1
|
Mondaca JM, Muñoz JMF, Barraza GA, Vanderhoeven F, Redondo AL, Flamini MI, Sanchez AM. Therapeutic potential of GNRHR analogs and SRC/FAK inhibitors to counteract tumor growth and metastasis in breast cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167826. [PMID: 40189112 DOI: 10.1016/j.bbadis.2025.167826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Breast cancer (BC) is the leading cause of cancer death in women, with hormone-dependent BC accounting for about 80 % of cases, primarily affecting postmenopausal women with gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) elevated. Treatments targeting the gonadotropin-releasing hormone receptor (GnRHR), such as the agonist leuprorelin (LEU) and antagonist degarelix (DEGA), are used for hormone-dependent tumors. While the functional role of gonadotropin receptors in extragonadal tissues remains uncertain, recent studies suggest LH contributes to tumor development and progression. Tumor progression involves reorganization in the actin cytoskeleton, induction of adhesion, and cell migration, driven by proteins such as Src and the focal adhesion kinase (FAK), which are related to invasive behaviors. The overexpression of both protein kinases generates an invasive and metastatic phenotype, then inhibitors targeting Src (PP2) and FAK (FAKi) have been developed to counteract this effect. This study combined GnRH analogs with Src and FAK inhibitors to target BC progression. We found that LH treatment influenced gene expression linked to tumor development. Examining the GnRHR-LEU and GnRHR-DEGA complexes revealed structural differences affecting ligand binding. In an orthotopic tumor model, DEGA reduced tumor growth, while LEU had the opposite effect. Combining DEGA with PP2 or FAKi enhanced tumor inhibition, improving mice survival. These findings provide valuable insights into the essential regulatory role of gonadotropins in genes involved in tumorigenic processes, highlighting the potential of GnRHR antagonists combined with Src or FAK inhibitors as a promising strategy to develop new drugs that interfere with the ability of breast tumor progression.
Collapse
Affiliation(s)
- Joselina Magali Mondaca
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Juan Manuel Fernandez Muñoz
- Departamento de Laboratorio de Salud Pública, Ministerio de Salud y Deportes, Gobierno de Mendoza, Mendoza, Argentina
| | - Gustavo Adolfo Barraza
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Fiorella Vanderhoeven
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Analía Lourdes Redondo
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Marina Inés Flamini
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Angel Matias Sanchez
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
2
|
Liu D, Li L, Zhang J, Qin H, Zhang M, Sun X, Han Y, Wang F, Wang Z, Cai Z. Berberine promotes apoptosis and inhibits the migration of oral squamous carcinoma cells through inhibition of the RAGE/PI3K/AKT/mTOR pathway. Biomed Pharmacother 2025; 187:118147. [PMID: 40339228 DOI: 10.1016/j.biopha.2025.118147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025] Open
Abstract
Given the high recurrence rate, elevated risk of metastasis, and drug resistance associated with oral squamous cell carcinoma (OSCC), the development of low - toxicity and highly efficient therapeutic agents has emerged as a top research priority. In this study, we conducted an in-depth investigation into the efficacy and underlying mechanism of berberine (BBR), a compound renowned for its broad anticancer activity, in the context of OSCC. Using network pharmacology, we identified 91 potential targets of BBR in OSCC, with SRC, PIK3CA, and CDC42 ranking among the top. KEGG pathway analysis indicated that the cross-targets were predominantly concentrated in signaling pathways such as PI3K/AKT, AGE-RAGE, and Ras. Molecular docking assays demonstrated that the binding energies between BBR and the core targets were all below -5 kcal/mol, signifying favorable binding interactions. Bioinformatics studies unveiled that SRC, PIK3CA, and CDC42 were highly expressed in OSCC patients and correlated with a poorer prognosis. In vitro, experiments further substantiated that BBR impeded the proliferation and migration of OSCC cells and reduced the intracellular expression levels of RAGE, p-PI3K, p-AKT, and p-mTOR proteins. Our results suggest that BBR effectively facilitates apoptosis and curbs the proliferation and migration of OSCC, potentially by suppressing the RAGE/PI3K/AKT/mTOR pathway. In summary, these findings underscore the potential of BBR as a single agent capable of exerting multi-target and multi-pathway synergistic effects on cancer cells.
Collapse
Affiliation(s)
- Daili Liu
- Department of Stomatology, Binzhou Medical University, Yantai 264000, China; Department of Stomatology, Linyi people's Hospital, Linyi 276000, China
| | - Ling Li
- Department of Stomatology, Linyi people's Hospital, Linyi 276000, China
| | - Jingfei Zhang
- Department of Stomatology, Binzhou Medical University, Yantai 264000, China
| | - Han Qin
- Department of Stomatology, Tengzhou Hospital of Traditional Chinese Medicine, Tengzhou 277599, China
| | - Meng Zhang
- Department of Stomatology, Binzhou Medical University, Yantai 264000, China; Department of Stomatology, Linyi people's Hospital, Linyi 276000, China
| | - Xiaoyang Sun
- Department of Stomatology, Linyi people's Hospital, Linyi 276000, China; Department of Stomatology, Shandong Second Medical University, Weifang 261000, China
| | - Yuting Han
- Department of Stomatology, Binzhou Medical University, Yantai 264000, China; Department of Stomatology, Linyi people's Hospital, Linyi 276000, China
| | - Feng Wang
- Department of Stomatology, Linyi people's Hospital, Linyi 276000, China; Department of Stomatology, Shandong Second Medical University, Weifang 261000, China
| | - Zhi Wang
- Department of Stomatology, Linyi people's Hospital, Linyi 276000, China.
| | - Zhen Cai
- Department of Stomatology, Linyi people's Hospital, Linyi 276000, China.
| |
Collapse
|
3
|
Cuellar-Vite L, Donaubauer EM, Weber-Bonk KL, Bobbitt JR, Ingles NN, Brzozowski TL, Abdul-Karim FW, Booth CN, Keri RA. Exploiting YES1-Driven EGFR Expression Improves the Efficacy of EGFR Inhibitors. Mol Cancer Res 2025; 23:391-404. [PMID: 39847459 PMCID: PMC12048259 DOI: 10.1158/1541-7786.mcr-24-0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 12/06/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
EGFR is a highly expressed driver of many cancers, yet the utility of EGFR inhibitors (EGFRi) is limited to cancers that harbor sensitizing mutations in the EGFR gene because of dose-limiting toxicities. Rather than conventionally blocking the kinase activity of EGFR, we sought to reduce its transcription as an alternative approach to broaden the therapeutic window for EGFR inhibitors targeting wild-type (WT) or mutant EGFR. We found that YES1 is highly expressed in triple-negative breast cancer (TNBC) and drives cell growth by elevating EGFR levels. Mechanistically, YES1 stimulates EGFR expression by signaling to JNK and stabilizing the AP-1 transcription factor c-Jun. This effect extends beyond TNBC as YES1 also sustains EGFR expression in non-small cell lung cancer cells, including those that harbor the EGFR gatekeeper mutation T790M. The novel ability of YES1 to regulate the expression of WT and mutant EGFR mRNA and protein provides a potential therapeutic opportunity of utilizing YES1 blockade to broadly increase the efficacy of EGFR inhibitors. Indeed, we observed synergy within in vitro and in vivo models of TNBC and non-small cell lung cancer, even in the absence of EGFR-activating mutations. Together, these data provide a rationale for blocking YES1 activity as an approach for improving the efficacy of EGFR-targeting drugs in cancers that have generally been refractory to such inhibitors. Implications: YES1 sustains EGFR expression, revealing a therapeutic vulnerability for increasing the efficacy of EGFR inhibitors by lowering the threshold for efficacy in tumors driven by the WT or mutant receptor.
Collapse
Affiliation(s)
- Leslie Cuellar-Vite
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Elyse M. Donaubauer
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kristen L. Weber-Bonk
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jessica R. Bobbitt
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Natasha N. Ingles
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Taylor L. Brzozowski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fadi W. Abdul-Karim
- Anatomic Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine N. Booth
- Anatomic Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ruth A. Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of General Medical Sciences-Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio USA
| |
Collapse
|
4
|
Su Y, Zhu K, Wang J, Liu B, Chang Y, Chang D, You Y. Advancing Src kinase inhibition: From structural design to therapeutic innovation - A comprehensive review. Eur J Med Chem 2025; 287:117369. [PMID: 39952096 DOI: 10.1016/j.ejmech.2025.117369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Src kinase, a non-receptor tyrosine kinase implicated in cellular signaling networks, plays a pivotal role in tumor progression and therapeutic resistance. Despite intensive research efforts spanning decades, no Src-selective kinase inhibitors have yet entered clinical use, highlighting the challenges in developing targeted therapeutics. Here we review recent advances in small-molecule Src inhibitor development, focusing on structural design strategies, binding mechanisms, and therapeutic applications. We analyze emerging approaches including fragment-based drug design, allosteric targeting, and substrate-competitive inhibition that have yielded promising new scaffold classes. Special attention is given to innovations in achieving isozyme selectivity, particularly through exploitation of non-ATP binding pockets and covalent inhibition strategies. Integration of artificial intelligence, living organoid platforms, and targeted protein degradation technologies is accelerating inhibitor optimization. We discuss key challenges in Src inhibitor development, including the need for enhanced selectivity, reduced off-target effects, and improved resistance profiles. Our analysis reveals promising directions for future therapeutic development, emphasizing the importance of rational design principles guided by structural insights and emerging technologies. These findings provide a framework for developing next-generation Src inhibitors with improved clinical potential.
Collapse
Affiliation(s)
- Yifeng Su
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiahao Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Boyan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yue Chang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Degui Chang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China.
| | - Yaodong You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China.
| |
Collapse
|
5
|
Bourke L, O’Brien C. Fibrosis and Src Signalling in Glaucoma: From Molecular Pathways to Therapeutic Prospects. Int J Mol Sci 2025; 26:1009. [PMID: 39940776 PMCID: PMC11817269 DOI: 10.3390/ijms26031009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Glaucoma, a leading cause of irreversible blindness, is characterised by progressive optic nerve damage, with elevated intraocular pressure (IOP) and extracellular matrix (ECM) remodelling in the lamina cribrosa (LC) contributing to its pathophysiology. While current treatments focus on IOP reduction, they fail to address the underlying fibrotic changes that perpetuate neurodegeneration. The Src proto-oncogene, a non-receptor tyrosine kinase, has emerged as a key regulator of cellular processes, including fibroblast activation, ECM deposition, and metabolism, making it a promising target for glaucoma therapy. Beyond its well-established roles in cancer and fibrosis, Src influences pathways critical to trabecular meshwork function, aqueous humour outflow, and neurodegeneration. However, the complexity of Src signalling networks remains a challenge, necessitating further investigation into the role of Src in glaucoma pathogenesis. This paper explores the therapeutic potential of Src inhibition to mitigate fibrotic remodelling and elevated IOP in glaucoma, offering a novel approach to halting disease progression.
Collapse
Affiliation(s)
- Liam Bourke
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | | |
Collapse
|
6
|
Song M, Elkamhawy A, Noh W, Abdelazem AZ, Park Y, Sivaraman A, Bertleuova A, Atef D, Lee K. Pyrimidine scaffold dual-target kinase inhibitors for cancer diseases: A review on design strategies, synthetic approaches, and structure-activity relationship (2018‒2023). Arch Pharm (Weinheim) 2025; 358:e2400163. [PMID: 39828961 DOI: 10.1002/ardp.202400163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Cancer, the second leading cause of death globally, causes a significant threat to life. Despite advancements in the treatment of cancer, persistent challenges include severe side effects and the emergence of acquired drug resistance. Additionally, many traditional chemotherapy drugs show restricted efficacy and high toxicity, primarily attributed to their lack of selectivity. Thus, the development of drugs targeting protein kinases has emerged as a noteworthy priority for addressing human cancers. Medicinal chemists have shown considerable interest in the development of dual drug candidates as a strategy to create medicines that are safer, more efficient, and cost-effective. Furthermore, the Food and Drug Administration (FDA) has approved several dual-target drugs for anticancer treatment, emphasizing their lower risks of drug interactions and improved pharmacokinetics and safety profiles. This review focuses on the synthetic efforts, design strategies, and structure-activity relationship of the pyrimidine scaffold-based dual kinase inhibitors developed with anticancer potential within the recent 6 years (2018‒2023). Collectively, these strategies are expected to offer fresh perspectives on the future directions of pyrimidine-based dual-target kinase drug design, potentially advancing cancer therapeutics.
Collapse
Affiliation(s)
- Moeun Song
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Ahmed Elkamhawy
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Woojeong Noh
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Ahmed Z Abdelazem
- Biotechnology & Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni, suef, Egypt
| | - Younggeun Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Aneesh Sivaraman
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Arailym Bertleuova
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Dalia Atef
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Huang C, Huang X, Qiu X, Kong X, Wu C, Jiang X, Yao M, Wang M, Su L, Lv C, Wong P. Pericytes Modulate Third-Generation Tyrosine Kinase Inhibitor Sensitivity in EGFR-Mutated Lung Cancer Cells Through IL32-β5-Integrin Paracrine Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405130. [PMID: 39435643 PMCID: PMC11633494 DOI: 10.1002/advs.202405130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Indexed: 10/23/2024]
Abstract
EGFR-mutated lung cancer patients sometimes display restricted responses to third-generation tyrosine kinase inhibitors (TKIs), potentially attributable to undervalued input from stromal cells, notably pericytes (PCs). The study shows that PCs isolated from EGFR-mutated patients have a unique secretome profile, notably secreting IL32 and affecting signaling pathways and biological processes linked to TKI sensitivity. Clinical evidence, supported by single-cell RNA sequencing and multiplex immunostaining of tumor tissues, confirms the presence of IL32-expressing pericytes closely interacting with β5-integrin-expressing cancer cells in EGFR-mutated patients, impacting therapeutic response and prognosis. Co-culture and conditioned medium experiments demonstrate that PCs reduce TKI effectiveness in EGFR-mutated cancer cells, a reversible phenomenon through silencing IL32 expression in PCs or depleting the IL32 receptor β5-integrin on cancer cells, thereby restoring cancer cell sensitivity. Mechanistically, it is shown that YY1 signaling upregulates IL32 secretion in PCs, subsequently activating the β5-integrin-Src-Akt pathway in EGFR-mutated cancer cells, contributing to their TKI sensitivity. In animal studies, co-injection of cancer cells with PCs compromises TKI effectiveness, independently of blood vessel functions, while inhibition of β5-integrin restores tumor cell sensitivity. Overall, the findings highlight direct crosstalk between cancer cells and pericytes, impacting TKI sensitivity via IL32-β5-integrin paracrine signaling, proposing an enhanced therapeutic approach for EGFR-mutated patients.
Collapse
Affiliation(s)
- Cheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract CancerDepartment of Biliary‐Pancreatic SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xiaoyi Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Chunmiao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Mingkang Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Department of Respiratory MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Minghui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Department of Thoracic SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Liangping Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Urological DiseasesGuangzhou Medical UniversityGuangzhou510120China
| | - Cui Lv
- Clinical Biobank CenterZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Ping‐Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Guangzhou Key Laboratory of Precise Diagnosis and Treatment of Biliary Tract CancerDepartment of Biliary‐Pancreatic SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| |
Collapse
|
8
|
Zhao W, Ouyang C, Zhang L, Wang J, Zhang J, Zhang Y, Huang C, Xiao Q, Jiang B, Lin F, Zhang C, Zhu M, Xie C, Huang X, Zhang B, Zhao W, He J, Chen S, Liu X, Lin D, Li Q, Wang Z. The proto-oncogene tyrosine kinase c-SRC facilitates glioblastoma progression by remodeling fatty acid synthesis. Nat Commun 2024; 15:7455. [PMID: 39198451 PMCID: PMC11358276 DOI: 10.1038/s41467-024-51444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Increased fatty acid synthesis benefits glioblastoma malignancy. However, the coordinated regulation of cytosolic acetyl-CoA production, the exclusive substrate for fatty acid synthesis, remains unclear. Here, we show that proto-oncogene tyrosine kinase c-SRC is activated in glioblastoma and remodels cytosolic acetyl-CoA production for fatty acid synthesis. Firstly, acetate is an important substrate for fatty acid synthesis in glioblastoma. c-SRC phosphorylates acetyl-CoA synthetase ACSS2 at Tyr530 and Tyr562 to stimulate the conversion of acetate to acetyl-CoA in cytosol. Secondly, c-SRC inhibits citrate-derived acetyl-CoA synthesis by phosphorylating ATP-citrate lyase ACLY at Tyr682. ACLY phosphorylation shunts citrate to IDH1-catalyzed NADPH production to provide reducing equivalent for fatty acid synthesis. The c-SRC-unresponsive double-mutation of ACSS2 and ACLY significantly reduces fatty acid synthesis and hampers glioblastoma progression. In conclusion, this remodeling fulfills the dual needs of glioblastoma cells for both acetyl-CoA and NADPH in fatty acid synthesis and provides evidence for glioma treatment by c-SRC inhibition.
Collapse
Affiliation(s)
- Wentao Zhao
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Cong Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Liang Zhang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jinyang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jiaojiao Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Chen Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Qiao Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Bingchang Zhang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenpeng Zhao
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiawei He
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Sifang Chen
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiyao Liu
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
9
|
Jones CM, Rohwedder A, Suen KM, Mohajerani SZ, Calabrese AN, Knipp S, Bedford MT, Ladbury JE. Affinity purification mass spectrometry characterisation of the interactome of receptor tyrosine kinase proline-rich motifs in cancer. Heliyon 2024; 10:e35480. [PMID: 39165974 PMCID: PMC11334840 DOI: 10.1016/j.heliyon.2024.e35480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Receptor tyrosine kinase (RTK) overexpression is linked to the development and progression of multiple cancers. RTKs are classically considered to initiate cytoplasmic signalling pathways via ligand-induced tyrosine phosphorylation, however recent evidence points to a second tier of signalling contingent on interactions mediated by the proline-rich motif (PRM) regions of non-activated RTKs. The presence of PRMs on the C-termini of >40 % of all RTKs and the abundance of PRM-binding proteins encoded by the human genome suggests that there is likely to be a large number of previously unexplored interactions which add to the RTK intracellular interactome. Here, we explore the RTK PRM interactome and its potential significance using affinity purification mass spectrometry and in silico enrichment analyses. Peptides comprising PRM-containing C-terminal tail regions of EGFR, FGFR2 and HER2 were used as bait to affinity purify bound proteins from different cancer cell line lysates. 490 unique interactors were identified, amongst which proteins with metabolic, homeostatic and migratory functions were overrepresented. This suggests that PRMs from RTKs may sustain a diverse interactome in cancer cells. Since RTK overexpression is common in cancer, RTK PRM-derived signalling may be an important, but as yet underexplored, contributor to negative cancer outcomes including resistance to kinase inhibitors.
Collapse
Affiliation(s)
- Christopher M. Jones
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LJ2 9JT, UK
| | - Arndt Rohwedder
- Faculty of Biological Sciences, University of Leeds, Leeds, LJ2 9JT, UK
- Centre for Medical Research (ZMF), Johannes Kepler University, 4020 Linz, Austria
| | - Kin Man Suen
- Faculty of Biological Sciences, University of Leeds, Leeds, LJ2 9JT, UK
| | | | | | - Sabine Knipp
- Faculty of Biological Sciences, University of Leeds, Leeds, LJ2 9JT, UK
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Centre, Houston, TX. TX 77230, USA
| | - John E. Ladbury
- Faculty of Biological Sciences, University of Leeds, Leeds, LJ2 9JT, UK
| |
Collapse
|
10
|
Panda VK, Mishra B, Nath AN, Butti R, Yadav AS, Malhotra D, Khanra S, Mahapatra S, Mishra P, Swain B, Majhi S, Kumari K, Radharani NNV, Kundu GC. Osteopontin: A Key Multifaceted Regulator in Tumor Progression and Immunomodulation. Biomedicines 2024; 12:1527. [PMID: 39062100 PMCID: PMC11274826 DOI: 10.3390/biomedicines12071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) is composed of various cellular components such as tumor cells, stromal cells including fibroblasts, adipocytes, mast cells, lymphatic vascular cells and infiltrating immune cells, macrophages, dendritic cells and lymphocytes. The intricate interplay between these cells influences tumor growth, metastasis and therapy failure. Significant advancements in breast cancer therapy have resulted in a substantial decrease in mortality. However, existing cancer treatments frequently result in toxicity and nonspecific side effects. Therefore, improving targeted drug delivery and increasing the efficacy of drugs is crucial for enhancing treatment outcome and reducing the burden of toxicity. In this review, we have provided an overview of how tumor and stroma-derived osteopontin (OPN) plays a key role in regulating the oncogenic potential of various cancers including breast. Next, we dissected the signaling network by which OPN regulates tumor progression through interaction with selective integrins and CD44 receptors. This review addresses the latest advancements in the roles of splice variants of OPN in cancer progression and OPN-mediated tumor-stromal interaction, EMT, CSC enhancement, immunomodulation, metastasis, chemoresistance and metabolic reprogramming, and further suggests that OPN might be a potential therapeutic target and prognostic biomarker for the evolving landscape of cancer management.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Ramesh Butti
- Division of Hematology and Oncology, Department of Internal Medicine, Southwestern Medical Center, University of Texas, Dallas, TX 75235, USA;
| | - Amit Singh Yadav
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - N. N. V. Radharani
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
11
|
Burger PB, Hu X, Balabin I, Muller M, Stanley M, Joubert F, Kaiser TM. FEP Augmentation as a Means to Solve Data Paucity Problems for Machine Learning in Chemical Biology. J Chem Inf Model 2024; 64:3812-3825. [PMID: 38651738 PMCID: PMC11094716 DOI: 10.1021/acs.jcim.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
In the realm of medicinal chemistry, the primary objective is to swiftly optimize a multitude of chemical properties of a set of compounds to yield a clinical candidate poised for clinical trials. In recent years, two computational techniques, machine learning (ML) and physics-based methods, have evolved substantially and are now frequently incorporated into the medicinal chemist's toolbox to enhance the efficiency of both hit optimization and candidate design. Both computational methods come with their own set of limitations, and they are often used independently of each other. ML's capability to screen extensive compound libraries expediently is tempered by its reliance on quality data, which can be scarce especially during early-stage optimization. Contrarily, physics-based approaches like free energy perturbation (FEP) are frequently constrained by low throughput and high cost by comparison; however, physics-based methods are capable of making highly accurate binding affinity predictions. In this study, we harnessed the strength of FEP to overcome data paucity in ML by generating virtual activity data sets which then inform the training of algorithms. Here, we show that ML algorithms trained with an FEP-augmented data set could achieve comparable predictive accuracy to data sets trained on experimental data from biological assays. Throughout the paper, we emphasize key mechanistic considerations that must be taken into account when aiming to augment data sets and lay the groundwork for successful implementation. Ultimately, the study advocates for the synergy of physics-based methods and ML to expedite the lead optimization process. We believe that the physics-based augmentation of ML will significantly benefit drug discovery, as these techniques continue to evolve.
Collapse
Affiliation(s)
- Pieter B. Burger
- Avicenna
Biosciences Inc., 101
W. Chapel Hill Street, Suite 210, Durham, North Carolina 27001, United States
| | - Xiaohu Hu
- Schrödinger,
Inc., 120 West 45th Street, New York, New York 10036, United States
| | - Ilya Balabin
- Avicenna
Biosciences Inc., 101
W. Chapel Hill Street, Suite 210, Durham, North Carolina 27001, United States
| | - Morné Muller
- Avicenna
Biosciences Inc., 101
W. Chapel Hill Street, Suite 210, Durham, North Carolina 27001, United States
| | - Megan Stanley
- Microsoft
Research AI4Science, 21 Station Road, Cambridge CB1 2FB, U.K.
| | - Fourie Joubert
- Centre
for Bioinformatics and Computational Biology, Department of Biochemistry,
Genetics and Microbiology, University of
Pretoria, Pretoria 0001, South Africa
| | - Thomas M. Kaiser
- Avicenna
Biosciences Inc., 101
W. Chapel Hill Street, Suite 210, Durham, North Carolina 27001, United States
| |
Collapse
|
12
|
Liu Y, Yang DQ, Jiang JN, Jiao Y. Relationship between Helicobacter pylori infection and colorectal polyp/colorectal cancer. World J Gastrointest Surg 2024; 16:1008-1016. [PMID: 38690050 PMCID: PMC11056658 DOI: 10.4240/wjgs.v16.i4.1008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/01/2024] [Accepted: 03/13/2024] [Indexed: 04/22/2024] Open
Abstract
Helicobacter pylori (H. pylori) plays an important role in the development of gastric cancer, although its association to colorectal polyp (CP) or colorectal cancer (CRC) is unknown. In this issue of World Journal of Gastrointestinal Surgery, Zhang et al investigated the risk factors for H. pylori infection after colon polyp resection. Importantly, the researchers used R software to create a prediction model for H. pylori infection based on their findings. This editorial gives an overview of the association between H. pylori and CP/CRC, including the clinical significance of H. pylori as an independent risk factor for CP/CRC, the underlying processes of H. pylori-associated carcinogenesis, and the possible risk factors and identification of H. pylori.
Collapse
Affiliation(s)
- Ying Liu
- Department of General Surgery, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Ding-Quan Yang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Jun-Nan Jiang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
13
|
Christopoulou ME, Skandalis SS, Papakonstantinou E, Stolz D, Aletras AJ. WISP1 induces the expression of macrophage migration inhibitory factor in human lung fibroblasts through Src kinases and EGFR-activated signaling pathways. Am J Physiol Cell Physiol 2024; 326:C850-C865. [PMID: 38145300 PMCID: PMC11193488 DOI: 10.1152/ajpcell.00410.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Wnt1-inducible signaling protein 1 (WISP1/CCN4) is a secreted matricellular protein that is implicated in lung and airway remodeling. The macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been associated with chronic lung diseases. In this study, we aimed to investigate the WISP1 signaling pathway and its ability to induce the expression of MIF in primary cultures of fibroblasts from normal human lungs (HLFs). Our results showed that WISP1 significantly stimulated the expression of MIF in a concentration- and time-dependent fashion. In WISP1-induced expression of MIF, αvβ5-integrin and chondroitin sulfate proteoglycans as well as Src tyrosine kinases, MAP kinases, phosphatidylinositol 3-kinase/Akt, PKC, and NF-κB were involved. WISP1-induced expression of MIF was attenuated in the presence of the Src kinase inhibitor PP2 or the MIF tautomerase activity inhibitor ISO-1. Moreover, WISP1 significantly increased the phosphorylation and activation of EGF receptor (EGFR) through transactivation by Src kinases. WISP1 also induced the expression of MIF receptor CD74 and coreceptor CD44, through which MIF exerts its effects on HLFs. In addition, it was found that MIF induced its own expression, as well as its receptors CD74/CD44, acting in an autocrine manner. Finally, WISP1-induced MIF promoted the expression of cyclooxygenase 2, prostaglandin E2, IL-6, and matrix metalloproteinase-2 demonstrating the regulatory role of WISP1-MIF axis in lung inflammation and remodeling involving mainly integrin αvβ5, Src kinases, PKC, NF-κB, and EGFR. The specific signaling pathways involved in WISP1-induced expression of MIF may prove to be excellent candidates for novel targets to control inflammation in chronic lung diseases.NEW & NOTEWORTHY The present study demonstrates for the first time that Wnt1-inducible signaling protein 1 (WISP1) regulates migration inhibitory factor (MIF) expression and activity and identifies the main signaling pathways involved. The newly discovered WISP1-MIF axis may drive lung inflammation and could result in the design of novel targeted therapies in inflammatory lung diseases.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
14
|
Nelson AR, Christiansen SL, Naegle KM, Saucerman JJ. Logic-based mechanistic machine learning on high-content images reveals how drugs differentially regulate cardiac fibroblasts. Proc Natl Acad Sci U S A 2024; 121:e2303513121. [PMID: 38266046 PMCID: PMC10835125 DOI: 10.1073/pnas.2303513121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
Fibroblasts are essential regulators of extracellular matrix deposition following cardiac injury. These cells exhibit highly plastic responses in phenotype during fibrosis in response to environmental stimuli. Here, we test whether and how candidate anti-fibrotic drugs differentially regulate measures of cardiac fibroblast phenotype, which may help identify treatments for cardiac fibrosis. We conducted a high-content microscopy screen of human cardiac fibroblasts treated with 13 clinically relevant drugs in the context of TGFβ and/or IL-1β, measuring phenotype across 137 single-cell features. We used the phenotypic data from our high-content imaging to train a logic-based mechanistic machine learning model (LogiMML) for fibroblast signaling. The model predicted how pirfenidone and Src inhibitor WH-4-023 reduce actin filament assembly and actin-myosin stress fiber formation, respectively. Validating the LogiMML model prediction that PI3K partially mediates the effects of Src inhibition, we found that PI3K inhibition reduces actin-myosin stress fiber formation and procollagen I production in human cardiac fibroblasts. In this study, we establish a modeling approach combining the strengths of logic-based network models and regularized regression models. We apply this approach to predict mechanisms that mediate the differential effects of drugs on fibroblasts, revealing Src inhibition acting via PI3K as a potential therapy for cardiac fibrosis.
Collapse
Affiliation(s)
- Anders R. Nelson
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA22903
| | - Steven L. Christiansen
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA22903
- Department of Biochemistry, Brigham Young University, Provo, UT84602
| | - Kristen M. Naegle
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA22903
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA22903
| |
Collapse
|
15
|
Singh A, Dwivedi A. Network dynamics investigation of omics-data-driven circadian-hypoxia crosstalk logical model in gallbladder cancer reveals key therapeutic target combinations. Integr Biol (Camb) 2024; 16:zyae018. [PMID: 39499101 DOI: 10.1093/intbio/zyae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/13/2024] [Accepted: 10/28/2024] [Indexed: 11/07/2024]
Abstract
Recent findings in cancer research have pointed towards the bidirectional interaction between circadian and hypoxia pathways. However, little is known about their crosstalk mechanism. In this work, we aimed to investigate this crosstalk at a network level utilizing the omics information of gallbladder cancer. Differential gene expression and pathway enrichment analysis were used for selecting the crucial genes from both the pathways, followed by the construction of a logical crosstalk model using GINsim. Functional circuit identification and node perturbations were then performed. Significant node combinations were used to investigate the temporal behavior of the network through MaBoSS. Lastly, the model was validated using published in vitro experimentations. Four new positive circuits and a new axis viz. BMAL1/ HIF1αβ/ NANOG, responsible for stemness were identified. Through triple node perturbations viz.a. BMAL:CLOCK (KO or E1) + P53 (E1) + HIF1α (KO); b. P53 (E1) + HIF1α (KO) + MYC (E1); and c. HIF1α (KO) + MYC (E1) + EGFR (KO), the model was able to inhibit cancer growth and maintain a homeostatic condition. This work provides an architecture for drug simulation analysis to entrainment circadian rhythm and in vitro experiments for chronotherapy-related studies. Insight Box. Circadian rhythm and hypoxia are the key dysregulated processes which fuels-up the cancer growth. In the present work we have developed a gallbladder cancer (GBC) specific Boolean model, utilizing the RNASeq data from GBC dataset and tissue specific interactions. This work adequately models the bidirectional nature of interactions previously illustrated in experimental papers showing the effect of hypoxia on dysregulation of circadian rhythm and the influence of this disruption on progression towards metastasis. Through the dynamical study of the model and its response to different perturbations, we report novel triple node combinations that can be targeted to efficiently reduce GBC growth. This network can be used as a generalized framework to investigate different crosstalk pathways linked with cancer progression.
Collapse
Affiliation(s)
- Aakansha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Anjana Dwivedi
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
16
|
Shojaeian A, Nakhaie M, Amjad ZS, Boroujeni AK, Shokri S, Mahmoudvand S. Leveraging metformin to combat hepatocellular carcinoma: its therapeutic promise against hepatitis viral infections. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2023.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is categorized among the most common primary malignant liver cancer and a primary global cause of death from cancer. HCC tends to affect males 2-4 times more than females in many nations. The main factors that raise the incidence of HCC are chronic liver diseases, hepatotropic viruses like hepatitis B (HBV) and C (HCV), non-alcoholic fatty liver disease, exposure to toxins like aflatoxin, and non-alcoholic steatohepatitis (NASH). Among these, hepatitis B and C are the most prevalent causes of chronic hepatitis globally. Metformin, which is made from a naturally occurring compound called galegine, derived from the plant Galega officinalis (G. officinalis ), has been found to exhibit antitumor effects in a wide range of malignancies, including HCC. In fact, compared to patients on sulphonylureas or insulin, studies have demonstrated that metformin treatment significantly lowers the risk of HCC in patients with chronic liver disease. This article will first describe the molecular mechanism of hepatitis B and C viruses in the development of HCC. Then, we will provide detailed explanations about metformin, followed by a discussion of the association between metformin and hepatocellular carcinoma caused by the viruses mentioned above.
Collapse
|
17
|
Olgen S, Kaleli SNB, Karaca BT, Demirel UU, Bristow HK. Synthesis and Anticancer Activity of Novel Indole Derivatives as Dual EGFR/SRC Kinase Inhibitors. Curr Med Chem 2024; 31:3798-3817. [PMID: 37365789 DOI: 10.2174/0929867330666230626143911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Recent studies showed that the cooperation between c-SRC and EGFR is responsible for more aggressive phenotype in diverse tumors, including glioblastomas and carcinomas of the colon, breast, and lung. Studies show that combination of SRC and EGFR inhibitors can induce apoptosis and delay the acquired resistance to chemotherapy. Therefore, such combination may lead to a new therapeutic strategy for the treatment of EGFR-mutant lung cancer. Osimertinib was developed as a third-generation EGFR-TKI to combat the toxicity of EGFR mutant inhibitors. Due to the resistance and adverse reaction of osimertinib and other kinase inhibitors, 12 novel compounds structurally similar to osimertinib were designed and synthesized. METHODS Compounds were synthesized by developing novel original synthesis methods and receptor interactions were evaluated through a molecular docking study. To evaluate their inhibitory activities against EGFR and SRC kinase, in vitro enzyme assays were used. Anticancer potencies were determined using lung, breast, prostate (A549, MCF6, PC3) cancer cell lines. Compounds were also tested against normal (HEK293) cell line to evaluate their cyctotoxic effects. RESULTS Although, none of compounds showed stronger inhibition compared to osimertinib in the EGFR enzyme inhibition studies, compound 16 showed the highest efficacy with an IC50 of 1.026 μM. It also presented potent activity against SRC kinase with an IC50 of 0.002 μM. Among the tested compounds, the urea containing derivatives 6-11 exhibited a strong inhibition profile (80.12-89.68%) against SRC kinase in comparison to the reference compound dasatinib (93.26%). Most of the compounds caused more than 50% of cell death in breast, lung and prostate cancer cell lines and weak toxicity for normal cells in comparison to reference compounds osimertinib, dasatinib and cisplatin. Compound 16 showed strong cytotoxicity on lung and prostate cancer cells. Treatment of prostate cancer cell lines with the most active compound, 16, significantly increased the caspase-3 (8-fold), caspase-8 (6-fold) and Bax (5.7-fold) levels and decreased the Bcl-2 level (2.3-fold) compared to the control group. These findings revealed that the compound 16 strongly induces apoptosis in the prostate cancer cell lines. CONCLUSION Overall kinase inhibition, cytotoxicity and apoptosis assays presented that compound 16 has dual inhibitory activity against SRC and EGFR kinases while maintaining low toxicity against normal cells. Other compounds also showed considerable activity profiles in kinase and cell culture assays.
Collapse
Affiliation(s)
- Sureyya Olgen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, 34010, Zeytinburnu, Istanbul, Turkey
| | - Sevde Nur Biltekin Kaleli
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul Medipol University, 34815 Beykoz-Istanbul, Turkey
| | - Banu Taktak Karaca
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Atlas University, İstanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Beykoz-Istanbul, Turkey
| | - Ural U Demirel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Altınbaş University, Istanbul, Turkey
| | - Hacer Karatas Bristow
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Beykoz-Istanbul, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul Medipol University, 34815 Beykoz-Istanbul, Turkey
- C. Eugene Bennett Department of Chemistry, West Virgina University, 26506 Morgantown, West Virginia, USA
| |
Collapse
|
18
|
Raji L, Tetteh A, Amin ARMR. Role of c-Src in Carcinogenesis and Drug Resistance. Cancers (Basel) 2023; 16:32. [PMID: 38201459 PMCID: PMC10778207 DOI: 10.3390/cancers16010032] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The aberrant transformation of normal cells into cancer cells, known as carcinogenesis, is a complex process involving numerous genetic and molecular alterations in response to innate and environmental stimuli. The Src family kinases (SFK) are key components of signaling pathways implicated in carcinogenesis, with c-Src and its oncogenic counterpart v-Src often playing a significant role. The discovery of c-Src represents a compelling narrative highlighting groundbreaking discoveries and valuable insights into the molecular mechanisms underlying carcinogenesis. Upon oncogenic activation, c-Src activates multiple downstream signaling pathways, including the PI3K-AKT pathway, the Ras-MAPK pathway, the JAK-STAT3 pathway, and the FAK/Paxillin pathway, which are important for cell proliferation, survival, migration, invasion, metastasis, and drug resistance. In this review, we delve into the discovery of c-Src and v-Src, the structure of c-Src, and the molecular mechanisms that activate c-Src. We also focus on the various signaling pathways that c-Src employs to promote oncogenesis and resistance to chemotherapy drugs as well as molecularly targeted agents.
Collapse
Affiliation(s)
| | | | - A. R. M. Ruhul Amin
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV 25755, USA; (L.R.); (A.T.)
| |
Collapse
|
19
|
Kumar H, Gupta NV, Jain R, Madhunapantula SV, Babu CS, Kesharwani SS, Dey S, Jain V. A review of biological targets and therapeutic approaches in the management of triple-negative breast cancer. J Adv Res 2023; 54:271-292. [PMID: 36791960 DOI: 10.1016/j.jare.2023.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a heterogeneous, aggressive phenotype of breast cancer with associated chemoresistance. The development of chemo- or radioresistance could be attributed to diverse tumor microenvironments, overexpression of membrane proteins (transporters), epigenetic changes, and alteration of the cell signaling pathways/genes associated with the development of cancer stem cells (CSCs). AIM OF REVIEW Due to the diverse and heterogeneous nature of TNBC, therapeutic response to the existing modalities offers limited scope and thus results in reccurance after therapy. To establish landmark therapeutic efficacy, a number of novel therapeutic modalities have been proposed. In addition, reversal of the resistance that developed during treatment may be altered by employing appropriate therapeutic modalities. This review aims to discuss the plethora of investigations carried out, which will help readers understand and make an appropriate choice of therapy directed toward complete elimination of TNBC. KEY SCIENTIFIC CONCEPTS OF REVIEW This manuscript addresses the major contributory factors from the tumor microenvironment that are responsible for the development of chemoresistance and poor prognosis. The associated cellular events and molecular mechanism-based therapeutic interventions have been explained in detail. Inhibition of ABC transporters, cell signaling pathways associated with CSCs, and epigenetic modification offers promising results in this regard. TNBC progression, invasion, metastasis and recurrence can also be inhibited by blocking multiple cell signaling pathways, targeting specific receptors/epigenetic targets, disrupting bioenergetics and generating reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - SubbaRao V Madhunapantula
- Department of Biochemistry, Centre of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - C Saravana Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | | | - Surajit Dey
- Roseman University of Health Sciences, College of Pharmacy, Henderson, NV, USA
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India.
| |
Collapse
|
20
|
Xie J, Wu S, Liao W, Ning J, Ding K. Src is a target molecule of mannose against pancreatic cancer cells growth in vitro & in vivo. Glycobiology 2023; 33:766-783. [PMID: 37658770 DOI: 10.1093/glycob/cwad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant cancer with limited treatment options. Mannose, a common monosaccharide taken up by cells through the same transporters as glucose, has been shown to induce growth retardation and enhance cell death in response to chemotherapy in several cancers, including PDAC. However, the molecular targets and mechanisms underlying mannose's action against PDAC are not well understood. In this study, we used an integrative approach of network pharmacology, bioinformatics analysis, and experimental verification to investigate the pharmacological targets and mechanisms of mannose against PDAC. Our results showed that the protein Src is a key target of mannose in PDAC. Additionally, computational analysis revealed that mannose is a highly soluble compound that meets Lipinski's rule of five and that the expression of its target molecules is correlated with survival rates and prognosis in PDAC patients. Finally, we validated our findings through in vitro and in vivo experiments. In conclusion, our study provides evidence that mannose plays a critical role in inhibiting PDAC growth by targeting Src, suggesting that it may be a promising therapeutic candidate for PDAC.
Collapse
Affiliation(s)
- Jianhao Xie
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Pudong New district, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Shengjie Wu
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Pudong New district, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Wenfeng Liao
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Pudong New district, Shanghai 201203, China
| | - Jingru Ning
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Pudong New district, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Qixia District, Nanjing 210023, China
| | - Kan Ding
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Pudong New district, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| |
Collapse
|
21
|
Nelson AR, Christiansen SL, Naegle KM, Saucerman JJ. Logic-based mechanistic machine learning on high-content images reveals how drugs differentially regulate cardiac fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530599. [PMID: 36909540 PMCID: PMC10002757 DOI: 10.1101/2023.03.01.530599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fibroblasts are essential regulators of extracellular matrix deposition following cardiac injury. These cells exhibit highly plastic responses in phenotype during fibrosis in response to environmental stimuli. Here, we test whether and how candidate anti-fibrotic drugs differentially regulate measures of cardiac fibroblast phenotype, which may help identify treatments for cardiac fibrosis. We conducted a high content microscopy screen of human cardiac fibroblasts treated with 13 clinically relevant drugs in the context of TGFβ and/or IL-1β, measuring phenotype across 137 single-cell features. We used the phenotypic data from our high content imaging to train a logic-based mechanistic machine learning model (LogiMML) for fibroblast signaling. The model predicted how pirfenidone and Src inhibitor WH-4-023 reduce actin filament assembly and actin-myosin stress fiber formation, respectively. Validating the LogiMML model prediction that PI3K partially mediates the effects of Src inhibition, we found that PI3K inhibition reduces actin-myosin stress fiber formation and procollagen I production in human cardiac fibroblasts. In this study, we establish a modeling approach combining the strengths of logic-based network models and regularized regression models, apply this approach to predict mechanisms that mediate the differential effects of drugs on fibroblasts, revealing Src inhibition acting via PI3K as a potential therapy for cardiac fibrosis.
Collapse
Affiliation(s)
- Anders R. Nelson
- University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Steven L. Christiansen
- University of Virginia School of Medicine, Charlottesville, VA 22903
- Brigham Young University Department of Biochemistry, Provo, UT 84602
| | - Kristen M. Naegle
- University of Virginia School of Medicine, Charlottesville, VA 22903
| | | |
Collapse
|
22
|
Jeong KY, Park SY, Park MH, Kim HM. Suppressing Src-Mediated EGFR Signaling by Sustained Calcium Supply Targeting Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:13291. [PMID: 37686097 PMCID: PMC10488068 DOI: 10.3390/ijms241713291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Src is emerging as a promising target in triple-negative breast cancer (TNBC) treatment because it activates survival signaling linked to the epidermal growth factor receptor. In this study, the effect of calcium supply on Src degradation was investigated to confirm underlying mechanisms and anticancer effects targeting TNBC. MDA-MB-231 cells, the TNBC cell line, were used. Calcium supply was feasible through lactate calcium salt (CaLac), and the applicable calcium concentration was decided by changes in the viability with different doses of CaLac. Expression of signaling molecules mediated by calcium-dependent Src degradation was observed by Western blot analysis and immunocytochemistry, and the recovery of the signaling molecules was confirmed following calpeptin treatment. The anticancer effect was investigated in the xenograft animal model. Significant suppression of Src was induced by calcium supply, followed by a successive decrease in the expression of epithelial growth factor receptor, RAS, extracellular signal-regulated kinase, and nuclear factor kappa B. Then, the suppression of cyclooxygenase-2 contributed to a significant deactivation of the prostaglandin E2 receptors. These results suggest that calcium supply has the potential to reduce the risk of TNBC. However, as this study is at an early stage to determine clinical applicability, close consideration is needed.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea; (S.Y.P.); (M.H.P.)
| | - Seon Young Park
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea; (S.Y.P.); (M.H.P.)
| | - Min Hee Park
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea; (S.Y.P.); (M.H.P.)
| | - Hwan Mook Kim
- MetiMedi Pharmaceuticals Co., 40, Imi-ro, Uiwang-si 16006, Republic of Korea
| |
Collapse
|
23
|
Chong ZX, Yong CY, Ong AHK, Yeap SK, Ho WY. Deciphering the roles of aryl hydrocarbon receptor (AHR) in regulating carcinogenesis. Toxicology 2023; 495:153596. [PMID: 37480978 DOI: 10.1016/j.tox.2023.153596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent receptor that belongs to the superfamily of basic helix-loop-helix (bHLH) transcription factors. The activation of the canonical AHR signaling pathway is known to induce the expression of cytochrome P450 enzymes, facilitating the detoxification metabolism in the human body. Additionally, AHR could interact with various signaling pathways such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), nuclear factor ekappa B (NF-κβ), estrogen receptor (ER), and androgen receptor (AR) signaling pathways. Over the past 30 years, several studies have reported that various chemical, physical, or biological agents, such as tobacco, hydrocarbon compounds, industrial and agricultural chemical wastes, drugs, UV, viruses, and other toxins, could affect AHR expression or activity, promoting cancer development. Thus, it is valuable to overview how these factors regulate AHR-mediated carcinogenesis. Current findings have reported that many compounds could act as AHR ligands to drive the expressions of AHR-target genes, such as CYP1A1, CYP1B1, MMPs, and AXL, and other targets that exert a pro-proliferation or anti-apoptotic effect, like XIAP. Furthermore, some other physical and chemical agents, such as UV and 3-methylcholanthrene, could promote AHR signaling activities, increasing the signaling activities of a few oncogenic pathways, such as the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Understanding how various factors regulate AHR-mediated carcinogenesis processes helps clinicians and scientists plan personalized therapeutic strategies to improve anti-cancer treatment efficacy. As many studies that have reported the roles of AHR in regulating carcinogenesis are preclinical or observational clinical studies that did not explore the detailed mechanisms of how different chemical, physical, or biological agents promote AHR-mediated carcinogenesis processes, future studies should focus on conducting large-scale and functional studies to unravel the underlying mechanism of how AHR interacts with different factors in regulating carcinogenesis processes.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Alan Han Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
24
|
Qian Z, Song D, Ipsaro JJ, Bautista C, Joshua-Tor L, Yeh JTH, Tonks NK. Manipulating PTPRD function with ectodomain antibodies. Genes Dev 2023; 37:743-759. [PMID: 37669874 PMCID: PMC10546974 DOI: 10.1101/gad.350713.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are critical regulators of signal transduction but have yet to be exploited fully for drug development. Receptor protein tyrosine phosphatase δ (RPTPδ/PTPRD) has been shown to elicit tumor-promoting functions, including elevating SRC activity and promoting metastasis in certain cell contexts. Dimerization has been implicated in the inhibition of receptor protein tyrosine phosphatases (RPTPs). We have generated antibodies targeting PTPRD ectodomains with the goal of manipulating their dimerization status ectopically, thereby regulating intracellular signaling. We have validated antibody binding to endogenous PTPRD in a metastatic breast cancer cell line, CAL51, and demonstrated that a monoclonal antibody, RD-43, inhibited phosphatase activity and induced the degradation of PTPRD. Similar effects were observed following chemically induced dimerization of its phosphatase domain. Mechanistically, RD-43 triggered the formation of PTPRD dimers in which the phosphatase activity was impaired. Subsequently, the mAb-PTPRD dimer complex was degraded through lysosomal and proteasomal pathways, independently of secretase cleavage. Consequently, treatment with RD-43 inhibited SRC signaling and suppressed PTPRD-dependent cell invasion. Together, these findings demonstrate that manipulating RPTP function via antibodies to the extracellular segments has therapeutic potential.
Collapse
Affiliation(s)
- Zhe Qian
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Graduate Program of Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11760, USA
| | - Dongyan Song
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jonathan J Ipsaro
- Howard Hughes Medical Institute, W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | - Leemor Joshua-Tor
- Howard Hughes Medical Institute, W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Johannes T-H Yeh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|
25
|
Dunker W, Zaver SA, Pineda JMB, Howard CJ, Bradley RK, Woodward JJ. The proto-oncogene SRC phosphorylates cGAS to inhibit an antitumor immune response. JCI Insight 2023; 8:e167270. [PMID: 37166992 PMCID: PMC10371251 DOI: 10.1172/jci.insight.167270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is a DNA sensor and responsible for inducing an antitumor immune response. Recent studies reveal that cGAS is frequently inhibited in cancer, and therapeutic targets to promote antitumor cGAS function remain elusive. SRC is a proto-oncogene tyrosine kinase and is expressed at elevated levels in numerous cancers. Here, we demonstrate that SRC expression in primary and metastatic bladder cancer negatively correlates with innate immune gene expression and immune cell infiltration. We determine that SRC restricts cGAS signaling in human cell lines through SRC small molecule inhibitors, depletion, and overexpression. cGAS and SRC interact in cells and in vitro, while SRC directly inhibits cGAS enzymatic activity and DNA binding in a kinase-dependent manner. SRC phosphorylates cGAS, and inhibition of cGAS Y248 phosphorylation partially reduces SRC inhibition. Collectively, our study demonstrates that cGAS antitumor signaling is hindered by the proto-oncogene SRC and describes how cancer-associated proteins can regulate the innate immune system.
Collapse
Affiliation(s)
| | - Shivam A. Zaver
- Department of Microbiology and
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
| | - Jose Mario Bello Pineda
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Robert K. Bradley
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
26
|
Belli S, Esposito D, Allotta A, Servetto A, Ciciola P, Pesapane A, Ascione CM, Napolitano F, Di Mauro C, Vigliar E, Iaccarino A, De Angelis C, Bianco R, Formisano L. Pak1 pathway hyper-activation mediates resistance to endocrine therapy and CDK4/6 inhibitors in ER+ breast cancer. NPJ Breast Cancer 2023; 9:48. [PMID: 37258566 DOI: 10.1038/s41523-023-00556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) have been approved in combination with endocrine therapy (ET) to treat estrogen receptor-positive (ER+) metastatic breast cancer (BC). However, drug resistance represents the leading cause of breast cancer patients mortality. This study aimed to identify novel resistance mechanisms to ER antagonists in combination with CDK4/6 inhibitors. We generated two ER+ BC cell lines, T47D and MCF7, resistant to the combination of the ER antagonist fulvestrant and CDK4/6i abemaciclib, named T47D-FAR and MCF7-FAR. Transcriptomic analysis revealed common up-regulation of genes involved in MAPK and epithelial to mesenchymal transition (EMT) pathways in FAR cells, sustaining their hyper-invasive phenotype and increased anchorage-independent growth, compared to sensitive cells. FAR cells showed higher p21-activated kinase 1 (Pak1) expression and phosphorylation levels than parental cells. PAK1 knockdown by siRNAs hampered cell proliferation, reduced anchorage-independent growth and invasive properties of T47D-FAR and MCF7-FAR, re-sensitizing them to fulvestrant and abemaciclib. Conversely, over-expression of PAK1 in MCF7 and T47D cells increased tumor spheroids' growth and invasion and reduced sensitivity to fulvestrant and abemaciclib, confirming its role in inducing drug resistance. Finally, treatment with Pak1 inhibitors, PF-3758309 (PF309) and NVS-PAK1-1, restored cell sensitivity to fulvestrant and abemaciclib of MCF7-FAR and T47D-FAR cells, both in vitro and in vivo. In conclusion, our data suggested a pivotal role for Pak1 in resistance to ET and CDK4/6i in ER+ breast cancers. These data might promote the rationale for the development of novel Pak1 inhibitors for treatment of patients with ER+ BC progressing on ET plus CDK4/6i.
Collapse
Affiliation(s)
- Stefania Belli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Daniela Esposito
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Alessandra Allotta
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Paola Ciciola
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Ada Pesapane
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Claudia M Ascione
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Fabiana Napolitano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Concetta Di Mauro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy.
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
27
|
Salimi L, Seyedaghamiri F, Karimipour M, Mobarak H, Mardi N, Taghavi M, Rahbarghazi R. Physiological and pathological consequences of exosomes at the blood-brain-barrier interface. Cell Commun Signal 2023; 21:118. [PMID: 37208741 DOI: 10.1186/s12964-023-01142-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
Blood-brain barrier (BBB) interface with multicellular structure controls strictly the entry of varied circulating macromolecules from the blood-facing surface into the brain parenchyma. Under several pathological conditions within the central nervous system, the integrity of the BBB interface is disrupted due to the abnormal crosstalk between the cellular constituents and the recruitment of inflammatory cells. Exosomes (Exos) are nano-sized extracellular vesicles with diverse therapeutic outcomes. These particles transfer a plethora of signaling molecules with the potential to modulate target cell behavior in a paracrine manner. Here, in the current review article, the therapeutic properties of Exos and their potential in the alleviation of compromised BBB structure were discussed. Video Abstract.
Collapse
Affiliation(s)
- Leila Salimi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemehsadat Seyedaghamiri
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Mobarak
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Zhang C, Zhao X, Wang Z, Gong T, Zhao H, Zhang D, Niu Y, Li X, Zhao X, Li G, Dong X, Zhang L, Liu C, Xu J, Yu B. Dasatinib in combination with BMS-754807 induce synergistic cytotoxicity in lung cancer cells through inhibiting lung cancer cell growth, and inducing autophagy as well as cell cycle arrest at the G1 phase. Invest New Drugs 2023:10.1007/s10637-023-01360-9. [PMID: 37097369 DOI: 10.1007/s10637-023-01360-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Combination of drugs targeting independent signaling pathways would effectively block the proliferation of cancer cells with lower concentrations and stronger synergy effects. Dasatinib, a multi-targeted protein tyrosine kinase inhibitor targeting BCR-ABL and kinases of SRC family, has been successfully applied in the treatment of chronic myeloid leukemia (CML). BMS-754807, an inhibitor targeting the insulin-like growth factor 1 receptor (IGF-IR) and insulin receptor (IR) family kinases, has been in phase I development for the treatment of a variety of human cancers. Herein, we demonstrated that dasatinib in combination with BMS-754807 inhibited lung cancer cell growth, while induced autophagy as well as cell cycle arrest at the G1 phase. Dasatinib in combination with BMS-754807 suppressed the expression of cell cycle marker proteins, Rb, p-Rb, CDK4, CDK6 and Cyclin D1, and the PI3K/Akt/mTOR signaling pathway. Dasatinib in combination with BMS-754807 induced autophagy in lung cancer cells, evidenced by the upregulation of LC3B II and beclin-1, the downregulation of LC3B I and SQSTM1/p62, and the autophagic flux observed with a confocal fluorescence microscopy. Furthermore, dasatinib (18 mg/kg) in combination with BMS-754807 (18 mg/kg) inhibited the growth of tumors in NCI-H3255 xenografts without changing the bodyweight. Overall, our results suggest that dasatinib in combination with BMS-754807 inhibits the lung cancer cell proliferation in vitro and tumor growth in vitro, which indicates promising evidence for the application of the drug combination in lung cancer therapy.
Collapse
Grants
- 20210302124183, 201701D121165, 201901D111190 Natural Science Basic Project of Shanxi Province, China
- KLMEC/SXMU-202011 Open Fund from Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
- 1331KSC Shanxi '1331 Project' Key Subjects Construction, China
- 2019059 Scientific research project of Shanxi Provincial Health Commission, China
- 2020-194 and 2021-165 Research Project Supported by Shanxi Scholarship Council of China
- 30901821 and 81172136 National Natural Science Foundation of China
- 201901D211547 Outstanding Youth Foundation of Shanxi Province, China
- 2021YZ03 "136" College-level open fund, China
- 2021L339 Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi
- 201801D221069 Natural Science Foundation for Young Scientists of Shanxi Province, China
Collapse
Affiliation(s)
- Chan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xinan Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Zifeng Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Dong Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Yuhu Niu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaoning Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xuhua Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Gaopeng Li
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xiushan Dong
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Li Zhang
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Chang Liu
- Department of Biochemistry and Molecular Biology, Changzhi Medical College, Changzhi, 046000, China.
| | - Jun Xu
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
29
|
Hirakawa H, Ikegami T, Kise N, Kinjyo H, Kondo S, Agena S, Hasegawa N, Kawakami J, Maeda H, Suzuki M. Human Papillomavirus Infection and EGFR Exon 20 Insertions in Sinonasal Inverted Papilloma and Squamous Cell Carcinoma. J Pers Med 2023; 13:jpm13040657. [PMID: 37109043 PMCID: PMC10143312 DOI: 10.3390/jpm13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to clarify the roles of high-risk human papillomavirus (HR-HPV) infection and epidermal growth factor receptor (EGFR) exon 20 mutations in sinonasal inverted papilloma (IP) and sinonasal squamous cell carcinoma (SNSCC). Samples were collected from 20 cases with IP, 7 with IP and squamous cell carcinoma (IP-SCC), and 20 with SNSCC and examined for HPV infection and EGFR exon 20 mutations. Low- or high-risk HPV DNA was observed in 25% of IP, 57.1% of IP-SCC, and 35% of SNSCC cases. Transcriptionally active HR-HPV infections in IP-SCC and SNSCC, accompanied by p16 overexpression, were observed in 28.5% and 25% of cases, respectively. Heterozygous EGFR exon 20 amino acid insertions (ex20ins), located between amino acids 768-774, were observed in 45% of IP, 28.5% of IP-SCC, and 0% of SNSCC and chronic sinusitis cases. EGFR phosphorylation sites were located at tyrosine (Y) 845, Y1068, Y1086, and Y1197 and induced PI3K/AKT/mTOR activation. The phosphorylation pattern of EGFR with ex20ins resembled that of HPV-related SNSCC and oropharyngeal cancer. The transcriptionally active HR-HPV infection and ex20ins might be responsible for the pathogenesis of IP-SCC cases with different fashions. Since IP-SCC might be a multifactorial disease, further investigation is needed to understand IP-SCC etiology.
Collapse
Affiliation(s)
- Hitoshi Hirakawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Taro Ikegami
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Norimoto Kise
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Hidetoshi Kinjyo
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Shunsuke Kondo
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Shinya Agena
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Narumi Hasegawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Junko Kawakami
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Hiroyuki Maeda
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| | - Mikio Suzuki
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan
| |
Collapse
|
30
|
Huang YH, Chen HK, Hsu YF, Chen HC, Chuang CH, Huang SW, Hsu MJ. Src-FAK Signaling Mediates Interleukin 6-Induced HCT116 Colorectal Cancer Epithelial–Mesenchymal Transition. Int J Mol Sci 2023; 24:ijms24076650. [PMID: 37047623 PMCID: PMC10095449 DOI: 10.3390/ijms24076650] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Colorectal cancer is one of the most prevalent and lethal malignancies, affecting approximately 900,000 individuals each year worldwide. Patients with colorectal cancer are found with elevated serum interleukin-6 (IL-6), which is associated with advanced tumor grades and is related to their poor survival outcomes. Although IL-6 is recognized as a potent inducer of colorectal cancer progression, the detail mechanisms underlying IL-6-induced colorectal cancer epithelial–mesenchymal transition (EMT), one of the major process of tumor metastasis, remain unclear. In the present study, we investigated the regulatory role of IL-6 signaling in colorectal cancer EMT using HCT116 human colorectal cancer cells. We noted that the expression of epithelial marker E-cadherin was reduced in HCT116 cells exposed to IL-6, along with the increase in a set of mesenchymal cell markers including vimentin and α-smooth muscle actin (α-SMA), as well as EMT transcription regulators—twist, snail and slug. The changes of EMT phenotype were related to the activation of Src, FAK, ERK1/2, p38 mitogen-activated protein kinase (p38MAPK), as well as transcription factors STAT3, κB and C/EBPβ. IL-6 treatment has promoted the recruitment of STAT3, κB and C/EBPβ toward the Twist promoter region. Furthermore, the Src-FAK signaling blockade resulted in the decline of IL-6 induced activation of ERK1/2, p38MAPK, κB, C/EBPβ and STAT3, as well as the decreasing mesenchymal state of HCT116 cells. These results suggested that IL-6 activates the Src-FAK-ERK/p38MAPK signaling cascade to cause the EMT of colorectal cancer cells. Pharmacological approaches targeting Src-FAK signaling may provide potential therapeutic strategies for rescuing colorectal cancer progression.
Collapse
Affiliation(s)
- Yu-Han Huang
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Han-Kun Chen
- Department of General Surgery, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Ya-Fen Hsu
- Division of General Surgery, Department of Surgery, Landseed Hospital, Taoyuan 324, Taiwan
| | - Hsiu-Chen Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chin-Hui Chuang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shiu-Wen Huang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- Research Center of Thoracic Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Ming-Jen Hsu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
31
|
Lim HJ, Zhuang L, Fitzgerald RC. Current advances in understanding the molecular profile of hereditary diffuse gastric cancer and its clinical implications. J Exp Clin Cancer Res 2023; 42:57. [PMID: 36869400 PMCID: PMC9985294 DOI: 10.1186/s13046-023-02622-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Hereditary diffuse gastric cancer (HDGC) is an autosomal dominant cancer syndrome attributed to germline CDH1 mutations that carries a high risk for early onset DGC. HDGC raises a significant health issue due to its high penetrance and mortality unless diagnosed early. The definitive treatment is to undergo prophylactic total gastrectomy which is associated with significant morbidity., highlighting the urgent need for alternative treatment methods. However, there is limited literature examining potential therapeutic strategies building on emerging insights into the molecular basis of progressive lesions in the context of HDGC. The aim of this review is to summarise the current understanding of HDGC in the context of CDH1 pathogenic variants followed by a review of the proposed mechanisms for progression. In addition, we discuss the development of novel therapeutic approaches and highlight pertinent areas for further research. A literature search was therefore performed for relevant studies examining CDH1 germline variants, second-hit mechanisms of CDH1, pathogenesis of HDGC and potential therapeutic strategies in databases, including PubMed, ScienceDirect and Scopus. Germline mutations are mostly truncating CDH1 variants affecting extracellular domains of E-cadherin, generally due to frameshift, single nucleotide variants or splice site mutations. A second somatic hit of CDH1 most commonly occurs via promoter methylation as shown in 3 studies, but studies are limited with a small sample size. The multi-focal development of indolent lesions in HDGC provide a unique opportunity to understand genetic events that drive the transition to the invasive phenotype. To date, a few signalling pathways have been shown to facilitate the progression of HDGC, including Notch and Wnt. In in-vitro studies, the ability to inhibit Notch signalling was lost in cells transfected with mutant forms of E-cadherin, and increased Notch-1 activity correlated with apoptosis resistance. Furthermore, in patient samples, overexpression of Wnt-2 was associated with cytoplasmic and nuclear β-catenin accumulation and increased metastatic potential. As loss-of-function mutations are challenging to target therapeutically, these findings pave the way towards a synthetic lethal approach in CDH1-deficient cells with some promising results in-vitro. In future, if we could better understand the molecular vulnerabilities in HDGC, there may be opportunities to offer alternative treatment pathways to avoid gastrectomy.
Collapse
Affiliation(s)
- Hui Jun Lim
- Department of Oncology, Early Cancer Institute, University of Cambridge, Box 197, Cambridge Biomedical Campus, CB2 0XZ, Cambridge, UK.
- Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.
| | - Lizhe Zhuang
- Department of Oncology, Early Cancer Institute, University of Cambridge, Box 197, Cambridge Biomedical Campus, CB2 0XZ, Cambridge, UK
| | - Rebecca C Fitzgerald
- Department of Oncology, Early Cancer Institute, University of Cambridge, Box 197, Cambridge Biomedical Campus, CB2 0XZ, Cambridge, UK
| |
Collapse
|
32
|
Conage-Pough JE, Stopka SA, Oh JH, Mladek AC, Burgenske DM, Regan MS, Baquer G, Decker PA, Carlson BL, Bakken KK, Zhang J, Liu L, Sun C, Mu Z, Zhong W, Tran NL, Elmquist WF, Agar NYR, Sarkaria JN, White FM. WSD-0922, a novel brain-penetrant inhibitor of epidermal growth factor receptor, promotes survival in glioblastoma mouse models. Neurooncol Adv 2023; 5:vdad066. [PMID: 37324218 PMCID: PMC10263119 DOI: 10.1093/noajnl/vdad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Background Although the epidermal growth factor receptor (EGFR) is a frequent oncogenic driver in glioblastoma (GBM), efforts to therapeutically target this protein have been largely unsuccessful. The present preclinical study evaluated the novel EGFR inhibitor WSD-0922. Methods We employed flank and orthotopic patient-derived xenograft models to characterize WSD-0922 and compare its efficacy to erlotinib, a potent EGFR inhibitor that failed to provide benefit for GBM patients. We performed long-term survival studies and collected short-term tumor, plasma, and whole-brain samples from mice treated with each drug. We utilized mass spectrometry to measure drug concentrations and spatial distribution and to assess the impact of each drug on receptor activity and cellular signaling networks. Results WSD-0922 inhibited EGFR signaling as effectively as erlotinib in in vitro and in vivo models. While WSD-0922 was more CNS penetrant than erlotinib in terms of total concentration, comparable concentrations of both drugs were measured at the tumor site in orthotopic models, and the concentration of free WSD-0922 in the brain was significantly less than the concentration of free erlotinib. WSD-0922 treatment provided a clear survival advantage compared to erlotinib in the GBM39 model, with marked suppression of tumor growth and most mice surviving until the end of the study. WSD-0922 treatment preferentially inhibited phosphorylation of several proteins, including those associated with EGFR inhibitor resistance and cell metabolism. Conclusions WSD-0922 is a highly potent inhibitor of EGFR in GBM, and warrants further evaluation in clinical studies.
Collapse
Affiliation(s)
| | | | - Ju-Hee Oh
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ann C Mladek
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Michael S Regan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul A Decker
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katrina K Bakken
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Lily Liu
- Wayshine Biopharm, Corona, California, USA
| | - Claire Sun
- Wayshine Biopharm, Corona, California, USA
| | - Zhihua Mu
- Wayshine Biopharm, Corona, California, USA
| | - Wei Zhong
- Wayshine Biopharm, Corona, California, USA
| | - Nhan L Tran
- Department of Cancer Biology, Mayo Clinic, Scottsdale, Arizona, USA
| | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts ¸ USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Forest M White
- Corresponding Author: Forest M. White, 500 Main Street, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA ()
| |
Collapse
|
33
|
Princiotto S, Musso L, Manetti F, Marcellini V, Maga G, Crespan E, Perini C, Zaffaroni N, Beretta GL, Dallavalle S. Synthesis and biological activity evaluation of 3-(hetero) arylideneindolin-2-ones as potential c-Src inhibitors. J Enzyme Inhib Med Chem 2022; 37:2382-2394. [PMID: 36050846 PMCID: PMC9448371 DOI: 10.1080/14756366.2022.2117317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Inhibition of c-Src is considered one of the most studied approaches to cancer treatment, with several heterocyclic compounds approved during the last 15 years as chemotherapeutic agents. Starting from the biological evaluation of an in-house collection of small molecules, indolinone was selected as the most promising scaffold. In this work, several functionalised indolinones were synthesised and their inhibitory potency and cytotoxic activity were assayed. The pharmacological profile of the most active compounds, supported by molecular modelling studies, revealed that the presence of an amino group increased the affinity towards the ATP-binding site of c-Src. At the same time, bulkier derivatizations seemed to improve the interactions within the enzymatic pocket. Overall, these data represent an early stage towards the optimisation of new, easy-to-be functionalised indolinones as potential c-Src inhibitors.
Collapse
Affiliation(s)
- Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Fabrizio Manetti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Valentina Marcellini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM, CNR "Luigi Luca Cavalli-Sforza", Pavia, Italy
| | - Emmanuele Crespan
- Institute of Molecular Genetics IGM, CNR "Luigi Luca Cavalli-Sforza", Pavia, Italy
| | - Cecilia Perini
- Institute of Molecular Genetics IGM, CNR "Luigi Luca Cavalli-Sforza", Pavia, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
34
|
Li X, Jiang W, Dong S, Li W, Zhu W, Zhou W. STAT3 Inhibitors: A Novel Insight for Anticancer Therapy of Pancreatic Cancer. Biomolecules 2022; 12:1450. [PMID: 36291659 PMCID: PMC9599947 DOI: 10.3390/biom12101450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
The signal transducer and activator of transcription (STAT) is a family of intracellular cytoplasmic transcription factors involved in many biological functions in mammalian signal transduction. Among them, STAT3 is involved in cell proliferation, differentiation, apoptosis, and inflammatory responses. Despite the advances in the treatment of pancreatic cancer in the past decade, the prognosis for patients with pancreatic cancer remains poor. STAT3 has been shown to play a pro-cancer role in a variety of cancers, and inhibitors of STAT3 are used in pre-clinical and clinical studies. We reviewed the relationship between STAT3 and pancreatic cancer and the latest results on the use of STAT3 inhibitors in pancreatic cancer, with the aim of providing insights and ideas around STAT3 inhibitors for a new generation of chemotherapeutic modalities for pancreatic cancer.
Collapse
Affiliation(s)
- Xin Li
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Wenkai Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Shi Dong
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Wancheng Li
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Weixiong Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
35
|
Sun N, Zhao X. Therapeutic Implications of FABP4 in Cancer: An Emerging Target to Tackle Cancer. Front Pharmacol 2022; 13:948610. [PMID: 35899119 PMCID: PMC9310032 DOI: 10.3389/fphar.2022.948610] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic reprogramming is an emerging hallmark of tumor cells. In order to survive in nutrient-deprived environment, tumor cells rewire their metabolic phenotype to provide sufficient energy and build biomass to sustain their transformed state and promote malignant behaviors. Fatty acid uptake and trafficking is an essential part of lipid metabolism within tumor cells. Fatty acid-binding proteins (FABPs), which belongs to a family of intracellular lipid-binding protein, can bind hydrophobic ligands to regulate lipid trafficking and metabolism. In particular, adipocyte fatty acid binding protein (FABP4), one of the most abundant members, has been found to be upregulated in many malignant solid tumors, and correlated with poor prognosis. In multiple tumor types, FABP4 is critical for tumor proliferation, metastasis and drug resistance. More importantly, FABP4 is a crucial driver of malignancy not only by activating the oncogenic signaling pathways, but also rewiring the metabolic phenotypes of tumor cells to satisfy their enhanced energy demand for tumor development. Thus, FABP4 serves as a tumor-promoting molecule in most cancer types, and may be a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Naihui Sun
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xing Zhao
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xing Zhao,
| |
Collapse
|
36
|
Retzbach EP, Sheehan SA, Krishnan H, Zheng H, Zhao C, Goldberg GS. Independent effects of Src kinase and podoplanin on anchorage independent cell growth and migration. Mol Carcinog 2022; 61:677-689. [PMID: 35472679 PMCID: PMC9233000 DOI: 10.1002/mc.23410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/07/2022]
Abstract
The Src tyrosine kinase is a strong tumor promotor. Over a century of research has elucidated fundamental mechanisms that drive its oncogenic potential. Src phosphorylates effector proteins to promote hallmarks of tumor progression. For example, Src associates with the Cas focal adhesion adaptor protein to promote anchorage independent cell growth. In addition, Src phosphorylates Cas to induce Pdpn expression to promote cell migration. Pdpn is a transmembrane receptor that can independently increase cell migration in the absence of oncogenic Src kinase activity. However, to our knowledge, effects of Src kinase activity on anchorage independent cell growth and migration have not been examined in the absence of Pdpn expression. Here, we analyzed the effects of an inducible Src kinase construct in knockout cells with and without exogenous Pdpn expression on cell morphology migration and anchorage independent growth. We report that Src promoted anchorage independent cell growth in the absence of Pdpn expression. In contrast, Src was not able to promote cell migration in the absence of Pdpn expression. In addition, continued Src kinase activity was required for cells to assume a transformed morphology since cells reverted to a nontransformed morphology upon cessation of Src kinase activity. We also used phosphoproteomic analysis to identify 28 proteins that are phosphorylated in Src transformed cells in a Pdpn dependent manner. Taken together, these data indicate that Src utilizes Pdpn to promote transformed cell growth and motility in complementary, but parallel, as opposed to serial, pathways.
Collapse
Affiliation(s)
- Edward P. Retzbach
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Stephanie A. Sheehan
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University Stony Brook, NY, 11794-8661, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New jersey, New Brunswick, NJ, 08901, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New jersey, New Brunswick, NJ, 08901, USA
| | - Gary S. Goldberg
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| |
Collapse
|
37
|
Lai Y, Chang H, Chen H, Chang G, Chen JJW. Peruvoside is a novel Src inhibitor that suppresses NSCLC cell growth and motility by downregulating multiple Src-EGFR-related pathways. Am J Cancer Res 2022; 12:2576-2593. [PMID: 35812056 PMCID: PMC9251685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023] Open
Abstract
The tyrosine kinase Src plays an essential role in the progression of many cancers and is involved in several epidermal growth factor receptor (EGFR)-mediated signalling pathways. To improve the efficacy of lung cancer treatments, this study aimed to identify novel compounds that can disrupt the Src-EGFR interaction and that are less dependent on EGFR status with wild-type and mutations than other compounds. We used the Src pY419 ELISA as the platform to screen a compound library of more than 400 plant-derived active ingredients and identified peruvoside as a candidate Src-EGFR crosstalk inhibitor. The effects of peruvoside were evaluated by western blotting, cell function assays, combination Index (CI)-isobologram analyses and in vivo experiments. Peruvoside significantly suppressed the phosphorylation of Src, EGFR, and signal transducer and activator of transcription 3 (STAT3) in a dose- and time-dependent manner and somewhat suppressed their protein expression. Cell function assays revealed that peruvoside inhibited the proliferation, invasion, migration, and colony formation of lung cancer cells in vitro and tumour growth in vivo. Furthermore, peruvoside sensitized gefitinib-resistant tumour cells (A549, PC9/gef and H1975) to gefitinib treatment, indicating that peruvoside may exert synergistic effects when used in combination with established therapeutic agents. Our data also demonstrated that the inhibitory effects of peruvoside on lung cancer progression might be attributed to its ability to regulate Src, phosphoinositide 3-kinase (PI3K), c-Jun N-terminal kinase (JNK), Paxillin, p130cas, and EGFR. Our findings suggest that peruvoside suppresses non-small-cell lung carcinoma (NSCLC) malignancy by downregulating multiple Src-related pathways and could serve as a potential base molecule for developing new anticancer drugs and therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Yihua Lai
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung, Taiwan
- Rheumatic Diseases Research Center, China Medical University HospitalTaichung, Taiwan
- College of Medicine, China Medical UniversityTaichung, Taiwan
- Rheumatology and Immunology Center, China Medical University HospitalTaichung, Taiwan
| | - Hsiuhui Chang
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung, Taiwan
| | - Hueiwen Chen
- Graduate Institute of Toxicology, National Taiwan University College of MedicineTaipei, Taiwan
| | - Geechen Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University HospitalTaichung, Taiwan
- School of Medicine, Chung Shan Medical UniversityTaichung, Taiwan
| | - Jeremy JW Chen
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung, Taiwan
- Biotechnology Center, National Chung Hsing UniversityTaichung, Taiwan
- Institute of Molecular Biology, National Chung Hsing UniversityTaichung, Taiwan
| |
Collapse
|
38
|
Alsaad H, Kubba A, Tahtamouni LH, Hamzah AH. Synthesis, docking study, and structure activity relationship of novel anti-tumor 1, 2, 4 triazole derivatives incorporating 2-(2, 3- dimethyl aminobenzoic acid) moiety. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e83158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A series of 1,2,4 triazole derivatives (H7-12) have been synthesized by reacting an excess of hydrazine hydrate with carbothioamide derivatives (H1-6). The final compounds (HB1-HB6) were synthesized by reacting the triazole derivatives with mefenamic acid using DCC as a coupling agent. The chemical structures were confirmed by FT-IR, 1H, and 13C-NMR spectra, and some physicochemical properties were determined. The cytotoxicity of the different compounds (HB1-HB6) was evaluated by the MTT assay against two human epithelial cancer cell lines, A549 lung carcinoma and Hep G2 hepatocyte carcinoma, and one normal human cell line WI-38 lung fibroblasts. The mode of cell killing (apoptosis versus necrosis), as well as the effect on cell cycle phases were evaluated via flow cytometry. Additionally, EGFR tyrosine kinase inhibition assay was performed. The results presented in the current study indicate that the six tested compounds exhibited cytotoxicity against both cancer cell lines, and the lowest IC50 was achieved with compound HB5 against Hep G2 cancer cells which was found to be highly selective against cancer cells. HB5-treated Hep G2 cells were arrested at the S and G2/M cell cycle phases. Compound HB5 caused cell killing via apoptosis rather than necrosis, and this was achieved by inhibiting EGFR tyrosine kinase activity needed for cell proliferation, and cell cycle progression. In silico pre-ADMET studies confirmed all final compounds don’t cause CNS side effects, with little liver dysfunction effect.
Collapse
|
39
|
An emerging role of KRAS in biogenesis, cargo sorting and uptake of cancer-derived extracellular vesicles. Future Med Chem 2022; 14:827-845. [PMID: 35502655 DOI: 10.4155/fmc-2021-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles secreted for intercellular communication with endosomal network regulating secretion of small EVs (or exosomes) that play roles in cancer progression. As an essential oncoprotein, Kirsten rat sarcoma virus (KRAS) is tightly regulated by its endosomal trafficking for membrane attachment. However, the crosstalk between KRAS and EVs has been scarcely discussed despite its endocytic association. An overview of the oncogenic role of KRAS focusing on its correlation with cancer-associated EVs should provide important clues for disease prognosis and inspire novel therapeutic approaches for treating KRAS mutant cancers. Therefore, this review summarizes the relevant studies that provide substantial evidence linking KRAS mutation to EVs and discusses the oncogenic implication from the aspects of biogenesis, cargo sorting, and release and uptake of the EVs.
Collapse
|
40
|
Nail AN, McCaffrey LM, Banerjee M, Ferragut Cardoso AP, States JC. Chronic arsenic exposure suppresses ATM pathway activation in human keratinocytes. Toxicol Appl Pharmacol 2022; 446:116042. [DOI: 10.1016/j.taap.2022.116042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 01/15/2023]
|
41
|
Yu J, Yang K, Zheng J, Zhao P, Xia J, Sun X, Zhao W. Activation of FXR and inhibition of EZH2 synergistically inhibit colorectal cancer through cooperatively accelerating FXR nuclear location and upregulating CDX2 expression. Cell Death Dis 2022; 13:388. [PMID: 35449124 PMCID: PMC9023572 DOI: 10.1038/s41419-022-04745-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/09/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
Our previous study indicated that colon cancer cells varied in sensitivity to pharmacological farnesoid X receptor (FXR) activation. Herein, we explore the regulatory mechanism of FXR in colorectal cancer (CRC) development and aim to design effective strategies of combined treatment based on the regulatory axis. We found that the expression of FXR was negatively correlated with enhancer of zeste homolog 2 (EZH2) in colon cancer tissues. EZH2 transcriptionally suppressed FXR via H3K27me3. The combination of FXR agonist OCA plus EZH2 inhibitor GSK126 acted in a synergistic manner across four colon cancer cells, efficiently inhibiting clonogenic growth and invasion in vitro, retarding tumor growth in vivo, preventing the G0/G1 to S phase transition, and inducing caspase-dependent apoptosis. Benign control cells FHC were growth-arrested without apoptosis induction, but retained long-term proliferation and invasion capacity. Mechanistically, the drug combination dramatically accelerated FXR nuclear location and cooperatively upregulated caudal-related homeobox transcription factor 2 (CDX2) expression. The depletion of CDX2 antagonized the synergistic effects of the drug combination on tumor inhibition. In conclusion, our study demonstrated histone modification-mediated FXR silencing by EZH2 in colorectal tumorigenesis, which offers useful evidence for the clinical use of FXR agonists combined with EZH2 inhibitors in combating CRC.
Collapse
Affiliation(s)
- Junhui Yu
- grid.452438.c0000 0004 1760 8119Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, PR China
| | - Kui Yang
- grid.452438.c0000 0004 1760 8119Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, PR China
| | - Jianbao Zheng
- grid.452438.c0000 0004 1760 8119Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, PR China
| | - Pengwei Zhao
- grid.452438.c0000 0004 1760 8119Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, PR China
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, PR China.
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China.
| | - Wei Zhao
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China.
| |
Collapse
|
42
|
The Pyrazolo[3,4-d]Pyrimidine Derivative Si306 Encapsulated into Anti-GD2-Immunoliposomes as Therapeutic Treatment of Neuroblastoma. Biomedicines 2022; 10:biomedicines10030659. [PMID: 35327462 PMCID: PMC8945814 DOI: 10.3390/biomedicines10030659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Si306, a pyrazolo[3,4-d]pyrimidine derivative recently identified as promising anticancer agent, has shown favorable in vitro and in vivo activity profile against neuroblastoma (NB) models by acting as a competitive inhibitor of c-Src tyrosine kinase. Nevertheless, Si306 antitumor activity is associated with sub-optimal aqueous solubility, which might hinder its further development. Drug delivery systems were here developed with the aim to overcome this limitation, obtaining suitable formulations for more efficacious in vivo use. Si306 was encapsulated in pegylated stealth liposomes, undecorated or decorated with a monoclonal antibody able to specifically recognize and bind to the disialoganglioside GD2 expressed by NB cells (LP[Si306] and GD2-LP[Si306], respectively). Both liposomes possessed excellent morphological and physio-chemical properties, maintained over a period of two weeks. Compared to LP[Si306], GD2-LP[Si306] showed in vitro specific cellular targeting and increased cytotoxic activity against NB cell lines. After intravenous injection in healthy mice, pharmacokinetic profiles showed increased plasma exposure of Si306 when delivered by both liposomal formulations, compared to that obtained when Si306 was administered as free form. In vivo tumor homing and cytotoxic effectiveness of both liposomal formulations were finally tested in an orthotopic animal model of NB. Si306 tumor uptake resulted significantly higher when encapsulated in GD2-LP, compared to Si306, either free or encapsulated into untargeted LP. This, in turn, led to a significant increase in survival of mice treated with GD2-LP[Si306]. These results demonstrate a promising antitumor efficacy of Si306 encapsulated into GD2-targeted liposomes, supporting further therapeutic developments in pre-clinical trials and in the clinic for NB.
Collapse
|
43
|
Dawson JC, Munro A, Macleod K, Muir M, Timpson P, Williams RJ, Frame M, Brunton VG, Carragher NO. Pathway profiling of a novel SRC inhibitor, AZD0424, in combination with MEK inhibitors for cancer treatment. Mol Oncol 2022; 16:1072-1090. [PMID: 34856074 PMCID: PMC8895456 DOI: 10.1002/1878-0261.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022] Open
Abstract
A more comprehensive understanding of how cells respond to drug intervention, the likely immediate signalling responses and how resistance may develop within different microenvironments will help inform treatment regimes. The nonreceptor tyrosine kinase SRC regulates many cellular signalling processes, and pharmacological inhibition has long been a target of cancer drug discovery projects. Here, we describe the in vitro and in vivo characterisation of the small-molecule SRC inhibitor AZD0424. We show that AZD0424 potently inhibits the phosphorylation of tyrosine-419 of SRC (IC50 ~ 100 nm) in many cancer cell lines; however, inhibition of cell viability, via a G1 cell cycle arrest, was observed only in a subset of cancer cell lines in the low (on target) micromolar range. We profiled the changes in intracellular pathway signalling in cancer cells following exposure to AZD0424 and other targeted therapies using reverse-phase protein array (RPPA) analysis. We demonstrate that SRC is activated in response to treatment of KRAS-mutant colorectal cell lines with MEK inhibitors (trametinib or AZD6244) and that AZD0424 abrogates this. Cell lines treated with trametinib or AZD6244 in combination with AZD0424 had reduced EGFR, FAK and SRC compensatory activation, and cell viability was synergistically inhibited. In vivo, trametinib treatment of mice-bearing HCT116 tumours increased phosphorylation of SRC on Tyr419, and, when combined with AZD0424, inhibition of tumour growth was greater than with trametinib alone. We also demonstrate that drug-induced resistance to trametinib is not re-sensitised by AZD0424 treatment in vitro, likely as a result of multiple compensatory signalling mechanisms; however, inhibition of SRC remains an effective way to block invasion of trametinib-resistant tumour cells. These data imply that SRC inhibition may offer a useful addition to MEK inhibitor combination strategies.
Collapse
Affiliation(s)
- John C. Dawson
- Cancer Research UK Edinburgh CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Alison Munro
- Cancer Research UK Edinburgh CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Kenneth Macleod
- Cancer Research UK Edinburgh CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Morwenna Muir
- Cancer Research UK Edinburgh CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Paul Timpson
- Cancer ThemeThe Kinghorn Cancer CentreGarvan Institute of Medical ResearchSydneyAustralia
| | | | - Margaret Frame
- Cancer Research UK Edinburgh CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Valerie G. Brunton
- Cancer Research UK Edinburgh CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Neil O. Carragher
- Cancer Research UK Edinburgh CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
44
|
Epigenetic induction of lipocalin 2 expression drives acquired resistance to 5-fluorouracil in colorectal cancer through integrin β3/SRC pathway. Oncogene 2021; 40:6369-6380. [PMID: 34588619 DOI: 10.1038/s41388-021-02029-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
The therapeutic efficacy of 5-fluorouracil (5-FU) is often reduced by the development of drug resistance. We observed significant upregulation of lipocalin 2 (LCN2) expression in a newly established 5-FU-resistant colorectal cancer (CRC) cell line. In this study, we demonstrated that 5-FU-treated CRC cells developed resistance through LCN2 upregulation caused by LCN2 promoter demethylation and that feedback between LCN2 and NF-κB further amplified LCN2 expression. High LCN2 expression was associated with poor prognosis in CRC patients. LCN2 attenuated the cytotoxicity of 5-FU by activating the SRC/AKT/ERK-mediated antiapoptotic program. Mechanistically, the LCN2-integrin β3 interaction enhanced integrin β3 stability, thus recruiting SRC to the cytomembrane for autoactivation, leading to downstream AKT/ERK cascade activation. Targeting LCN2 or SRC compromised the growth of CRC cells with LCN2-induced 5-FU resistance. Our findings demonstrate a novel mechanism of acquired resistance to 5-FU, suggesting that LCN2 can be used as a biomarker and/or therapeutic target for advanced CRC.
Collapse
|
45
|
Raza M, Kumar N, Nair U, Luthra G, Bhattacharyya U, Jayasundar S, Jayasundar R, Sehrawat S. Current updates on precision therapy for breast cancer associated brain metastasis: Emphasis on combination therapy. Mol Cell Biochem 2021; 476:3271-3284. [PMID: 33886058 DOI: 10.1007/s11010-021-04149-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Cancer therapies have undergone a tremendous progress over the past decade. Precision medicine provides a more tailored approach, making the combination of existing therapies more precise. Different types of cancers are characterized by unique biomarkers that are targeted using various genomic approaches by clinicians and companies worldwide to achieve efficient treatment with minimal side effects. Precision medicine has two broad approaches namely stratified and personalized medicine. The driver mutations could vary within a subtype while the same driver mutations could be found across different subtypes. Precision medicine has recently gained a lot of importance for breast cancer therapy. Various kinds of mutations like hotspot mutations, gene alterations, gene amplification mutations are targeted to design a more specific therapy. Apart from these known gene mutations there are various unknown mutations. Thus, tumor heterogeneity can pose a challenge to precision medicine. For breast cancer, one of the most successful models developed in case of precision medicine is the anti-HER2 therapies as HER2 was considered to have the worst prognosis being highly malignant. But now due to the advent of HER2 receptor targeted therapies, it has a good prognosis. Moreover, precision medicine helps in identifying if the drug molecules being used for the treatment of one kind of cancer can be beneficial in the treatment of another kind of cancer as well, considering the signaling pathways and machinery is similar in most of the cancers. This reduces the time for new drug development and is economically more feasible. Precision medicine will prove to be very advantageous in case of brain metastasis.
Collapse
Affiliation(s)
- Masoom Raza
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India
| | - Naveen Kumar
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India
| | - Uttara Nair
- Department of Women's and Reproductive Health, Oxford Fertility, Oxford Business Park North, University of Oxford, Oxford, OX4 2HW, UK
| | - Gehna Luthra
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India
| | - Ushosi Bhattacharyya
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India
| | - Smruthi Jayasundar
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India
| | - Rama Jayasundar
- Department of Nuclear Magnetic Resonance & MRI, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Seema Sehrawat
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India.
| |
Collapse
|
46
|
Ahmed S, Mohamed HT, El-Husseiny N, El Mahdy MM, Safwat G, Diab AA, El-Sherif AA, El-Shinawi M, Mohamed MM. IL-8 secreted by tumor associated macrophages contribute to lapatinib resistance in HER2-positive locally advanced breast cancer via activation of Src/STAT3/ERK1/2-mediated EGFR signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118995. [PMID: 33667527 DOI: 10.1016/j.bbamcr.2021.118995] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Locally advanced breast cancer (LABC) is an aggressive disease characterized by late clinical presentation, large tumor size, treatment resistance and low survival rate. Expression of EGFR/HER2 and activation of intracellular tyrosine kinase domains in LABC are associated with poor prognosis. Thus, target therapies such as the anti-receptor tyrosine kinases lapatinib drug have been more developed in the past decade. The response to lapatinib involves the inhibition of RTKs and subsequently signaling molecules such as Src/STAT3/Erk1/2 known also to be activated by the cytokines in the tumor microenvironment (TME). The aim of the present study is to identify the major cytokine that might contribute to lapatinib resistance in EGFR+/HER2+ LABC patients. Indeed, tumor associated macrophages (TAMs) are the main source of cytokines in the TME. Herein, we isolated TAMs from LABC during modified radical mastectomy (MRM). Cytokine profile of TAMs revealed that IL-8 is the most prominent highly secreted cytokine by TAMs of LABC patients. Using in-vitro cell culture model we showed that recombinant IL-8 (50 and 100 ng/mL) at different time intervals interfere with lapatinib action via activation of Src/EGFR and signaling molecules known to be inhibited during treatment. We proposed that to improve LABC patients' response to lapatinib treatment it is preferred to use combined therapy that neutralize or block the action of IL-8.
Collapse
Affiliation(s)
- Shaza Ahmed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Hossam Taha Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Noura El-Husseiny
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Manal M El Mahdy
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Ayman A Diab
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Ahmed A El-Sherif
- Chemistry department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Vice President for International Affairs, Galala University, Suez 43511, Egypt
| | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Director of Biotechnology program, Faculty of Science, Galala University, 43511 Suez, Egypt.
| |
Collapse
|
47
|
Lee HJ, Pham PC, Pei H, Lim B, Hyun SY, Baek B, Kim B, Kim Y, Kim MH, Kang NW, Min HY, Kim DD, Lee J, Lee HY. Development of the phenylpyrazolo[3,4- d]pyrimidine-based, insulin-like growth factor receptor/Src/AXL-targeting small molecule kinase inhibitor. Am J Cancer Res 2021; 11:1918-1936. [PMID: 33408789 PMCID: PMC7778606 DOI: 10.7150/thno.48865] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Rationale: The type I insulin-like growth factor receptor (IGF-1R) signaling pathway plays key roles in the development and progression of numerous types of human cancers, and Src and AXL have been found to confer resistance to anti-IGF-1R therapies. Hence, co-targeting Src and AXL may be an effective strategy to overcome resistance to anti-IGF-1R therapies. However, pharmacologic targeting of these three kinases may result in enhanced toxicity. Therefore, the development of novel multitarget anticancer drugs that block IGF-1R, Src, and AXL is urgently needed. Methods: We synthesized a series of phenylpyrazolo[3,4-d]pyrimidine (PP)-based compounds, wherein the PP module was conjugated with 2,4-bis-arylamino-1,3-pyrimidines (I2) via a copper(I)-catalyzed alkyne-azide cycloaddition reaction. To develop IGF-1R/Src/AXL-targeting small molecule kinase inhibitors, we selected LL6 as an active compound and evaluated its antitumor and antimetastatic effects in vitro and in vivo using the MTT assay, colony formation assays, migration assay, flow cytometric analysis, a tumor xenograft model, the KrasG12D/+-driven spontaneous lung tumorigenesis model, and a spontaneous metastasis model using Lewis lung carcinoma (LLC) allografts. We also determined the toxicity of LL6 in vitro and in vivo. Results: LL6 induced apoptosis and suppressed viability and colony-forming capacities of various non-small cell lung cancer (NSCLC) cell lines and their sublines with drug resistance. LL6 also suppressed the migration of NSCLC cells at nontoxic doses. Administration of LL6 in mice significantly suppressed the growth of NSCLC xenograft tumors and metastasis of LLC allograft tumors with outstanding toxicity profiles. Furthermore, the multiplicity, volume, and load of lung tumors in KrasG12D/+ transgenic mice were substantially reduced by the LL6 treatment. Conclusions: Our results show the potential of LL6 as a novel IGF-1R/Src/AXL-targeting small molecule kinase inhibitor, providing a new avenue for anticancer therapies.
Collapse
|
48
|
Engineering Stem Cell Factor Ligands with Different c-Kit Agonistic Potencies. Molecules 2020; 25:molecules25204850. [PMID: 33096693 PMCID: PMC7588011 DOI: 10.3390/molecules25204850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are major players in signal transduction, regulating cellular activities in both normal regeneration and malignancy. Thus, many RTKs, c-Kit among them, play key roles in the function of both normal and neoplastic cells, and as such constitute attractive targets for therapeutic intervention. We thus sought to manipulate the self-association of stem cell factor (SCF), the cognate ligand of c-Kit, and hence its suboptimal affinity and activation potency for c-Kit. To this end, we used directed evolution to engineer SCF variants having different c-Kit activation potencies. Our yeast-displayed SCF mutant (SCFM) library screens identified altered dimerization potential and increased affinity for c-Kit by specific SCF-variants. We demonstrated the delicate balance between SCF homo-dimerization, c-Kit binding, and agonistic potencies by structural studies, in vitro binding assays and a functional angiogenesis assay. Importantly, our findings showed that a monomeric SCF variant exhibited superior agonistic potency vs. the wild-type SCF protein and vs. other high-affinity dimeric SCF variants. Our data showed that action of the monomeric ligands in binding to the RTK monomers and inducing receptor dimerization and hence activation was superior to that of the wild-type dimeric ligand, which has a higher affinity to RTK dimers but a lower activation potential. The findings of this study on the binding and c-Kit activation of engineered SCF variants thus provides insights into the structure–function dynamics of ligands and RTKs.
Collapse
|