβ' and Pβ'-to-Lα phase transitions toward lower values, and a loss of main phase transition cooperativity is observed. The FTIR spectra indicated that the increasing concentration (10 mol%) of lupeol causes an increase in the molecular packing and membrane fluidity. In addition, it is found that lupeol's OH group preferentially interacts with the head group region of the DPPC lipid bilayer. These findings provide detailed information on the effect of lupeol on the DPPC head group and the conformation and dynamics of the hydrophobic chains. In conclusion, the effect of lupeol on the structural features of the DPPC membrane, specifically phase transition and lipid packing, has implications for understanding its biological function and its applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Cisem Altunayar-Unsalan
- Ege University Graduate School of Natural and Applied Sciences, Bornova, Izmir, 35100, Turkey.
| |
Collapse
|
10
|
Pastuszak K, Palusińska-Szysz M, Wiącek AE, Jurak M. Thermodynamic Study on Biomimetic Legionella gormanii Bacterial Membranes. Molecules 2024; 29:4367. [PMID: 39339363 PMCID: PMC11434087 DOI: 10.3390/molecules29184367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The presented studies were aimed at determining the interactions in model membranes (Langmuir monolayers) created of phospholipids (PL) isolated from Legionella gormanii bacteria cultured with (PL + choline) or without (PL - choline) choline and to describe the impact of an antimicrobial peptide, human cathelicidin LL-37, on PL's monolayer behavior. The addition of choline to the growth medium influenced the mutual proportions of phospholipids extracted from L. gormanii. Four classes of phospholipids-phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), cardiolipin (CL), and their mixtures-were used to register compression isotherms with or without the LL-37 peptide in the subphase. Based on them the excess area (Ae), excess (ΔGe), and total (ΔGm) Gibbs energy of mixing were determined. The thermodynamic analyses revealed that the PL - choline monolayer showed greater repulsive forces between molecules in comparison to the ideal system, while the PL + choline monolayer was characterized by greater attraction. The LL-37 peptide affected the strength of interactions between phospholipids' molecules and reduced the monolayers stability. Accordingly, the changes in interactions in the model membranes allowed us to determine the difference in their susceptibility to the LL-37 peptide depending on the choline supplementation of bacterial culture.
Collapse
Affiliation(s)
- Katarzyna Pastuszak
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland; (K.P.); (A.E.W.)
| | - Marta Palusińska-Szysz
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Agnieszka Ewa Wiącek
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland; (K.P.); (A.E.W.)
| | - Małgorzata Jurak
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland; (K.P.); (A.E.W.)
| |
Collapse
|
11
|
Blanco-González A, Wurl A, Mendes Ferreira T, Piñeiro Á, Garcia-Fandino R. Simulating Bacterial Membrane Models at the Atomistic Level: A Force Field Comparison. J Chem Theory Comput 2024. [PMID: 39226695 DOI: 10.1021/acs.jctc.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Molecular dynamics (MD) simulations are currently an indispensable tool to understand both the dynamic and nanoscale organization of cell membrane models. A large number of quantitative parameters can be extracted from these simulations, but their reliability is determined by the quality of the employed force field and the simulation parameters. Much of the work on parametrizing and optimizing force fields for biomembrane modeling has been focused on homogeneous bilayers with a single phospholipid type. However, these may not perform effectively or could even be unsuitable for lipid mixtures commonly employed in membrane models. This work aims to fill this gap by comparing MD simulation results of several bacterial membrane models using different force fields and simulation parameters, namely, CHARMM36, Slipids, and GROMOS-CKP. Furthermore, the hydrogen isotope exchange (HIE) method, combined with GROMOS-CKP (GROMOS-H2Q), was also tested to check for the impact of this acceleration strategy on the performance of the force field. A common set of simulation parameters was employed for all of the force fields in addition to those corresponding to the original parametrization of each of them. Furthermore, new experimental order parameter values determined from NMR of several lipid mixtures are also reported to compare them with those determined from MD simulations. Our results reveal that most of the calculated physical properties of bacterial membrane models from MD simulations are substantially force field and lipid composition dependent. Some lipid mixtures exhibit nearly ideal behaviors, while the interaction of different lipid types in other mixtures is highly synergistic. None of the employed force fields seem to be clearly superior to the other three, each having its own strengths and weaknesses. Slipids are notably effective at replicating the order parameters for all acyl chains, including those in lipid mixtures, but they offer the least accurate results for headgroup parameters. Conversely, CHARMM provides almost perfect estimates for the order parameters of the headgroups but tends to overestimate those of the lipid tails. The GROMOS parametrizations deliver reasonable order parameters for entire lipid molecules, including multicomponent bilayers, although they do not reach the accuracy of Slipids for tails or CHARMM for headgroups. Importantly, GROMOS-H2Q stands out for its computational efficiency, being at least 3 times faster than GROMOS, which is already faster than both CHARMM and Slipids. In turn, GROMOS-H2Q yields much higher compressibilities compared to all other parametrizations.
Collapse
Affiliation(s)
- Alexandre Blanco-González
- Facultad de Física, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- MD.USE Innovations S.L, Edificio Emprendia, 15782 Santiago de Compostela, Spain
| | - Anika Wurl
- Institute of Physics, Faculty of Natural Sciences II, Betty-Heimann-Str. 7, 06120 Halle/Saale, Germany
| | - Tiago Mendes Ferreira
- Institute of Physics, Faculty of Natural Sciences II, Betty-Heimann-Str. 7, 06120 Halle/Saale, Germany
| | - Ángel Piñeiro
- Facultad de Física, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Rebeca Garcia-Fandino
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| |
Collapse
|
12
|
DiPasquale M, Marquardt D. Perceiving the functions of vitamin E through neutron and X-ray scattering. Adv Colloid Interface Sci 2024; 330:103189. [PMID: 38824717 DOI: 10.1016/j.cis.2024.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024]
Abstract
Take your vitamins, or don't? Vitamin E is one of the few lipophilic vitamins in the human diet and is considered an essential nutrient. Over the years it has proven to be a powerful antioxidant and is commercially used as such, but this association is far from linear in physiology. It is increasingly more likely that vitamin E has multiple legitimate biological roles. Here, we review past and current work using neutron and X-ray scattering to elucidate the influence of vitamin E on key features of model membranes that can translate to the biological function(s) of vitamin E. Although progress is being made, the hundred year-old mystery remains unsolved.
Collapse
Affiliation(s)
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada; Department of Physics, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
13
|
Tran LH, Lowe LA, Deckel Y, Turner M, Luong J, Khamis OAA, Amos ML, Wang A. Measuring Vesicle Loading with Holographic Microscopy and Bulk Light Scattering. ACS PHYSICAL CHEMISTRY AU 2024; 4:400-407. [PMID: 39069977 PMCID: PMC11274288 DOI: 10.1021/acsphyschemau.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 07/30/2024]
Abstract
We report efforts to quantify the loading of cell-sized lipid vesicles using in-line digital holographic microscopy. This method does not require fluorescent reporters, fluorescent tracers, or radioactive tracers. A single-color LED light source takes the place of conventional illumination to generate holograms rather than bright field images. By modeling the vesicle's scattering in a microscope with a Lorenz-Mie light scattering model and comparing the results to data holograms, we are able to measure the vesicle's refractive index and thus loading. Performing the same comparison for bulk light scattering measurements enables the retrieval of vesicle loading for nanoscale vesicles.
Collapse
Affiliation(s)
| | - Lauren A. Lowe
- School
of Chemistry, UNSW, Sydney 2052, NSW, Australia
- Australian
Centre for Astrobiology, UNSW, Sydney 2052, NSW, Australia
| | - Yaam Deckel
- School
of Chemistry, UNSW, Sydney 2052, NSW, Australia
- Australian
Centre for Astrobiology, UNSW, Sydney 2052, NSW, Australia
| | - Matthew Turner
- School
of Chemistry, UNSW, Sydney 2052, NSW, Australia
- School
of Physics, The University of Sydney, Sydney 2006, NSW, Australia
| | - James Luong
- School
of Chemistry, UNSW, Sydney 2052, NSW, Australia
- School
of Chemistry, The University of Sydney, Sydney 2006, NSW, Australia
| | | | - Megan L. Amos
- School
of Chemistry, UNSW, Sydney 2052, NSW, Australia
- Australian
Centre for Astrobiology, UNSW, Sydney 2052, NSW, Australia
| | - Anna Wang
- School
of Chemistry, UNSW, Sydney 2052, NSW, Australia
- Australian
Centre for Astrobiology, UNSW, Sydney 2052, NSW, Australia
- ARC
Centre of Excellence in Synthetic Biology, UNSW, Sydney 2052, NSW, Australia
- RNA Institute, UNSW, Sydney 2052, NSW, Australia
| |
Collapse
|
14
|
Selivanovitch E, Ostwalt A, Chao Z, Daniel S. Emerging Designs and Applications for Biomembrane Biosensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:339-366. [PMID: 39018354 PMCID: PMC11913122 DOI: 10.1146/annurev-anchem-061622-042618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Nature has inspired the development of biomimetic membrane sensors in which the functionalities of biological molecules, such as proteins and lipids, are harnessed for sensing applications. This review provides an overview of the recent developments for biomembrane sensors compatible with either bulk or planar sensing applications, namely using lipid vesicles or supported lipid bilayers, respectively. We first describe the individual components required for these sensing platforms and the design principles that are considered when constructing them, and we segue into recent applications being implemented across multiple fields. Our goal for this review is to illustrate the versatility of nature's biomembrane toolbox and simultaneously highlight how biosensor platforms can be enhanced by harnessing it.
Collapse
Affiliation(s)
- Ekaterina Selivanovitch
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Alexis Ostwalt
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Zhongmou Chao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
15
|
Fernandes T, Melo T, Conde T, Neves B, Domingues P, Resende R, Pereira CF, Moreira PI, Domingues MR. Mapping the lipidome in mitochondria-associated membranes (MAMs) in an in vitro model of Alzheimer's disease. J Neurochem 2024; 168:1237-1253. [PMID: 38327008 DOI: 10.1111/jnc.16072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/06/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The disruption of mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) plays a relevant role in Alzheimer's disease (AD). MAMs have been implicated in neuronal dysfunction and death since it is associated with impairment of functions regulated in this subcellular domain, including lipid synthesis and trafficking, mitochondria dysfunction, ER stress-induced unfolded protein response (UPR), apoptosis, and inflammation. Since MAMs play an important role in lipid metabolism, in this study we characterized and investigated the lipidome alterations at MAMs in comparison with other subcellular fractions, namely microsomes and mitochondria, using an in vitro model of AD, namely the mouse neuroblastoma cell line (N2A) over-expressing the APP familial Swedish mutation (APPswe) and the respective control (WT) cells. Phospholipids (PLs) and fatty acids (FAs) were isolated from the different subcellular fractions and analyzed by HILIC-LC-MS/MS and GC-MS, respectively. In this in vitro AD model, we observed a down-regulation in relative abundance of some phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and lysophosphatidylethanolamine (LPE) species with PUFA and few PC with saturated and long-chain FA. We also found an up-regulation of CL, and antioxidant alkyl acyl PL. Moreover, multivariate analysis indicated that each organelle has a specific lipid profile adaptation in N2A APPswe cells. In the FAs profile, we found an up-regulation of C16:0 in all subcellular fractions, a decrease of C18:0 levels in total fraction (TF) and microsomes fraction, and a down-regulation of 9-C18:1 was also found in mitochondria fraction in the AD model. Together, these results suggest that the over-expression of the familial APP Swedish mutation affects lipid homeostasis in MAMs and other subcellular fractions and supports the important role of lipids in AD physiopathology.
Collapse
Affiliation(s)
- Tânia Fernandes
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rosa Resende
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Cláudia F Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
16
|
Nasirabadi FKR, Doosti A. Dermaseptin B2 bioactive gene's potential for anticancer and anti-proliferative effect is linked to the regulation of the BAX/BBC3/AKT pathway. Med Oncol 2024; 41:162. [PMID: 38767753 DOI: 10.1007/s12032-024-02384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Dermaseptin B2 (DrsB2) is an antimicrobial peptide with anticancer and angiostatic properties. We aimed to assess the in vitro inhibitory effect of pDNA/DrsB2 on the growth of breast cancer cells and its impact on the expression of genes involved in the BAX/BBC3/AKT pathway. The nucleic acid sequence of DrsB2 was artificially synthesized and inserted into the pcDNA3.1( +) Mammalian Expression Plasmid. PCR testing and enzyme digesting procedures evaluated the accuracy of cloning. The vectors were introduced into cells using LipofectamineTM2000 transfection reagent. The breast cancer cells were assessed by flow cytometry, MTT assessment, soft agar colony method, and wound healing investigation. The gene's transcription was evaluated using real-time PCR with a significance level of P < 0.05. The recombinant plasmid harboring the pDNA/DrsB2 vector was effectively produced, and the gene sequence showed absolute homogeneity (100% similarity) with the DrsB2 gene. The transfection effectiveness of MCF-7 and MCF-10A cells was 79% and 68%, respectively. The findings are measured using the growth inhibition 50% (GI50) metric, which indicates the concentration of pDNA/DrsB2 that stops 50% of cell growth. The proportions of early apoptosis, late apoptosis, necrosis, and viable MCF-7 cells in the pDNA/DrsB2 group were 40.50%, 2.31%, 1.69%, and 55.50%, respectively. The results showed a 100% increase in gene expression in programmed cell death following treatment with pDNA/DrsB2 (**P < 0.01). To summarize, the results described in this work offer new possibilities for treating cancer by targeting malignancies via pDNA/DrsB2 and activating the BAX/BBC3/AKT signaling pathways.
Collapse
Affiliation(s)
- Fatemeh Khak-Rah Nasirabadi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
17
|
Mangoni ML, Loffredo MR, Casciaro B, Ferrera L, Cappiello F. An Overview of Frog Skin-Derived Esc Peptides: Promising Multifunctional Weapons against Pseudomonas aeruginosa-Induced Pulmonary and Ocular Surface Infections. Int J Mol Sci 2024; 25:4400. [PMID: 38673985 PMCID: PMC11049899 DOI: 10.3390/ijms25084400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Antimicrobial resistance is a silent pandemic harming human health, and Pseudomonas aeruginosa is the most common bacterium responsible for chronic pulmonary and eye infections. Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics. In this review, the in vitro/in vivo activities of the frog skin-derived AMP Esc(1-21) are shown. Esc(1-21) rapidly kills both the planktonic and sessile forms of P. aeruginosa and stimulates migration of epithelial cells, likely favoring repair of damaged tissue. However, to undertake preclinical studies, some drawbacks of AMPs (cytotoxicity, poor biostability, and limited delivery to the target site) must be overcome. For this purpose, the stereochemistry of two amino acids of Esc(1-21) was changed to obtain the diastereomer Esc(1-21)-1c, which is more stable, less cytotoxic, and more efficient in treating P. aeruginosa-induced lung and cornea infections in mouse models. Incorporation of these peptides (Esc peptides) into nanoparticles or immobilization to a medical device (contact lens) was revealed to be an effective strategy to ameliorate and/or to prolong the peptides' antimicrobial efficacy. Overall, these data make Esc peptides encouraging candidates for novel multifunctional drugs to treat lung pathology especially in patients with cystic fibrosis and eye dysfunctions, characterized by both tissue injury and bacterial infection.
Collapse
Affiliation(s)
- Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| | - Maria Rosa Loffredo
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| | - Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| | - Loretta Ferrera
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| |
Collapse
|
18
|
Chan SJW, Zhu JY, Mia Soh WW, Bazan GC. Real-Time Monitoring of Mitochondrial Damage Using Conjugated Oligoelectrolytes. J Am Chem Soc 2024; 146:660-667. [PMID: 38131111 DOI: 10.1021/jacs.3c10531] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Conjugated oligoelectrolytes (COEs) comprise a class of fluorescent reporters with tunable optical properties and lipid bilayer affinity. These molecules have proven effective in a range of bioimaging applications; however, their use in characterizing specific subcellular structures remains restricted. Such capabilities would broaden COE applications to understand cellular dysfunction, cell communication, and the targets of different pharmaceutical agents. Here, we disclose a novel COE derivative, COE-CN, which enables the visualization of mitochondria, including morphological changes and lysosomal fusion upon treatment with depolarizing agents. COE-CN is characterized by the presence of imidazolium solubilizing groups and an optically active cyanovinyl-linked distyrylbenzene core with intramolecular charge-transfer characteristics. Our current understanding is that the relatively shorter molecular length of COE-CN leads to weaker binding within lipid bilayer membranes, which allows sampling of internal cellular structures and ultimately to different localization relative to elongated COEs. As a means of practical demonstration, COE-CN can be used to diagnose cells with damaged mitochondria via flow cytometry. Coupled with an elongated COE that does not translocate upon depolarization, changes in ratiometric fluorescence intensity can be used to monitor mitochondrial membrane potential disruption, demonstrating the potential for use in diagnostic assays.
Collapse
Affiliation(s)
- Samuel J W Chan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Ji-Yu Zhu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Wilson Wee Mia Soh
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
19
|
Malinick AS, Stuart DD, Lambert AS, Cheng Q. Curved Membrane Mimics for Quantitative Probing of Protein-Membrane Interactions by Surface Plasmon Resonance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:84-94. [PMID: 38128131 DOI: 10.1021/acsami.3c12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A majority of biomimetic membranes used for current biophysical studies rely on planar structures such as supported lipid bilayer (SLB) and self-assembled monolayers (SAMs). While they have facilitated key information collection, the lack of curvature makes these models less effective for the investigation of curvature-dependent protein binding. Here, we report the development and characterization of curved membrane mimics on a solid substrate with tunable curvature and ease in incorporation of cellular membrane components for the study of protein-membrane interactions. The curved membranes were generated with an underlayer lipid membrane composed of DGS-Ni-NTA and POPC lipids on the substrate, followed by the attachment of histidine-tagged cholera toxin (his-CT) as a capture layer. Lipid vesicles containing different compositions of gangliosides, including GA1, GM1, GT1b, and GQ1b, were anchored to the capture layer, providing fixation of the curved membranes with intact structures. Characterization of the curved membrane was accomplished with surface plasmon resonance (SPR), fluorescence recovery after photobleaching (FRAP), and nano-tracking analysis (NTA). Further optimization of the interface was achieved through principal component analysis (PCA) to understand the effect of ganglioside type, percentage, and vesicle dimensions on their interactions with proteins. In addition, Monte Carlo simulations were employed to predict the distribution of the gangliosides and interaction patterns with single point and multipoint binding models. This work provides a reliable approach to generate robust, component-tuning, and curved membranes for investigating protein interactions more pertinently than what a traditional planar membrane offers.
Collapse
Affiliation(s)
- Alexander S Malinick
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Daniel D Stuart
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Alexander S Lambert
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
20
|
Ramirez JM, Calderon-Zavala AC, Balaram A, Heldwein EE. In vitro reconstitution of herpes simplex virus 1 fusion identifies low pH as a fusion co-trigger. mBio 2023; 14:e0208723. [PMID: 37874146 PMCID: PMC10746285 DOI: 10.1128/mbio.02087-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE HSV-1 causes lifelong, incurable infections and diseases ranging from mucocutaneous lesions to fatal encephalitis. Fusion of viral and host membranes is a critical step in HSV-1 infection of target cells that requires multiple factors on both the viral and host sides. Due to this complexity, many fundamental questions remain unanswered, such as the identity of the viral and host factors that are necessary and sufficient for HSV-1-mediated membrane fusion and the nature of the fusion trigger. Here, we developed a simplified in vitro fusion assay to examine the fusion requirements and identified low pH as a co-trigger for virus-mediated fusion in vitro. We hypothesize that low pH has a critical role in cell entry and, potentially, pathogenesis.
Collapse
Affiliation(s)
- J. Martin Ramirez
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Medical Scientist Training Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ariana C. Calderon-Zavala
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ariane Balaram
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Medical Scientist Training Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Amengual J, Notaro-Roberts L, Nieh MP. Morphological control and modern applications of bicelles. Biophys Chem 2023; 302:107094. [PMID: 37659154 DOI: 10.1016/j.bpc.2023.107094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/04/2023]
Abstract
Bicellar systems have become popularized as their rich morphology can be applied in biochemistry, physical chemistry, and drug delivery technology. To the biochemical field, bicelles are powerful model membranes for the study of transmembrane protein behavior, membrane transport, and environmental interactions with the cell. Their morphological responses to environmental changes reveal a profound fundamental understanding of physical chemistry related to the principle of self-assembly. Recently, they have also drawn significant attention as theranostic nanocarriers in biopharmaceutical and diagnostic research due to their superior cellular uptake compared to liposomes. It is evident that applications are becoming broader, demanding to understand how the bicelle will form and behave in various environments. To consolidate current works on the bicelle's modern applications, this review will discuss various effects of composition and environmental conditions on the morphology, phase behavior, and stability. Furthermore, various applications such as payload entrapment and polymerization templating are presented to demonstrate their versatility and chemical nature.
Collapse
Affiliation(s)
- Justin Amengual
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, United States
| | - Luke Notaro-Roberts
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, United States
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, United States; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
22
|
de Lima MRP, Bezerra RFS, Serafim DDB, Sena Junior DM. Dynamics of the Apo µ-Opioid Receptor in Complex with Gi Protein. Int J Mol Sci 2023; 24:13430. [PMID: 37686252 PMCID: PMC10487971 DOI: 10.3390/ijms241713430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Opioid receptors, particularly the µ-opioid receptor (μOR), play a pivotal role in mediating the analgesic and addictive effects of opioid drugs. G protein signaling is an important pathway of μOR function, usually associated with painkilling effects. However, the molecular mechanisms underlying the interaction between the μOR and G protein remain poorly understood. In this study, we employed classical all-atom molecular dynamics simulations to investigate the structural changes occurring with the μOR-G protein complex under two different conditions: with the G protein in the apo form (open) and with the GDP bound G protein (closed, holo form). The receptor was in the apo form and active conformation in both cases, and the simulation time comprised 1µs for each system. In order to assess the effect of the G protein coupling on the receptor activation state, three parameters were monitored: the correlation of the distance between TM3 and TM6 and the RMSD of the NPxxYA motif; the universal activation index (A100); and the χ2 dihedral distribution of residue W2936.48. When complexed with the open G protein, receptor conformations with intermediate activation state prevailed throughout the molecular dynamics, whereas in the condition with the closed G protein, mostly inactive conformations of the receptor were observed. The major effect of the G protein in the receptor conformation comes from a steric hindrance involving an intracellular loop of the receptor and a β-sheet region of the G protein. This suggests that G-protein precoupling is essential for receptor activation, but this fact is not sufficient for complete receptor activation.
Collapse
Affiliation(s)
- Mira Raya Paula de Lima
- Biological Chemistry Department, Universidade Regional do Cariri—URCA, Crato 63105-000, CE, Brazil; (R.F.S.B.); (D.D.B.S.)
- Instituto Federal de Educação Ciência e Tecnologia do Ceará—IFCE, Juazeiro do Norte 63040-540, CE, Brazil
| | - Rubem Francisco Silva Bezerra
- Biological Chemistry Department, Universidade Regional do Cariri—URCA, Crato 63105-000, CE, Brazil; (R.F.S.B.); (D.D.B.S.)
| | - David Denis Bento Serafim
- Biological Chemistry Department, Universidade Regional do Cariri—URCA, Crato 63105-000, CE, Brazil; (R.F.S.B.); (D.D.B.S.)
| | - Diniz Maciel Sena Junior
- Biological Chemistry Department, Universidade Regional do Cariri—URCA, Crato 63105-000, CE, Brazil; (R.F.S.B.); (D.D.B.S.)
| |
Collapse
|
23
|
Abt C, Gerlach LM, Bull J, Jacob A, Kreikemeyer B, Patenge N. Pyrenebutyrate Enhances the Antibacterial Effect of Peptide-Coupled Antisense Peptide Nucleic Acids in Streptococcus pyogenes. Microorganisms 2023; 11:2131. [PMID: 37763975 PMCID: PMC10537354 DOI: 10.3390/microorganisms11092131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/29/2023] Open
Abstract
Antisense peptide nucleic acids (PNAs) inhibit bacterial growth in several infection models. Since PNAs are not spontaneously taken up by bacteria, they are often conjugated to carriers such as cell-penetrating peptides (CPPs) in order to improve translocation. Hydrophobic counterions such as pyrenebutyrate (PyB) have been shown to facilitate translocation of peptides over natural and artificial membranes. In this study, the capability of PyB to support translocation of CPP-coupled antisense PNAs into bacteria was investigated in Streptococcus pyogenes and Streptococcus pneumoniae. PyB enhanced the antimicrobial activity of CPP-conjugated antisense PNAs in S. pyogenes. The most significant effect of PyB was observed in combination with K8-conjugated anti-gyrA PNAs. In contrast, no significant effect of PyB on the antimicrobial activity of CPP-conjugated PNAs in S. pneumoniae was detected. Uptake of K8-FITC into S. pyogenes, Escherichia coli, and Klebsiella pneumoniae could be improved by pre-incubation with PyB, indicating that PyB supports the antimicrobial effect of CPP-antisense PNAs in S. pyogenes by facilitating the translocation of peptides across the bacterial membrane.
Collapse
Affiliation(s)
- Corina Abt
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany (J.B.); (B.K.)
| | - Lisa Marie Gerlach
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany (J.B.); (B.K.)
| | - Jana Bull
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany (J.B.); (B.K.)
| | | | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany (J.B.); (B.K.)
| | - Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany (J.B.); (B.K.)
| |
Collapse
|
24
|
Whiting R, Stanton S, Kucheriava M, Smith AR, Pitts M, Robertson D, Kammer J, Li Z, Fologea D. Hypo-Osmotic Stress and Pore-Forming Toxins Adjust the Lipid Order in Sheep Red Blood Cell Membranes. MEMBRANES 2023; 13:620. [PMID: 37504986 PMCID: PMC10385129 DOI: 10.3390/membranes13070620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Lipid ordering in cell membranes has been increasingly recognized as an important factor in establishing and regulating a large variety of biological functions. Multiple investigations into lipid organization focused on assessing ordering from temperature-induced phase transitions, which are often well outside the physiological range. However, particular stresses elicited by environmental factors, such as hypo-osmotic stress or protein insertion into membranes, with respect to changes in lipid status and ordering at constant temperature are insufficiently described. To fill these gaps in our knowledge, we exploited the well-established ability of environmentally sensitive membrane probes to detect intramembrane changes at the molecular level. Our steady state fluorescence spectroscopy experiments focused on assessing changes in optical responses of Laurdan and diphenylhexatriene upon exposure of red blood cells to hypo-osmotic stress and pore-forming toxins at room temperature. We verified our utilized experimental systems by a direct comparison of the results with prior reports on artificial membranes and cholesterol-depleted membranes undergoing temperature changes. The significant changes observed in the lipid order after exposure to hypo-osmotic stress or pore-forming toxins resembled phase transitions of lipids in membranes, which we explained by considering the short-range interactions between membrane components and the hydrophobic mismatch between membrane thickness and inserted proteins. Our results suggest that measurements of optical responses from the membrane probes constitute an appropriate method for assessing the status of lipids and phase transitions in target membranes exposed to mechanical stresses or upon the insertion of transmembrane proteins.
Collapse
Affiliation(s)
- Rose Whiting
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Sevio Stanton
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | | | - Aviana R Smith
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Matt Pitts
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Daniel Robertson
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Jacob Kammer
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Department of Family Medicine, Idaho College of Osteopathic Medicine, Meridian, ID 83642, USA
| | - Zhiyu Li
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Daniel Fologea
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
25
|
Faingold II, Soldatova YV, Poletaeva DA, Klimanova EN, Sanina NA. Influence of Nitrosyl Iron Complex with Thiosulfate Ligands on Therapeutically Important Targets Related to Type 2 Diabetes Mellitus. MEMBRANES 2023; 13:615. [PMID: 37504981 PMCID: PMC10384030 DOI: 10.3390/membranes13070615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The high prevalence of type 2 diabetes mellitus (T2DM), and the lack of effective therapy, determine the need for new treatment options. The present study is focused on the NO-donors drug class as effective antidiabetic agents. Since numerous biological systems are involved in the pathogenesis and progression of T2DM, the most promising approach to the development of effective drugs for the treatment of T2DM is the search for pharmacologically active compounds that are selective for a number of therapeutic targets for T2DM and its complications: oxidative stress, non-enzymatic protein glycation, polyol pathway. The nitrosyl iron complex with thiosulfate ligands was studied in this work. Binuclear iron nitrosyl complexes are synthetic analogues of [2Fe-2S] centers in the regulatory protein natural reservoirs of NO. Due to their ability to release NO without additional activation under physiological conditions, these compounds are of considerable interest for the development of potential drugs. The present study explores the effects of tetranitrosyl iron complex with thiosulfate ligands (TNIC-ThS) on T2DM and its complications regarding therapeutic targets in vitro, as well as its ability to bind liposomal membrane, inhibit lipid peroxidation (LPO), and non-enzymatic glycation of bovine serum albumin (BSA), as well as aldose reductase, the enzyme that catalyzes the reduction in glucose to sorbitol in the polyol pathway. Using the fluorescent probe method, it has been shown that TNIC-ThS molecules interact with both hydrophilic and hydrophobic regions of model membranes. TNIC-ThS inhibits lipid peroxidation, exhibiting antiradical activity due to releasing NO (IC50 = 21.5 ± 3.7 µM). TNIC-ThS was found to show non-competitive inhibition of aldose reductase with Ki value of 5.25 × 10-4 M. In addition, TNIC-ThS was shown to be an effective inhibitor of the process of non-enzymatic protein glycation in vitro (IC50 = 47.4 ± 7.6 µM). Thus, TNIC-ThS may be considered to contribute significantly to the treatment of T2DM and diabetic complications.
Collapse
Affiliation(s)
- Irina I Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Yuliya V Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Darya A Poletaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Elena N Klimanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Nataliya A Sanina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
- Medicinal Chemistry Research and Education Center, Moscow Region State University, Mytishchy 142432, Russia
| |
Collapse
|
26
|
Jangid AK, Kim S, Kim K. Polymeric biomaterial-inspired cell surface modulation for the development of novel anticancer therapeutics. Biomater Res 2023; 27:59. [PMID: 37344853 DOI: 10.1186/s40824-023-00404-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Immune cell-based therapies are a rapidly emerging class of new medicines that directly treat and prevent targeted cancer. However multiple biological barriers impede the activity of live immune cells, and therefore necessitate the use of surface-modified immune cells for cancer prevention. Synthetic and/or natural biomaterials represent the leading approach for immune cell surface modulation. Different types of biomaterials can be applied to cell surface membranes through hydrophobic insertion, layer-by-layer attachment, and covalent conjugations to acquire surface modification in mammalian cells. These biomaterials generate reciprocity to enable cell-cell interactions. In this review, we highlight the different biomaterials (lipidic and polymeric)-based advanced applications for cell-surface modulation, a few cell recognition moieties, and how their interplay in cell-cell interaction. We discuss the cancer-killing efficacy of NK cells, followed by their surface engineering for cancer treatment. Ultimately, this review connects biomaterials and biologically active NK cells that play key roles in cancer immunotherapy applications.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
27
|
Abstract
A wide range of biomaterials and engineered cell surfaces are composed of bioconjugates embedded in liposome membranes, surface-immobilized bilayers, or the plasma membranes of living cells. This review article summarizes the various ways that Nature anchors integral and peripheral proteins in a cell membrane and describes the strategies devised by chemical biologists to label a membrane protein in living cells. Also discussed are modern synthetic and semisynthetic methods to produce lipidated proteins. Subsequent sections describe methods to anchor a three-component synthetic construct that is composed of a lipophilic membrane anchor, hydrophilic linker, and exposed functional component. The surface exposed payload can be a fluorophore, aptamer, oligonucleotide, polypeptide, peptide nucleic acid, polysaccharide, branched dendrimer, or linear polymer. Hydrocarbon chains are commonly used as the membrane anchor, and a general experimental trend is that a two chain lipid anchor has higher membrane affinity than a cholesteryl or single chain lipid anchor. Amphiphilic fluorescent dyes are effective molecular probes for cell membrane imaging and a zwitterionic linker between the fluorophore and the lipid anchor promotes high persistence in the plasma membrane of living cells. A relatively new advance is the development of switchable membrane anchors as molecular tools for fundamental studies or as technology platforms for applied biomaterials.
Collapse
Affiliation(s)
- Rananjaya S Gamage
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jordan L Chasteen
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
28
|
Corucci G, Batchu KC, Luchini A, Santamaria A, Frewein MPK, Laux V, Haertlein M, Yamaryo-Botté Y, Botté CY, Sheridan T, Tully M, Maestro A, Martel A, Porcar L, Fragneto G. Developing advanced models of biological membranes with hydrogenous and deuterated natural glycerophospholipid mixtures. J Colloid Interface Sci 2023; 645:870-881. [PMID: 37178564 DOI: 10.1016/j.jcis.2023.04.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Cellular membranes are complex systems that consist of hundreds of different lipid species. Their investigation often relies on simple bilayer models including few synthetic lipid species. Glycerophospholipids (GPLs) extracted from cells are a valuable resource to produce advanced models of biological membranes. Here, we present the optimisation of a method previously reported by our team for the extraction and purification of various GPL mixtures from Pichia pastoris. The implementation of an additional purification step by High Performance Liquid Chromatography-Evaporative Light Scattering Detector (HPLC-ELSD) enabled for a better separation of the GPL mixtures from the neutral lipid fraction that includes sterols, and also allowed for the GPLs to be purified according to their different polar headgroups. Pure GPL mixtures at significantly high yields were produced through this approach. For this study, we utilised phoshatidylcholine (PC), phosphatidylserine (PS) and phosphatidylglycerol (PG) mixtures. These exhibit a single composition of the polar head, i.e., PC, PS or PG, but contain several molecular species consisting of acyl chains of varying length and unsaturation, which were determined by Gas Chromatography (GC). The lipid mixtures were produced both in their hydrogenous (H) and deuterated (D) versions and were used to form lipid bilayers both on solid substrates and as vesicles in solution. The supported lipid bilayers were characterised by quartz crystal microbalance with dissipation monitoring (QCM-D) and neutron reflectometry (NR), whereas the vesicles by small angle X-ray (SAXS) and neutron scattering (SANS). Our results show that despite differences in the acyl chain composition, the hydrogenous and deuterated extracts produced bilayers with very comparable structures, which makes them valuable to design experiments involving selective deuteration with techniques such as NMR, neutron scattering or infrared spectroscopy.
Collapse
Affiliation(s)
- Giacomo Corucci
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France; École doctorale de Physique, Université Grenoble Alpes, 38400 Saint-Martin-d'Héres, France
| | | | - Alessandra Luchini
- European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund, Sweden; Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Andreas Santamaria
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France; Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Moritz Paul Karl Frewein
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France; Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, 8010, Austria
| | - Valèrie Laux
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France
| | - Michael Haertlein
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team & GEMELI Lipidomics Platform, Institute for Advanced Biosciences, CNRS UMR5309, INSERM (-National Institute for Health and Medical Research) U1209, Université Grenoble Alpes, 38000 Grenoble, France
| | - Cyrille Y Botté
- ApicoLipid Team & GEMELI Lipidomics Platform, Institute for Advanced Biosciences, CNRS UMR5309, INSERM (-National Institute for Health and Medical Research) U1209, Université Grenoble Alpes, 38000 Grenoble, France
| | - Thomas Sheridan
- University College Dublin, Belfield, Dublin 4, Dublin, Ireland; AbbVie, Clonshaugh, Dublin 7, Co. Dublin, Ireland
| | - Mark Tully
- European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, CS 40220, 38043, Grenoble, France
| | - Armando Maestro
- Centro de Física de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE - Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Anne Martel
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France
| | - Lionel Porcar
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France; École doctorale de Physique, Université Grenoble Alpes, 38400 Saint-Martin-d'Héres, France; European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund, Sweden.
| |
Collapse
|
29
|
Cooper A, Girish V, Subramaniam AB. Osmotic Pressure Enables High-Yield Assembly of Giant Vesicles in Solutions of Physiological Ionic Strengths. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5579-5590. [PMID: 37021722 PMCID: PMC10116648 DOI: 10.1021/acs.langmuir.3c00457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Giant unilamellar vesicles (GUVs) are micrometer-scale minimal cellular mimics that are useful for bottom-up synthetic biology and drug delivery. Unlike assembly in low-salt solutions, assembly of GUVs in solutions with ionic concentrations of 100-150 mM Na/KCl (salty solutions) is challenging. Chemical compounds deposited on the substrate or incorporated into the lipid mixture could assist in the assembly of GUVs. Here, we investigate quantitatively the effects of temperature and chemical identity of six polymeric compounds and one small molecule compound on the molar yields of GUVs composed of three different lipid mixtures using high-resolution confocal microscopy and large data set image analysis. All the polymers moderately increased the yields of GUVs either at 22 or 37 °C, whereas the small molecule compound was ineffective. Low-gelling temperature agarose is the singular compound that consistently produces yields of GUVs of greater than 10%. We propose a free energy model of budding to explain the effects of polymers in assisting the assembly of GUVs. The osmotic pressure exerted on the membranes by the dissolved polymer balances the increased adhesion between the membranes, thus reducing the free energy for bud formation. Data obtained by modulating the ionic strength and ion valency of the solution shows that the evolution of the yield of GUVs supports our model's prediction. In addition, polymer-specific interactions with the substrate and the lipid mixture affects yields. The uncovered mechanistic insights provide a quantitative experimental and theoretical framework to guide future studies. Additionally, this work shows a facile means for obtaining GUVs in solutions of physiological ionic strengths.
Collapse
Affiliation(s)
- Alexis Cooper
- Department
of Chemistry and Biochemistry, University
of California, Merced, Merced, California 95343, United States
| | - Vaishnavi Girish
- Department
of Bioengineering, University of California,
Merced, Merced, California 95343, United States
| | - Anand Bala Subramaniam
- Department
of Bioengineering, University of California,
Merced, Merced, California 95343, United States
| |
Collapse
|
30
|
Lenz J, Larsen AH, Keller S, Luchini A. Effect of Cholesterol on the Structure and Composition of Glyco-DIBMA Lipid Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3569-3579. [PMID: 36854196 PMCID: PMC10018766 DOI: 10.1021/acs.langmuir.2c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Different amphiphilic co-polymers have been introduced to produce polymer-lipid particles with nanodisc structure composed of an inner lipid bilayer and polymer chains self-assembled as an outer belt. These particles can be used to stabilize membrane proteins in solution and enable their characterization by means of biophysical methods, including small-angle X-ray scattering (SAXS). Some of these co-polymers have also been used to directly extract membrane proteins together with their associated lipids from native membranes. Styrene/maleic acid and diisobutylene/maleic acid are among the most commonly used co-polymers for producing polymer-lipid particles, named SMALPs and DIBMALPs, respectively. Recently, a new co-polymer, named Glyco-DIBMA, was produced by partial amidation of DIBMA with the amino sugar N-methyl-d-glucosamine. Polymer-lipid particles produced with Glyco-DIBMA, named Glyco-DIBMALPs, exhibit improved structural properties and stability compared to those of SMALPs and DIBMALPs while retaining the capability of directly extracting membrane proteins from native membranes. Here, we characterize the structure and lipid composition of Glyco-DIBMALPs produced with either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Glyco-DIBMALPs were also prepared with mixtures of either POPC or DMPC and cholesterol at different mole fractions. We estimated the lipid content in the Glyco-DIBMALPs and determined the particle structure and morphology by SAXS. We show that the Glyco-DIBMALPs are nanodisc-like particles whose size and shape depend on the polymer/lipid ratio. This is relevant for designing nanodisc particles with a tunable diameter according to the size of the membrane protein to be incorporated. We also report that the addition of >20 mol % cholesterol strongly perturbed the formation of Glyco-DIBMALPs. Altogether, we describe a detailed characterization of the Glyco-DIBMALPs, which provides relevant inputs for future application of these particles in the biophysical investigation of membrane proteins.
Collapse
Affiliation(s)
- Julia Lenz
- Molecular
Biophysics, Technische Universität
Kaiserslautern, Erwin-Schrödinger-Strasse
13, 67663 Kaiserslautern, Germany
| | | | - Sandro Keller
- Biophysics,
Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
- Field
of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Alessandra Luchini
- European
Spallation Source - ERIC, Partikel Gatan, Lund 224
84, Sweden
- Department
of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| |
Collapse
|
31
|
Adélaïde M, Salnikov E, Ramos-Martín F, Aisenbrey C, Sarazin C, Bechinger B, D’Amelio N. The Mechanism of Action of SAAP-148 Antimicrobial Peptide as Studied with NMR and Molecular Dynamics Simulations. Pharmaceutics 2023; 15:pharmaceutics15030761. [PMID: 36986623 PMCID: PMC10051583 DOI: 10.3390/pharmaceutics15030761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Background: SAAP-148 is an antimicrobial peptide derived from LL-37. It exhibits excellent activity against drug-resistant bacteria and biofilms while resisting degradation in physiological conditions. Despite its optimal pharmacological properties, its mechanism of action at the molecular level has not been explored. Methods: The structural properties of SAAP-148 and its interaction with phospholipid membranes mimicking mammalian and bacterial cells were studied using liquid and solid-state NMR spectroscopy as well as molecular dynamics simulations. Results: SAAP-148 is partially structured in solution and stabilizes its helical conformation when interacting with DPC micelles. The orientation of the helix within the micelles was defined by paramagnetic relaxation enhancements and found similar to that obtained using solid-state NMR, where the tilt and pitch angles were determined based on 15N chemical shift in oriented models of bacterial membranes (POPE/POPG). Molecular dynamic simulations revealed that SAAP-148 approaches the bacterial membrane by forming salt bridges between lysine and arginine residues and lipid phosphate groups while interacting minimally with mammalian models containing POPC and cholesterol. Conclusions: SAAP-148 stabilizes its helical fold onto bacterial-like membranes, placing its helix axis almost perpendicular to the surface normal, thus probably acting by a carpet-like mechanism on the bacterial membrane rather than forming well-defined pores.
Collapse
Affiliation(s)
- Morgane Adélaïde
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Evgeniy Salnikov
- Institut de Chimie, UMR7177, Université de Strasbourg/CNRS, 67000 Strasbourg, France
| | - Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
- Correspondence: (F.R.-M.); (N.D.); Tel.: +33-3-22-82-74-73 (F.R.-M. & N.D.)
| | - Christopher Aisenbrey
- Institut de Chimie, UMR7177, Université de Strasbourg/CNRS, 67000 Strasbourg, France
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Burkhard Bechinger
- Institut de Chimie, UMR7177, Université de Strasbourg/CNRS, 67000 Strasbourg, France
| | - Nicola D’Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France
- Correspondence: (F.R.-M.); (N.D.); Tel.: +33-3-22-82-74-73 (F.R.-M. & N.D.)
| |
Collapse
|
32
|
Watkins SL. Current Trends and Changes in Use of Membrane Molecular Dynamics Simulations within Academia and the Pharmaceutical Industry. MEMBRANES 2023; 13:148. [PMID: 36837651 PMCID: PMC9961006 DOI: 10.3390/membranes13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
There has been an almost exponential increase in the use of molecular dynamics simulations in basic research and industry over the last 5 years, with almost a doubling in the number of publications each year. Many of these are focused on neurological membranes, and biological membranes in general, applied to the medical industry. A smaller portion have utilized membrane simulations to answer more basic questions related to the function of specific proteins, chemicals or biological processes. This review covers some newer studies, alongside studies from the last two decades, to determine changes in the field. Some of these are basic, while others are more profound, such as multi-component embedded membrane machinery. It is clear that many facets of the discipline remain the same, while the focus on and uses of the technology are broadening in scope and utilization as a general research tool. Analysis of recent literature provides an overview of the current methodologies, covers some of the recent trends or advances and tries to make predictions of the overall path membrane molecular dynamics will follow in the coming years. In general, the overview presented is geared towards the general scientific community, who may wish to introduce the use of these methodologies in light of these changes, making molecular dynamic simulations more feasible for general scientific or medical research.
Collapse
Affiliation(s)
- Stephan L Watkins
- Plant Pathology and CRGB, Oregon State University, 2701 SW Campus Way, Corvallis, OR 97331, USA
| |
Collapse
|
33
|
Klaiss-Luna MC, Jemioła-Rzemińska M, Strzałka K, Manrique-Moreno M. Understanding the Biophysical Interaction of LTX-315 with Tumoral Model Membranes. Int J Mol Sci 2022; 24:ijms24010581. [PMID: 36614022 PMCID: PMC9820754 DOI: 10.3390/ijms24010581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Host defense peptides are found primarily as natural antimicrobial agents among all lifeforms. These peptides and their synthetic derivatives have been extensively studied for their potential use as therapeutic agents. The most accepted mechanism of action of these peptides is related to a nonspecific mechanism associated with their interaction with the negatively charged groups present in membranes, inducing bilayer destabilization and cell death through several routes. Among the most recently reported peptides, LTX-315 has emerged as an important oncolytic peptide that is currently in several clinical trials against different cancer types. However, there is a lack of biophysical studies regarding LTX-315 and its interaction with membranes. This research focuses primarily on the understanding of the molecular bases of LTX-315's interaction with eukaryotic lipids, based on two artificial systems representative of non-tumoral and tumoral membranes. Additionally, the interaction with individual lipids was studied by differential scanning calorimetry and Fourier-transformed infrared spectroscopy. The results showed a strong interaction of LTX-315 with the negatively charged phosphatidylserine. The results are important for understanding and facilitating the design and development of improved peptides with anticancer activity.
Collapse
Affiliation(s)
- Maria C. Klaiss-Luna
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A 1226, Medellin 050010, Colombia
| | - Małgorzata Jemioła-Rzemińska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Kazimierz Strzałka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
- Correspondence: (K.S.); (M.M.-M.); Tel.: +48-(12)-664-65-09 (K.S.); +57-300-7078-928 (M.M.-M.)
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A 1226, Medellin 050010, Colombia
- Correspondence: (K.S.); (M.M.-M.); Tel.: +48-(12)-664-65-09 (K.S.); +57-300-7078-928 (M.M.-M.)
| |
Collapse
|
34
|
Luchini A, Tidemand FG, Johansen NT, Sebastiani F, Corucci G, Fragneto G, Cárdenas M, Arleth L. Dark peptide discs for the investigation of membrane proteins in supported lipid bilayers: the case of synaptobrevin 2 (VAMP2). NANOSCALE ADVANCES 2022; 4:4526-4534. [PMID: 36341300 PMCID: PMC9595196 DOI: 10.1039/d2na00384h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Supported lipid bilayers (SLBs) are commonly used as model systems mimicking biological membranes. Recently, we reported a new method to produce SLBs with incorporated membrane proteins, which is based on the application of peptide discs [Luchini et al., Analytical Chemistry, 2020, 92, 1081-1088]. Peptide discs are small discoidal particles composed of a lipid core and an outer belt of self-assembled 18A peptides. SLBs including membrane proteins can be formed by depositing the peptide discs on a solid support and subsequently removing the peptide by buffer rinsing. Here, we introduce a new variant of the 18A peptide, named dark peptide (d18A). d18A exhibits UV absorption at 214 nm, whereas the absorption at 280 nm is negligible. This improves sample preparation as it enables a direct quantification of the membrane protein concentration in the peptide discs by measuring UV absorption at 280 nm. We describe the application of the peptide discs prepared with d18A (dark peptide discs) to produce SLBs with a membrane protein, synaptobrevin 2 (VAMP2). The collected data showed the successful formation of SLBs with high surface coverage and incorporation of VAMP2 in a single orientation with the extramembrane domain exposed towards the bulk solvent. Compared to 18A, we found that d18A was more efficiently removed from the SLB. Our data confirmed the structural organisation of VAMP2 as including both α-helical and β-sheet secondary structure. We further verified the orientation of VAMP2 in the SLBs by characterising the binding of VAMP2 with α-synuclein. These results point at the produced SLBs as relevant membrane models for biophysical studies as well as nanostructured biomaterials.
Collapse
Affiliation(s)
| | - Frederik Grønbæk Tidemand
- Department of Plant and Environmental Sciences, University of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Nicolai Tidemand Johansen
- Department of Plant and Environmental Sciences, University of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Federica Sebastiani
- Biofilms Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University Per Albin Hanssons Väg 35 21432 Malmö Sweden
| | - Giacomo Corucci
- Institut Laue-Langevin 71 Avenue des Martyrs, BP 156 38042 Grenoble France
- Université Grenoble Alpes, Ecole Doctorale de Physique 110 Rue de la Chimie 38400 Saint-Martin-d'Hères France
| | - Giovanna Fragneto
- Institut Laue-Langevin 71 Avenue des Martyrs, BP 156 38042 Grenoble France
- Université Grenoble Alpes, Ecole Doctorale de Physique 110 Rue de la Chimie 38400 Saint-Martin-d'Hères France
| | - Marité Cárdenas
- Biofilms Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University Per Albin Hanssons Väg 35 21432 Malmö Sweden
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| |
Collapse
|
35
|
Abesekara MS, Chau Y. Recent advances in surface modification of micro- and nano-scale biomaterials with biological membranes and biomolecules. Front Bioeng Biotechnol 2022; 10:972790. [PMID: 36312538 PMCID: PMC9597319 DOI: 10.3389/fbioe.2022.972790] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Surface modification of biomaterial can improve its biocompatibility and add new biofunctions, such as targeting specific tissues, communication with cells, and modulation of intracellular trafficking. Here, we summarize the use of various natural materials, namely, cell membrane, exosomes, proteins, peptides, lipids, fatty acids, and polysaccharides as coating materials on micron- and nano-sized particles and droplets with the functions imparted by coating with different materials. We discuss the applicability, operational parameters, and limitation of different coating techniques, from the more conventional approaches such as extrusion and sonication to the latest innovation seen on the microfluidics platform. Methods commonly used in the field to examine the coating, including its composition, physical dimension, stability, fluidity, permeability, and biological functions, are reviewed.
Collapse
|
36
|
Ramos-Martín F, Herrera-León C, D'Amelio N. Bombyx mori Cecropin D could trigger cancer cell apoptosis by interacting with mitochondrial cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184003. [PMID: 35850261 DOI: 10.1016/j.bbamem.2022.184003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Cecropin D is an antimicrobial peptide from Bombyx mori displaying anticancer and pro-apoptotic activities and, together with Cecropin XJ and Cecropin A, one of the very few peptides targeting esophageal cancer. Cecropin D displays poor similarity to other cecropins but a remarkable similarity in the structure and activity spectrum with Cecropin A and Cecropin XJ, offering the possibility to highlight key motifs at the base of the biological activity. In this work we show by NMR and MD simulations that Cecropin D is partially structured in solution and stabilizes its two-helix folding upon interaction with biomimetic membranes. Simulations show that Cecropin D strongly interacts with the surface of cancer cell biomimetic bilayers where it recognises the phosphatidylserine headgroup often exposed in the outer leaflet of cancerous cells by means of specific salt bridges. Cecropin D is also able to penetrate deeply in bilayers containing cardiolipin, a phospholipid found in mitochondria, causing significant destabilization in the lipid packing which might account for its pro-apoptotic activity. In bacterial membranes, phosphatidylglycerol and phosphatidylethanolamine act synergically by electrostatically attracting cecropin D and providing access to the membrane core, respectively.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France.
| | - Claudia Herrera-León
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens 80039, France.
| |
Collapse
|
37
|
Dos Santos KF, Materón EM, Oliveira ON. Influence of cytochrome P450 3A4 and membrane lipid composition on doxorubicin activity. Colloids Surf B Biointerfaces 2022; 220:112886. [PMID: 36183636 DOI: 10.1016/j.colsurfb.2022.112886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 09/25/2022] [Indexed: 11/28/2022]
Abstract
Drug resistance is known to depend on the interactions with cell membranes and other molecules such as human cytochromes P450 (CYPs) which are anchored on the endoplasmic reticulum (ER) membrane and involved in the metabolism of anticancer drugs. In this study, we determined the influence from cytochrome P450 3A4 (CYP3A4) on the interaction between the drug doxorubicin (DOX) and Langmuir monolayers mimicking cell membranes. The lipid composition was varied by changing the relative concentrations of cholesterol (Chol), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and L-α-phosphatidylinositol (PI). Three compositions were studied in detail which represented a healthy cell membrane and cancerous cell membranes. DOX induced an expansion in the surface pressure isotherms for all monolayers, with stronger effect for the composition of cancerous cell with a high Chol content, thus confirming the relevance of lipid composition. This effect decreased considerably when CYP3A4 was incorporated with the formation of CYP3A4-DOX complexes, according to results from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) measurements. Taken together, these results support the hypothesis of CYP3A4 being involved in drug resistance, which may be exploited to design strategies to enhance chemotherapy efficacy.
Collapse
Affiliation(s)
- Kevin F Dos Santos
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Elsa M Materón
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
38
|
Liang M, Liu D, Nie Y, Liu Y, Qiao X. Exploiting styrene-maleic acid copolymer grafting chromatographic stationary phase materials for separation of membrane lipids. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Formation of a Fully Anionic Supported Lipid Bilayer to Model Bacterial Inner Membrane for QCM-D Studies. MEMBRANES 2022; 12:membranes12060558. [PMID: 35736265 PMCID: PMC9229009 DOI: 10.3390/membranes12060558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022]
Abstract
Supported lipid bilayers (SLBs) on quartz crystals are employed as versatile model systems for studying cell membrane behavior with the use of the highly sensitive technique of quartz crystal microbalance with dissipation monitoring (QCM-D). Since the lipids constituting cell membranes vary from predominantly zwitterionic lipids in mammalian cells to predominantly anionic lipids in the inner membrane of Gram-positive bacteria, the ability to create SLBs of different lipid compositions is essential for representing different cell membranes. While methods to generate stable zwitterionic SLBs and zwitterionic-dominant mixed zwitterionic–anionic SLBs on quartz crystals have been well established, there are no reports of being able to form predominantly or fully anionic SLBs. We describe here a method for forming entirely anionic SLBs by treating the quartz crystal with cationic (3-aminopropyl) trimethoxysilane (APTMS). The formation of the anionic SLB was tracked using QCM-D by monitoring the adsorption of anionic lipid vesicles to a quartz surface and subsequent bilayer formation. Anionic egg L-α-phosphatidylglycerol (PG) vesicles adsorbed on the surface-treated quartz crystal, but did not undergo the vesicle-to-bilayer transition to create an SLB. However, when PG was mixed with 10–40 mole% 1-palmitoyl-2-hydroxy-sn-glycero-3-phospho-(1′-rac-glycerol) (LPG), the mixed vesicles led to the formation of stable SLBs. The dynamics of SLB formation monitored by QCM-D showed that while SLB formation by zwitterionic lipids followed a two-step process of vesicle adsorption followed by the breakdown of the adsorbed vesicles (which in turn is a result of multiple events) to create the SLB, the PG/LPG mixed vesicles ruptured immediately on contacting the quartz surface resulting in a one-step process of SLB formation. The QCM-D data also enabled the quantitative characterization of the SLB by allowing estimation of the lipid surface density as well as the thickness of the hydrophobic region of the SLB. These fully anionic SLBs are valuable model systems to conduct QCM-D studies of the interactions of extraneous substances such as antimicrobial peptides and nanoparticles with Gram-positive bacterial membranes.
Collapse
|
40
|
Insight into the Impact of Oxidative Stress on the Barrier Properties of Lipid Bilayer Models. Int J Mol Sci 2022; 23:ijms23115932. [PMID: 35682621 PMCID: PMC9180489 DOI: 10.3390/ijms23115932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
As a new field of oxidative stress-based therapy, cold physical plasma is a promising tool for several biomedical applications due to its potential to create a broad diversity of reactive oxygen and nitrogen species (RONS). Although proposed, the impact of plasma-derived RONS on the cell membrane lipids and properties is not fully understood. For this purpose, the changes in the lipid bilayer functionality under oxidative stress generated by an argon plasma jet (kINPen) were investigated by electrochemical techniques. In addition, liquid chromatography-tandem mass spectrometry was employed to analyze the plasma-induced modifications on the model lipids. Various asymmetric bilayers mimicking the structure and properties of the erythrocyte cell membrane were transferred onto a gold electrode surface by Langmuir-Blodgett/Langmuir-Schaefer deposition techniques. A strong impact of cholesterol on membrane permeabilization by plasma-derived species was revealed. Moreover, the maintenance of the barrier properties is influenced by the chemical composition of the head group. Mainly the head group size and its hydrogen bonding capacities are relevant, and phosphatidylcholines are significantly more susceptible than phosphatidylserines and other lipid classes, underlining the high relevance of this lipid class in membrane dynamics and cell physiology.
Collapse
|
41
|
Sarangi N, Prabhakaran A, Keyes TE. Multimodal Investigation into the Interaction of Quinacrine with Microcavity-Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6411-6424. [PMID: 35561255 PMCID: PMC9134496 DOI: 10.1021/acs.langmuir.2c00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Indexed: 05/19/2023]
Abstract
Quinacrine is a versatile drug that is widely recognized for its antimalarial action through its inhibition of the phospholipase enzyme. It also has antianthelmintic and antiprotozoan activities and is a strong DNA binder that may be used to combat multidrug resistance in cancer. Despite extensive cell-based studies, a detailed understanding of quinacrine's influence on the cell membrane, including permeability, binding, and rearrangement at the molecular level, is lacking. Herein, we apply microcavity-suspended lipid bilayers (MSLBs) as in vitro models of the cell membrane comprising DOPC, DOPC:Chol(3:1), and DOPC:SM:Chol(2:2:1) to investigate the influence of cholesterol and intrinsic phase heterogeneity induced by mixed-lipid composition on the membrane interactions of quinacrine. Using electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS) as label-free surface-sensitive techniques, we have studied quinacrine interaction and permeability across the different MSLBs. Our EIS data reveal that the drug is permeable through ternary DOPC:SM:Chol and DOPC-only bilayer compositions. In contrast, the binary cholesterol/DOPC membrane arrested permeation, yet the drug binds or intercalates at this membrane as reflected by an increase in membrane impedance. SERS supported the EIS data, which was utilized to gain structural insights into the drug-membrane interaction. Our SERS data also provides a simple but powerful label-free assessment of drug permeation because a significant SERS enhancement of the drug's Raman signature was observed only if the drug accessed the plasmonic interior of the pore cavity passing through the membrane. Fluorescent lifetime correlation spectroscopy (FLCS) provides further biophysical insight, revealing that quinacrine binding increases the lipid diffusivity of DOPC and the ternary membrane while remarkably decreasing the lipid diffusivity of the DOPC:Chol membrane. Overall, because of its adaptability to multimodal approaches, the MSLB platform provides rich and detailed insights into drug-membrane interactions, making it a powerful tool for in vitro drug screening.
Collapse
Affiliation(s)
- Nirod
Kumar Sarangi
- School of Chemical Science
and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Amrutha Prabhakaran
- School of Chemical Science
and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Tia E. Keyes
- School of Chemical Science
and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
42
|
Rajput S, Yao S, Keizer DW, Sani MA, Separovic F. NMR spectroscopy of lipidic cubic phases. Biophys Rev 2022; 14:67-74. [PMID: 35340611 PMCID: PMC8921435 DOI: 10.1007/s12551-021-00900-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Lipidic cubic phase (LCP) structures have been used for stabilisation and crystallisation of membrane proteins and show promising properties as drug carriers. In this mini-review, we present how NMR spectroscopy has played a major role in understanding the physico-chemical properties of LCPs and how recent advances in pulsed field gradient NMR techniques open new perspectives in characterising encapsulated molecules.
Collapse
Affiliation(s)
- Sunnia Rajput
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052 Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052 Australia
| | - David W. Keizer
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052 Australia
| | - Marc-Antoine Sani
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052 Australia
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Frances Separovic
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052 Australia
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010 Australia
| |
Collapse
|
43
|
Claxton DP, Overway EM, Oeser JK, O'Brien RM, Mchaourab HS. Biophysical and functional properties of purified glucose-6-phosphatase catalytic subunit 1. J Biol Chem 2021; 298:101520. [PMID: 34952005 PMCID: PMC8753184 DOI: 10.1016/j.jbc.2021.101520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 11/18/2022] Open
Abstract
Glucose-6-phosphatase catalytic subunit 1 (G6PC1) plays a critical role in hepatic glucose production during fasting by mediating the terminal step of the gluconeogenesis and glycogenolysis pathways. In concert with accessory transport proteins, this membrane-integrated enzyme catalyzes glucose production from glucose-6-phosphate (G6P) to support blood glucose homeostasis. Consistent with its metabolic function, dysregulation of G6PC1 gene expression contributes to diabetes, and mutations that impair phosphohydrolase activity form the clinical basis of glycogen storage disease type 1a. Despite its relevance to health and disease, a comprehensive view of G6PC1 structure and mechanism has been limited by the absence of expression and purification strategies that isolate the enzyme in a functional form. In this report, we apply a suite of biophysical and biochemical tools to fingerprint the in vitro attributes of catalytically active G6PC1 solubilized in lauryl maltose neopentyl glycol (LMNG) detergent micelles. When purified from Sf9 insect cell membranes, the glycosylated mouse ortholog (mG6PC1) recapitulated functional properties observed previously in intact hepatic microsomes and displayed the highest specific activity reported to date. Additionally, our results establish a direct correlation between the catalytic and structural stability of mG6PC1, which is underscored by the enhanced thermostability conferred by phosphatidylcholine and the cholesterol analog cholesteryl hemisuccinate. In contrast, the N96A variant, which blocks N-linked glycosylation, reduced thermostability. The methodologies described here overcome long-standing obstacles in the field and lay the necessary groundwork for a detailed analysis of the mechanistic structural biology of G6PC1 and its role in complex metabolic disorders.
Collapse
Affiliation(s)
- Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
| | - Emily M Overway
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - James K Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
44
|
Jemmett PN, Milan DC, Nichols RJ, Cox LR, Horswell SL. Effect of Molecular Structure on Electrochemical Phase Behavior of Phospholipid Bilayers on Au(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11887-11899. [PMID: 34590852 DOI: 10.1021/acs.langmuir.1c01975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid bilayers form the basis of biological cell membranes, selective and responsive barriers vital to the function of the cell. The structure and function of the bilayer are controlled by interactions between the constituent molecules and so vary with the composition of the membrane. These interactions also influence how a membrane behaves in the presence of electric fields they frequently experience in nature. In this study, we characterize the electrochemical phase behavior of dipalmitoylphosphatidylcholine (DPPC), a glycerophospholipid prevalent in nature and often used in model systems and healthcare applications. DPPC bilayers were formed on Au(111) electrodes using Langmuir-Blodgett and Langmuir-Schaefer deposition and studied with electrochemical methods, atomic force microscopy (AFM) and in situ polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). The coverage of the substrate determined with AFM is in accord with that estimated from differential capacitance measurements, and the bilayer thickness is slightly higher than for bilayers of the similar but shorter-chained lipid, dimyristoylphosphatidylcholine (DMPC). DPPC bilayers exhibit similar electrochemical response to DMPC bilayers, but the organization of molecules differs, particularly at negative charge densities. Infrared spectra show that DPPC chains tilt as the charge density on the metal is increased in the negative direction, but, unlike in DMPC, the chains then return to their original tilt angle at the most negative potentials. The onset of the increase in the chain tilt angle coincides with a decrease in solvation around the ester carbonyl groups, and the conformation around the acyl chain linkage differs from that in DMPC. We interpret the differences in behavior between bilayers formed from these structurally similar lipids in terms of stronger dispersion forces between DPPC chains and conclude that relatively subtle changes in molecular structure may have a significant impact on a membrane's response to its environment.
Collapse
Affiliation(s)
- Philip N Jemmett
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - David C Milan
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Richard J Nichols
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Sarah L Horswell
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
45
|
Lipid bilayer degradation induced by SARS-CoV-2 spike protein as revealed by neutron reflectometry. Sci Rep 2021; 11:14867. [PMID: 34290262 PMCID: PMC8295359 DOI: 10.1038/s41598-021-93996-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
SARS-CoV-2 spike proteins are responsible for the membrane fusion event, which allows the virus to enter the host cell and cause infection. This process starts with the binding of the spike extramembrane domain to the angiotensin-converting enzyme 2 (ACE2), a membrane receptor highly abundant in the lungs. In this study, the extramembrane domain of SARS-CoV-2 Spike (sSpike) was injected on model membranes formed by supported lipid bilayers in presence and absence of the soluble part of receptor ACE2 (sACE2), and the structural features were studied at sub-nanometer level by neutron reflection. In all cases the presence of the protein produced a remarkable degradation of the lipid bilayer. Indeed, both for membranes from synthetic and natural lipids, a significant reduction of the surface coverage was observed. Quartz crystal microbalance measurements showed that lipid extraction starts immediately after sSpike protein injection. All measurements indicate that the presence of proteins induces the removal of membrane lipids, both in the presence and in the absence of ACE2, suggesting that sSpike molecules strongly associate with lipids, and strip them away from the bilayer, via a non-specific interaction. A cooperative effect of sACE2 and sSpike on lipid extraction was also observed.
Collapse
|
46
|
Luchini A, Cavasso D, Radulescu A, D'Errico G, Paduano L, Vitiello G. Structural Organization of Cardiolipin-Containing Vesicles as Models of the Bacterial Cytoplasmic Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8508-8516. [PMID: 34213914 DOI: 10.1021/acs.langmuir.1c00981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The bacterial cytoplasmic membrane is the innermost bacterial membrane and is mainly composed of three different phospholipid species, i.e., phosphoethanolamine (PE), phosphoglycerol (PG), and cardiolipin (CL). In particular, PG and CL are responsible for the negative charge of the membrane and are often the targets of cationic antimicrobial agents. The growing resistance of bacteria toward the available antibiotics requires the development of new and more efficient antibacterial drugs. In this context, studying the physicochemical properties of the bacterial cytoplasmic membrane is pivotal for understanding drug-membrane interactions at the molecular level as well as for designing drug-testing platforms. Here, we discuss the preparation and characterization of PE/PG/CL vesicle suspensions, which contain all of the main lipid components of the bacterial cytoplasmic membrane. The vesicle suspensions were characterized by means of small-angle neutron scattering, dynamic light scattering, and electron paramagnetic spectroscopy. By combining solution scattering and spectroscopy techniques, we propose a detailed description of the impact of different CL concentrations on the structure and dynamics of the PE/PG bilayer. CL induces the formation of thicker bilayers, which exhibit higher curvature and are overall more fluid. The experimental results contribute to shed light on the structure and dynamics of relevant model systems of the bacterial cytoplasmic membrane.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Domenico Cavasso
- Department of Chemical Science, University of Naples Federico II, Complesso di Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Aurel Radulescu
- Jülich Centre for Neutron Science, Garching Forschungszentrum, Lichtenbergstrasse 1, D-85747 Garching bei München, Germany
| | - Gerardino D'Errico
- Department of Chemical Science, University of Naples Federico II, Complesso di Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
- CSGI, Center for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino FI, Italy
| | - Luigi Paduano
- Department of Chemical Science, University of Naples Federico II, Complesso di Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
- CSGI, Center for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino FI, Italy
| | - Giuseppe Vitiello
- CSGI, Center for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino FI, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
47
|
Reconstitution of Functional Integrin αIIbβ3 and Its Activation in Plasma Membrane-Mimetic Lipid Environments. MEMBRANES 2021; 11:membranes11070499. [PMID: 34209233 PMCID: PMC8304682 DOI: 10.3390/membranes11070499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
The study of the platelet receptor integrin αIIbβ3 in a membrane-mimetic environment without interfering signalling pathways is crucial to understand protein structure and dynamics. Our understanding of this receptor and its sequential activation steps has been tremendously progressing using structural and reconstitution approaches in model membranes, such as liposomes or supported-lipid bilayers. For most αIIbβ3 reconstitution approaches, saturated short-chain lipids have been used, which is not reflecting the native platelet cell membrane composition. We report here on the reconstitution of label-free full-length αIIbβ3 in liposomes containing cholesterol, sphingomyelin, and unsaturated phosphatidylcholine mimicking the plasma membrane that formed supported-lipid bilayers for quartz-crystal microbalance with dissipation (QCM-D) experiments. We demonstrate the relevance of the lipid environment and its resulting physicochemical properties on integrin reconstitution efficiency and its conformational dynamics. We present here an approach to investigate αIIbβ3 in a biomimetic membrane system as a useful platform do dissect disease-relevant integrin mutations and effects on ligand binding in a lipid-specific context, which might be applicable for drug screening.
Collapse
|