1
|
Apsey H, Hill D, McCoy TM, Villeda-Hernandez M, Faul CFJ, Alexander S. Conductive hydrophobic graphene oxide films via laser-scribed surface modification. J Colloid Interface Sci 2025; 687:189-196. [PMID: 39952110 DOI: 10.1016/j.jcis.2025.02.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Graphene oxide (GO) can be surface modified for various purposes, including enhancing its properties or tailoring its behaviour for specific applications such as biosensing. Herein we report the behaviour of a carboxylate functionalized graphene oxide that is both water repellent and electrically conductive. The GO is first produced using a modified Hummers method and then functionalized with a hyperbranched isostearic alcohol through an esterification reaction. The as-deposited functionalized GO films were observed to cause "petal-like" wetting of water, whereby droplets exhibited contact angles (CAs) greater than 150° and remaining pinned to the surface. To improve their conductivity, films of the functionalized GO deposited onto glass were laser-scribed to reduce some of the specific, adjoining regions of oxidic carbon to partially restore some of the sp2 C network. This improved the conductivity of the as-deposited GO films by approximately four orders of magnitude from 0.002 to ∼20 S/m using the low laser scan speed of 250 mm/min. It was observed that with a high laser scan speed of 500 mm/min some of the hydrophobic character was retained (CAs ∼110°), whilst maintaining conductivities of up to 0.17 S/m. Consequently, these materials show promise for applications such as biosensing materials, where tuneable hydrophobicity combined with conductivity are required characteristics.
Collapse
Affiliation(s)
- Henry Apsey
- Department of Chemical Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN UK
| | - Donald Hill
- Department of Chemical Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN UK
| | - Thomas M McCoy
- Department of Radiation Science and Technology, Technische Universiteit Delft, Delft 2629JB The Netherlands
| | | | - Charl F J Faul
- School of Chemistry, University of Bristol, Bristol BS8 1TS UK
| | - Shirin Alexander
- Department of Chemical Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN UK.
| |
Collapse
|
2
|
Wen X, Tang D, Li J, Li R, Li S, Zhang J, Fu T, Fan S, Lu Y, Wei Q, Zhao D, Lan K. Ultrathin Mesoporous Sandwiched Junctions with Monolayered Mesopores for Ultrahigh-Rate Sodium-Ion Storage. NANO LETTERS 2025; 25:8003-8011. [PMID: 40312143 DOI: 10.1021/acs.nanolett.5c01626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Rational nanostructural design for anode materials plays a crucial role in sodium-ion batteries (SIBs). Two-dimensional (2D) mesostructured composites capable of ideal diffusion kinetics and electronic conductivity are promising materials; however, difficulties remain in actual synthesis. Herein, we present a sequential monomicelle assembly strategy to synthesize uniform monolayered mesoporous TiO2-reduced graphene oxide sandwiched junctions (meso-TiO2/rGO sandwich), which enables superior pseudocapacitive sodium-ion storage. Such a sandwich structure has an ultrathin thickness, monolayered TiO2 mesopores at both sides of the rGO, a high surface area, and a uniform mesopore size. The combination of ultrathin 2D morphology, excellent mesoporosity, and electrical conductivity gives rise to comprehensive electrolyte access, reduced Na+ diffusion lengths, and promoted charge transfer. Remarkably, the sandwich anode exhibits a high reversible capacity, great rate capability, and cycling stability. Our study exemplifies the significance of constructing hybrid materials as an effective strategy for fast electrochemical sodium-ion storage.
Collapse
Affiliation(s)
- Xu Wen
- College of Energy Materials and Chemistry, Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Dafu Tang
- Department of Materials Science and Engineering, Fujian Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| | - Jialong Li
- College of Energy Materials and Chemistry, Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Rongyao Li
- College of Energy Materials and Chemistry, Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Shuang Li
- College of Energy Materials and Chemistry, Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Jingyu Zhang
- College of Energy Materials and Chemistry, Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Tong Fu
- College of Energy Materials and Chemistry, Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Sicheng Fan
- Department of Materials Science and Engineering, Fujian Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| | - Yunwen Lu
- College of Energy Materials and Chemistry, Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Qiulong Wei
- Department of Materials Science and Engineering, Fujian Key Laboratory of Materials Genome, Xiamen University, Xiamen 361005, P. R. China
| | - Dongyuan Zhao
- College of Energy Materials and Chemistry, Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| | - Kun Lan
- College of Energy Materials and Chemistry, Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, P. R. China
| |
Collapse
|
3
|
Han N, Weon SH, Han J, Cha JE, Lee SH. Two-Step Carboxymethylation of Cellulose from Halocynthia roretzi Using Ionic Liquid. Biomacromolecules 2025; 26:2909-2921. [PMID: 40249029 DOI: 10.1021/acs.biomac.4c01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Water-soluble carboxymethylated tunicate cellulose (CMTC) was produced using cellulose from Halocynthia roretzi, known for its uniquely high molecular weight and crystallinity. Among various known methods for cellulose carboxymethylation tested in this study, only the homogeneous method using LiClO4 yielded water-soluble CMTC. However, industrial application of this method is hindered by LiClO4's toxicity, explosiveness, and high cost. Therefore, we developed a two-step carboxymethylation process utilizing [Emim][Ac], effectively converting crystalline cellulose into an amorphous form and reducing both the degree of polymerization (DP) and polydispersity index (PDI). CMTC prepared by this two-step method exhibited a high degree of substitution (DS = 1.94), excellent water solubility (>100 mg/g), and superior thermal stability. Compared to the LiClO4-based CMTC, our product contained only 5% unmodified glucose and demonstrated significantly enhanced thickening properties, with 8-fold greater viscosity in 5% aqueous solutions. Structural properties were confirmed via HPLC, 1H NMR, XRD, FT-IR, and TGA analyses.
Collapse
Affiliation(s)
- Nuri Han
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung Hyeon Weon
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jiwoo Han
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Eun Cha
- Advanced Materials Program, Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang Hyun Lee
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Advanced Materials Program, Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Kropidłowska P, Irzmańska E, Halicka K, Adamus-Włodarczyk A, Raszkowska-Kaczor A, Kaczor D, Szroeder P, Doering M. Improving the mechanical and electrostatic properties of polymer composites for personal protective equipment by incorporating graphite into a poly(vinyl chloride) polymer matrix. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2025; 31:110-120. [PMID: 39803771 DOI: 10.1080/10803548.2024.2444768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
The objective of the study was to examine the mechanical and electrostatic properties of poly(vinyl chloride) intended for use in protective footwear. The poly(vinyl chloride) material was made with graphite (flake side dimensions 5 and 10 µm) additive in weight concentration variants from 0.5 to 10.0%. The influence of incorporating graphite in the polymer matrix was evaluated by testing mechanical parameters and electrostatic parameters (according to Standard No. EN ISO 20344:2021). In addition, the surface morphology, analysis of thermal properties and stability were evaluated. The results indicated the highest increase in tear resistance for the variant containing 1.5- 2.0% graphite. In terms of electrostatic parameters, the addition of graphite caused an increase in electrical resistance. Based on the obtained preliminary test results, it can be concluded that the use of graphite additive can increase the mechanical properties and find application in the production of protective footwear components.
Collapse
Affiliation(s)
| | - Emilia Irzmańska
- Central Institute for Labour Protection - National Research Institute, Poland
| | - Klaudia Halicka
- Central Institute for Labour Protection - National Research Institute, Poland
| | | | - Aneta Raszkowska-Kaczor
- Testing Laboratory "Polymer", Łukasiewicz Research Network - Institute for Materials Engineering and Dyes, Poland
| | - Daniel Kaczor
- Testing Laboratory "Polymer", Łukasiewicz Research Network - Institute for Materials Engineering and Dyes, Poland
| | - Paweł Szroeder
- Institute of Physics, Casimir the Great University, Poland
- Institute of Carbon Materials, Poland
| | | |
Collapse
|
5
|
Dong M, Yang J, Zhen F, Du Y, Ding S, Yu A, Zou R, Qiu L, Guo Z, Coleman HA, Parkington HC, Fallon JB, Forsythe JS, Liu M. Graphene-Based Microelectrodes with Reinforced Interfaces and Tunable Porous Structures for Improved Neural Recordings. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9690-9701. [PMID: 39895006 DOI: 10.1021/acsami.4c19445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Invasive neural electrodes prepared from materials with a miniaturized geometrical size could improve the longevity of implants by reducing the chronic inflammatory response. Graphene-based microfibers with tunable porous structures have a large electrochemical surface area (ESA)/geometrical surface area (GSA) ratio that has been reported to possess low impedance and high charge injection capacity (CIC), yet control of the porous structure remains to be fully investigated. In this study, we introduce wet-spun graphene-based electrodes with pores tuned by sucrose concentrations in the coagulation bath. The electrochemical properties of thermally reduced rGO were optimized by adjusting the ratio of rGO to sucrose, resulting in significantly lower impedance, higher CIC, and higher charge storage capacity (CSC) in comparison to platinum microwires. Tensile and insertion tests confirmed that optimized electrodes had sufficient strength to ensure a 100% insertion success rate with a low angle shift, thus allowing precise implantation without the need for additional mechanical enhancement. Acute in vivo recordings from the auditory cortex found low impedance benefits from the recorded amplitude of spikes, leading to an increase in the signal-to-noise ratio (SNR). Ex vivo recordings from hippocampal brain slices demonstrate that it is possible to record and stimulate with graphene-based electrodes with good fidelity compared with conventional electrodes.
Collapse
Affiliation(s)
- Miheng Dong
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Monash Suzhou Research Institute, Monash University, Suzhou 215000, China
| | - Junjun Yang
- Monash Suzhou Research Institute, Monash University, Suzhou 215000, China
- ARC Research Hub for Smart Process Design and Control, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Fangzheng Zhen
- Monash Suzhou Research Institute, Monash University, Suzhou 215000, China
- ARC Research Hub for Smart Process Design and Control, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yu Du
- Monash Suzhou Research Institute, Monash University, Suzhou 215000, China
- ARC Research Hub for Smart Process Design and Control, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Siyuan Ding
- Monash Suzhou Research Institute, Monash University, Suzhou 215000, China
- ARC Research Hub for Smart Process Design and Control, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
- Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 518055, China
| | - Aibing Yu
- ARC Research Hub for Smart Process Design and Control, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ruiping Zou
- ARC Research Hub for Smart Process Design and Control, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ling Qiu
- Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 518055, China
| | - Zhijun Guo
- Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 518055, China
| | - Harold A Coleman
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Helena C Parkington
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - James B Fallon
- Bionics Institute, East Melbourne, Victoria 3002, Australia
- Medical Bionics Department, University of Melbourne, Parkville, Victoria 3010, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Minsu Liu
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Monash Suzhou Research Institute, Monash University, Suzhou 215000, China
- ARC Research Hub for Smart Process Design and Control, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
6
|
You Y, Ma Y, Zeng X, Wang Y, Du J, Qian Y, Yang G, Su Y, Lei W, Zhao S, Qing Y, Wu Y, Li J. Tailoring Robust 2D Nanochannels by Radical Polymerization for Efficient Molecular Sieving. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409556. [PMID: 39737840 PMCID: PMC11848538 DOI: 10.1002/advs.202409556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/07/2024] [Indexed: 01/01/2025]
Abstract
Two-dimensional (2D) nanochannels have demonstrated outstanding performance for sieving specific molecules or ions, owing to their uniform molecular channel sizes and interlayer physical/chemical properties. However, controllably tuning nanochannel spaces with specific sizes and simultaneously achieving high mechanical strength remain the main challenges. In this work, the inter-sheet gallery d-spacing of graphene oxide (GO) membrane is successfully tailored with high mechanical strength via a general radical-induced polymerization strategy. The introduced amide groups from N-Vinylformamide significantly reinforce the 2D nanochannels within the freestanding membranes, resulting in an ultrahigh tensile strength of up to 105 MPa. The d-spacing of the membrane is controllably tuned within a range of 0.799-1.410 nm, resulting in a variable water permeance of up to 218 L m-2 h-1 bar-1 (1304% higher than that of the pristine GO membranes). In particular, the tailored membranes demonstrate excellent water permeance stability (140 L m-2 h-1 bar-1) in a 200-h long-term operation and high selectivity of solutes under harsh conditions, including a wide range of pH from 4.0 to 10.0, up to a loading pressure of 12 bar and an external temperature of 40 °C. This approach comprehensively achieves a balance between sieving performance and mechanical strength, satisfying the requirements for the next-generation molecular sieving membranes.
Collapse
Affiliation(s)
- Yue You
- Institute for Frontier MaterialsDeakin UniversityGeelongVictoria3220Australia
| | - Yuxi Ma
- Department of Applied Chemistry and Environmental ScienceSchool of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Xianghui Zeng
- Faculty of MaterialsWuhan University of Science & TechnologyWuhan430081China
| | - Yichao Wang
- Department of Applied Chemistry and Environmental ScienceSchool of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Juan Du
- Institute for Frontier MaterialsDeakin UniversityGeelongVictoria3220Australia
| | - Yijun Qian
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical IndustryCollege of EnergySoochow UniversitySuzhou215006China
| | - Guoliang Yang
- Department of Applied Chemistry and Environmental ScienceSchool of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Yuyu Su
- Department of Chemical and Environmental Engineering, School of EngineeringRMIT UniversityMelbourneVictoria3000Australia
| | - Weiwei Lei
- Department of Applied Chemistry and Environmental ScienceSchool of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Shuaifei Zhao
- Institute for Frontier MaterialsDeakin UniversityGeelongVictoria3220Australia
| | - Yan Qing
- College of Materials Science and EngineeringCentral South University of Forestry and TechnologyChangsha410004China
| | - Yiqiang Wu
- College of Materials Science and EngineeringCentral South University of Forestry and TechnologyChangsha410004China
| | - Jingliang Li
- Institute for Frontier MaterialsDeakin UniversityGeelongVictoria3220Australia
| |
Collapse
|
7
|
Ozlek M, Akbulut MS, Burgaz E. Exploring graphene's impact on graphite/PANI matrix composites: high-pressure fabrication and enhanced thermal-electrical properties. NANOSCALE 2024; 17:552-566. [PMID: 39575894 DOI: 10.1039/d4nr03171g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
This study investigates the effects of the graphene content and applied pressure on the electrical and thermal conductivities of graphite/polyaniline (GP) and graphite/graphene/polyaniline (GGP) composites produced via direct mixing method. Based on the electrical and thermal conductivity results, 14 wt% graphene content was found to be the crucial threshold, beyond which extra graphene additions exhibited different behaviors in pressed and unpressed samples. While the electrical conductivity of the unpressed samples increased up to 14 wt% graphene addition, the thermal conductivity increased further after 14 wt% graphene addition. The addition of graphene induced notable changes in the electronic configurations of quinoid and benzenoid rings, as evidenced by ATR-FT-IR spectroscopy. Based on XPS data, the addition of graphene to the graphite/PANI-CSA matrix affected the electronic distribution and charge transfer mechanisms within the GGP composites, particularly showing the impact of graphene addition on the electronic structure of PANI-CSA in the GGP-14 527 MPa sample. Importantly, the interlocking of graphene and graphite layers observed in the GGP-14 sample pressed at 527 MPa (according to Raman and XRD data) led to enhanced thermal (2253 W m-1 K-1) and electrical (210 S cm-1) conductivity. The interlocked configuration of graphene and graphite in GGP-14 527 MPa facilitated efficient electron and phonon flow throughout the hexagonal CC rings and partially charged nitrogen and oxygen atoms of PANI-CSA. In future work, the concept of interlocked graphene and graphite layers can be used to further enhance the thermal and electrical properties in thermoelectric material applications.
Collapse
Affiliation(s)
- Murat Ozlek
- Department of Nanoscience and Nanotechnology, Ondokuz Mayis University, Samsun, 55139, Atakum, Turkey.
| | - Merve Sehnaz Akbulut
- Department of Nanoscience and Nanotechnology, Ondokuz Mayis University, Samsun, 55139, Atakum, Turkey.
| | - Engin Burgaz
- Department of Nanoscience and Nanotechnology, Ondokuz Mayis University, Samsun, 55139, Atakum, Turkey.
- Department of Metallurgical and Materials Engineering, Ondokuz Mayis University, Samsun, 55139, Atakum, Turkey
| |
Collapse
|
8
|
Danushika G, Yap PL, Losic D. Quantifying the Epoxide Group and Epoxide Index in Graphene Oxide by Catalyst-Assisted Acid Titration. Anal Chem 2024; 96:19339-19347. [PMID: 39618044 DOI: 10.1021/acs.analchem.4c03286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Graphene oxide (GO), having diverse oxygen functional groups, including carboxyl, hydroxyl, carbonyl, and epoxy groups, is a significant graphene-related 2D material (GR2M) essential for various applications. The quantification of these functional groups traditionally utilizes Boehm acid titration, which, however, does not account for epoxy groups crucial for these applications. Presently, there exists no analytical method enabling quantitative assessment of the concentration of epoxy groups in GO available in the market in different forms such as powders, pastes, and dispersions. This paper presents a new approach employing catalyst-assisted acid-water-based titration to quantify epoxy groups in GO materials. The method's efficacy was validated using a well-characterized reference GO sample and tested on commercially produced GO powders, yielding epoxy group concentrations ranging from 1.15 ± 0.047 to 1.37 ± 0.051 mmol/g with high precision and reproducibility. The method introduces two new quality parameters, including the epoxide index (EI) and the equivalent epoxide weight (EEW) not implemented for GO before. Control measurements with a commercial epoxide material of known epoxide content demonstrated excellent agreement by using the proposed approach. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were used for comparative characterizations of epoxide groups in GO samples during titrations.
Collapse
Affiliation(s)
- Gimhani Danushika
- School of Chemical Engineering, The University of Adelaide, Adelaide 5005, South Australia, Australia
| | - Pei Lay Yap
- School of Chemical Engineering, The University of Adelaide, Adelaide 5005, South Australia, Australia
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide 5005, South Australia, Australia
| |
Collapse
|
9
|
Atanasio P, Zampiva RYS, Buccini L, Di Conzo C, Proietti A, Mura F, Aurora A, Marrani AG, Passeri D, Rossi M, Pasquali M, Scaramuzzo FA. Graphene Quantum Dots from Agricultural Wastes: Green Synthesis and Advanced Applications for Energy Storage. Molecules 2024; 29:5666. [PMID: 39683824 DOI: 10.3390/molecules29235666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Carbon nanostructures are highly promising materials for applications in a variety of different fields. Besides their interesting performances, the possibility to synthesize them from biowaste makes them an eco-friendly resource widely exploitable within a circular economy context. The present work deals with the green, one-pot synthesis of graphene quantum dots (GQDs) from carbon aerogels (CAs) derived from rice husk (RH). After having obtained CAs upon purification of RH, followed by gelification and carbonization of the resulting cellulose, the one-pot solventless production of GQDs was obtained by ball milling. This method determined the formation of crystalline nanostructures with a diameter of around 20 nm, which were analyzed via scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray diffraction, and Raman spectroscopy to obtain a full morphological and structural characterization. GQDs were used as electrode materials for supercapacitors and Li-ion batteries, showing the ability to both accumulate charges over the surface and intercalate lithium-ions. The reported results are a proof of principle of the possibility of exploiting GQDs as support material for the development of advanced systems for energy storage.
Collapse
Affiliation(s)
- Pierfrancesco Atanasio
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy
| | - Rubia Y S Zampiva
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy
| | - Luca Buccini
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy
| | - Corrado Di Conzo
- Department of Applied Science and Technology (DISAT), Polytechnic of Turin, Corso Castelfilardo 39, 10129 Torino, Italy
| | - Anacleto Proietti
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy
| | - Francesco Mura
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy
- Research Centre for Nanotechnology Applied to Engineering, Sapienza University of Rome (CNIS), Piazzale A. Moro 5, 00185 Rome, Italy
| | - Annalisa Aurora
- Department of Energy Technologies and Renewable Sources C.R. ENEA Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - Andrea G Marrani
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Daniele Passeri
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy
- Research Centre for Nanotechnology Applied to Engineering, Sapienza University of Rome (CNIS), Piazzale A. Moro 5, 00185 Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy
- Research Centre for Nanotechnology Applied to Engineering, Sapienza University of Rome (CNIS), Piazzale A. Moro 5, 00185 Rome, Italy
| | - Mauro Pasquali
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy
- Research Centre for Nanotechnology Applied to Engineering, Sapienza University of Rome (CNIS), Piazzale A. Moro 5, 00185 Rome, Italy
| | - Francesca A Scaramuzzo
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy
| |
Collapse
|
10
|
Milenkovic M, Saeed W, Yasir M, Milivojevic D, Azmy A, Nassar KES, Syrgiannis Z, Spanopoulos I, Bajuk-Bogdanovic D, Maletić S, Kerkez D, Barudžija T, Jovanović S. Carbonized Apples and Quinces Stillage for Electromagnetic Shielding. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1882. [PMID: 39683271 DOI: 10.3390/nano14231882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Electromagnetic waves (EMWs) have become an integral part of our daily lives, but they are causing a new form of environmental pollution, manifesting as electromagnetic interference (EMI) and radio frequency signal leakage. As a result, the demand for innovative, eco-friendly materials capable of blocking EMWs has escalated in the past decade, underscoring the significance of our research. In the realm of modern science, the creation of new materials must consider the starting materials, production costs, energy usage, and the potential for air, water, and soil pollution. Herein, we utilized biowaste materials generated during the distillation of fruit schnapps. The biowaste from apple and quince schnapps distillation was used as starting material, mixed with KOH, and carbonized at 850 °C, in a nitrogen atmosphere. The structure of samples was investigated using various techniques (infrared, Raman, energy-dispersive X-ray, X-ray photoelectron spectroscopies, thermogravimetric analysis, BET surface area analyzer). Encouragingly, these materials demonstrated the ability to block EMWs within a frequency range of 8 to 12 GHz. Shielding efficiency was measured using waveguide adapters connected to ports (1 and 2) of the vector network analyzer using radio-frequency coaxial cables. At a frequency of 10 GHz, carbonized biowaste blocks 78.5% of the incident electromagnetic wave.
Collapse
Affiliation(s)
- Mila Milenkovic
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Warda Saeed
- Department of Computing Science, Microrobotics and Control Engineering, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Muhammad Yasir
- Department of Computing Science, Microrobotics and Control Engineering, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Dusan Milivojevic
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Ali Azmy
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Kamal E S Nassar
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Zois Syrgiannis
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | | | - Danica Bajuk-Bogdanovic
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Snežana Maletić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Djurdja Kerkez
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Tanja Barudžija
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Svetlana Jovanović
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Pergal MV, Rašljić Rafajilović M, Vićentić T, Pašti IA, Ostojić S, Bajuk-Bogdanović D, Spasenović M. Laser-Induced Graphene on Novel Crosslinked Poly(dimethylsiloxane)/Triton X-100 Composites for Improving Mechanical, Electrical and Hydrophobic Properties. Polymers (Basel) 2024; 16:3157. [PMID: 39599248 PMCID: PMC11598474 DOI: 10.3390/polym16223157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Laser-induced graphene (LIG) has become a highly promising material for flexible functional devices due to its robust mechanical stability, excellent electrical properties, and ease of fabrication. Most research has been focused on LIG production on rigid or flexible substrates, with an obvious gap in laser induction of graphene on elastic, stretchable substrates, which limits the scope of application of LIG in flexible electronics. We demonstrate laser induction of graphene on a novel, cross-linked poly(dimethylsiloxane) (PDMS)/Triton X-100 composite substrates. The effect of varying Triton content (1-30 wt.%) on the structural, thermal, surface, nanomechanical, and electrical properties of LIG was systematically studied. Physicochemical characterization confirmed the successful induction of LIG on the surface of PDMS/Triton composites. A higher content of Triton in the PDMS matrix improves the quality of LIG, increases stiffness and hydrophobicity, and somewhat decreases sheet resistance. Similar thermal properties and super-hydrophobicity were observed for LIG/PDMS/Triton materials as compared to their counterparts without LIG. Direct laser irradiation of graphene on the surface of PDMS/Triton composites results in the formation of extremely promising materials, which have great potential for use in flexible electronic devices.
Collapse
Affiliation(s)
- Marija V. Pergal
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (M.R.R.); (T.V.); (M.S.)
| | - Milena Rašljić Rafajilović
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (M.R.R.); (T.V.); (M.S.)
| | - Teodora Vićentić
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (M.R.R.); (T.V.); (M.S.)
| | - Igor A. Pašti
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia (D.B.-B.)
| | - Sanja Ostojić
- The Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Beograd, Serbia
| | - Danica Bajuk-Bogdanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia (D.B.-B.)
| | - Marko Spasenović
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (M.R.R.); (T.V.); (M.S.)
| |
Collapse
|
12
|
Borges LFT, Wong A, Silva WR, Sotomayor MDPT. Development of a Non-Covalent Molecularly Imprinted Polymer via Precipitation Method for the Selective Separation of D-Xylose From Sugarcane Residues. J Sep Sci 2024; 47:e70024. [PMID: 39600131 DOI: 10.1002/jssc.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
The agro-industry generates substantial waste, necessitating eco-friendly solutions. This study introduces a novel molecularly imprinted polymer (MIPs) for the selective separation of D-xylose from sugarcane residues. A non-covalent imprinted polymer was synthesized via precipitation and optimized through D-xylose adsorption assays. The polymer demonstrated an Imprinting Factor of 3.34, adsorption equilibrium within 30 min, notable reusability retaining over 95% of its adsorption capacity after three cycles, and high selectivity coefficients (α > 2.00) for all saccharides tested. The adsorption isotherm followed the Langmuir model. Characterization confirmed successful imprinting, with the imprinted polymer exhibiting a surface area of 69.4 m2/g and pore volume of 0.26 cm3/g, compared to 8.7 m2/g and 0.03 cm3/g for the non-imprinted polymer. D-xylose separation was tested using hemicellulosic hydrolysate from sugarcane straw and bagasse. The polymer applied as a sorbent in dispersive solid-phase extraction with the hydrolysate achieved 90.29 ± 1.27% D-xylose adsorption. Desorption in pure water recovered 81.48 ± 1.22% of the adsorbed D-xylose. This method advances separation techniques, offering an efficient solution for sample pre-treatment and expanding the application of MIPs.
Collapse
Affiliation(s)
- Luís Fernando Tavares Borges
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, Brazil
| | - Ademar Wong
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, Brazil
| | | | - Maria D P T Sotomayor
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, Brazil
| |
Collapse
|
13
|
Martincic M, Sandoval S, Oró-Solé J, Tobías-Rossell G. Thermal Stability and Purity of Graphene and Carbon Nanotubes: Key Parameters for Their Thermogravimetric Analysis (TGA). NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1754. [PMID: 39513833 PMCID: PMC11547994 DOI: 10.3390/nano14211754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Thermal analysis is widely employed for the characterization of nanomaterials. It encompasses a variety of techniques that allow the evaluation of the physicochemical properties of a material by monitoring its response under controlled temperature. In the case of carbon nanomaterials, such as carbon nanotubes and graphene derivatives, thermogravimetric analysis (TGA) is particularly useful to determine the quality and stability of the sample, the presence of impurities and the degree of functionalization or doping after post-synthesis treatments. Furthermore, TGA is widely used to evaluate the thermal stability against oxidation by air, which can be, for instance, enhanced by the purification of the material and by nitrogen doping, finding application in areas where a retarded combustion of the material is required. Herein, we have evaluated key parameters that play a role in the data obtained from TGA, namely, gas flow rate, sample weight and temperature rate, used during the analysis. We found out that the heating rate played the major role in the process of combustion in the presence of air, inducing an increase in the temperature at which the oxidation of CNTs starts to occur, up to ca. 100 °C (from 1 °C min-1 to 50 °C min-1). The same trend was observed for all the evaluated systems, namely N-doped CNTs, graphene produced by mechanical exfoliation and N-doped reduced graphene samples. Other aspects, like the presence of impurities or structural defects in the evaluated samples, were analyzed by TGA, highlighting the versatility and usefulness of the technique to provide information of structural aspects and properties of carbon materials. Finally, a set of TGA parameters are recommended for the analysis of carbon nanomaterials to obtain reliable data.
Collapse
Affiliation(s)
| | | | | | - Gerard Tobías-Rossell
- Institut de Ciència de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193 Barcelona, Spain; (M.M.); (S.S.); (J.O.-S.)
| |
Collapse
|
14
|
Yeoh GH, De Cachinho Cordeiro IM, Wang W, Wang C, Yuen ACY, Chen TBY, Vargas JB, Mao G, Garbe U, Chua HT. Carbon-based Flame Retardants for Polymers: A Bottom-up Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403835. [PMID: 38814633 DOI: 10.1002/adma.202403835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/22/2024] [Indexed: 05/31/2024]
Abstract
This state-of-the-art review is geared toward elucidating the molecular understanding of the carbon-based flame-retardant mechanisms for polymers via holistic characterization combining detailed analytical assessments and computational material science. The use of carbon-based flame retardants, which include graphite, graphene, carbon nanotubes (CNTs), carbon dots (CDs), and fullerenes, in their pure and functionalized forms are initially reviewed to evaluate their flame retardancy performance and to determine their elevation of the flammability resistance on various types of polymers. The early transition metal carbides such as MXenes, regarded as next-generation carbon-based flame retardants, are discussed with respect to their superior flame retardancy and multifunctional applications. At the core of this review is the utilization of cutting-edge molecular dynamics (MD) simulations which sets a precedence of an alternative bottom-up approach to fill the knowledge gap through insights into the thermal resisting process of the carbon-based flame retardants, such as the formation of carbonaceous char and intermediate chemical reactions offered by the unique carbon bonding arrangements and microscopic in-situ architectures. Combining MD simulations with detailed experimental assessments and characterization, a more targeted development as well as a systematic material synthesis framework can be realized for the future development of advanced flame-retardant polymers.
Collapse
Affiliation(s)
- Guan Heng Yeoh
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee DC, Sydney, NSW, 2232, Australia
| | | | - Wei Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Cheng Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Anthony Chun Yin Yuen
- Department of Building Environment and Energy Engineering, Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Timothy Bo Yuan Chen
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, SAR, China
| | - Juan Baena Vargas
- Commonwealth Science Industry Research Organisation (CSIRO), North Ryde, Sydney, NSW, 2113, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ulf Garbe
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee DC, Sydney, NSW, 2232, Australia
| | - Hui Tong Chua
- School of Chemical Engineering, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
15
|
Apiwat C, Houghton JW, Ren R, Tate E, Edel JB, Chanlek N, Luksirikul P, Japrung D. Advancing Albumin Isolation from Human Serum with Graphene Oxide and Derivatives: A Novel Approach for Clinical Applications. ACS OMEGA 2024; 9:40592-40607. [PMID: 39371982 PMCID: PMC11447712 DOI: 10.1021/acsomega.4c04276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/17/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024]
Abstract
This study introduces a novel, environmentally friendly albumin isolation method using graphene oxide (GO). GO selectively extracts albumin from serum samples, leveraging the unique interactions between GO's oxygen-containing functional groups and serum proteins. This method achieves high purification efficiency without the need for hazardous chemicals. Comprehensive characterization of GO and reduced graphene oxide (rGO) through techniques such as X-ray diffraction (XRD) analysis, Raman spectroscopy, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) confirmed the structural and functional group transformations crucial for protein binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry analyses demonstrated over 95% purity of isolated albumin, with minimal contamination from other serum proteins. The developed method, optimized for pH and incubation conditions, showcases a green, cost-effective, and simple alternative for albumin purification, promising broad applicability in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Chayachon Apiwat
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Thailand Science Park, Pathumthani 10120, Thailand
| | - Jack W. Houghton
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Ren Ren
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
- Department
of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, U.K.
| | - Edward Tate
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Joshua B. Edel
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Narong Chanlek
- Synchrotron
Light Research Institute (Public Organization), 111 University Avenue, Muang, Nakhon Ratchasrima 30000, Thailand
| | - Patraporn Luksirikul
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
- Center
for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural
Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Deanpen Japrung
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Thailand Science Park, Pathumthani 10120, Thailand
| |
Collapse
|
16
|
Liu Y, Zheng NC, Chien HW, Chen YC. The Synergistic Effect of Graphene Oxide in Epoxy Resin on Photocured Coating Films with Anticorrosion and Antibacterial Properties. Macromol Rapid Commun 2024; 45:e2400354. [PMID: 38987906 DOI: 10.1002/marc.202400354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/16/2024] [Indexed: 07/12/2024]
Abstract
In this work, graphene oxide (GO) and epoxy-functionalized graphene oxide (GOSi) are chosen as additives and incorporated into epoxy resin (EP) for nanocomposite photo-coating films (GO/EP and GOSi/EP series). Compared to GO/EP, the GOSi/EP nanocomposite demonstrates strong binding and excellent dispersibility, highlighting covalent bonding between GOSi and the epoxy coating. Furthermore, GOSi/EP-based films demonstrated superior thermal stability and adhesion performance on galvanized steel plates. The corrosion performance of the coated galvanized steel is investigated using electrochemical impedance spectroscopy (EIS) and polarization curve analysis (Tafel). The effectiveness of corrosion protection is evaluated based on a combination of photoreactivity, crosslinking density, dispersity, and adhesion properties. Out of all the treated films, the film based on 0.1GOSi/EP exhibited the highest percentage of inhibition (98.89%) and demonstrated superior long-term anticorrosion stability. In addition, the 0.1GOSi/EP based formulation showed remarkable antibacterial activity against S. aureus, resulting in a 92% reduction. This work demonstrates the development of a facile, environmentally friendly functionalized graphene oxide/epoxy photocured film with superior dual functionalities in both anticorrosion and antibacterial properties. These advancements hold promising potential for impactful practical applications.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807618, Taiwan
| | - Nai-Ci Zheng
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807618, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807618, Taiwan
- Photo-SMART (Photo-sensitive Material Advanced Research and Technology Center), National Kaohsiung University of Science and Technology, Kaohsiung City, 807618, Taiwan
| | - Yung-Chung Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807618, Taiwan
- Photo-SMART (Photo-sensitive Material Advanced Research and Technology Center), National Kaohsiung University of Science and Technology, Kaohsiung City, 807618, Taiwan
| |
Collapse
|
17
|
Arrieta A, Nuñez de la Rosa YE, Pestana S. Cashew Nut Shell Waste Derived Graphene Oxide. Molecules 2024; 29:4168. [PMID: 39275016 PMCID: PMC11397352 DOI: 10.3390/molecules29174168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
The particular properties of graphene oxide (GO) make it a material with great technological potential, so it is of great interest to find renewable and eco-friendly sources to satisfy its future demand sustainably. Recently, agricultural waste has been identified as a potential raw material source for producing carbonaceous materials. This study explores the potential of cashew nut shell (CNS), a typically discarded by-product, as a renewable source for graphene oxide synthesis. Initially, deoiled cashew nut shells (DCNS) were submitted to pyrolysis to produce a carbonaceous material (Py-DCNS), with process optimization conducted through response surface methodology. Optimal conditions were identified as a pyrolysis temperature of 950 °C and a time of 1.8 h, yielding 29.09% Py-DCNS with an estimated purity of 82.55%, which increased to 91.9% post-washing. Using a modified Hummers method, the Py-DCNS was subsequently transformed into graphene oxide (GO-DCNS). Structural and functional analyses were carried out using FTIR spectroscopy, revealing the successful generation of GO-DCNS with characteristic oxygen-containing functional groups. Raman spectroscopy confirmed the formation of defects and layer separations in GO-DCNS compared to Py-DCNS, indicative of effective oxidation. The thermogravimetric analysis demonstrated distinct thermal decomposition stages for GO-DCNS, aligning with the expected behavior for graphene oxide. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) further corroborated the morphological and compositional transformation from DCNS to GO-DCNS, showcasing reduced particle size, increased porosity, and significant oxygen functional groups. The results underscore the viability of cashew nut shells as a sustainable precursor for graphene oxide production, offering an environmentally friendly alternative to conventional methods. This innovative approach addresses the waste management issue associated with cashew nut shells and contributes to developing high-value carbon materials with broad technological applications.
Collapse
Affiliation(s)
- Alvaro Arrieta
- Department of Biology and Chemistry, Universidad de Sucre, Sincelejo 700001, Colombia
| | - Yamid E Nuñez de la Rosa
- Faculty of Engineering and Basic Sciences, Fundación Universitaria Los Libertadores, Bogotá 111221, Colombia
| | - Samuel Pestana
- Department of Biology and Chemistry, Universidad de Sucre, Sincelejo 700001, Colombia
| |
Collapse
|
18
|
Guner M, Cicek Ozkan B, Ozdemir N. Exploring the material and dielectric properties of poly(vinylidene fluoride) composites incorporated with graphene and graphene oxide. SOFT MATTER 2024; 20:6490-6499. [PMID: 39099393 DOI: 10.1039/d4sm00850b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
This study focuses on enhancing the structural, thermal, and dielectric properties of poly(vinylidene fluoride) (PVDF) nanocomposites loaded with graphene oxide (GO) and graphene (G), synthesized via solution casting. Characterization techniques, including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA), revealed significant enhancements due to the nanofillers. The crystallinity of PG composites increased to 60.39% from 49.21% in neat PVDF, transitioning from α to β phases, which is beneficial for high-performance electronics and energy storage. PG composites showed a dielectric constant (ε') of 10.50, higher than those of neat PVDF (ε' = 7.54) and PGO composites (ε' = 8.56). The dielectric loss (tan δ) for PG was low at 0.15, suitable for electronics. The AC conductivity of PG composites (2.22 × 10-7 S cm-1) was higher than those of neat PVDF (1.09 × 10-7 S cm-1) and PGO (1.65 × 10-7 S cm-1), enhancing their suitability for flexible electronics. Thermal stability assessments showed that PG composites had the highest degradation temperature at 471.04 °C, indicating improved thermal resistance. These enhancements are due to the effective dispersion and interaction of graphene-based nanofillers within the PVDF matrix. This study demonstrates that incorporating nanofillers into polymer composites significantly advances materials science by enhancing the dielectric properties for various industrial applications.
Collapse
Affiliation(s)
- Melek Guner
- Firat University, Technology Faculty, Department of Metallurgical and Materials Engineering, Elazığ 23119, Turkey.
- Batman University, Central Laboratory, Application and Research Center, Batman 72070, Turkey
| | - Betul Cicek Ozkan
- Firat University, Technology Faculty, Department of Metallurgical and Materials Engineering, Elazığ 23119, Turkey.
| | - Niyazi Ozdemir
- Firat University, Technology Faculty, Department of Metallurgical and Materials Engineering, Elazığ 23119, Turkey.
| |
Collapse
|
19
|
Abenojar J, Aparicio GM, Butenegro JA, Bahrami M, Martínez MA. Decomposition Kinetics and Lifetime Estimation of Thermoplastic Composite Materials Reinforced with rCFRP. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2054. [PMID: 38730861 PMCID: PMC11084634 DOI: 10.3390/ma17092054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/13/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
Because of the high demand for carbon fiber reinforced polymer (CFRP) materials across all industries, the reuse and/or recycling of these materials (rCFRP) is necessary in order to meet the principles of the circular economy, including recycling and reuse. The objective of this study is to estimate the lifespan of thermoplastic matrix composite materials reinforced with waste materials (CFRP), which undergo only a mechanical cutting process. This estimation is carried out through the thermal decomposition of polymers, including polymer matrix composite materials, which is a complex process due to the numerous reactions involved. Some authors calculate these kinetic parameters using thermogravimetric analysis (TGA) as it is a quick method, and it allows the identification of gases released during decomposition, provided that the equipment is prepared for it. This study includes a comparison between polyamides 11 and 12, as well as between polyamide composite materials with carbon fiber (CF) and polyamides reinforced with CF/epoxy composite material. The latter is treated with plasma to improve adhesion with polyamides. The behavior of weight as a function of temperature was studied at speeds of 3, 6, 10, 13, 17, and 20 °C/min, finding stability of the polyamides up to a temperature of 400 °C, which was consistent with the analysis by mass spectroscopy, where gas evolution is evident after 400 °C. The estimation of the lifespan was carried out using two different methods including the Toop equation and the free kinetics model (MFK). The energy of the decomposition process was determined using the MFK model, which establishes the energy as a function of the degree of conversion. It is estimated that at 5% decomposition, mechanical properties are lost.
Collapse
Affiliation(s)
- Juana Abenojar
- Materials Science and Engineering Department, Universidad Carlos III of Madrid, 28911 Leganés, Spain; (J.A.B.); (M.B.); (M.A.M.)
- Mechanical Engineering Department, Universidad Pontificia Comillas, 28015 Madrid, Spain
| | - Gladis Miriam Aparicio
- Basic Sciences Faculty, Autónoma of Occidente University, Calle 25, Cali 764007, Colombia;
| | - José Antonio Butenegro
- Materials Science and Engineering Department, Universidad Carlos III of Madrid, 28911 Leganés, Spain; (J.A.B.); (M.B.); (M.A.M.)
| | - Mohsen Bahrami
- Materials Science and Engineering Department, Universidad Carlos III of Madrid, 28911 Leganés, Spain; (J.A.B.); (M.B.); (M.A.M.)
| | - Miguel Angel Martínez
- Materials Science and Engineering Department, Universidad Carlos III of Madrid, 28911 Leganés, Spain; (J.A.B.); (M.B.); (M.A.M.)
| |
Collapse
|
20
|
Karnis I, Krasanakis F, Sygellou L, Rissanou AN, Karatasos K, Chrissopoulou K. Varying the degree of oxidation of graphite: effect of oxidation time and oxidant mass. Phys Chem Chem Phys 2024; 26:10054-10068. [PMID: 38482933 DOI: 10.1039/d3cp05268k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In this work, we employ a fast and less toxic modified Hummers' method to develop graphene oxide (GO) with varying degrees of oxidation and investigate the effect of the latter on the structure and the thermal properties of the synthesized materials. Two different key parameters, the time of the oxidation reaction and the mass of the oxidation agent, were systematically altered in order to fine tune the oxidation degree. All graphene oxides were characterized by a plethora of experimental techniques, like X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) as well as infrared spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS) for their structural, thermal and chemical identification. The results revealed that for a certain amount of oxidant, the time does not affect the final degree of oxidation of the materials, at least for the examined reaction times, because very similar structural patterns and thermal properties were obtained. At the same time, the oxygen-containing functional groups were found very similar. On the other hand, the degree of oxidation was found highly dependent on the mass of the oxidizing agent. XRD analysis showed a systematic increase of the interlayer distance of the synthesized GOs with the increase of the oxidant mass, whereas both the enthalpy of reduction and the % weight loss were increased. Moreover, XPS measurements provided a quantitative evaluation of the amount of carbon and oxygen in the materials; the increase of the oxidant mass led to a decrease of the total carbon content with the concurrent increase of the total oxygen amount.
Collapse
Affiliation(s)
- Ioannis Karnis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, Heraklion Crete 711 10, Greece.
- Department of Chemistry, University of Crete, Heraklion Crete, Greece
| | - Fanourios Krasanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, Heraklion Crete 711 10, Greece.
| | - Labrini Sygellou
- Institute of Chemical Engineering Studies, Foundation for Research and Technology-Hellas, Stadiou Str., 26504 Patras, Greece
| | - Anastassia N Rissanou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, Heraklion Crete 711 10, Greece.
- Institute of Theoretical and Physical Chemistry, National Hellenic Research Foundation, 48 Vassileos Konstantinou Ave, Athens 11635, Greece
| | - Konstantinos Karatasos
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kiriaki Chrissopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, Heraklion Crete 711 10, Greece.
| |
Collapse
|
21
|
Jayatilaka GC, Aber A, Mohammadi M, Morovati V, Tehrani M. Exceptional Viscoelastic Properties in Graphene Oxide Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11778-11786. [PMID: 38408185 DOI: 10.1021/acsami.3c15671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Materials that combine high stiffness with effective damping are in high demand across various industries. While polymers excel in damping, they often lack stiffness and thermal stability. Conversely, metals and ceramics boast high mechanical and thermal properties but lack damping. This study demonstrates that graphene oxide (GO) and reduced graphene oxide (rGO) films can achieve exceptional viscoelastic properties across a wide temperature range. Furthermore, it explains the damping mechanisms and structural characteristics that influence the unique viscoelastic behavior of GO and rGO films. Through comprehensive characterizations, this study correlates the structure and spatial variation in local strain (measured with in situ Raman microscopy) of GO and rGO films with their storage and loss moduli. This correlation links these properties to the water loss as a function of the temperature rise. GO and rGO films exhibited a damping coefficient of 0.2-0.4 while maintaining stiffness values of 10-20 GPa in the 30-120 °C range. These high damping values were attributed to intermittent slippage and hydrogen bond density between the constituent sheets. Numerical modeling was conducted to further elucidate the mechanisms responsible for the properties noted in these films. This study enhances our understanding of the viscoelastic properties of GO films and offers a new potential material for applications across various fields.
Collapse
Affiliation(s)
- Gehan C Jayatilaka
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Athena Aber
- Department of Structural Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Moein Mohammadi
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Vahid Morovati
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mehran Tehrani
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Structural Engineering, University of California San Diego, La Jolla, California 92093, United States
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
22
|
Katsuyama Y, Li Y, Uemura S, Yang Z, Anderson M, Wang C, Lin CW, Li Y, Kaner RB. Reprecipitation: A Rapid Synthesis of Micro-Sized Silicon-Graphene Composites for Long-lasting Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38427784 DOI: 10.1021/acsami.3c18846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Silicon microparticles (SiMPs) have gained significant attention as a lithium-ion battery anode material due to their 10 times higher theoretical capacity compared to conventional graphite anodes as well as their much lower production cost than silicon nanoparticles (SiNPs). However, SiMPs have suffered from poorer cycle life relative to SiNPs because their larger size makes them more susceptible to volume changes during charging and discharging. Creating a wrapping structure in which SiMPs are enveloped by carbon layers has proven to be an effective strategy to significantly improve the cycling performance of SiMPs. However, the synthesis processes are complex and time-/energy-consuming and therefore not scalable. In this study, a wrapping structure is created by using a simple, rapid, and scalable "modified reprecipitation method". Graphene oxide (GO) and SiMP dispersion in tetrahydrofuran is injected into n-hexane, in which GO and SiMP by themselves cannot disperse. GO and SiMP therefore aggregate and precipitate immediately after injection to form a wrapping structure. The resulting SiMP/GO film is laser scribed to reduce GO to a laser-scribed graphene (LSG). Simultaneously, SiOx and SiC protection layers form on the SiMPs through the laser process, which alleviates severe volume change. Owing to these desirable characteristics, the modified reprecipitation method successfully doubles the cycle life of SiMP/graphene composites compared to the simple physically mixing method (50.2% vs. 24.0% retention at the 100th cycle). The modified reprecipitation method opens a new synthetic strategy for SiMP/carbon composites.
Collapse
Affiliation(s)
- Yuto Katsuyama
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Yang Li
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Sophia Uemura
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Zhiyin Yang
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Mackenzie Anderson
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Chenxiang Wang
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Cheng-Wei Lin
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Yuzhang Li
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Richard B Kaner
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| |
Collapse
|
23
|
Ghorai S, Ghosh S, Garai P, Sen K, Dash PS, Jana NR. A Fluorescent Carbon Nanoparticle for Photodynamic Cell Therapy via Rapid Non-Endocytic Uptake. ACS APPLIED BIO MATERIALS 2024; 7:443-451. [PMID: 38064365 DOI: 10.1021/acsabm.3c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Although photodynamic therapy is a promising approach for cancer treatment, it has limited clinical application due to the poor performance of conventional photosensitizers. In this study, we present a carbon nanoparticle-based photosensitizer for efficient photodynamic cell therapy. The nanoparticles have been synthesized from a steel industry-based waste material, exhibiting strong fluorescence in the visible region, rapidly entering the cell via non-endocytic uptake, and localizing within the mitochondria. Light exposure of nanoparticle-labeled cells offers efficient photodynamic therapy and induces cytotoxicity. Overall, this study highlights the utility of carbon nanoparticles in efficient photodynamic therapy via rapid cellular uptake and subcellular targeting.
Collapse
Affiliation(s)
- Soumitra Ghorai
- Research and Development, Tata Steel, Jamshedpur 831007, India
| | - Santu Ghosh
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Puja Garai
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Kaushik Sen
- Research and Development, Tata Steel, Jamshedpur 831007, India
| | | | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
24
|
Sha’rani SS, Nasef MM, Jusoh NWC, Isa EDM, Ali RR. A highly-selective layer-by-layer membrane modified with polyethylenimine and graphene oxide for vanadium redox flow battery. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2300697. [PMID: 38249722 PMCID: PMC10798294 DOI: 10.1080/14686996.2023.2300697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
A selective composite membrane for vanadium redox flow battery (VRFB) was successfully prepared by layer-by-layer (LbL) technique using a perfluorosulfonic sulfonic acid or Nafion 117 (N117). The composite membrane referred as N117-(PEI/GO)n, was obtained by depositing alternating layers of positively charged polyethylenimine (PEI) and negatively charged graphene oxide (GO) as polyelectrolytes. The physicochemical properties and performance of the pristine and composite membranes were investigated. The membrane showed an enhancement in proton conductivity and simultaneously exhibited a notable 90% reduction in vanadium permeability. This, in turn, results in a well-balanced ratio of proton conductivity to vanadium permeability, leading to high selectivity. The highest selectivity of the LbL membranes was found to be 19.2 × 104 S.min/cm3, which is 13 times higher than the N117 membrane (n = 0). This was translated into an improvement in the battery performance, with the n = 1 membrane showing a 4-6% improvement in coulombic efficiency and a 7-15% improvement in voltage efficiency at current densities ranging from 40 to 80 mA/cm2. Furthermore, the membrane displays stable operation over a long-term stability at around 88% at a current density of 40 mA/cm2, making it an attractive option for VRFB applications using the LbL technique. The use of PEI/GO bilayers maintains high proton conductivity and VE of the battery, opening up possibilities for further optimization and improvement of VRFBs.
Collapse
Affiliation(s)
- Saidatul Sophia Sha’rani
- Department of Chemical and Environmental Engineering (ChEE), Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Mohamed Mahmoud Nasef
- Department of Chemical and Environmental Engineering (ChEE), Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Nurfatehah Wahyuny Che Jusoh
- Department of Chemical and Environmental Engineering (ChEE), Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Eleen Dayana Mohamed Isa
- Department of Chemical and Environmental Engineering (ChEE), Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Roshafima Rasit Ali
- Department of Chemical and Environmental Engineering (ChEE), Malaysia–Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Taheri M. Advances in Nanohybrid Membranes for Dye Reduction: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300052. [PMID: 38223886 PMCID: PMC10784202 DOI: 10.1002/gch2.202300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/18/2023] [Indexed: 01/16/2024]
Abstract
Separating valuable materials such as dyes from wastewater using membranes and returning them to the production line is a desirable environmental and economical procedure. However, sometimes, besides filtration, adsorption, and separation processes, pollutant destruction also can be suitable using photocatalytic membranes. The art of producing nanohybrid materials in contrast with nanocomposites encompasses nanomaterial synthesis as a new product with different properties from raw materials for nanohybrids versus the composition of nanomaterials for nanocomposites. According to the findings of this research, confirming proper synthesis of nanohybrid is one challenge that can be overcome by different analyses, other researchers' reports, and the theoretical assessment of physical or chemical reactions. The application of organic-inorganic nanomaterials and frameworks is another challenge that is discussed in the present work. According to the findings, Nanohybrid Membranes (NHMs) can achieve 100% decolorization, but cannot eliminate salts and dyes, although the removal efficiency is notable for some salts, especially divalent salts. Hydrophilicity, antifouling properties, flux, pressure, costs, usage frequency, and mechanical, chemical, and thermal stabilities of NHMs should be considered.
Collapse
Affiliation(s)
- Mahsa Taheri
- Civil and Environmental Engineering DepartmentAmirkabir University of Technology (AUT)Hafez Ave.Tehran15875‐4413Iran
| |
Collapse
|
26
|
Rios C, Bazán-Díaz L, Celaya CA, Salcedo R, Thangarasu P. Synthesis and Characterization of a Photocatalytic Material Based on Raspberry-like SiO 2@TiO 2 Nanoparticles Supported on Graphene Oxide. Molecules 2023; 28:7331. [PMID: 37959751 PMCID: PMC10647393 DOI: 10.3390/molecules28217331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
A raspberry-like SiO2@TiO2 new material supported on functionalized graphene oxide was prepared to reduce titania's band gap value. The material was characterized through different analytical methods such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HR-TEM). The band gap value was studied via UV-Vis absorption spectra and determined through the Kubelka-Munk equation. A theoretical study was also carried out to analyze the interaction between the species.
Collapse
Affiliation(s)
- Citlalli Rios
- Facultad de Química, Circuito Escolar s/n, Ciudad Universitaria, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico;
| | - L. Bazán-Díaz
- Instituto de Investigaciones en Materiales, Circuito Exterior s/n, Ciudad Universitaria, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico; (L.B.-D.); (R.S.)
| | - Christian A. Celaya
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 CarreteraTijuana-Ensenada, Ensenada 22800, Mexico;
| | - Roberto Salcedo
- Instituto de Investigaciones en Materiales, Circuito Exterior s/n, Ciudad Universitaria, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico; (L.B.-D.); (R.S.)
| | - Pandiyan Thangarasu
- Facultad de Química, Circuito Escolar s/n, Ciudad Universitaria, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico;
| |
Collapse
|
27
|
Zindrou A, Belles L, Solakidou M, Boukos N, Deligiannakis Y. Non-graphitized carbon/Cu 2O/Cu 0 nanohybrids with improved stability and enhanced photocatalytic H 2 production. Sci Rep 2023; 13:13999. [PMID: 37634030 PMCID: PMC10460407 DOI: 10.1038/s41598-023-41211-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023] Open
Abstract
Cu2O is a highly potent photocatalyst, however photocorrosion stands as a key obstacle for its stability in photocatalytic technologies. Herein, we show that nanohybrids of Cu2O/Cu0 nanoparticles interfaced with non-graphitized carbon (nGC) constitute a novel synthesis route towards stable Cu-photocatalysts with minimized photocorrosion. Using a Flame Spray Pyrolysis (FSP) process that allows synthesis of anoxic-Cu phases, we have developed in one-step a library of Cu2O/Cu0 nanocatalysts interfaced with nGC, optimized for enhanced photocatalytic H2 production from H2O. Co-optimization of the nGC and the Cu2O/Cu0 ratio is shown to be a key strategy for high H2 production, > 4700 μmoles g-1 h-1 plus enhanced stability against photocorrosion, and onset potential of 0.234 V vs. RHE. After 4 repetitive reuses the catalyst is shown to lose less than 5% of its photocatalytic efficiency, while photocorrosion was < 6%. In contrast, interfacing of Cu2O/Cu0 with graphitized-C is not as efficient. Raman, FT-IR and TGA data are analyzed to explain the undelaying structural functional mechanisms where the tight interfacing of nGC with the Cu2O/Cu0 nanophases is the preferred configuration. The present findings can be useful for wider technological goals that demand low-cost engineering, high stability Cu-nanodevices, prepared with industrially scalable process.
Collapse
Affiliation(s)
- Areti Zindrou
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, Ioannina, Greece
| | - Loukas Belles
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, Ioannina, Greece
| | - Maria Solakidou
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, Ioannina, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology (INN), NCSR Demokritos, 15310, Athens, Greece
| | - Yiannis Deligiannakis
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
28
|
Aldabagh DJ, Alzubadi TL, Alhuwaizi AF. Tribology of Coated 316L SS by Various Nanoparticles. Int J Biomater 2023; 2023:6676473. [PMID: 37649637 PMCID: PMC10465258 DOI: 10.1155/2023/6676473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Background Nanocoating of biomedical materials may be considered the most essential developing field recently, primarily directed at improving their tribological behaviors that enhance their performance and durability. In orthodontics, as in many medical fields, friction reduction (by nanocoatings) among different orthodontic components is considered a substantial milestone in the development of biomedical technology that reduces orthodontic treatment time. The objective of the current research was to explore the tribological behavior, namely, friction of nanocoated thin layer by tantalum (Ta), niobium (Nb), and vanadium (V) manufactured using plasma sputtering at 1, 2, and 3 hours on substrates made of 316L stainless steel (SS), which is thought to be one of the most popular alloys for stainless steel orthodontic archwires. The friction of coated 316L SS archwires coated with Ta, Nb, and V plasma sputtering is hardly mentioned in the literature as of yet. Results An oscillating pin-on-plate tribological test using a computerized tribometer was performed by applying a load of 1 N for 20 minutes under the dry condition at room temperature (25°C) to understand their role in the tribological behavior of the bulk material. Ta and Nb were found to reduce the friction of their SS substrate significantly (45 and 55%, respectively), while V was found to deteriorate the friction of its substrate. Moreover, sputtering time had no substantial role in the friction reduction of coatings. Conclusions Nanocoating of 316L SS bulk material by Nb and Ta with a 1-hour plasma sputtering time can enhance dramatically its tribological behavior. Higher coating hardness, smaller nanoparticle size, intermediate surface coating roughness, and lower surface binding energy of the coatings may play a vital role in friction reduction of the coated 316L SS corresponding to SS orthodontic archwires, predicting to enhance orthodontic treatment.
Collapse
Affiliation(s)
- Dhiaa J. Aldabagh
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad 00964, Iraq
| | - Thair L. Alzubadi
- Department of Prosthodontics Dental Techniques, Al-Esraa University College, Baghdad 00964, Iraq
| | - Akram F. Alhuwaizi
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad 00964, Iraq
| |
Collapse
|
29
|
Birdsong BK, Hoogendoorn BW, Nilsson F, Andersson RL, Capezza AJ, Hedenqvist MS, Farris S, Guerrero A, Olsson RT. Large-scale synthesis of 2D-silica (SiO x) nanosheets using graphene oxide (GO) as a template material. NANOSCALE 2023; 15:13037-13048. [PMID: 37492887 DOI: 10.1039/d3nr01048a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Graphene oxide (GO) was used in this study as a template to successfully synthesize silicon oxide (SiOx) based 2D-nanomaterials, adapting the same morphological features as the GO sheets. By performing a controlled condensation reaction using low concentrations of GO (<0.5 wt%), the study shows how to obtain 2D-nanoflakes, consisting of GO-flakes coated with a silica precursor that were ca. 500 nm in lateral diameter and ca. 1.5 nm in thickness. XPS revealed that the silanes had linked covalently with the GO sheets at the expense of the oxygen groups present on the GO surface. The GO template was shown to be fully removable through thermal treatment without affecting the nanoflake morphology of the pure SiOx-material, providing a methodology for large-scale preparation of SiOx-based 2D nanosheets with nearly identical dimensions as the GO template. The formation of SiOx sheets using a GO template was investigated for two different silane precursors, (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS), showing that both precursors were capable of accurately templating the graphene oxide template. Molecular modeling revealed that the choice of silane affected the number of layers coated on the GO sheets. Furthermore, rheological measurements showed that the relative viscosity was significantly affected by the specific surface area of the synthesized particles. The protocol used showed the ability to synthesize these types of nanoparticles using a common aqueous alcohol solvent, and yield larger amounts (∼1 g) of SiOx-sheets than what has been previously reported.
Collapse
Affiliation(s)
- Björn K Birdsong
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 11428, Stockholm, Sweden.
| | - Billy W Hoogendoorn
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 11428, Stockholm, Sweden.
| | - Fritjof Nilsson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 11428, Stockholm, Sweden.
- Mid Sweden University, 85170 Sundsvall, Sweden
| | - Richard L Andersson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 11428, Stockholm, Sweden.
| | - Antonio J Capezza
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 11428, Stockholm, Sweden.
| | - Mikael S Hedenqvist
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 11428, Stockholm, Sweden.
| | - Stefano Farris
- DeFENS - Department of Food, Environmental and Nutritional Sciences Food Packaging Laboratory, Via Celoria 2, 20133, Milan, Italy
| | - Antonio Guerrero
- Department of Chemical Engineering, Escuela Politécnica Superior, Universidad de Sevilla, 41011, Sevilla, Spain
| | - Richard T Olsson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 11428, Stockholm, Sweden.
| |
Collapse
|
30
|
Adami R, Lamberti P, Casa M, D'Avanzo N, Ponticorvo E, Cirillo C, Sarno M, Bychanok D, Kuzhir P, Yu C, Xia H, Ciambelli P. Synthesis and Electrical Percolation of Highly Amorphous Polyvinyl Alcohol/Reduced Graphene Oxide Nanocomposite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114060. [PMID: 37297195 DOI: 10.3390/ma16114060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 06/12/2023]
Abstract
Polyvinyl alcohol is the most commercially water-soluble biodegradable polymer, and it is in use for a wide range of applications. It shows good compatibility with most inorganic/organic fillers, and enhanced composites may be prepared without the need to introduce coupling agents and interfacial modifiers. The patented high amorphous polyvinyl alcohol (HAVOH), commercialized with the trade name G-Polymer, can be easily dispersed in water and melt processed. HAVOH is particularly suitable for extrusion and can be used as a matrix to disperse nanocomposites with different properties. In this work, the optimization of the synthesis and characterization of HAVOH/reduced graphene oxide (rGO) nanocomposite obtained by the solution blending process of HAVOH and Graphene Oxide (GO) water solutions and 'in situ' reduction of GO is studied. The produced nanocomposite presents a low percolation threshold (~1.7 wt%) and high electrical conductivity (up to 11 S/m) due to the uniform dispersion in the polymer matrix as a result of the solution blending process and the good reduction level of GO. In consideration of HAVOH processability, the conductivity obtained by using rGO as filler, and the low percolation threshold, the nanocomposite presented here is a good candidate for the 3D printing of a conductive structure.
Collapse
Affiliation(s)
- Renata Adami
- Department of Physics, University of Salerno, 84084 Fisciano, Italy
- Centre NANO_MATES, University of Salerno, 84084 Fisciano, Italy
| | - Patrizia Lamberti
- Centre NANO_MATES, University of Salerno, 84084 Fisciano, Italy
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, 84084 Fisciano, Italy
| | - Marcello Casa
- Narrando Srl, Via Arcangelo Rotunno 43, 84134 Salerno, Italy
| | - Nicole D'Avanzo
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, 84084 Fisciano, Italy
| | | | - Claudia Cirillo
- Department of Physics, University of Salerno, 84084 Fisciano, Italy
| | - Maria Sarno
- Department of Physics, University of Salerno, 84084 Fisciano, Italy
- Centre NANO_MATES, University of Salerno, 84084 Fisciano, Italy
| | - Dzmitry Bychanok
- Research Institute for Nuclear Problems Belarusian State University, 220030 Minsk, Belarus
| | - Polina Kuzhir
- Department of Physics and Mathematics, University of Eastern Finland, 80101 Joensuu, Finland
| | - Changjiang Yu
- State Key Lab of Polymer Material Engineering, Sichuan University, Chengdu 610065, China
| | - Hesheng Xia
- State Key Lab of Polymer Material Engineering, Sichuan University, Chengdu 610065, China
| | - Paolo Ciambelli
- Narrando Srl, Via Arcangelo Rotunno 43, 84134 Salerno, Italy
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
31
|
Manouchehri M, Seidi S, Tavasolinoor A, Razeghi Y. A new approach of magnetic field application in miniaturized pipette-tip extraction for trace analysis of four synthetic hormones in breast milk samples. Food Chem 2023; 409:135222. [PMID: 36586256 DOI: 10.1016/j.foodchem.2022.135222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Herein, a novel homemade electrical device was designed, including two pieces of external neodymium magnets, providing a reciprocating magnetic field to introduce a magnetic-assisted dispersive pipette-tip micro solid-phase extraction. To evaluate the performance efficiency of the proposed method, a novel magnetic calcined GO/SiO2@Co-Fe nanocube sorbent was synthesized, filled into the pipette-tip, exposed to the reciprocating magnetic field, and applied for the preconcentration of some hormone therapy drugs in human biological matrices. The effective adsorption and desorption parameters were optimized using a rotatable central composite design and one-variable-at-a-time approaches. Under the optimized conditions, the target analytes' detection limits were found to be below 0.02 ng mL-1. Moreover, the calibration curves were linear in the range of 0.03-500.00 ng mL-1 (R2 > 0.9966), with RSDs% less than 7.8 %. Eventually, the established method was applied to extract the analytes from breast milk samples, followed by LC-ESI-MS/MS analysis.
Collapse
Affiliation(s)
- Mahshid Manouchehri
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran.
| | - Ali Tavasolinoor
- Department of Computer Engineering, Shahre-Rey Branch, Islamic Azad University, Tehran, Iran
| | - Yasaman Razeghi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran
| |
Collapse
|
32
|
Mayani SV, Bhatt SP, Mayani VJ, Sanghvi G. Development of sustainable strontium ferrite graphene nanocomposite for highly effective catalysis and antimicrobial activity. Sci Rep 2023; 13:6678. [PMID: 37095200 PMCID: PMC10126001 DOI: 10.1038/s41598-023-33901-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
Graphene oxide (GO) has layered structure with carbon atoms that are highly coated with oxygen-containing groups, increasing the interlayer distance while simultaneously making hydrophilic atomic-thick layers. It is exfoliated sheets that only have one or a few layers of carbon atoms. In our work, Strontium Ferrite Graphene Composite (SF@GOC) has been synthesized and thoroughly characterized by physico-chemical methods like XRD, FTIR, SEM-EDX, TEM, AFM, TGA and Nitrogen adsorption desorption analysis. A very few catalysts have been manufactured so far that are capable of degrading Eosin-Y and Orange (II) dyes in water by heterogeneous catalytic method. The current study offers an overview of the recyclable nanocomposite SF@GOC used in mild reaction conditions to breakdown the hazardous water pollutant dyes Eosin-Y (96.2%) and Orange (II) (98.7%). The leaching experiment has demonstrated that the use of the transition metals strontium and iron have not result in any secondary contamination. Moreover, antibacterial and antifungal assay have been investigated. SF@GOC has shown greater activity with bacterial and fungal species while compared with GO. FESEM analysis shows that the bactericidal mechanism for SF@GOC is same in both gram-negative bacteria. The difference in the antifungal activity among the candida strains can be correlated with the movement of ions release (slower and faster) of synthesized nanoscrolls in SF@GOC. In comparison to previous reports, this new environmentally safe and novel catalyst showed substantial degrading activity. It can also be applied to new multifunctional processes such as in the fields of composite materials, solar energy, heterogeneous catalysis and biomedical applications.
Collapse
Affiliation(s)
- Suranjana V Mayani
- Department of Chemistry, Marwadi University, Rajkot-Morbi Road, P.O. Gauridad, Rajkot, Gujarat, 360003, India.
| | - Sandip P Bhatt
- Department of Chemistry, Marwadi University, Rajkot-Morbi Road, P.O. Gauridad, Rajkot, Gujarat, 360003, India
| | - Vishal J Mayani
- Hansgold ChemDiscovery Center (HCC), Hansgold ChemDiscoveries Pvt. Ltd., Rajkot, Gujarat, India
| | - Gaurav Sanghvi
- Department of Microbiology, Marwadi University, Rajkot-Morbi Road, P.O. Gauridad, Rajkot, Gujarat, 360003, India
| |
Collapse
|
33
|
Larbi L, Wernert R, Fioux P, Croguennec L, Monconduit L, Matei Ghimbeu C. Enhanced Performance of KVPO 4F 0.5O 0.5 in Potassium Batteries by Carbon Coating Interfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18992-19001. [PMID: 37026661 DOI: 10.1021/acsami.3c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Potassium vanadium oxyfluoride phosphate of composition KVPO4F0.5O0.5 was modified by a carbon coating to enhance its electrochemical performance. Two distinct methods were used, first, chemical vapor deposition (CVD) using acetylene gas as a carbon precursor and second, an aqueous route using an abundant, cheap, and green precursor (chitosan) followed by a pyrolysis step. The formation of a 5 to 7 nm-thick carbon coating was confirmed by transmission electron microscopy and it was found to be more homogeneous in the case of CVD using acetylene gas. Indeed, an increase of the specific surface area of one order of magnitude, low content of C sp2, and residual oxygen surface functionalities were observed when the coating was obtained using chitosan. Pristine and carbon-coated materials were compared as positive electrode materials in potassium half-cells cycled at a C/5 (C = 26.5 mA g-1) rate within a potential window of 3 to 5 V vs K+/K. The formation by CVD of a uniform carbon coating with the limited presence of surface functions was shown to improve the initial coulombic efficiency up to 87% for KVPFO4F0.5O0.5-C2H2 and to mitigate electrolyte decomposition. Thus, performance at high C-rates such as 10 C was significantly improved, with ∼50% of the initial capacity maintained after 10 cycles, whereas a fast capacity loss is observed for the pristine material.
Collapse
Affiliation(s)
- Louiza Larbi
- Université de Haute-Alsace, Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Romain Wernert
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
- ICGM, Université de Montpellier, CNRS, UMR 5253, 34293 Montpellier, France
- Réseau sur le Stockage Electrochimique de l'Energie, CNRS FR3459, 80039 Amiens, France
| | - Philippe Fioux
- Université de Haute-Alsace, Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
| | - Laurence Croguennec
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
- Réseau sur le Stockage Electrochimique de l'Energie, CNRS FR3459, 80039 Amiens, France
- ALISTORE-European Research Institute, 80039 Amiens, France
| | - Laure Monconduit
- ICGM, Université de Montpellier, CNRS, UMR 5253, 34293 Montpellier, France
- Réseau sur le Stockage Electrochimique de l'Energie, CNRS FR3459, 80039 Amiens, France
- ALISTORE-European Research Institute, 80039 Amiens, France
| | - Camelia Matei Ghimbeu
- Université de Haute-Alsace, Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, F-67081 Strasbourg, France
- Réseau sur le Stockage Electrochimique de l'Energie, CNRS FR3459, 80039 Amiens, France
| |
Collapse
|
34
|
Gao Z, Li Y, Huang P, Zou R, Li Y, Fu S. Graphene nanoplatelet/cellulose acetate film with enhanced antistatic, thermal dissipative and mechanical properties for packaging. CELLULOSE (LONDON, ENGLAND) 2023; 30:4499-4509. [PMID: 37113142 PMCID: PMC10066947 DOI: 10.1007/s10570-023-05155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
UNLABELLED With the increased concern over environment protection, cellulose acetate (CA) has drawn great interests as an alternative for packaging material due to its biodegradability and abundant resources; whereas, the poor antistatic property and thermal conductivity restrict its application in packaging. In this work, we proposed a simple but effective strategy to produce high performance graphene nanoplatelet (GNP)/CA composite films via the consecutive homogenization and solvent casting processes. Relying on the spontaneous absorption of CA during homogenization, the GNP/CA produced shows an excellent dispersibility in the N,N-Dimethylformamide (DMF) solution and many fewer structural defects compared with GNPs alone. As a result, the composite films obtained exhibit simultaneously and significantly enhanced antistatic, heat dissipative and mechanical properties compared with CA. Specifically, the GNP/CA composite with the optimal formula has promising overall performances (namely, surface resistivity of 3.33 × 107 Ω/sq, in-plane thermal conductivity of 5.359 W ( m · K ) , out-of-plane thermal conductivity of 0.785 W ( m · K ) , and tensile strength of 37.1 MPa). Featured by its promising overall properties, simple production processes and biodegradability, the as-prepared GNP/CA composite film shows a great potential for application in packaging. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10570-023-05155-2.
Collapse
Affiliation(s)
- Zijun Gao
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044 China
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044 China
| | - Yao Li
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044 China
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044 China
| | - Pei Huang
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044 China
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044 China
| | - Rui Zou
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin, 300130 China
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401 China
| | - Yuanqing Li
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044 China
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044 China
| | - Shaoyun Fu
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044 China
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044 China
| |
Collapse
|
35
|
Yap PL, Farivar F, Jämting ÅK, Coleman VA, Gnaniah S, Mansfield E, Pu C, Landi SM, David MV, Flahaut E, Aizane M, Barnes M, Gallerneault M, Locatelli MD, Jacquinot S, Slough CG, Menzel J, Schmölzer S, Ren L, Pollard AJ, Losic D. International Interlaboratory Comparison of Thermogravimetric Analysis of Graphene-Related Two-Dimensional Materials. Anal Chem 2023; 95:5176-5186. [PMID: 36917706 DOI: 10.1021/acs.analchem.2c03575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Research on graphene-related two-dimensional (2D) materials (GR2Ms) in recent years is strongly moving from academia to industrial sectors with many new developed products and devices on the market. Characterization and quality control of the GR2Ms and their properties are critical for growing industrial translation, which requires the development of appropriate and reliable analytical methods. These challenges are recognized by International Organization for Standardization (ISO 229) and International Electrotechnical Commission (IEC 113) committees to facilitate the development of these methods and standards which are currently in progress. Toward these efforts, the aim of this study was to perform an international interlaboratory comparison (ILC), conducted under Versailles Project on Advanced Materials and Standards (VAMAS) Technical Working Area (TWA) 41 "Graphene and Related 2D Materials" to evaluate the performance (reproducibility and confidence) of the thermogravimetric analysis (TGA) method as a potential new method for chemical characterization of GR2Ms. Three different types of representative and industrially manufactured GR2Ms samples, namely, pristine few-layer graphene (FLG), graphene oxide (GO), and reduced graphene oxide (rGO), were used and supplied to ILC participants to complete the study. The TGA method performance was evaluated by a series of measurements of selected parameters of the chemical and physical properties of these GR2Ms including the number of mass loss steps, thermal stability, temperature of maximum mass change rate (Tp) for each decomposition step, and the mass contents (%) of moisture, oxygen groups, carbon, and impurities (organic and non-combustible residue). TGA measurements determining these parameters were performed using the provided optimized TGA protocol on the same GR2Ms by 12 participants across academia, industry stakeholders, and national metrology institutes. This paper presents these results with corresponding statistical analysis showing low standard deviation and statistical conformity across all participants that confirm that the TGA method can be satisfactorily used for characterization of these parameters and the chemical characterization and quality control of GR2Ms. The common measurement uncertainty for each parameter, key contribution factors were identified with explanations and recommendations for their elimination and improvements toward their implementation for the development of the ISO/IEC standard for chemical characterization of GR2Ms.
Collapse
Affiliation(s)
- Pei Lay Yap
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.,ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Farzaneh Farivar
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.,ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Åsa K Jämting
- National Measurement Institute Australia (NMIA), Lindfield, Sydney, NSW 2070, Australia
| | - Victoria A Coleman
- National Measurement Institute Australia (NMIA), Lindfield, Sydney, NSW 2070, Australia
| | - Sam Gnaniah
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Elisabeth Mansfield
- National Institute of Standards and Technology (NIST), Boulder, Colorado 80305, United States
| | - Cheng Pu
- National Institute of Metrology, Chaoyang District, Beijing 100029, China
| | - Sandra Marcela Landi
- National Institute of Metrology, Quality and Technology (INMETRO), Sao Paolo, RJ CEP: 25250-020, Brazil
| | - Marcus Vinícius David
- National Institute of Metrology, Quality and Technology (INMETRO), Sao Paolo, RJ CEP: 25250-020, Brazil
| | - Emmanuel Flahaut
- CIRIMAT, CNRS-INP-UPS, Université Toulouse 3 Paul Sabatier, 118 route de Narbonne, Toulouse cedex 9 F-31062, France
| | - Mohammed Aizane
- CIRIMAT, CNRS-INP-UPS, Université Toulouse 3 Paul Sabatier, 118 route de Narbonne, Toulouse cedex 9 F-31062, France
| | - Michael Barnes
- National Research Council of Canada (NRC-CNRC), Ottawa, Ontario K1A 0R6, Canada
| | - Mary Gallerneault
- National Research Council of Canada (NRC-CNRC), Ottawa, Ontario K1A 0R6, Canada
| | | | | | | | | | | | - Lingling Ren
- National Institute of Metrology, Chaoyang District, Beijing 100029, China
| | - Andrew J Pollard
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.,ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
36
|
Gudkov MV, Brevnov PN, Rabchinskii MK, Baidakova MV, Stolyarova DY, Antonov GA, Yagovkina MA, Ryvkina NG, Bazhenov SL, Gulin AA, Shiyanova KA, Peters GS, Krasheninnikov VG, Ryabkov YD, Goncharuk GP, Gorenberg AY, Novokshonova LA, Melnikov VP. Template-Directed Polymerization Strategy for Producing rGO/UHMWPE Composite Aerogels with Tunable Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5628-5643. [PMID: 36649132 DOI: 10.1021/acsami.2c19649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this paper, we suggest a previously unknown template-directed polymerization strategy for producing graphene/polymer aerogels with elevated mechanical properties, preservation of the nanoscale pore structure, an extraordinary crystallite structure, as well as tunable electrical and hydrophobic properties. The suggested approach is studied using the reduced graphene oxide (rGO)/ultrahigh molecular weight polyethylene (UHMWPE) system as an example. We also develop a novel method of ethylene polymerization with formation of UHMWPE directly on the surface of rGO sheets prestructured as the aerogel template. At a UHMWPE content smaller than 20 wt %, composite materials demonstrate completely reversible deformation and good conductivity. An ultrahigh polymer content (more than 80 wt %) results in materials with pronounced plasticity, improved hydrophobic properties, and a Young's modulus that is more than 200 times larger than that of pure rGO aerogel. Variation of the polymer content makes it possible to tune the electro-conductive properties of the aerogel in the range from 4.8 × 10-6 to 4.9 × 10-1 S/m and adjust its hydrophobic properties. The developed approach would make it possible to create composite materials with highly developed nanostructural morphology and advanced properties controlled by the thickness of the polymer layer on the surface of graphene sheets.
Collapse
Affiliation(s)
- Maksim V Gudkov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Peter N Brevnov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | | | | | | | | | | | - Natalia G Ryvkina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Sergey L Bazhenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexander A Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Kseniya A Shiyanova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Vadim G Krasheninnikov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Yegor D Ryabkov
- Institute of fine chemical technology named after M.V. Lomonosov, RTU MIREA, Moscow 119454, Russia
| | - Galina P Goncharuk
- Enikolopov Institute of Synthetic Polymeric Materials, Moscow 117393, Russia
| | - Arkady Ya Gorenberg
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Lyudmila A Novokshonova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Valery P Melnikov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
37
|
Park SS, Lee YS, Lee SW, Repo E, Kim TH, Park Y, Hwang Y. Facile Surface Treatment of 3D-Printed PLA Filter for Enhanced Graphene Oxide Doping and Effective Removal of Cationic Dyes. Polymers (Basel) 2023; 15:polym15020269. [PMID: 36679150 PMCID: PMC9866784 DOI: 10.3390/polym15020269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
The structured adsorption filter material is one of the ways to enhance the practical applicability of powdered adsorbents, which have limitations in the real water treatment process due to difficulty in the separation process. In this study, three-dimensional (3D) printing technology was applied to prepare filter materials for water treatment processes. A 3D-printed graphene-oxide (GO)-based adsorbent is prepared on a polylactic acid (PLA) scaffold. The surface of the PLA scaffold was modified by subjecting it to strong alkaline or organic solvent treatment to enhance GO doping for realizing effective adsorption of cationic dye solutions. When subjected to 95% acetone treatment, the structural properties of PLA changed, and particularly, two main hydrophilic functional groups (carboxylic acids and hydroxyls) were newly formed on the PLA through cleavage of the ester bond of the aliphatic polyester. Owing to these changes, the roughness of the PLA surface increased, and its tensile strength decreased. Meanwhile, its surface was doped mainly with GO, resulting in approximately 75% methylene blue (MB) adsorption on the 3D-printed GO-based PLA filter. Based on the established optimal pretreatment conditions, a kinetic MB sorption study and an isotherm study were conducted to evaluate the 3D-printed GO-based PLA filter. The pseudo-second-order model yielded the best fit, and the MB adsorption was better fitted to the Langmuir isotherm. These results suggested that chemical adsorption was the main driver of the reaction, and monolayer sorption occurred on the adsorbent surface. The results of this study highlight the importance of PLA surface modification in enhancing GO doping and achieving effective MB adsorption in aqueous solutions. Ultimately, this study highlights the potential of using 3D printing technology to fabricate the components required for implementing water treatment processes.
Collapse
Affiliation(s)
- Sung-Sil Park
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Yun-Seok Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Seung-Woo Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Eveliina Repo
- Department of Separation Science, School of Engineering Science, LUT University, FI-53851 Lappeenranta, Finland
| | - Tae-Hyun Kim
- Institute of Environmental Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Yuri Park
- Institute of Environmental Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Correspondence: (Y.P.); (Y.H.); Tel.: +82-2-970-6626 (Y.P. & Y.H.); Fax: +82-2-971-5776 (Y.P. & Y.H.)
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Correspondence: (Y.P.); (Y.H.); Tel.: +82-2-970-6626 (Y.P. & Y.H.); Fax: +82-2-971-5776 (Y.P. & Y.H.)
| |
Collapse
|
38
|
Paras, Yadav K, Kumar P, Teja DR, Chakraborty S, Chakraborty M, Mohapatra SS, Sahoo A, Chou MMC, Liang CT, Hang DR. A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:160. [PMID: 36616070 PMCID: PMC9824826 DOI: 10.3390/nano13010160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 09/02/2023]
Abstract
The development of modern cutting-edge technology relies heavily on the huge success and advancement of nanotechnology, in which nanomaterials and nanostructures provide the indispensable material cornerstone. Owing to their nanoscale dimensions with possible quantum limit, nanomaterials and nanostructures possess a high surface-to-volume ratio, rich surface/interface effects, and distinct physical and chemical properties compared with their bulk counterparts, leading to the remarkably expanded horizons of their applications. Depending on their degree of spatial quantization, low-dimensional nanomaterials are generally categorized into nanoparticles (0D); nanorods, nanowires, and nanobelts (1D); and atomically thin layered materials (2D). This review article provides a comprehensive guide to low-dimensional nanomaterials and nanostructures. It begins with the classification of nanomaterials, followed by an inclusive account of nanofabrication and characterization. Both top-down and bottom-up fabrication approaches are discussed in detail. Next, various significant applications of low-dimensional nanomaterials are discussed, such as photonics, sensors, catalysis, energy storage, diverse coatings, and various bioapplications. This article would serve as a quick and facile guide for scientists and engineers working in the field of nanotechnology and nanomaterials.
Collapse
Affiliation(s)
- Paras
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Kushal Yadav
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Prashant Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Dharmasanam Ravi Teja
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Sudipto Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Monojit Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | | | - Abanti Sahoo
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Mitch M. C. Chou
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chi-Te Liang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Da-Ren Hang
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
39
|
Vimalanathan B, Vijaya JJ, Mary BCJ, Mary RN, Km M, Jayavel R, Abumousa RA, Bououdina M. The Cytotoxic Effectiveness of Thiourea-Reduced Graphene Oxide on Human Lung Cancer Cells and Fungi. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:149. [PMID: 36616058 PMCID: PMC9823875 DOI: 10.3390/nano13010149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
This study demonstrated the effective reduction of graphene oxide (GO) by employing thiourea as a reducing and stabilizing agent. Two fungi (Aspergillus flavus and Aspergillus fumigatus) were used for anti-fungal assay. Cell viability, cell cycle analysis, DNA fragmentation, and cell morphology were assessed to determine the toxicity of thiourea-reduced graphene oxide (T-rGO) on human lung cancer cells. The results revealed that GO and T-rGO were hazardous to cells in a dose-dependent trend. The viability of both A. fumigatus and A. flavus was affected by GO and T-rGO. The reactive oxygen species produced by T-rGO caused the death of A. flavus and A. fumigatus cells. This study highlighted the effectiveness of T-rGO as an antifungal agent. In addition, T-rGO was found to be more harmful to cancer cells than GO. Thus, T-rGO manifested great potential in biological and biomedical applications.
Collapse
Affiliation(s)
- Babu Vimalanathan
- Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu, India
| | - J. Judith Vijaya
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600034, Tamil Nadu, India
| | - B. Carmel Jeeva Mary
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600034, Tamil Nadu, India
| | - Ruby Nirmala Mary
- Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu, India
| | - Mohamed Km
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600034, Tamil Nadu, India
| | - Ramasamy Jayavel
- Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu, India
| | - Rasha A. Abumousa
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Mohamed Bououdina
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
40
|
Ganesh S, Thambiliyagodage C, Perera SVTJ, Rajapakse RKND. Influence of Laboratory Synthesized Graphene Oxide on the Morphology and Properties of Cement Mortar. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:18. [PMID: 36615928 PMCID: PMC9824886 DOI: 10.3390/nano13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The introduction of Graphene Oxide (GO), a nanomaterial, has shown considerable promise in improving the mechanical properties of cement composites. However, the reasons for this improvement are not yet fully understood and demand further research. This study aims to understand the effect of laboratory-produced GO, using Tour's method, on the mechanical properties and morphology of cement mortar containing GO. The GO was characterized using Fourier-transform infrared spectroscopy, X-ray Photoelectron Spectroscopy (XRD), X-ray powder diffraction, and Raman spectroscopy alongside Scanning electron microscopy (SEM). This study adopted a cement mortar with GO percentages of 0.02, 0.025, 0.03, 0.035, and 0.04 with respect to the weight of the cement. The presence of GO in cement mortar increased the density and decreased the consistency and setting times. At the optimum of 0.03% GO viscous suspension, the mechanical properties such as the 28-day compressive strength, splitting tensile strength, and flexural strength were enhanced by 41%, 83%, and 43%, respectively. In addition, Brunauer-Emmett-Teller analysis indicates an increase in surface area and volume of micropores of GO cement mortar, resulting in a decreased volume of mesopores. The improvement in properties was due to increased nucleation sites, calcium silicate hydrate (CSH) density, and a decreased volume of mesopores.
Collapse
Affiliation(s)
- Suganthiny Ganesh
- Department of Civil Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology (SLIIT), Colombo 10115, Sri Lanka
| | - Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology (SLIIT), Colombo 10115, Sri Lanka
| | - S. V. T. Janaka Perera
- Department of Civil Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology (SLIIT), Colombo 10115, Sri Lanka
| | - R. K. N. D. Rajapakse
- Department of Civil Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology (SLIIT), Colombo 10115, Sri Lanka
- Faculty of Applied Science, Simon Fraser University, Burnaby, BC V5A 0A7, Canada
| |
Collapse
|
41
|
Enhancing the Mechanical Properties of Waterborne Polyurethane Paint by Graphene Oxide for Wood Products. Polymers (Basel) 2022; 14:polym14245456. [PMID: 36559824 PMCID: PMC9788297 DOI: 10.3390/polym14245456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Water-based polyurethane paint is widely used for wood furniture by virtue of the eco-friendliness, rich gloss, and flexible tailorability of its mechanical properties. However, its low solution (water or alcohol) resistance and poor hardness and wear resistance limit its application. The emerging graphene oxide has a high specific surface area and abundant functional groups with excellent mechanical properties, endowing it with great potential to modify waterborne polyurethane as a nanofiller. In this study, graphene oxide prepared by Hummers' method is introduced in the chemosynthetic waterborne polyurethane through physical blending. The testing results demonstrate that the appropriate usage of graphene oxide at 0.1 wt% could obviously improve water absorption resistance and alcohol resistance, significantly enhancing the mechanical properties of waterborne polyurethane paint. The corresponding tensile strength, abrasion resistance, and pendulum hardness of the graphene oxide-modified paint film increase by 62.23%, 14.76%, and 12.7%, respectively, compared with the pristine paint film. Meanwhile, the composite paint film containing graphene oxide possesses superiority, including gloss, abrasion resistance, pendulum hardness, and tensile strength in contrast with the commercial paint. The use of graphene oxide to enhance the waterborne polyurethane possesses strong operability and practical value, and could provide useful reference for the modification of waterborne wood paint.
Collapse
|
42
|
Synthesis and Characterization of Chitosan-Containing ZnS/ZrO 2/Graphene Oxide Nanocomposites and Their Application in Wound Dressing. Polymers (Basel) 2022; 14:polym14235195. [PMID: 36501590 PMCID: PMC9738290 DOI: 10.3390/polym14235195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
The development of scaffold-based nanofilms for the acceleration of wound healing and for maintaining the high level of the healthcare system is still a challenge. The use of naturally sourced polymers as binders to deliver nanoparticles to sites of injury has been highly suggested. To this end, chitosan (CS) was embedded with different nanoparticles and examined for its potential usage in wound dressing. In detail, chitosan (CS)-containing zinc sulfide (ZnS)/zirconium dioxide (ZrO2)/graphene oxide (GO) nanocomposite films were successfully fabricated with the aim of achieving promising biological behavior in the wound healing process. Morphological examination by SEM showed the formation of porous films with a good scattering of ZnS and ZrO2 nanograins, especially amongst ZnS/ZrO2/GO@CS film. In addition, ZnS/ZrO2/GO@CS displayed the lowest contact angle of 67.1 ± 0.9°. Optically, the absorption edge records 2.35 eV for pure chitosan, while it declines to 1.8:1.9 scope with the addition of ZnS, ZrO2, and GO. Normal lung cell (WI-38) proliferation inspection demonstrated that the usage of 2.4 µg/mL ZnS/ZrO2/GO@CS led to a cell viability % of 142.79%, while the usage of 5000 µg/ mL led to a viability of 113.82%. However, the fibroblast malignant cell line exposed to 2.4 µg/mL ZnS/ZrO2/GO@CS showed a viability % of 92.81%, while this percentage showed a steep decline with the usage of 5000 µg/ mL and 2500 µg/mL, reaching 23.28% and 27.81%, respectively. Further biological assessment should be executed with a three-dimensional film scaffold by choosing surrounding media characteristics (normal/malignant) that enhance the selectivity potential. The fabricated scaffolds show promising selective performance, biologically.
Collapse
|
43
|
Mikheev IV, Byvsheva SM, Sozarukova MM, Kottsov SY, Proskurnina EV, Proskurnin MA. High-Throughput Preparation of Uncontaminated Graphene-Oxide Aqueous Dispersions with Antioxidant Properties by Semi-Automated Diffusion Dialysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4159. [PMID: 36500782 PMCID: PMC9739863 DOI: 10.3390/nano12234159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A semi-automated diffusion-dialysis purification procedure is proposed for the preparation of uncontaminated graphene oxide (GO) aqueous dispersions. The purification process is integrated with analytical-signal processing to control the purification degree online by several channels: oxidation-reduction potential, conductivity, and absorbance. This approach reduces the amounts of reagents for chemical treatment during dialysis. The total transition metal (Mn and Ti) content was reduced to a sub-ppb level (assessed by slurry nebulization in inductively coupled plasma optical atomic emission spectroscopy). Purified aqueous GO samples possess good stability for about a year with a zeta-potential of ca. -40 mV and a lateral size of ca. sub-µm. Purified GO samples showed increased antioxidant properties (up to five times compared to initial samples according to chemiluminometry by superoxide-radical (O2-) generated in situ from xanthine and xanthine oxidase with the lucigenin probe) and significantly decreased peroxidase-like activity (assessed by the H2O2-L-012 system).
Collapse
Affiliation(s)
- Ivan V. Mikheev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sofiya M. Byvsheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Madina M. Sozarukova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 117901, Russia
| | - Sergey Yu. Kottsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 117901, Russia
| | | | | |
Collapse
|
44
|
Akhter S, Arjmand F, Pettinari C, Tabassum S. Ru(II)( ƞ6- p-cymene) Conjugates Loaded onto Graphene Oxide: An Effective pH-Responsive Anticancer Drug Delivery System. Molecules 2022; 27:7592. [PMID: 36364418 PMCID: PMC9655566 DOI: 10.3390/molecules27217592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/04/2023] Open
Abstract
Graphene oxide-based nanodrug delivery systems are considered one of the most promising platforms to deliver therapeutic drugs at the target site. In this study, Ru(II)(ƞ6-p-cymene) complexes containing the benzothiazole ligand were covalently anchored on graphene oxide using the ultrasonication method. The nanoconjugates GO-NCD-1 and GO-NCD-2 were characterized by FT-IR, UV-visible, 1H NMR, TGA, SEM, and TEM techniques, which confirmed the successful loading of both the complexes (NCD 1 and NCD 2) on the carrier with average particle diameter sizes of 17 ± 6.9 nm and 25 ± 6.5 nm. In vitro DNA binding studies of the nanoconjugates were carried out by employing various biophysical methods to investigate the binding interaction with the therapeutic target biomolecule and to quantify the intrinsic binding constant values useful to understand their binding affinity. Our results suggest (i) high Kb and Ksv values of the graphene-loaded conjugates (ii) effective cleavage of plasmid DNA at a lower concentration of 7.5 µM and 10 µM via an oxidative pathway, and (iii) fast release of NCD 2 at an acidic pH that could have a good impact on the controlled delivery of drug. It was found that 90% of the drug was released in an acidic pH (5.8 pH) environment in 48 h, therefore suggesting pH-responsive behavior of the drug delivery system. Molecular docking, DFT studies, and cytotoxicity activity against three cancer cell lines by SRB assay were also performed.
Collapse
Affiliation(s)
- Suffora Akhter
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Claudio Pettinari
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
45
|
Decorating Zirconium on Graphene Oxide to Design a Multifunctional Nanozyme for Eco-Friendly Detection of Hydrogen Peroxide. Catalysts 2022. [DOI: 10.3390/catal12101105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Peroxidase enzymes are crucial in analytical chemistry owing to significant peroxide analytes and their key role in hydrogen peroxide (H2O2) detection. Therefore, exploiting appropriate catalysts for the peroxidase like reactions has become crucial for achieving desired analytical performance. Zirconium (Zr) has attracted growing interest, as a safe and stable potential eco-friendly catalyst for various organic transformations that address increasing environmental challenges. Hence, aiming at fast, sensitive and selective optical detection of H2O2, a colorimetric platform is presented here, based on the excellent peroxidase enzyme-like activity of Zr decorated on graphene oxide (GO). The synergistic effect achieved due to intimate contact between an enzyme like Zr and the high surface area 0f GO ensures efficient electron transfer that increases the chemical and catalytic activity of the composite and advances the decomposition of H2O2 into hydroxyl radicals. The designed probe, thus, efficiently catalyzes the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB), via hydroxyl radicals, thereby transforming the colorless TMB into blue oxidized TMB within 2 min. The catalytic mechanism of the Zr-GO enzyme mimic is proposed herein and verified using a fluorescent probe terephthalic acid (TA) and other scavenger experiments. The multifunctional optical probe allows sensitive and highly selective recognition of H2O2 in a linear range from 100 to 1000 µM with a low detection limit of 0.57 µM. Essentially, the direct accessibility of Zr prevents having to use the complicated preparation and purification procedures mostly practiced for conventional biozymes and nanozymes. The devised method offers several gains, including being green and an inexpensive catalyst, having lower LOD, being fast, cost-effective and sensitive, and having selective work-up procedures.
Collapse
|
46
|
Abbas TM, Hussein SI. Improving the Mechanical Properties, Roughness, Thermal Stability, and Contact Angle of the Acrylic Polymer by Graphene and Carbon Fiber Doping for Waterproof Coatings. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02384-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Belhamdi H, Kouini B, Grasso A, Scolaro C, Sili A, Visco A. Tribological behavior of biomedical grade
UHMWPE
with graphite‐based fillers against
EBM‐Ti6Al4V pin
under various lubricating conditions. J Appl Polym Sci 2022. [DOI: 10.1002/app.52313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hossem Belhamdi
- Research Unit: Materials, Processes, and Environment (RU/MPE) M'Hamed Bougara University Boumerdes Algeria
- Department of Engineering University of Messina Messina Italy
| | - Benalia Kouini
- Laboratory of Coatings, Materials, and Environment M'Hamed Bougara University Boumerdes Algeria
| | - Antonio Grasso
- Department of Engineering University of Messina Messina Italy
- Institute for Polymers Composites and Biomaterials ‐ CNR IPCB Catania Italy
| | | | - Andrea Sili
- Department of Engineering University of Messina Messina Italy
| | - Annamaria Visco
- Department of Engineering University of Messina Messina Italy
- Institute for Polymers Composites and Biomaterials ‐ CNR IPCB Catania Italy
| |
Collapse
|
48
|
Atiqur Rahman M, Islam MS, Fukuda M, Yagyu J, Feng Z, Sekine Y, Lindoy LF, Ohyama J, Hayami S. High Proton Conductivity of 3D Graphene Oxide Intercalated with Aromatic Sulfonic Acids. Chempluschem 2022; 87:e202200003. [PMID: 35333452 DOI: 10.1002/cplu.202200003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/07/2022] [Indexed: 02/21/2024]
Abstract
The development of efficient proton conductors that are capable of high power density, sufficient mechanical strength, and reduced gas permeability is challenging. Herein, we report the development of a series of aromatic sulfonic acid/graphene oxide hybrid membranes incorporating benzene sulfonic acid (BS), naphthalene sulfonic acid (NS), naphthalene disulfonic acid (DS) or pyrene sulfonic acid (PS) using a facile freeze dried method. For out-of-plane proton conductivity, the 3DGO-BS and 3DGO-NS yielded proton conductivities of 4.4×10-2 S cm-1 and 3.1×10-2 S cm-1 , respectively; this represents a two-times higher value than that which occurs for three dimensional graphene oxide (3DGO). Additionally, the respective prepared films as membranes in a proton exchange membrane fuel cell (PEMFC) show maximum power density of 98.76 mW cm-2 for 3DGO-NS while it is 92.75 mW cm-2 for 3DGO-BS which are close to double that obtained for 3DGO (50 mW cm-2 ).
Collapse
Affiliation(s)
- Mohammad Atiqur Rahman
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
| | - Md Saidul Islam
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
| | - Mashahiro Fukuda
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
| | - Junya Yagyu
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
| | - Zhiqing Feng
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
| | - Yoshihiro Sekine
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
| | - Leonard F Lindoy
- School of Chemistry, The University of Sydney, 2006, Sydney, New South Wales, Australia
| | - Junya Ohyama
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
| | - Shinya Hayami
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
- International Research Center for Agricultural and Environmental Biology (IRCAEB), 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
| |
Collapse
|
49
|
Madeo LF, Sarogni P, Cirillo G, Vittorio O, Voliani V, Curcio M, Shai-Hee T, Büchner B, Mertig M, Hampel S. Curcumin and Graphene Oxide Incorporated into Alginate Hydrogels as Versatile Devices for the Local Treatment of Squamous Cell Carcinoma. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1648. [PMID: 35268879 PMCID: PMC8911244 DOI: 10.3390/ma15051648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022]
Abstract
With the aim of preparing hybrid hydrogels suitable for use as patches for the local treatment of squamous cell carcinoma (SCC)-affected areas, curcumin (CUR) was loaded onto graphene oxide (GO) nanosheets, which were then blended into an alginate hydrogel that was crosslinked by means of calcium ions. The homogeneous incorporation of GO within the polymer network, which was confirmed through morphological investigations, improved the stability of the hybrid system compared to blank hydrogels. The weight loss in the 100-170 °C temperature range was reduced from 30% to 20%, and the degradation of alginate chains shifted to higher temperatures. Moreover, GO enhanced the stability in water media by counteracting the de-crosslinking process of the polymer network. Cell viability assays showed that the loading of CUR (2.5% and 5% by weight) was able to reduce the intrinsic toxicity of GO towards healthy cells, while higher amounts were ineffective due to the antioxidant/prooxidant paradox. Interestingly, the CUR-loaded systems were found to possess a strong cytotoxic effect in SCC cancer cells, and the sustained CUR release (~50% after 96 h) allowed long-term anticancer efficiency to be hypothesized.
Collapse
Affiliation(s)
- Lorenzo Francesco Madeo
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (B.B.); (S.H.)
| | - Patrizia Sarogni
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy; (P.S.); (V.V.)
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy;
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (O.V.); (T.S.-H.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy; (P.S.); (V.V.)
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy;
| | - Tyler Shai-Hee
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (O.V.); (T.S.-H.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Bernd Büchner
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (B.B.); (S.H.)
- Institute of Solid State and Materials Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Mertig
- Institute of Physical Chemistry, Technische Universität Dresden, 01062 Dresden, Germany;
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (B.B.); (S.H.)
| |
Collapse
|
50
|
Dmitrenko M, Chepeleva A, Liamin V, Mazur A, Semenov K, Solovyev N, Penkova A. Novel Mixed Matrix Membranes Based on Polyphenylene Oxide Modified with Graphene Oxide for Enhanced Pervaporation Dehydration of Ethylene Glycol. Polymers (Basel) 2022; 14:polym14040691. [PMID: 35215603 PMCID: PMC8877255 DOI: 10.3390/polym14040691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
Ethylene glycol (EG) is widely used in various economic and industrial fields. The demand for its efficient separation and recovery from water is constantly growing. To improve the pervaporation characteristics of a poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) membrane in dehydration of ethylene glycol, the modification with graphene oxide (GO) nanoparticles was used. The effects of the introduction of various GO quantities into the PPO matrix on the structure and physicochemical properties were studied by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies, scanning electron (SEM) and atomic force (AFM) microscopies, thermogravimetric analysis (TGA), swelling experiments, and contact angle measurements. Two types of membranes based on PPO and PPO/GO composite were developed: dense membranes and supported membranes on a fluoroplast substrate (MFFC). Transport properties of the developed membranes were evaluated in the pervaporation dehydration of EG in a wide concentration range (10–90 wt.% and 10–30 wt.% water for the dense and supported membranes, respectively). The supported PPO/GO(0.7%)/MFFC membrane demonstrated the best transport properties in pervaporation dehydration of EG (10–30 wt.% water) at 22 °C: permeation flux ca. 15 times higher compared to dense PPO membrane—180–230 g/(m2·h)), 99.8–99.6 wt.% water in the permeate. The membrane is suitable for the promising industrial application.
Collapse
Affiliation(s)
- Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 Saint Petersburg, Russia; (A.C.); (V.L.); (A.M.); (A.P.)
- Correspondence: ; Tel.: +7-(812)-363-6000 (ext. 3367)
| | - Anastasia Chepeleva
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 Saint Petersburg, Russia; (A.C.); (V.L.); (A.M.); (A.P.)
| | - Vladislav Liamin
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 Saint Petersburg, Russia; (A.C.); (V.L.); (A.M.); (A.P.)
| | - Anton Mazur
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 Saint Petersburg, Russia; (A.C.); (V.L.); (A.M.); (A.P.)
| | - Konstantin Semenov
- Pavlov First Saint Petersburg State Medical University, L’va Tolstogo Ulitsa 6-8, 197022 Saint Petersburg, Russia;
| | - Nikolay Solovyev
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland;
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 Saint Petersburg, Russia; (A.C.); (V.L.); (A.M.); (A.P.)
| |
Collapse
|