1
|
Rana M, Liou KC, Thakur A, Nepali K, Liou JP. Advancing glioblastoma therapy: Learning from the past and innovations for the future. Cancer Lett 2025; 617:217601. [PMID: 40037502 DOI: 10.1016/j.canlet.2025.217601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Marred by a median survival of only around 12-15 months coupled with poor prognosis and effective therapeutic deprived drug armory, treatment/management of glioblastoma has proved to be a daunting task. Surgical resection, flanked by radiotherapy and chemotherapy with temozolomide, stands as the standard of care; however, this trimodal therapy often manifests limited efficacy due to the heterogeneous and highly infiltrative nature of GBM cells. In addition, the existence of the blood-brain barrier, tumor microenvironment, and the immunosuppressive nature of GBM, along with the encountered resistance of GBM cells towards conventional therapy, also hinders the therapeutic applications of chemotherapeutics in GBM. This review presents key insights into the molecular pathology of GBM, including genetic mutations, signaling pathways, and tumor microenvironment characteristics. Recent innovations such as immunotherapy, oncolytic viral therapies, vaccines, nanotechnology, electric field, and cancer neuroscience, as well as their clinical progress, have been covered. In addition, this compilation also encompasses a discussion on the role of personalized medicine in tailoring treatments based on individual tumor profiles, an approach that is gradually shifting the paradigm in GBM management. Endowed with the learnings imbibed from past failures coupled with the zeal to embrace novel/multidisciplinary approaches, researchers appear to be on the right track to pinpoint more effective and durable solutions in the context of GBM treatment.
Collapse
Affiliation(s)
- Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
2
|
Yakubov R, Kaloti R, Persaud P, McCracken A, Zadeh G, Bunda S. It's all downstream from here: RTK/Raf/MEK/ERK pathway resistance mechanisms in glioblastoma. J Neurooncol 2025; 172:327-345. [PMID: 39821893 PMCID: PMC11937199 DOI: 10.1007/s11060-024-04930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND The receptor tyrosine kinase (RTK)/Ras/Raf/MEK/ERK signaling pathway is one of the most tumorigenic pathways in cancer, with its hyperactivation strongly linked to the aggressive nature of glioblastoma (GBM). Although extensive research has focused on developing therapeutics targeting this pathway, clinical success remains elusive due to the emergence of resistance mechanisms. OBJECTIVE This review investigates how inhibition of the RTK/Ras/Raf/MEK/ERK pathway alters transcription factors, contributing to acquired resistance mechanisms in GBM. It also highlights the critical role of transcription factor dysregulation in therapeutic resistance. METHODS & RESULTS Findings from key studies on the RTK/Ras/Raf/MEK/ERK pathway in GBM were synthesized to explore the role of transcription factor dysregulation in resistance to targeted therapies, radiation, and chemotherapy. The review highlights that transcription factors undergo significant dysregulation following RTK/Ras/Raf/MEK/ERK pathway inhibition, contributing to therapeutic resistance. CONCLUSION Transcription factors are promising targets for overcoming treatment resistance in GBM, with cotreatment strategies combining RTK/Ras/Raf/MEK/ERK pathway inhibitors and transcription factor-targeted therapies presenting a novel approach. Despite the challenges of targeting complex structures and interactions, advancements in drug development and precision technologies hold great potential. Continued research is essential to refine these strategies and improve outcomes for GBM and other aggressive cancers.
Collapse
Affiliation(s)
- Rebeca Yakubov
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ramneet Kaloti
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Phooja Persaud
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anna McCracken
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - Severa Bunda
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
3
|
Malone K, LaCasse E, Beug ST. Cell death in glioblastoma and the central nervous system. Cell Oncol (Dordr) 2025; 48:313-349. [PMID: 39503973 PMCID: PMC11997006 DOI: 10.1007/s13402-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Eric LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Kuo KL, Chang SJ, Kwan AL, Chai CY. Correlation between levels of clock protein expression and effects on temozolomide-resistant glioblastoma and tumor progression. Hum Cell 2025; 38:75. [PMID: 40123038 DOI: 10.1007/s13577-025-01205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Glioblastoma (GBM) is the most common malignant intracranial neoplasm. Treatment with surgical resection and concurrent chemoradiotherapy may not achieve satisfactory results in life expectancy. Temozolomide (TMZ) chemoresistance is one of the most common reasons for treatment failure, but the role of the circadian cycle and autophagic pathways in this phenomenon is unknown. This study investigated the relationship between the circadian cycle and autophagic pathways in GBM and its TMZ chemoresistance counterpart. The predictive potential of NR1D1 and MGMT was analyzed by using 631 glioma cases derived from the TCGA GBM dataset. Human GBM cell lines (U-87 MG, GBM 8401) and their TMZ chemoresistance counterparts were used for MGMT, circadian proteins (CLOCK, BMAL1, NR1D1), and LC3B analysis. In addition, immunohistochemical staining for NR1D1 was performed in 78 GBM samples, and the results were analyzed with patients' clinicopathological parameters. Results revealed a decrease in NR1D1 expression in GBM cells which could enhance TMZ chemosensitivity. Different expressions of autophagic markers were also noted in GBM cell lines with and without TMZ chemoresistance, indicating a significant role for NR1D1 in TMZ chemoresistance in the GBM cell line. In addition, higher expression of NR1D1 in tumor samples was correlated with poor prognosis and shorter survival. In conclusion, high levels of NR1D1 not only could predict poor prognosis but it could also be used as a chemosensitizer for TMZ in GBM patients.
Collapse
Affiliation(s)
- Keng-Liang Kuo
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Jyuan Chang
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Fougner V, Urup T, Poulsen HS, Grunnet K, Westmose CY, Melchior LC, Larsen KB, Højgaard M, Spanggaard I, Belcaid L, Rohrberg KS, Lassen U, Hasselbalch B, Nørøxe DS. Actionable alterations in glioblastoma: Insights from the implementation of genomic profiling as the standard of care from 2016 to 2023. Neurooncol Pract 2025; 12:34-44. [PMID: 39917766 PMCID: PMC11798607 DOI: 10.1093/nop/npae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
Background In 2016, genomic profiling was implemented for patients with grade 4 primary brain tumors at Rigshospitalet, Denmark. The aim of this study was to discover actionable alterations and to match these with targeted therapies. Methods Between January 2016 and December 2023, 483 brain tumor patients were profiled. We retrieved clinical data and molecular data. Whole exome, whole genome, or panel sequencing, along with SNP array analyses, and RNA-seq were performed on resected primary tumor tissue. Alterations were classified according to the European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of Molecular Targets (ESCAT) following the European Association of Neuro-Oncology (EANO) guideline on rational molecular testing. Results A total of 200 (41.4%) patients' tumors harbored an alteration of interest according to the EANO guideline. Twenty (4.1%) patients had an ESCAT high-tier alteration (tier I or II), while 155 patients (32.1%) had an alteration corresponding to ESCAT IIIA. Thirty-five patients (7.2%) had an actionable alteration, and 15 (3.1%) received targeted therapy. The treated targets were BRAFV600E mutations, FGFR alterations, NTRK fusions, PDGFRA fusions, PTPRZ1-MET fusions, and TMB-high. The overall response rate was 20%, with a median duration of response of 12 months, and 47% achieved stable disease as the best response. Conclusions Genomic profiling uncovers alterations of interest in a substantial number of patients, but only a minority are considered by the Danish National Molecular Tumor Board to have actionable alterations, and even fewer receive targeted therapy. Nevertheless, factors, such as promising targets and the increasing availability of trials, may contribute to a future increase in the number of patients benefiting from targeted therapies based on genomic profiling.
Collapse
Affiliation(s)
- Vincent Fougner
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Danish Comprehensive Cancer Center - Brain Tumor Center (DCCC-BTC), Copenhagen, Denmark
| | - Thomas Urup
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Danish Comprehensive Cancer Center - Brain Tumor Center (DCCC-BTC), Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Danish Comprehensive Cancer Center - Brain Tumor Center (DCCC-BTC), Copenhagen, Denmark
| | - Kirsten Grunnet
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Danish Comprehensive Cancer Center - Brain Tumor Center (DCCC-BTC), Copenhagen, Denmark
| | - Christina Yde Westmose
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Linea Cecilie Melchior
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Karen Bonde Larsen
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Martin Højgaard
- Phase 1 Unit, Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Iben Spanggaard
- Phase 1 Unit, Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Laila Belcaid
- Phase 1 Unit, Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kristoffer Staal Rohrberg
- Phase 1 Unit, Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Lassen
- Phase 1 Unit, Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Danish Comprehensive Cancer Center - Brain Tumor Center (DCCC-BTC), Copenhagen, Denmark
| | - Benedikte Hasselbalch
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Danish Comprehensive Cancer Center - Brain Tumor Center (DCCC-BTC), Copenhagen, Denmark
| | - Dorte Schou Nørøxe
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Danish Comprehensive Cancer Center - Brain Tumor Center (DCCC-BTC), Copenhagen, Denmark
| |
Collapse
|
6
|
Saadh MJ, Ghnim ZS, Mahdi MS, Chandra M, Ballal S, Bareja L, Chaudhary K, Sharma RSK, Gupta S, Taher WM, Alwan M, Jawad MJ, Hamad AK. Decoding the Role of Kinesin Superfamily Proteins in Glioma Progression. J Mol Neurosci 2025; 75:10. [PMID: 39847238 DOI: 10.1007/s12031-025-02308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Glioma is a highly aggressive and invasive brain tumor with limited treatment options, highlighting the need for novel therapeutic approaches. Kinesin superfamily proteins (KIFs) are a diverse group of motor proteins that play essential roles in cellular processes such as mitosis, intracellular transport, and signal transduction, all of which are crucial for tumorigenesis. This review focuses on the multifaceted role of KIFs in glioma, examining their clinical relevance, contribution to tumor progression, and potential as therapeutic targets. We discuss how KIFs influence key aspects of glioma biology, including cell proliferation, invasion, migration, and metastasis. Furthermore, we explore the regulation of the cell cycle and critical signaling pathways associated with glioma, such as PI3K-Akt, Wnt/β-catenin, and Hedgehog signaling by KIFs. The review also addresses the emerging interplay between KIFs and non-coding RNAs, including circular RNAs (circRNAs) and microRNAs (miRNAs), in glioma progression. Finally, we examine current therapeutic strategies targeting KIFs, including immunotherapy, chemotherapy, and small-molecule inhibitors, and their potential to improve treatment outcomes for glioma patients. By synthesizing these insights, this review underscores the significance of KIFs in glioma pathogenesis and their promise as novel therapeutic targets in the fight against glioma.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Muktesh Chandra
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - R S K Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
7
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
8
|
Messé M, Bernhard C, Foppolo S, Thomas L, Marchand P, Herold-Mende C, Idbaih A, Kessler H, Etienne-Selloum N, Ochoa C, Tambar UK, Elati M, Laquerriere P, Entz-Werle N, Martin S, Reita D, Dontenwill M. Hypoxia-driven heterogeneous expression of α5 integrin in glioblastoma stem cells is linked to HIF-2α. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167471. [PMID: 39154793 DOI: 10.1016/j.bbadis.2024.167471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Despite numerous molecular targeted therapies tested in glioblastoma (GBM), no significant progress in patient survival has been achieved in the last 20 years in the overall population of GBM patients except with TTfield setup associated with the standard of care chemoradiotherapy. Therapy resistance is associated with target expression heterogeneity and plasticity between tumors and in tumor niches. We focused on α5 integrin implicated in aggressive GBM in preclinical and clinical samples. To address the characteristics of α5 integrin heterogeneity we started with patient data indicating that elevated levels of its mRNA are related to hypoxia pathways. We turned on glioma stem cells which are considered at the apex of tumor formation and recurrence but also as they localize in hypoxic niches. We demonstrated that α5 integrin expression is stem cell line dependent and is modulated positively by hypoxia in vitro. Importantly, heterogeneity of expression is conserved in in vivo stem cell-derived mice xenografts. In hypoxic niches, HIF-2α is preferentially implicated in α5 integrin expression which confers migratory capacity to GBM stem cells. Hence combining HIF-2α and α5 integrin inhibitors resulted in proliferation and migration impairment of α5 integrin expressing cells. Stabilization of HIF-2α is however not sufficient to control integrin α5 expression. Our results show that AHR (aryl hydrocarbon receptor) expression is inversely related to HIF-2α and α5 integrin expressions suggesting a functional competition between the two transcription factors. Collectively, data confirm the high heterogeneity of a GBM therapeutic target, its induction in hypoxic niches by HIF-2α and suggest a new way to attack molecularly defined GBM stem cells.
Collapse
Affiliation(s)
- Mélissa Messé
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France; UMR7178 CNRS, Hubert Curien Multidisciplinary Institute, Strasbourg University, 67000 Strasbourg, France
| | - Chloé Bernhard
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France
| | - Sophie Foppolo
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France
| | - Lionel Thomas
- UMR7178 CNRS, Hubert Curien Multidisciplinary Institute, Strasbourg University, 67000 Strasbourg, France
| | - Patrice Marchand
- UMR7178 CNRS, Hubert Curien Multidisciplinary Institute, Strasbourg University, 67000 Strasbourg, France
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Ahmed Idbaih
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013 Paris, France
| | - Horst Kessler
- Institute for Advanced Study, Department Chemie, Technical University Munich (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
| | - Nelly Etienne-Selloum
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France; Pharmacy department, Institut de Cancérologie Strasbourg Europe (ICANS), 67200 Strasbourg, France
| | - Charles Ochoa
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, United States
| | - Uttam K Tambar
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, United States
| | - Mohamed Elati
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
| | - Patrice Laquerriere
- UMR7178 CNRS, Hubert Curien Multidisciplinary Institute, Strasbourg University, 67000 Strasbourg, France
| | - Natacha Entz-Werle
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France; Pédiatrie Onco-Hématologie-Pédiatrie III, Strasbourg University Hospital, 67091 Strasbourg, France
| | - Sophie Martin
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France
| | - Damien Reita
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France; Department of Cancer Molecular Genetics, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Monique Dontenwill
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France.
| |
Collapse
|
9
|
Lin CY, Huang CY, Lee CC, Li LM, Lee YF, Jung SM, Fan HC, Lin AC, Hsu CL, Huang YC. A patient-derived xenograft mouse platform from epithelioid glioblastoma provides possible druggable screening and translational study. Am J Cancer Res 2024; 14:4747-4759. [PMID: 39553226 PMCID: PMC11560820 DOI: 10.62347/lqij5334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/25/2024] [Indexed: 11/19/2024] Open
Abstract
Despite advancements in targeted therapy, glioblastoma remains a challenging condition with limited treatment options. While surgical techniques and external radiation therapy have improved, the median survival for glioblastoma stands at around 12-18 months, with a 5-year survival rate of only 6.8%. Epithelioid glioblastoma (eGBM) represents a rare subtype within the glioma spectrum. Utilizing patient-derived xenograft (PDX) models in mice offers a promising avenue for drug screening and translational research, particularly for this specific glioblastoma subtype. Establishing a stable PDX model for eGBM revealed consistent genetic abnormalities, including BRAF V600E mutation and CDKN2A deletion, in both primary and PDX tumors. Leveraging a curated drug database, compounds potentially targeting these aberrations were identified. By using the novel PDX platform, the results presented in this study demonstrate that the treatments with Palbociclib or Dabrafenib/Trametinib significantly reduced tumor size. RNA sequencing analysis further validated the responsiveness of the tumors to these targeted therapies. In conclusion, PDX models offer a deeper understanding of eGBM at the genomic level and facilitate the identification of potential therapeutic targets. Further translational studies of this novel PDX model hold promise for advancing the diagnosis and treatment of this specific subtype of glioblastoma.
Collapse
Affiliation(s)
- Chiao-Yun Lin
- Gynecologic Cancer Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 33305, Taiwan
| | - Chen-Yang Huang
- Department of Medicine, Chang Gung UniversityTaoyuan 33305, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung UniversityTaoyuan 33305, Taiwan
| | - Cheng-Chi Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung UniversityTaoyuan 33305, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung UniversityTaoyuan 33305, Taiwan
| | - Lien-Min Li
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung UniversityTaoyuan 33305, Taiwan
| | - Ya-Fang Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung UniversityTaoyuan 33305, Taiwan
| | - Shi-Ming Jung
- Department of Medicine, Chang Gung UniversityTaoyuan 33305, Taiwan
- Department of Pathology, Chang Gung Memorial Hospital, Linkou, Chang Gung UniversityTaoyuan 33305, Taiwan
| | - Hsien-Chi Fan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung UniversityTaoyuan 33305, Taiwan
| | - An-Chi Lin
- Gynecologic Cancer Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 33305, Taiwan
| | - Cheng-Lung Hsu
- Department of Medicine, Chang Gung UniversityTaoyuan 33305, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung UniversityTaoyuan 33305, Taiwan
| | - Yin-Cheng Huang
- Department of Medicine, Chang Gung UniversityTaoyuan 33305, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung UniversityTaoyuan 33305, Taiwan
| |
Collapse
|
10
|
Ioannou M, Lalwani K, Ayanlaja AA, Chinnasamy V, Pratilas CA, Schreck KC. MEK Inhibition Enhances the Antitumor Effect of Radiotherapy in NF1-Deficient Glioblastoma. Mol Cancer Ther 2024; 23:1261-1272. [PMID: 38714355 PMCID: PMC11374499 DOI: 10.1158/1535-7163.mct-23-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/26/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Individuals with neurofibromatosis type 1, an autosomal dominant neurogenetic and tumor predisposition syndrome, are susceptible to developing low-grade glioma and less commonly high-grade glioma. These gliomas exhibit loss of the neurofibromin gene [neurofibromin type 1 (NF1)], and 10% to 15% of sporadic high-grade gliomas have somatic NF1 alterations. Loss of NF1 leads to hyperactive RAS signaling, creating opportunity given the established efficacy of MEK inhibitors in plexiform neurofibromas and some individuals with low-grade glioma. We observed that NF1-deficient glioblastoma neurospheres were sensitive to the combination of an MEK inhibitor (mirdametinib) with irradiation, as evidenced by synergistic inhibition of cell growth, colony formation, and increased cell death. In contrast, NF1-intact neurospheres were not sensitive to the combination, despite complete ERK pathway inhibition. No neurosphere lines exhibited enhanced sensitivity to temozolomide combined with mirdametinib. Mirdametinib decreased transcription of homologous recombination genes and RAD51 foci, associated with DNA damage repair, in sensitive models. Heterotopic xenograft models displayed synergistic growth inhibition to mirdametinib combined with irradiation in NF1-deficient glioma xenografts but not in those with intact NF1. In sensitive models, benefits were observed at least 3 weeks beyond the completion of treatment, including sustained phosphor-ERK inhibition on immunoblot and decreased Ki-67 expression. These observations demonstrate synergistic activity between mirdametinib and irradiation in NF1-deficient glioma models and may have clinical implications for patients with gliomas that harbor germline or somatic NF1 alterations.
Collapse
Affiliation(s)
- Maria Ioannou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kriti Lalwani
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Abiola A. Ayanlaja
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Viveka Chinnasamy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christine A. Pratilas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Karisa C. Schreck
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
11
|
Norollahi SE, Yousefzadeh-Chabok S, Yousefi B, Nejatifar F, Rashidy-Pour A, Samadani AA. The effects of the combination therapy of chemotherapy drugs on the fluctuations of genes involved in the TLR signaling pathway in glioblastoma multiforme therapy. Biomed Pharmacother 2024; 177:117137. [PMID: 39018875 DOI: 10.1016/j.biopha.2024.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
One of the most lethal and aggressive types of malignancies with a high mortality rate and poor response to treatment is glioblastoma multiforme (GBM). This means that modernizing the medications used in chemotherapy, in addition to medicines licensed for use in other illnesses and chosen using a rationale process, can be beneficial in treating this illness. Meaningly, drug combination therapy with chemical or herbal originations or implanting a drug wafer in tumors to control angiogenesis is of great importance. Importantly, the primary therapeutic hurdles in GBM are the development of angiogenesis and the blood-brain barrier (BBB), which keeps medications from getting to the tumor. This malignancy can be controlled if the drug's passage through the BBB and the VEGF (vascular endothelial growth factor), which promotes angiogenesis, are inhibited. In this way, the effect of combination therapy on the genes of different main signaling pathways like TLRs may be indicated as an impressive therapeutic strategy for treating GBM. This article aims to discuss the effects of chemotherapeutic drugs on the expression of various genes and associated translational factors involved in the TLR signaling pathway.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Bahman Yousefi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
12
|
Rodgers LT, Villano JL, Hartz AMS, Bauer B. Glioblastoma Standard of Care: Effects on Tumor Evolution and Reverse Translation in Preclinical Models. Cancers (Basel) 2024; 16:2638. [PMID: 39123366 PMCID: PMC11311277 DOI: 10.3390/cancers16152638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma (GBM) presents a significant public health challenge as the deadliest and most common malignant brain tumor in adults. Despite standard-of-care treatment, which includes surgery, radiation, and chemotherapy, mortality rates are high, underscoring the critical need for advancing GBM therapy. Over the past two decades, numerous clinical trials have been performed, yet only a small fraction demonstrated a benefit, raising concerns about the predictability of current preclinical models. Traditionally, preclinical studies utilize treatment-naïve tumors, failing to model the clinical scenario where patients undergo standard-of-care treatment prior to recurrence. Recurrent GBM generally exhibits distinct molecular alterations influenced by treatment selection pressures. In this review, we discuss the impact of treatment-surgery, radiation, and chemotherapy-on GBM. We also provide a summary of treatments used in preclinical models, advocating for their integration to enhance the translation of novel strategies to improve therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Louis T. Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - John L. Villano
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
13
|
Sipos TC, Kövecsi A, Kocsis L, Nagy-Bota M, Pap Z. Evaluation of Microvascular Density in Glioblastomas in Relation to p53 and Ki67 Immunoexpression. Int J Mol Sci 2024; 25:6810. [PMID: 38928515 PMCID: PMC11204252 DOI: 10.3390/ijms25126810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma is the most aggressive tumor in the central nervous system, with a survival rate of less than 15 months despite multimodal therapy. Tumor recurrence frequently occurs after removal. Tumoral angiogenesis, the formation of neovessels, has a positive impact on tumor progression and invasion, although there are controversial results in the specialized literature regarding its impact on survival. This study aims to correlate the immunoexpression of angiogenesis markers (CD34, CD105) with the proliferation index Ki67 and p53 in primary and secondary glioblastomas. This retrospective study included 54 patients diagnosed with glioblastoma at the Pathology Department of County Emergency Clinical Hospital Târgu Mureș. Microvascular density was determined using CD34 and CD105 antibodies, and the results were correlated with the immunoexpression of p53, IDH1, ATRX and Ki67. The number of neoformed blood vessels varied among cases, characterized by different shapes and calibers, with endothelial cells showing modified morphology and moderate to marked pleomorphism. Neovessels with a glomeruloid aspect, associated with intense positivity for CD34 or CD105 in endothelial cells, were observed, characteristic of glioblastomas. Mean microvascular density values were higher for the CD34 marker in all cases, though there were no statistically significant differences compared to CD105. Mutant IDH1 and ATRX glioblastomas, wild-type p53 glioblastomas, and those with a Ki67 index above 20% showed a more abundant microvascular density, with statistical correlations not reaching significance. This study highlighted a variety of percentage intervals of microvascular density in primary and secondary glioblastomas using immunohistochemical markers CD34 and CD105, respectively, with no statistically significant correlation between evaluated microvascular density and p53 or Ki67.
Collapse
Affiliation(s)
- Tamás-Csaba Sipos
- Department of Anatomy and Embryology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania; (T.-C.S.)
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Pathology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mureș, Romania
| | - Attila Kövecsi
- Pathology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mureș, Romania
- Pathology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania
| | - Lóránd Kocsis
- Department of Anatomy and Embryology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania; (T.-C.S.)
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Monica Nagy-Bota
- Department of Anatomy and Embryology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania; (T.-C.S.)
| | - Zsuzsánna Pap
- Department of Anatomy and Embryology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania; (T.-C.S.)
| |
Collapse
|
14
|
Hovis G, Chandra N, Kejriwal N, Hsieh KJY, Chu A, Yang I, Wadehra M. Understanding the Role of Endothelial Cells in Glioblastoma: Mechanisms and Novel Treatments. Int J Mol Sci 2024; 25:6118. [PMID: 38892305 PMCID: PMC11173095 DOI: 10.3390/ijms25116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma is a highly aggressive neoplasm and the most common primary malignant brain tumor. Endothelial tissue plays a critical role in glioblastoma growth and progression, facilitating angiogenesis, cellular communication, and tumorigenesis. In this review, we present an up-to-date and comprehensive summary of the role of endothelial cells in glioblastomas, along with an overview of recent developments in glioblastoma therapies and tumor endothelial marker identification.
Collapse
Affiliation(s)
- Gabrielle Hovis
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Neha Chandra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
| | - Nidhi Kejriwal
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
| | - Kaleb Jia-Yi Hsieh
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Isaac Yang
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Radiation Oncology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA (K.J.-Y.H.)
- Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Sadowski K, Jażdżewska A, Kozłowski J, Zacny A, Lorenc T, Olejarz W. Revolutionizing Glioblastoma Treatment: A Comprehensive Overview of Modern Therapeutic Approaches. Int J Mol Sci 2024; 25:5774. [PMID: 38891962 PMCID: PMC11172387 DOI: 10.3390/ijms25115774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in the adult population, with an average survival of 12.1 to 14.6 months. The standard treatment, combining surgery, radiotherapy, and chemotherapy, is not as efficient as we would like. However, the current possibilities are no longer limited to the standard therapies due to rapid advancements in biotechnology. New methods enable a more precise approach by targeting individual cells and antigens to overcome cancer. For the treatment of glioblastoma, these are gamma knife therapy, proton beam therapy, tumor-treating fields, EGFR and VEGF inhibitors, multiple RTKs inhibitors, and PI3K pathway inhibitors. In addition, the increasing understanding of the role of the immune system in tumorigenesis and the ability to identify tumor-specific antigens helped to develop immunotherapies targeting GBM and immune cells, including CAR-T, CAR-NK cells, dendritic cells, and immune checkpoint inhibitors. Each of the described methods has its advantages and disadvantages and faces problems, such as the inefficient crossing of the blood-brain barrier, various neurological and systemic side effects, and the escape mechanism of the tumor. This work aims to present the current modern treatments of glioblastoma.
Collapse
Affiliation(s)
- Karol Sadowski
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Adrianna Jażdżewska
- The Department of Anatomy and Neurobiology, Medical University of Gdansk, Dębinki 1, 80-211 Gdansk, Poland;
| | - Jan Kozłowski
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
| | - Aleksandra Zacny
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
| | - Tomasz Lorenc
- Department of Radiology I, The Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
16
|
Ren F, Ma Y, Zhang K, Luo Y, Pan R, Zhang J, Kan C, Hou N, Han F, Sun X. Exploring the multi-targeting phytoestrogen potential of Calycosin for cancer treatment: A review. Medicine (Baltimore) 2024; 103:e38023. [PMID: 38701310 PMCID: PMC11062656 DOI: 10.1097/md.0000000000038023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Cancer remains a significant challenge in the field of oncology, with the search for novel and effective treatments ongoing. Calycosin (CA), a phytoestrogen derived from traditional Chinese medicine, has garnered attention as a promising candidate. With its high targeting and low toxicity profile, CA has demonstrated medicinal potential across various diseases, including cancers, inflammation, and cardiovascular disease. Studies have revealed that CA possesses inhibitory effects against a diverse array of cancers. The underlying mechanism of action involves a reduction in tumor cell proliferation, induction of tumor cell apoptosis, and suppression of tumor cell migration and invasion. Furthermore, CA has been shown to enhance the efficacy of certain chemotherapeutic drugs, making it a potential component in treating malignant tumors. Given its high efficacy, low toxicity, and multi-targeting characteristics, CA holds considerable promise as a therapeutic agent for cancer treatment. The objective of this review is to present a synthesis of the current understanding of the antitumor mechanism of CA and its research progress.
Collapse
Affiliation(s)
- Fangbing Ren
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Youhong Luo
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
17
|
Maeser D, Gruener RF, Galvin R, Lee A, Koga T, Grigore FN, Suzuki Y, Furnari FB, Chen C, Huang RS. Integration of Computational Pipeline to Streamline Efficacious Drug Nomination and Biomarker Discovery in Glioblastoma. Cancers (Basel) 2024; 16:1723. [PMID: 38730673 PMCID: PMC11083606 DOI: 10.3390/cancers16091723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest, most heterogeneous, and most common brain cancer in adults. Not only is there an urgent need to identify efficacious therapeutics, but there is also a great need to pair these therapeutics with biomarkers that can help tailor treatment to the right patient populations. We built patient drug response models by integrating patient tumor transcriptome data with high-throughput cell line drug screening data as well as Bayesian networks to infer relationships between patient gene expression and drug response. Through these discovery pipelines, we identified agents of interest for GBM to be effective across five independent patient cohorts and in a mouse avatar model: among them are a number of MEK inhibitors (MEKis). We also predicted phosphoglycerate dehydrogenase enzyme (PHGDH) gene expression levels to be causally associated with MEKi efficacy, where knockdown of this gene increased tumor sensitivity to MEKi and overexpression led to MEKi resistance. Overall, our work demonstrated the power of integrating computational approaches. In doing so, we quickly nominated several drugs with varying known mechanisms of action that can efficaciously target GBM. By simultaneously identifying biomarkers with these drugs, we also provide tools to select the right patient populations for subsequent evaluation.
Collapse
Affiliation(s)
- Danielle Maeser
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert F. Gruener
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA (A.L.)
| | - Robert Galvin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Adam Lee
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA (A.L.)
| | - Tomoyuki Koga
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA (Y.S.)
| | | | - Yuta Suzuki
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA (Y.S.)
| | - Frank B. Furnari
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - Clark Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA (Y.S.)
| | - R. Stephanie Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA (A.L.)
| |
Collapse
|
18
|
Zhao K, Braun M, Meyer L, Otte K, Raifer H, Helmprobst F, Möschl V, Pagenstecher A, Urban H, Ronellenfitsch MW, Steinbach JP, Pesek J, Watzer B, Nockher WA, Taudte RV, Neubauer A, Nimsky C, Bartsch JW, Rusch T. A Novel Approach for Glioblastoma Treatment by Combining Apoptosis Inducers (TMZ, MTX, and Cytarabine) with E.V.A. (Eltanexor, Venetoclax, and A1210477) Inhibiting XPO1, Bcl-2, and Mcl-1. Cells 2024; 13:632. [PMID: 38607071 PMCID: PMC11011525 DOI: 10.3390/cells13070632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Adjuvant treatment for Glioblastoma Grade 4 with Temozolomide (TMZ) inevitably fails due to therapeutic resistance, necessitating new approaches. Apoptosis induction in GB cells is inefficient, due to an excess of anti-apoptotic XPO1/Bcl-2-family proteins. We assessed TMZ, Methotrexate (MTX), and Cytarabine (Ara-C) (apoptosis inducers) combined with XPO1/Bcl-2/Mcl-1-inhibitors (apoptosis rescue) in GB cell lines and primary GB stem-like cells (GSCs). Using CellTiter-Glo® and Caspase-3 activity assays, we generated dose-response curves and analyzed the gene and protein regulation of anti-apoptotic proteins via PCR and Western blots. Optimal drug combinations were examined for their impact on the cell cycle and apoptosis induction via FACS analysis, paralleled by the assessment of potential toxicity in healthy mouse brain slices. Ara-C and MTX proved to be 150- to 10,000-fold more potent in inducing apoptosis than TMZ. In response to inhibitors Eltanexor (XPO1; E), Venetoclax (Bcl-2; V), and A1210477 (Mcl-1; A), genes encoding for the corresponding proteins were upregulated in a compensatory manner. TMZ, MTX, and Ara-C combined with E, V, and A evidenced highly lethal effects when combined. As no significant cell death induction in mouse brain slices was observed, we conclude that this drug combination is effective in vitro and expected to have low side effects in vivo.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Madita Braun
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Leonie Meyer
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Katharina Otte
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Hartmann Raifer
- FACS Core Facility, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Frederik Helmprobst
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Vincent Möschl
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Axel Pagenstecher
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Hans Urban
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Michael W. Ronellenfitsch
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Joachim P. Steinbach
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Jelena Pesek
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Bernhard Watzer
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Wolfgang A. Nockher
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - R. Verena Taudte
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Tillmann Rusch
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Salas-Gallardo GA, Lorea-Hernández JJ, Robles-Gómez ÁA, Del Campo CCM, Peña-Ortega F. Morphological differentiation of peritumoral brain zone microglia. PLoS One 2024; 19:e0297576. [PMID: 38451958 PMCID: PMC10919594 DOI: 10.1371/journal.pone.0297576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 03/09/2024] Open
Abstract
The Peritumoral Brain Zone (PBZ) contributes to Glioblastoma (GBM) relapse months after the resection of the original tumor, which is influenced by a variety of pathological factors. Among those, microglia are recognized as one of the main regulators of GBM progression and probably relapse. Although microglial morphology has been analyzed inside GBM and its immediate surroundings, it has not been objectively characterized throughout the PBZ. Thus, we aimed to perform a thorough characterization of microglial morphology in the PBZ and its likely differentiation not just from the tumor-associated microglia but from control tissue microglia. For this purpose, Sprague Dawley rats were intrastriatally implanted with C6 cells to induce a GBM formation. Gadolinium-based magnetic resonance imaging (MRI) was performed to locate the tumor and to define the PBZ (2 mm beyond the tumor border), thus delimitating the different regions of interest (ROIs: core tumoral zone and immediate interface; contralateral striatum as control). Brain slices were obtained and immunolabeled with the microglia marker Iba-1. Sixteen morphological parameters were measured for each cell, significative differences were found in all parameters when comparing the four ROIs. To determine if PBZ microglia could be morphologically differentiated from microglia in other ROIs, hierarchical clustering analysis was performed, revealing that microglia can be separated into four morphologically differentiated clusters, each of them mostly integrated by cells sampled in each ROI. Furthermore, a classifier based on linear discriminant analysis, including only three morphological parameters, categorized microglial cells across the studied ROIs and showed a gradual transition between them. The robustness of this classification was assessed through principal component analysis with the remaining 13 morphological parameters, corroborating the obtained results. Thus, in this study we provided objective and quantitative evidence that PBZ microglia represent a differentiable microglial morphotype that could contribute to the recurrence of GBM in this area.
Collapse
Affiliation(s)
- G. Anahí Salas-Gallardo
- Laboratorio de Células Neurales Troncales, CIACYT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Jonathan-Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Ángel Abdiel Robles-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Claudia Castillo-Martin Del Campo
- Laboratorio de Células Neurales Troncales, CIACYT-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
20
|
Carpentier A, Stupp R, Sonabend AM, Dufour H, Chinot O, Mathon B, Ducray F, Guyotat J, Baize N, Menei P, de Groot J, Weinberg JS, Liu BP, Guemas E, Desseaux C, Schmitt C, Bouchoux G, Canney M, Idbaih A. Repeated blood-brain barrier opening with a nine-emitter implantable ultrasound device in combination with carboplatin in recurrent glioblastoma: a phase I/II clinical trial. Nat Commun 2024; 15:1650. [PMID: 38396134 PMCID: PMC10891097 DOI: 10.1038/s41467-024-45818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Here, the results of a phase 1/2 single-arm trial (NCT03744026) assessing the safety and efficacy of blood-brain barrier (BBB) disruption with an implantable ultrasound system in recurrent glioblastoma patients receiving carboplatin are reported. A nine-emitter ultrasound implant was placed at the end of tumor resection replacing the bone flap. After surgery, activation to disrupt the BBB was performed every four weeks either before or after carboplatin infusion. The primary objective of the Phase 1 was to evaluate the safety of escalating numbers of ultrasound emitters using a standard 3 + 3 dose escalation. The primary objective of the Phase 2 was to evaluate the efficacy of BBB opening using magnetic resonance imaging (MRI). The secondary objectives included safety and clinical efficacy. Thirty-three patients received a total of 90 monthly sonications with carboplatin administration and up to nine emitters activated without observed DLT. Grade 3 procedure-related adverse events consisted of pre syncope (n = 3), fatigue (n = 1), wound infection (n = 2), and pain at time of device connection (n = 7). BBB opening endpoint was met with 90% of emitters showing BBB disruption on MRI after sonication. In the 12 patients who received carboplatin just prior to sonication, the progression-free survival was 3.1 months, the 1-year overall survival rate was 58% and median overall survival was 14.0 months from surgery.
Collapse
Affiliation(s)
- Alexandre Carpentier
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurochirurgie, Paris, France.
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Henry Dufour
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neuro-Oncologie, Marseille, France
| | - Olivier Chinot
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neuro-Oncologie, Marseille, France
| | - Bertrand Mathon
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurochirurgie, Paris, France
| | - François Ducray
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Service de Neuro-Oncologie, Hospices Civils de Lyon, Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Cancer Cell Plasticity Department, Lyon, France
| | - Jacques Guyotat
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Service de Neuro-Oncologie, Hospices Civils de Lyon, Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Cancer Cell Plasticity Department, Lyon, France
| | | | | | - John de Groot
- Departments of Neurology and Neurosurgery, University of California, San Francisco, CA, USA
| | - Jeffrey S Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Benjamin P Liu
- Departments of Radiology and Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuro-Oncologie, Paris, France
| |
Collapse
|
21
|
Guler A, Hamurcu Z, Ulutabanca H, Cınar V, Nurdinov N, Erdem S, Ozpolat B. Flavopiridol Suppresses Cell Proliferation and Migration and Induces Apoptotic Cell Death by Inhibiting Oncogenic FOXM1 Signaling in IDH Wild-Type and IDH-Mutant GBM Cells. Mol Neurobiol 2024; 61:1061-1079. [PMID: 37676393 DOI: 10.1007/s12035-023-03609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
Glioblastoma multiforme (GBM) remains one of the most challenging solid cancers to treat due to its highly aggressive and drug-resistant nature. Flavopiridol is synthetic flavone that was recently approved by the FDA for the treatment of acute myeloid leukemia. Flavopiridol exhibits antiproliferative activity in several solid cancer cells and currently evaluated in clinical trials in several solid and hematological cancers. In this study, we investigated the molecular mechanisms underlying antiproliferative effects of flavopiridol in GBM cell lines with wild-type and mutant encoding isocitrate dehydrogenase 1 (IDH1). We found that flavopiridol inhibits proliferation, colony formation, and migration and induces apoptosis in IDH1 wild-type and IDH-mutant cells through inhibition of FOXM1 oncogenic signaling. Furthermore, flavopiridol treatment also inhibits of NF-KB, mediators unfolded protein response (UPR), including, GRP78, PERK and IRE1α, and DNA repair enzyme PARP, which have been shown to be potential therapeutic targets by downregulating FOXM1 in GBM cells. Our findings suggest for the first time that flavopiridol suppresses proliferation, survival, and migration and induces apoptosis in IDH1 wild-type and IDH1-mutant GBM cells by targeting FOXM1 oncogenic signaling which also regulates NF-KB, PARP, and UPR response in GBM cells. Flavopiridol may be a potential novel therapeutic strategy in the treatment of patients IDH1 wild-type and IDH1-mutant GBM.
Collapse
Affiliation(s)
- Ahsen Guler
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.
| | - Halil Ulutabanca
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Department of Neurosurgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Venhar Cınar
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Nursultan Nurdinov
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Faculties of Medicine and Dentistry, Ahmet Yesevi University, Turkestan, Kazakhstan
| | - Serife Erdem
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Methodist Neil Cancer Center, Houston, TX, USA.
| |
Collapse
|
22
|
Georgescu MM. Translation into Clinical Practice of the G1-G7 Molecular Subgroup Classification of Glioblastoma: Comprehensive Demographic and Molecular Pathway Profiling. Cancers (Basel) 2024; 16:361. [PMID: 38254850 PMCID: PMC10814912 DOI: 10.3390/cancers16020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma is the most frequent and malignant primary neoplasm of the central nervous system. In a recent breakthrough study on a prospective Discovery cohort, I proposed the first all-inclusive molecular classification of glioblastoma into seven subgroups, G1-G7, based on MAPK pathway activation. New data from a WHO-grade-4 diffuse glioma prospective Validation cohort offers, in this study, an integrated demographic-molecular analysis of a 213-patient Combined cohort. Despite cohort differences in the median age and molecular subgroup distribution, all the prospectively-acquired cases from the Validation cohort mapped into one of the G1-G7 subgroups defined in the Discovery cohort. A younger age of onset, higher tumor mutation burden and expanded G1/EGFR-mutant and G3/NF1 glioblastoma subgroups characterized the glioblastomas from African American/Black relative to Caucasian/White patients. The three largest molecular subgroups were G1/EGFR, G3/NF1 and G7/Other. The fourth largest subgroup, G6/Multi-RTK, was detailed by describing a novel gene fusion ST7-MET, rare PTPRZ1-MET, LMNA-NTRK1 and GOPC-ROS1 fusions and their overexpression mechanisms in glioblastoma. The correlations between the MAPK pathway G1-G7 subgroups and the PI3-kinase/PTEN, TERT, cell cycle G1 phase and p53 pathways defined characteristic subgroup pathway profiles amenable to personalized targeted therapy. This analysis validated the first all-inclusive molecular classification of glioblastoma, showed significant demographic and molecular differences between subgroups, and provided the first ethnic molecular comparison of glioblastoma.
Collapse
|
23
|
Shikalov A, Koman I, Kogan NM. Targeted Glioma Therapy-Clinical Trials and Future Directions. Pharmaceutics 2024; 16:100. [PMID: 38258110 PMCID: PMC10820492 DOI: 10.3390/pharmaceutics16010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of glioma, with a median survival of 14.6 months post-diagnosis. Understanding the molecular profile of such tumors allowed the development of specific targeted therapies toward GBM, with a major role attributed to tyrosine kinase receptor inhibitors and immune checkpoint inhibitors. Targeted therapeutics are drugs that work by specific binding to GBM-specific or overexpressed markers on the tumor cellular surface and therefore contain a recognition moiety linked to a cytotoxic agent, which produces an antiproliferative effect. In this review, we have summarized the available information on the targeted therapeutics used in clinical trials of GBM and summarized current obstacles and advances in targeted therapy concerning specific targets present in GBM tumor cells, outlined efficacy endpoints for major classes of investigational drugs, and discussed promising strategies towards an increase in drug efficacy in GBM.
Collapse
Affiliation(s)
| | | | - Natalya M. Kogan
- Department of Molecular Biology, Institute of Personalized and Translational Medicine, Ariel University, Ariel 40700, Israel; (A.S.); (I.K.)
| |
Collapse
|
24
|
Rahban M, Joushi S, Bashiri H, Saso L, Sheibani V. Characterization of prevalent tyrosine kinase inhibitors and their challenges in glioblastoma treatment. Front Chem 2024; 11:1325214. [PMID: 38264122 PMCID: PMC10804459 DOI: 10.3389/fchem.2023.1325214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant primary tumor in the central nervous system. Despite extensive efforts in radiotherapy, chemotherapy, and neurosurgery, there remains an inadequate level of improvement in treatment outcomes. The development of large-scale genomic and proteomic analysis suggests that GBMs are characterized by transcriptional heterogeneity, which is responsible for therapy resistance. Hence, knowledge about the genetic and epigenetic heterogeneity of GBM is crucial for developing effective treatments for this aggressive form of brain cancer. Tyrosine kinases (TKs) can act as signal transducers, regulate important cellular processes like differentiation, proliferation, apoptosis and metabolism. Therefore, TK inhibitors (TKIs) have been developed to specifically target these kinases. TKIs are categorized into allosteric and non-allosteric inhibitors. Irreversible inhibitors form covalent bonds, which can lead to longer-lasting effects. However, this can also increase the risk of off-target effects and toxicity. The development of TKIs as therapeutics through computer-aided drug design (CADD) and bioinformatic techniques enhance the potential to improve patients' survival rates. Therefore, the continued exploration of TKIs as drug targets is expected to lead to even more effective and specific therapeutics in the future.
Collapse
Affiliation(s)
- Mahdie Rahban
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Physiology Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, Rome, Italy
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
25
|
Bhutada I, Khambati F, Cheng SY, Tiek DM, Duckett D, Lawrence H, Vogelbaum MA, Mo Q, Chellappan SP, Padmanabhan J. CDK7 and CDK9 inhibition interferes with transcription, translation, and stemness, and induces cytotoxicity in GBM irrespective of temozolomide sensitivity. Neuro Oncol 2024; 26:70-84. [PMID: 37551745 PMCID: PMC10768977 DOI: 10.1093/neuonc/noad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is refractory to current treatment modalities while side effects of treatments result in neurotoxicity and cognitive impairment. Here we test the hypothesis that inhibiting CDK7 or CDK9 would effectively combat GBM with reduced neurotoxicity. METHODS We examined the effect of a CDK7 inhibitor, THZ1, and multiple CDK9 inhibitors (SNS032, AZD4573, NVP2, and JSH150) on GBM cell lines, patient-derived temozolomide (TMZ)-resistant and responsive primary tumor cells and glioma stem cells (GSCs). Biochemical changes were assessed by western blotting, immunofluorescence, multispectral imaging, and RT-PCR. In vivo, efficacy was assessed in orthotopic and subcutaneous xenograft models. RESULTS CDK7 and CDK9 inhibitors suppressed the viability of TMZ-responsive and resistant GBM cells and GSCs at low nanomolar concentrations, with limited cytotoxic effects in vivo. The inhibitors abrogated RNA Pol II and p70S6K phosphorylation and nascent protein synthesis. Furthermore, the self-renewal of GSCs was significantly reduced with a corresponding reduction in Sox2 and Sox9 levels. Analysis of TCGA data showed increased expression of CDK7, CDK9, SOX2, SOX9, and RPS6KB1 in GBM; supporting this, multispectral imaging of a TMA revealed increased levels of CDK9, Sox2, Sox9, phospho-S6, and phospho-p70S6K in GBM compared to normal brains. RNA-Seq results suggested that inhibitors suppressed tumor-promoting genes while inducing tumor-suppressive genes. Furthermore, the studies conducted on subcutaneous and orthotopic GBM tumor xenograft models showed that administration of CDK9 inhibitors markedly suppressed tumor growth in vivo. CONCLUSIONS Our results suggest that CDK7 and CDK9 targeted therapies may be effective against TMZ-sensitive and resistant GBM.
Collapse
Affiliation(s)
- Isha Bhutada
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Fatema Khambati
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shi-Yuan Cheng
- The Ken and Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Deanna M Tiek
- The Ken and Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Derek Duckett
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Harshani Lawrence
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology and Neuro-Oncology Program, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jaya Padmanabhan
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
26
|
Georgescu MM. Adult glioblastoma with Lynch syndrome-associated mismatch repair deficiency forms a distinct high-risk molecular subgroup. FREE NEUROPATHOLOGY 2024; 5:32. [PMID: 39835141 PMCID: PMC11745196 DOI: 10.17879/freeneuropathology-2024-5892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/17/2024] [Indexed: 01/22/2025]
Abstract
Glioblastoma is the most frequent and malignant primary brain tumor. Although the survival is generally dismal for glioblastoma patients, risk stratification and the identification of high-risk subgroups is important for prompt and aggressive management. The G1-G7 molecular subgroup classification based on the MAPK pathway activation has offered for the first time a non-redundant, all-inclusive classification of adult glioblastoma. Five patients from the large, 218-patient, prospective cohort showed germline mutations in mismatch repair (MMR) genes (Lynch syndrome) and a significantly worse median survival of 3.25 months post-surgery than those from the G1/EGFR and G3/NF1 major subgroups, or from the rest of the cohort adjusted for age. These rare tumors were assigned to a new subgroup, G3/MMR, a G3/NF1 subgroup spin-off, as they generally show genomic alterations leading to RAS activation, such as NF1 and PTPN11 mutations. An integrated clinical, histologic and molecular analysis of the G3/MMR tumors showed distinct characteristics as compared to other glioblastomas, including those with iatrogenic high tumor mutation burden (TMB), warranting a separate subgroup. Prior history of cancer, midline location or multifocality, presence of multinucleated giant cells (MGCs), positive p53 and MMR immunohistochemistry, and specific molecular characteristics, including high TMB, MSH2/MSH6 alterations, biallelic TP53 Arg mutations and co-occurring PIK3CA p.R88Q and PTEN alterations, alert to this high-risk G3/MMR subgroup. The MGCs and p53 immunohistochemistry analysis in G1-G7 subgroups showed that one in 7 tumors with these characteristics is a G3/MMR glioblastoma. The FDA-approved first-line therapy for many advanced solid tumors consists of nivolumab-ipilimumab immune checkpoint inhibitors. One G3/MMR patient received this regimen and survived much longer than the rest, setting a proof-of-principle example for the treatment of these very aggressive G3/MMR glioblastomas.
Collapse
|
27
|
Nabian N, Ghalehtaki R, Zeinalizadeh M, Balaña C, Jablonska PA. State of the neoadjuvant therapy for glioblastoma multiforme-Where do we stand? Neurooncol Adv 2024; 6:vdae028. [PMID: 38560349 PMCID: PMC10981465 DOI: 10.1093/noajnl/vdae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. Despite several investigations in this field, maximal safe resection followed by chemoradiotherapy and adjuvant temozolomide with or without tumor-treating fields remains the standard of care with poor survival outcomes. Many endeavors have failed to make a dramatic change in the outcomes of GBM patients. This study aimed to review the available strategies for newly diagnosed GBM in the neoadjuvant setting, which have been mainly neglected in contrast to other solid tumors.
Collapse
Affiliation(s)
- Naeim Nabian
- Radiation Oncology Research Center, Cancer Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiation Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ghalehtaki
- Radiation Oncology Research Center, Cancer Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiation Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Zeinalizadeh
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Carmen Balaña
- B.ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, Badalona, Spain
| | | |
Collapse
|
28
|
Molina-Peña R, Ferreira NH, Roy C, Roncali L, Najberg M, Avril S, Zarur M, Bourgeois W, Ferreirós A, Lucchi C, Cavallieri F, Hindré F, Tosi G, Biagini G, Valzania F, Berger F, Abal M, Rousseau A, Boury F, Alvarez-Lorenzo C, Garcion E. Implantable SDF-1α-loaded silk fibroin hyaluronic acid aerogel sponges as an instructive component of the glioblastoma ecosystem: Between chemoattraction and tumor shaping into resection cavities. Acta Biomater 2024; 173:261-282. [PMID: 37866725 DOI: 10.1016/j.actbio.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
In view of inevitable recurrences despite resection, glioblastoma (GB) is still an unmet clinical need. Dealing with the stromal-cell derived factor 1-alpha (SDF-1α)/CXCR4 axis as a hallmark of infiltrative GB tumors and with the resection cavity situation, the present study described the effects and relevance of a new engineered micro-nanostructured SF-HA-Hep aerogel sponges, made of silk fibroin (SF), hyaluronic acid (HA) and heparin (Hep) and loaded with SDF-1α, to interfere with the GB ecosystem and residual GB cells, attracting and confining them in a controlled area before elimination. 70 µm-pore sponges were designed as an implantable scaffold to trap GB cells. They presented shape memory and fit brain cavities. Histological results after implantation in brain immunocompetent Fischer rats revealed that SF-HA-Hep sponges are well tolerated for more than 3 months while moderately and reversibly colonized by immuno-inflammatory cells. The use of human U87MG GB cells overexpressing the CXCR4 receptor (U87MG-CXCR4+) and responding to SDF-1α allowed demonstrating directional GB cell attraction and colonization of the device in vitro and in vivo in orthotopic resection cavities in Nude rats. Not modifying global survival, aerogel sponge implantation strongly shaped U87MG-CXCR4+ tumors in cavities in contrast to random infiltrative growth in controls. Overall, those results support the interest of SF-HA-Hep sponges as modifiers of the GB ecosystem dynamics acting as "cell meeting rooms" and biocompatible niches whose properties deserve to be considered toward the development of new clinical procedures. STATEMENT OF SIGNIFICANCE: Brain tumor glioblastoma (GB) is one of the worst unmet clinical needs. To prevent the relapse in the resection cavity situation, new implantable biopolymer aerogel sponges loaded with a chemoattractant molecule were designed and preclinically tested as a prototype targeting the interaction between the initial tumor location and its attraction by the peritumoral environment. While not modifying global survival, biocompatible SDF1-loaded hyaluronic acid and silk fibroin sponges induce directional GB cell attraction and colonization in vitro and in rats in vivo. Interestingly, they strongly shaped GB tumors in contrast to random infiltrative growth in controls. These results provide original findings on application of exogenous engineered niches that shape tumors and serve as cell meeting rooms for further clinical developments.
Collapse
Affiliation(s)
- Rodolfo Molina-Peña
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | | | - Charlotte Roy
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Loris Roncali
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Mathie Najberg
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Sylvie Avril
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Mariana Zarur
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, ID Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - William Bourgeois
- Inserm UMR1205, Brain Tech Lab, Grenoble Alpes University Hospital (CHUGA), Grenoble, 38000, France
| | - Alba Ferreirós
- NASASBIOTECH S.L., Cantón Grande nº 9, 15003, A Coruña, Spain
| | - Chiara Lucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - François Hindré
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Giovani Tosi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - François Berger
- Inserm UMR1205, Brain Tech Lab, Grenoble Alpes University Hospital (CHUGA), Grenoble, 38000, France
| | - Miguel Abal
- NASASBIOTECH S.L., Cantón Grande nº 9, 15003, A Coruña, Spain
| | - Audrey Rousseau
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Frank Boury
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, ID Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Emmanuel Garcion
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
29
|
Jeon HM, Shin YJ, Lee J, Chang N, Woo DH, Lee WJ, Nguyen D, Kang W, Cho HJ, Yang H, Lee JK, Sa JK, Lee Y, Kim DG, Purow BW, Yoon Y, Nam DH, Lee J. The semaphorin 3A/neuropilin-1 pathway promotes clonogenic growth of glioblastoma via activation of TGF-β signaling. JCI Insight 2023; 8:e167049. [PMID: 37788099 PMCID: PMC10721275 DOI: 10.1172/jci.insight.167049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/25/2023] [Indexed: 10/05/2023] Open
Abstract
Glioblastoma (GBM) is the most lethal brain cancer with a dismal prognosis. Stem-like GBM cells (GSCs) are a major driver of GBM propagation and recurrence; thus, understanding the molecular mechanisms that promote GSCs may lead to effective therapeutic approaches. Through in vitro clonogenic growth-based assays, we determined mitogenic activities of the ligand molecules that are implicated in neural development. We have identified that semaphorin 3A (Sema3A), originally known as an axon guidance molecule in the CNS, promotes clonogenic growth of GBM cells but not normal neural progenitor cells (NPCs). Mechanistically, Sema3A binds to its receptor neuropilin-1 (NRP1) and facilitates an interaction between NRP1 and TGF-β receptor 1 (TGF-βR1), which in turn leads to activation of canonical TGF-β signaling in both GSCs and NPCs. TGF-β signaling enhances self-renewal and survival of GBM tumors through induction of key stem cell factors, but it evokes cytostatic responses in NPCs. Blockage of the Sema3A/NRP1 axis via shRNA-mediated knockdown of Sema3A or NRP1 impeded clonogenic growth and TGF-β pathway activity in GSCs and inhibited tumor growth in vivo. Taken together, these findings suggest that the Sema3A/NRP1/TGF-βR1 signaling axis is a critical regulator of GSC propagation and a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Hye-Min Jeon
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yong Jae Shin
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea
| | - Jaehyun Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea
- Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, South Korea
| | - Nakho Chang
- Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, South Korea
| | - Dong-Hun Woo
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Won Jun Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Dayna Nguyen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Wonyoung Kang
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea
| | - Hee Jin Cho
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, South Korea
| | - Heekyoung Yang
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea
| | - Jin-Ku Lee
- Department of Biomedical Sciences and Department of Anatomy and Cell Biology, Seoul National University, College of Medicine, Seoul, South Korea
| | - Jason K. Sa
- Department of Biomedical Sciences, Korea University, College of Medicine, Seoul, South Korea
| | - Yeri Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea
| | - Dong Geon Kim
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea
| | - Benjamin W. Purow
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Yeup Yoon
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea
- Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, South Korea
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea
- Graduate School of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, South Korea
| | - Jeongwu Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
30
|
Martija AA, Krauß A, Bächle N, Doth L, Christians A, Krunic D, Schneider M, Helm D, Will R, Hartmann C, Herold-Mende C, von Deimling A, Pusch S. EMP3 sustains oncogenic EGFR/CDK2 signaling by restricting receptor degradation in glioblastoma. Acta Neuropathol Commun 2023; 11:177. [PMID: 37936247 PMCID: PMC10629159 DOI: 10.1186/s40478-023-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
Epithelial membrane protein 3 (EMP3) is an N-glycosylated tetraspanin with a putative trafficking function. It is highly expressed in isocitrate dehydrogenase-wild-type glioblastoma (IDH-wt GBM), and its high expression correlates with poor survival. However, the exact trafficking role of EMP3 and how it promotes oncogenic signaling in GBM remain unclear. Here, we show that EMP3 promotes EGFR/CDK2 signaling by regulating the trafficking and enhancing the stability of EGFR. BioID2-based proximity labeling revealed that EMP3 interacts with endocytic proteins involved in the vesicular transport of EGFR. EMP3 knockout (KO) enhances epidermal growth factor (EGF)-induced shuttling of EGFR into RAB7 + late endosomes, thereby promoting EGFR degradation. Increased EGFR degradation is rescued by the RAB7 negative regulator and novel EMP3 interactor TBC1D5. Phosphoproteomic and transcriptomic analyses further showed that EMP3 KO converges into the inhibition of the cyclin-dependent kinase CDK2 and the repression of EGFR-dependent and cell cycle transcriptional programs. Phenotypically, EMP3 KO cells exhibit reduced proliferation rates, blunted mitogenic response to EGF, and increased sensitivity to the pan-kinase inhibitor staurosporine and the EGFR inhibitor osimertinib. Furthermore, EGFR-dependent patient-derived glioblastoma stem cells display a transcriptomic signature consistent with reduced CDK2 activity, as well as increased susceptibility to CDK2 inhibition upon EMP3 knockdown. Lastly, using TCGA data, we showed that GBM tumors with high EMP3 expression have increased total and phosphorylated EGFR levels. Collectively, our findings demonstrate a novel EMP3-dependent mechanism by which EGFR/CDK2 activity is sustained in GBM. Consequently, EMP3's stabilizing effect provides an additional layer of tumor cell resistance against targeted kinase inhibition.
Collapse
Affiliation(s)
- Antoni Andreu Martija
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alexandra Krauß
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Natalie Bächle
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Laura Doth
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Arne Christians
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
- Canopy Biosciences, Bruker Nano Group, Hannover, Germany
| | - Damir Krunic
- Light Microscopy Facility, DKFZ, Heidelberg, Germany
| | | | - Dominic Helm
- Proteomics Core Facility, DKFZ, Heidelberg, Germany
| | - Rainer Will
- Cellular Tools Core Facility, DKFZ, Heidelberg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Andreas von Deimling
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Pusch
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
31
|
Ge M, Zhu Y, Wei M, Piao H, He M. Improving the efficacy of anti-EGFR drugs in GBM: Where we are going? Biochim Biophys Acta Rev Cancer 2023; 1878:188996. [PMID: 37805108 DOI: 10.1016/j.bbcan.2023.188996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
The therapies targeting mutations of driver genes in cancer have advanced into clinical trials for a variety of tumors. In glioblastoma (GBM), epidermal growth factor receptor (EGFR) is the most commonly mutated oncogene, and targeting EGFR has been widely investigated as a promising direction. However, the results of EGFR pathway inhibitors have not been satisfactory. Limited blood-brain barrier (BBB) permeability, drug resistance, and pathway compensation mechanisms contribute to the failure of anti-EGFR therapies. This review summarizes recent research advances in EGFR-targeted therapy for GBM and provides insight into the reasons for the unsatisfactory results of EGFR-targeted therapy. By combining the results of preclinical studies with those of clinical trials, we discuss that improved drug penetration across the BBB, the use of multi-target combinations, and the development of peptidomimetic drugs under the premise of precision medicine may be promising strategies to overcome drug resistance in GBM.
Collapse
Affiliation(s)
- Manxi Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Yan Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, China.
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| |
Collapse
|
32
|
Dumitru CA, Schröder H, Schäfer FTA, Aust JF, Kreße N, Siebert CLR, Stein KP, Haghikia A, Wilkens L, Mawrin C, Sandalcioglu IE. Progesterone Receptor Membrane Component 1 (PGRMC1) Modulates Tumour Progression, the Immune Microenvironment and the Response to Therapy in Glioblastoma. Cells 2023; 12:2498. [PMID: 37887342 PMCID: PMC10604944 DOI: 10.3390/cells12202498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1) is a tumour-promoting factor in several types of cancer but its role in brain tumours is poorly characterized thus far. Our study aimed to determine the effect of PGRMC1 on glioblastoma (GBM) pathophysiology using two independent cohorts of IDH wild-type GBM patients and stable knockdown GBM models. We found that high levels of PGRMC1 significantly predicted poor overall survival in both cohorts of GBM patients. PGRMC1 promoted the proliferation, anchorage-independent growth, and invasion of GBM cells. We identified Integrin beta-1 (ITGB1) and TCF 1/7 as potential members of the PGRMC1 pathway in vitro. The levels of ITGB1 and PGRMC1 also correlated in neoplastic tissues from GBM patients. High expression of PGRMC1 rendered GBM cells less susceptible to the standard GBM chemotherapeutic agent temozolomide but more susceptible to the ferroptosis inducer erastin. Finally, PGRMC1 enhanced Interleukin-8 production in GBM cells and promoted the recruitment of neutrophils. The expression of PGRMC1 significantly correlated with the numbers of tumour-infiltrating neutrophils also in tissues from GBM patients. In conclusion, PGRMC1 enhances tumour-related inflammation and promotes the progression of GBM. However, PGRMC1 might be a promising target for novel therapeutic strategies using ferroptosis inducers in this type of cancer.
Collapse
Affiliation(s)
| | - Hannah Schröder
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | | | - Jan Friedrich Aust
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Nina Kreße
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | | | - Klaus-Peter Stein
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Aiden Haghikia
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Ludwig Wilkens
- Department of Pathology, Nordstadt Hospital Hannover, 30167 Hannover, Germany
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | | |
Collapse
|
33
|
Galicka A, Szoka Ł, Radziejewska I, Marcinkiewicz C. Effect of Dimeric Disintegrins Isolated from Vipera lebetina obtusa Venom on Glioblastoma Cellular Responses. Cancers (Basel) 2023; 15:4805. [PMID: 37835499 PMCID: PMC10572073 DOI: 10.3390/cancers15194805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Integrins play a fundamental role in the migration and invasiveness of glioblastoma (GBM) cells, making them suitable targets for innovative cancer therapy. The aim of this study was to evaluate the effect of the RGD homodimeric disintegrin VLO4, isolated from Vipera lebetina obtusa venom, on the adhesion, spreading, migration, and survival of LBC3, LN18, and LN229 cell lines. This disintegrin, as a potent antagonist for α5β1 integrin, showed pro-adhesive properties for these cell lines, the highest for LN229 and the lowest for LBC3. Glioblastoma cells displayed significant differences in the spreading on the immobilized VLO4 and the natural α5β1 integrin ligand, fibronectin. Solubilized VLO4 showed different cytotoxicity and pro-apoptotic properties among tested cell lines, with the highest against LN18 and none against LN229. Moreover, VLO4 revealed an inhibitory effect on the migration of LBC3 and LN18 cell lines, in contrast to LN229 cells, which were not sensitive to this disintegrin. However, LN229 migration was impaired by VLO5, a disintegrin antagonistic to integrin α9β1, used in combination with VLO4. A possible mechanism of action of VLO4 may be related to the downregulation of α5β1 integrin subunit expression, as revealed by Western blot. VLO4 also inhibited cell proliferation and induced caspase-dependent apoptosis in LBC3 and LN18 cell lines. These results indicate that targeting α5β1 integrin by related VLO4 compounds may be useful in the development of integrin-targeted therapy for glioblastoma.
Collapse
Affiliation(s)
- Anna Galicka
- Department of Medical Chemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| | - Łukasz Szoka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| | - Cezary Marcinkiewicz
- Department of Bioengineering, Temple University CoE, Philadelphia, PA 19406, USA
| |
Collapse
|
34
|
Rabah N, Ait Mohand FE, Kravchenko-Balasha N. Understanding Glioblastoma Signaling, Heterogeneity, Invasiveness, and Drug Delivery Barriers. Int J Mol Sci 2023; 24:14256. [PMID: 37762559 PMCID: PMC10532387 DOI: 10.3390/ijms241814256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The most prevalent and aggressive type of brain cancer, namely, glioblastoma (GBM), is characterized by intra- and inter-tumor heterogeneity and strong spreading capacity, which makes treatment ineffective. A true therapeutic answer is still in its infancy despite various studies that have made significant progress toward understanding the mechanisms behind GBM recurrence and its resistance. The primary causes of GBM recurrence are attributed to the heterogeneity and diffusive nature; therefore, monitoring the tumor's heterogeneity and spreading may offer a set of therapeutic targets that could improve the clinical management of GBM and prevent tumor relapse. Additionally, the blood-brain barrier (BBB)-related poor drug delivery that prevents effective drug concentrations within the tumor is discussed. With a primary emphasis on signaling heterogeneity, tumor infiltration, and computational modeling of GBM, this review covers typical therapeutic difficulties and factors contributing to drug resistance development and discusses potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.R.); (F.-E.A.M.)
| |
Collapse
|
35
|
Zheng Y, Ma X, Feng S, Zhu H, Chen X, Yu X, Shu K, Zhang S. Dendritic cell vaccine of gliomas: challenges from bench to bed. Front Immunol 2023; 14:1259562. [PMID: 37781367 PMCID: PMC10536174 DOI: 10.3389/fimmu.2023.1259562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Gliomas account for the majority of brain malignant tumors. As the most malignant subtype of glioma, glioblastoma (GBM) is barely effectively treated by traditional therapies (surgery combined with radiochemotherapy), resulting in poor prognosis. Meanwhile, due to its "cold tumor" phenotype, GBM fails to respond to multiple immunotherapies. As its capacity to prime T cell response, dendritic cells (DCs) are essential to anti-tumor immunity. In recent years, as a therapeutic method, dendritic cell vaccine (DCV) has been immensely developed. However, there have long been obstacles that limit the use of DCV yet to be tackled. As is shown in the following review, the role of DCs in anti-tumor immunity and the inhibitory effects of tumor microenvironment (TME) on DCs are described, the previous clinical trials of DCV in the treatment of GBM are summarized, and the challenges and possible development directions of DCV are analyzed.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Ma
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shouchang Feng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Tamas C, Tamas F, Kovecsi A, Serban G, Boeriu C, Balasa A. The Role of Ketone Bodies in Treatment Individualization of Glioblastoma Patients. Brain Sci 2023; 13:1307. [PMID: 37759908 PMCID: PMC10526163 DOI: 10.3390/brainsci13091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma is the most common and aggressive primary brain tumor in adults. According to the 2021 WHO CNS, glioblastoma is assigned to the IDH wild-type classification, fulfilling the specific characteristic histopathology. We have conducted a prospective observational study to identify the glucose levels, ketone bodies, and the glucose-ketone index in three groups of subjects: two tumoral groups of patients with histopathological confirmation of glioblastoma (9 male patients, 7 female patients, mean age 55.6 years old) or grade 4 astrocytoma (4 male patients, 2 female patients, mean age 48.1 years old) and a control group (13 male patients, 9 female patients, mean age 53.9 years old) consisting of subjects with no personal pathological history. There were statistically significant differences between the mean values of glycemia (p value = 0.0003), ketones (p value = 0.0061), and glucose-ketone index (p value = 0.008) between the groups of patients. Mortality at 3 months in glioblastoma patients was 0% if the ketone levels were below 0.2 mM and 100% if ketones were over 0.5 mM. Patients with grade 4 astrocytoma and the control subjects all presented with ketone values of less than 0.2 mM and 0.0% mortality. In conclusion, highlighting new biomarkers which are more feasible to determine such as ketones or glucose-ketone index represents an essential step toward personalized medicine and survival prolongation in patients suffering from glioblastoma and grade 4 astrocytoma.
Collapse
Affiliation(s)
- Corina Tamas
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (C.T.); (G.S.)
- Neurosurgery Department, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Flaviu Tamas
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (C.T.); (G.S.)
- Neurosurgery Department, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Attila Kovecsi
- Department of Morphopathology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Morphopathology, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
| | - Georgiana Serban
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania; (C.T.); (G.S.)
- Department of Anesthesiology and Intensive Care, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
| | - Cristian Boeriu
- Department of Emergency Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Targu Mures, Romania;
- Department of Emergency Medicine, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
| | - Adrian Balasa
- Neurosurgery Department, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
37
|
Denisova OV, Merisaari J, Huhtaniemi R, Qiao X, Yetukuri L, Jumppanen M, Kaur A, Pääkkönen M, von Schantz‐Fant С, Ohlmeyer M, Wennerberg K, Kauko O, Koch R, Aittokallio T, Taipale M, Westermarck J. PP2A-based triple-strike therapy overcomes mitochondrial apoptosis resistance in brain cancer cells. Mol Oncol 2023; 17:1803-1820. [PMID: 37458534 PMCID: PMC10483611 DOI: 10.1002/1878-0261.13488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/08/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023] Open
Abstract
Mitochondrial glycolysis and hyperactivity of the phosphatidylinositol 3-kinase-protein kinase B (AKT) pathway are hallmarks of malignant brain tumors. However, kinase inhibitors targeting AKT (AKTi) or the glycolysis master regulator pyruvate dehydrogenase kinase (PDKi) have failed to provide clinical benefits for brain tumor patients. Here, we demonstrate that heterogeneous glioblastoma (GB) and medulloblastoma (MB) cell lines display only cytostatic responses to combined AKT and PDK targeting. Biochemically, the combined AKT and PDK inhibition resulted in the shutdown of both target pathways and priming to mitochondrial apoptosis but failed to induce apoptosis. In contrast, all tested brain tumor cell models were sensitive to a triplet therapy, in which AKT and PDK inhibition was combined with the pharmacological reactivation of protein phosphatase 2A (PP2A) by NZ-8-061 (also known as DT-061), DBK-1154, and DBK-1160. We also provide proof-of-principle evidence for in vivo efficacy in the intracranial GB and MB models by the brain-penetrant triplet therapy (AKTi + PDKi + PP2A reactivator). Mechanistically, PP2A reactivation converted the cytostatic AKTi + PDKi response to cytotoxic apoptosis, through PP2A-elicited shutdown of compensatory mitochondrial oxidative phosphorylation and by increased proton leakage. These results encourage the development of triple-strike strategies targeting mitochondrial metabolism to overcome therapy tolerance in brain tumors.
Collapse
Affiliation(s)
- Oxana V. Denisova
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
| | - Joni Merisaari
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
- Institute of BiomedicineUniversity of TurkuFinland
| | - Riikka Huhtaniemi
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
| | - Xi Qiao
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
| | - Laxman Yetukuri
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
- Institute for Molecular Medicine Finland (FIMM), HiLIFEUniversity of HelsinkiFinland
- Centre for Biostatistics and Epidemiology (OCBE)University of OsloNorway
| | - Mikael Jumppanen
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
| | - Amanpreet Kaur
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
| | - Mirva Pääkkönen
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
| | | | - Michael Ohlmeyer
- Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Atux Iskay LLCPlainsboroNJUSA
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), HiLIFEUniversity of HelsinkiFinland
- Biotech Research & Innovation CentreUniversity of CopenhagenDenmark
| | - Otto Kauko
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
| | | | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFEUniversity of HelsinkiFinland
- Centre for Biostatistics and Epidemiology (OCBE)University of OsloNorway
- Institute for Cancer ResearchOslo University HospitalNorway
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoCanada
| | - Jukka Westermarck
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityFinland
- Institute of BiomedicineUniversity of TurkuFinland
| |
Collapse
|
38
|
Coluccia M. Cyclooxygenase and Cancer: Fundamental Molecular Investigations. Int J Mol Sci 2023; 24:12342. [PMID: 37569718 PMCID: PMC10418830 DOI: 10.3390/ijms241512342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The involvement of prostaglandins in cancer was first observed in human esophageal carcinoma cells, whose invasive and metastatic potential in nude mice was found to be related to PGE2 and PGF2a production [...].
Collapse
Affiliation(s)
- Mauro Coluccia
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
39
|
Muzyka L, Goff NK, Choudhary N, Koltz MT. Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies. Int J Mol Sci 2023; 24:10456. [PMID: 37445633 DOI: 10.3390/ijms241310456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Gliomas are the most common brain tumor in adults, and molecularly targeted therapies to treat gliomas are becoming a frequent topic of investigation. The current state of molecular targeted therapy research for adult-type diffuse gliomas has yet to be characterized, particularly following the 2021 WHO guideline changes for classifying gliomas using molecular subtypes. This systematic review sought to characterize the current state of molecular target therapy research for adult-type diffuse glioma to better inform scientific progress and guide next steps in this field of study. A systematic review was conducted in accordance with PRISMA guidelines. Studies meeting inclusion criteria were queried for study design, subject (patients, human cell lines, mice, etc.), type of tumor studied, molecular target, respective molecular pathway, and details pertaining to the molecular targeted therapy-namely the modality, dose, and duration of treatment. A total of 350 studies met the inclusion criteria. A total of 52 of these were clinical studies, 190 were laboratory studies investigating existing molecular therapies, and 108 were laboratory studies investigating new molecular targets. Further, a total of 119 ongoing clinical trials are also underway, per a detailed query on clinicaltrials.gov. GBM was the predominant tumor studied in both ongoing and published clinical studies as well as in laboratory analyses. A few studies mentioned IDH-mutant astrocytomas or oligodendrogliomas. The most common molecular targets in published clinical studies and clinical trials were protein kinase pathways, followed by microenvironmental targets, immunotherapy, and cell cycle/apoptosis pathways. The most common molecular targets in laboratory studies were also protein kinase pathways; however, cell cycle/apoptosis pathways were the next most frequent target, followed by microenvironmental targets, then immunotherapy pathways, with the wnt/β-catenin pathway arising in the cohort of novel targets. In this systematic review, we examined the current evidence on molecular targeted therapy for adult-type diffuse glioma and discussed its implications for clinical practice and future research. Ultimately, published research falls broadly into three categories-clinical studies, laboratory testing of existing therapies, and laboratory identification of novel targets-and heavily centers on GBM rather than IDH-mutant astrocytoma or oligodendroglioma. Ongoing clinical trials are numerous in this area of research as well and follow a similar pattern in tumor type and targeted pathways as published clinical studies. The most common molecular targets in all study types were protein kinase pathways. Microenvironmental targets were more numerous in clinical studies, whereas cell cycle/apoptosis were more numerous in laboratory studies. Immunotherapy pathways are on the rise in all study types, and the wnt/β-catenin pathway is increasingly identified as a novel target.
Collapse
Affiliation(s)
- Logan Muzyka
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nicolas K Goff
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nikita Choudhary
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Michael T Koltz
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| |
Collapse
|
40
|
Yoon WS, Chang JH, Kim JH, Kim YJ, Jung TY, Yoo H, Kim SH, Ko YC, Nam DH, Kim TM, Kim SH, Park SH, Lee YS, Yim HW, Hong YK, Yang SH. Efficacy and safety of metformin plus low-dose temozolomide in patients with recurrent or refractory glioblastoma: a randomized, prospective, multicenter, double-blind, controlled, phase 2 trial (KNOG-1501 study). Discov Oncol 2023; 14:90. [PMID: 37278858 DOI: 10.1007/s12672-023-00678-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
PURPOSE Glioblastoma (GBM) has a poor prognosis after standard treatment. Recently, metformin has been shown to have an antitumor effect on glioma cells. We performed the first randomized prospective phase II clinical trial to investigate the clinical efficacy and safety of metformin in patients with recurrent or refractory GBM treated with low-dose temozolomide. METHODS Included patients were randomly assigned to a control group [placebo plus low-dose temozolomide (50 mg/m2, daily)] or an experimental group [metformin (1000 mg, 1500 mg, and 2000 mg per day during the 1st, 2nd, and 3rd week until disease progression, respectively) plus low-dose temozolomide]. The primary endpoint was progression-free survival (PFS). Secondary endpoints were overall survival (OS), disease control rate, overall response rate, health-related quality of life, and safety. RESULTS Among the 92 patients screened, 81 were randomly assigned to the control group (43 patients) or the experimental group (38 patients). Although the control group showed a longer median PFS, the difference between the two groups was not statistically significant (2.66 versus 2.3 months, p = 0.679). The median OS was 17.22 months (95% CI 12.19-21.68 months) in the experimental group and 7.69 months (95% CI 5.16-22.67 months) in the control group, showing no significant difference by the log-rank test (HR: 0.78; 95% CI 0.39-1.58; p = 0.473). The overall response rate and disease control rate were 9.3% and 46.5% in the control group and 5.3% and 47.4% in the experimental group, respectively. CONCLUSIONS Although the metformin plus temozolomide regimen was well tolerated, it did not confer a clinical benefit in patients with recurrent or refractory GBM. Trial registration NCT03243851, registered August 4, 2017.
Collapse
Affiliation(s)
- Wan-Soo Yoon
- Department of Neurosurgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Heon Yoo
- Department of Neuro-Oncology Clinic, Center for Specific Organs Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Se-Hyuk Kim
- Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Young-Cho Ko
- Department of Neurosurgery, Konkuk University Medical Center, Seoul, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Hae Park
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Youn Soo Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyeon Woo Yim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong-Kil Hong
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, The Hallym University Medical Center, 22, Gwanpyeong-ro 170 beon-gil, Dong-gu, Anyang-si, Gyeongggi-do, 14068, Korea.
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbudaero, Paldal-gu, Suwon, Seoul, 16247, Korea.
| |
Collapse
|
41
|
Singh H. Role of Molecular Targeted Therapeutic Drugs in Treatment of Glioblastoma: A Review Article. Glob Med Genet 2023; 10:42-47. [PMID: 37077370 PMCID: PMC10110362 DOI: 10.1055/s-0043-57028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Glioblastoma is remarkably periodic primary brain tumor, characterizing an eminently heterogeneous pattern of neoplasms that are utmost destructive and threatening cancers. An enhanced and upgraded knowledge of the various molecular pathways that cause malignant changes in glioblastoma has resulted in advancement of numerous biomarkers and the interpretation of various agents that pointedly target tumor cells and microenvironment. In this review, literature or information on various targeted therapy for glioblastoma is discussed. English language articles were scrutinized in plentiful directory or databases like PubMed, ScienceDirect, Web of Sciences, Google Scholar, and Scopus. The important keywords used for searching databases are "Glioblastoma," "Targeted therapy in glioblastoma," "Therapeutic drugs in glioblastoma," and "Molecular targets in glioblastoma."
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| |
Collapse
|
42
|
Yashin KS, Yuzhakova DV, Sachkova DA, Kukhnina LS, Kharitonova TM, Zolotova AS, Medyanik IA, Shirmanova MV. Personalized Medicine in Brain Gliomas: Targeted Therapy, Patient-Derived Tumor Models (Review). Sovrem Tekhnologii Med 2023; 15:61-71. [PMID: 38435477 PMCID: PMC10904359 DOI: 10.17691/stm2023.15.3.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 03/05/2024] Open
Abstract
Gliomas are the most common type of primary malignant brain tumors. The choice of treatments for these tumors was quite limited for many years, and therapy results generally remain still unsatisfactory. Recently, a significant breakthrough in the treatment of many forms of cancer occurred when personalized targeted therapies were introduced which inhibit tumor growth by affecting a specific molecular target. Another trend gaining popularity in oncology is the creation of patient-derived tumor models which can be used for drug screening to select the optimal therapy regimen. Molecular and genetic mechanisms of brain gliomas growth are considered, consisting of individual components which could potentially be exposed to targeted drugs. The results of the literature review show a higher efficacy of the personalized approach to the treatment of individual patients compared to the use of standard therapies. However, many unresolved issues remain in the area of predicting the effectiveness of a particular drug therapy regimen. The main hopes in solving this issue are set on the use of patient-derived tumor models, which can be used in one-stage testing of a wide range of antitumor drugs.
Collapse
Affiliation(s)
- K S Yashin
- Neurosurgeon, Department of Neurosurgery, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Assistant, Department of Traumatology and Neurosurgery named after M.V. Kolokoltsev; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Oncologist, Polyclinic Department; Nizhny Novgorod Regional Oncologic Dispensary, 11/1 Delovaya St., Nizhny Novgorod, 603126, Russia
| | - D V Yuzhakova
- Researcher, Laboratory of Genomics of Adaptive Antitumor Immunity, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D A Sachkova
- Master Student, Department of Biophysics; National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia Laboratory Assistant, Laboratory of Fluorescent Bioimaging, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - L S Kukhnina
- Student, Faculty of Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - T M Kharitonova
- Student, Faculty of Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A S Zolotova
- Resident, Department of Neurosurgery, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - I A Medyanik
- Neurosurgeon, Department Neurosurgery, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Professor, Department of Traumatology and Neurosurgery named after M.V. Kolokoltsev; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Oncologist, Polyclinic Department; Nizhny Novgorod Regional Oncologic Dispensary, 11/1 Delovaya St., Nizhny Novgorod, 603126, Russia
| | - M V Shirmanova
- Deputy Director for Science, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
43
|
Bernhard C, Reita D, Martin S, Entz-Werle N, Dontenwill M. Glioblastoma Metabolism: Insights and Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24119137. [PMID: 37298093 DOI: 10.3390/ijms24119137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Tumor metabolism is emerging as a potential target for cancer therapies. This new approach holds particular promise for the treatment of glioblastoma, a highly lethal brain tumor that is resistant to conventional treatments, for which improving therapeutic strategies is a major challenge. The presence of glioma stem cells is a critical factor in therapy resistance, thus making it essential to eliminate these cells for the long-term survival of cancer patients. Recent advancements in our understanding of cancer metabolism have shown that glioblastoma metabolism is highly heterogeneous, and that cancer stem cells exhibit specific metabolic traits that support their unique functionality. The objective of this review is to examine the metabolic changes in glioblastoma and investigate the role of specific metabolic processes in tumorigenesis, as well as associated therapeutic approaches, with a particular focus on glioma stem cell populations.
Collapse
Affiliation(s)
- Chloé Bernhard
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| | - Damien Reita
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
- Laboratory of Biochemistry and Molecular Biology, Department of Cancer Molecular Genetics, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Sophie Martin
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| | - Natacha Entz-Werle
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France
| | - Monique Dontenwill
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| |
Collapse
|
44
|
Targeted nano-delivery of chemotherapy via intranasal route suppresses in vivo glioblastoma growth and prolongs survival in the intracranial mouse model. Drug Deliv Transl Res 2023; 13:608-626. [PMID: 36245060 DOI: 10.1007/s13346-022-01220-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 12/30/2022]
Abstract
Nanotechnology-based drug delivery platforms have shown great potential in overcoming the limitations of conventional therapy for glioblastoma (GBM). However, permeation across the blood-brain barrier (BBB), physiological complexity of the brain, and glioma targeting strategies cannot entirely meet the challenging requirements of distinctive therapeutic delivery stages. The objective of this research is to fabricate lipid nanoparticles (LNPs) for the co-delivery of paclitaxel (PTX) and miltefosine (HePc) a proapoptotic agent decorated with transferrin (Tf-PTX-LNPs) and investigate its anti-glioma activity both in vitro and in vivo orthotopic NOD/SCID GBM mouse model. The present study demonstrates the anti-glioma effect of the dual drug combination of PTX and proapoptotic HePc lipid-based transferrin receptor (TfR) targeted alternative delivery (direct nose to brain transportation) of the nanoparticulate system (Tf-PTX-LNPs, 364 ± 5 nm, -43 ± 9 mV) to overcome the O6-methylguanine-DNA methyltransferase induce drug-resistant for improving the effectiveness of GBM therapy. The resulting nasally targeted LNPs present good biocompatibility, stability, high BBB transcytosis through selective TfR-mediated uptake by tumor cells, and effective tumor penetration in the brain of GBM induced mice. We observed markedly enhanced anti-proliferative efficacy of the targeted LNPs in U87MG cells compared to free drug. Nasal targeted LNPs had shown significantly improved brain concentration (Cmax fivefold and AUC0-24 4.9 fold) with early tmax (0.5 h) than the free drug. In vivo intracranial GBM-bearing targeted LNPs treated mice exhibited significantly prolonged survival with improved anti-tumor efficacy accompanied by reduced toxicity compared to systemic Taxol® and nasal free drug. These findings indicate that the nasal delivery of targeted synergistic nanocarrier holds great promise as a non-invasive adjuvant chemotherapy therapy of GBM.
Collapse
|
45
|
DiVita Dean B, Wildes T, Dean J, Yegorov O, Yang C, Shin D, Francis C, Figg JW, Sebastian M, Font LF, Jin D, Reid A, Moore G, Fernandez B, Wummer B, Kuizon C, Mitchell D, Flores CT. Immunotherapy reverses glioma-driven dysfunction of immune system homeostasis. J Immunother Cancer 2023; 11:e004805. [PMID: 36750252 PMCID: PMC9906384 DOI: 10.1136/jitc-2022-004805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Glioma-induced immune dysregulation of the hematopoietic system has been described in a limited number of studies. In this study, our group further demonstrates that gliomas interrupt the cellular differentiation programming and outcomes of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow. HSPCs from glioma-bearing mice are reprogrammed and driven towards expansion of myeloid lineage precursors and myeloid-derived suppressor cells (MDSCs) in secondary lymphoid organs. However, we found this expansion is reversed by immunotherapy. Adoptive cellular therapy (ACT) has been demonstrably efficacious in multiple preclinical models of central nervous system (CNS) malignancies, and here we describe how glioma-induced dysfunction is reversed by this immunotherapeutic platform. METHODS The impact of orthotopic KR158B-luc glioma on HSPCs was evaluated in an unbiased fashion using single cell RNAseq (scRNAseq) of lineage- cells and phenotypically using flow cytometry. Mature myeloid cell frequencies and function were also evaluated using flow cytometry. Finally, ACT containing total body irradiation, tumor RNA-pulsed dendritic cells, tumor-reactive T cells and HSPCs isolated from glioma-bearing or non-tumor-bearing mice were used to evaluate cell fate differentiation and survival. RESULTS Using scRNAseq, we observed an altered HSPC landscape in glioma-bearing versus non-tumor-bearing mice . In addition, an expansion of myeloid lineage subsets, including granulocyte macrophage precursors (GMPs) and MDSCs, were observed in glioma-bearing mice relative to non-tumor-bearing controls. Furthermore, MDSCs from glioma-bearing mice demonstrated increased suppressive capacity toward tumor-specific T cells as compared with MDSCs from non-tumor-bearing hosts. Interestingly, treatment with ACT overcame these suppressive properties. When HSPCs from glioma-bearing mice were transferred in the context of ACT, we observed significant survival benefit and long-term cures in orthotopic glioma models compared with mice treated with ACT using non-glioma-bearing HSPCs.
Collapse
Affiliation(s)
- Bayli DiVita Dean
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Tyler Wildes
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Joseph Dean
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, USA
| | - Oleg Yegorov
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Changlin Yang
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - David Shin
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Connor Francis
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - John W Figg
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Mathew Sebastian
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Laura Falceto Font
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Dan Jin
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Alexandra Reid
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Ginger Moore
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Brandon Fernandez
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Brandon Wummer
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Carmelle Kuizon
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Duane Mitchell
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Catherine T Flores
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
46
|
Sabu A, Liu TI, Ng SS, Doong RA, Huang YF, Chiu HC. Nanomedicines Targeting Glioma Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:158-181. [PMID: 35544684 DOI: 10.1021/acsami.2c03538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM), classified as a grade IV glioma, is a rapidly growing, aggressive, and most commonly occurring tumor of the central nervous system. Despite the therapeutic advances, it carries an ominous prognosis, with a median survival of 14.6 months after diagnosis. Accumulating evidence suggests that cancer stem cells in GBM, termed glioma stem cells (GSCs), play a crucial role in tumor propagation, treatment resistance, and tumor recurrence. GSCs, possessing the capacity for self-renewal and multilineage differentiation, are responsible for tumor growth and heterogeneity, leading to primary obstacles to current cancer therapy. In this respect, increasing efforts have been devoted to the development of anti-GSC strategies based on targeting GSC surface markers, blockage of essential signaling pathways of GSCs, and manipulating the tumor microenvironment (GSC niches). In this review, we will discuss the research knowledge regarding GSC-based therapy and the underlying mechanisms for the treatment of GBM. Given the rapid progression in nanotechnology, innovative nanomedicines developed for GSC targeting will also be highlighted from the perspective of rationale, advantages, and limitations. The goal of this review is to provide broader understanding and key considerations toward the future direction of GSC-based nanotheranostics to fight against GBM.
Collapse
Affiliation(s)
- Arjun Sabu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Te-I Liu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Siew Suan Ng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
47
|
Sharp PS, Stylianou M, Arellano LM, Neves JC, Gravagnuolo AM, Dodd A, Barr K, Lozano N, Kisby T, Kostarelos K. Graphene Oxide Nanoscale Platform Enhances the Anti-Cancer Properties of Bortezomib in Glioblastoma Models. Adv Healthc Mater 2023; 12:e2201968. [PMID: 36300643 PMCID: PMC11468189 DOI: 10.1002/adhm.202201968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/03/2022] [Indexed: 01/26/2023]
Abstract
Graphene-based 2D nanomaterials possess unique physicochemical characteristics which can be utilized in various biomedical applications, including the transport and presentation of chemotherapeutic agents. In glioblastoma multiforme (GBM), intratumorally administered thin graphene oxide (GO) nanosheets demonstrate a widespread distribution throughout the tumor volume without impact on tumor growth, nor spread into normal brain tissue. Such intratumoral localization and distribution can offer multiple opportunities for treatment and modulation of the GBM microenvironment. Here, the kinetics of GO nanosheet distribution in orthotopic GBM mouse models is described and a novel nano-chemotherapeutic approach utilizing thin GO sheets as platforms to non-covalently complex a proteasome inhibitor, bortezomib (BTZ), is rationally designed. Through the characterization of the GO:BTZ complexes, a high loading capacity of the small molecule on the GO surface with sustained BTZ biological activity in vitro is demonstrated. In vivo, a single low-volume intratumoral administration of GO:BTZ complex shows an enhanced cytotoxic effect compared to free drug in two orthotopic GBM mouse models. This study provides evidence of the potential that thin and small GO sheets hold as flat nanoscale platforms for GBM treatment by increasing the bioavailable drug concentration locally, leading to an enhanced therapeutic effect.
Collapse
Affiliation(s)
- Paul S. Sharp
- Nanomedicine LabFaculty of Biology, Medicine & HealthNational Graphene InstituteUniversity of ManchesterAV Hill BuildingManchesterM13 9PTUK
- Present address:
Medicines Discovery CatapultAlderley Park, MeresideMacclesfieldSK10 4TGUK
| | - Maria Stylianou
- Nanomedicine LabFaculty of Biology, Medicine & HealthNational Graphene InstituteUniversity of ManchesterAV Hill BuildingManchesterM13 9PTUK
| | - Luis M. Arellano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)Campus UAB, BellaterraBarcelona08193Spain
| | - Juliana C. Neves
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)Campus UAB, BellaterraBarcelona08193Spain
| | - Alfredo M. Gravagnuolo
- Nanomedicine LabFaculty of Biology, Medicine & HealthNational Graphene InstituteUniversity of ManchesterAV Hill BuildingManchesterM13 9PTUK
| | - Abbie Dodd
- Nanomedicine LabFaculty of Biology, Medicine & HealthNational Graphene InstituteUniversity of ManchesterAV Hill BuildingManchesterM13 9PTUK
| | - Katharine Barr
- Nanomedicine LabFaculty of Biology, Medicine & HealthNational Graphene InstituteUniversity of ManchesterAV Hill BuildingManchesterM13 9PTUK
| | - Neus Lozano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)Campus UAB, BellaterraBarcelona08193Spain
| | - Thomas Kisby
- Nanomedicine LabFaculty of Biology, Medicine & HealthNational Graphene InstituteUniversity of ManchesterAV Hill BuildingManchesterM13 9PTUK
| | - Kostas Kostarelos
- Nanomedicine LabFaculty of Biology, Medicine & HealthNational Graphene InstituteUniversity of ManchesterAV Hill BuildingManchesterM13 9PTUK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)Campus UAB, BellaterraBarcelona08193Spain
| |
Collapse
|
48
|
El Atat O, Naser R, Abdelkhalek M, Habib RA, El Sibai M. Molecular targeted therapy: A new avenue in glioblastoma treatment. Oncol Lett 2022; 25:46. [PMID: 36644133 PMCID: PMC9811647 DOI: 10.3892/ol.2022.13632] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma, also referred to as glioblastoma multiforme (GBM), is grade IV astrocytoma characterized by being fast-growing and the most aggressive brain tumor. In adults, it is the most prevalent type of malignant brain tumor. Despite the advancements in both diagnosis tools and therapeutic treatments, GBM is still associated with poor survival rate without any statistically significant improvement in the past three decades. Patient's genome signature is one of the key factors causing the development of this tumor, in addition to previous radiation exposure and other environmental factors. Researchers have identified genomic and subsequent molecular alterations affecting core pathways that trigger the malignant phenotype of this tumor. Targeting intrinsically altered molecules and pathways is seen as a novel avenue in GBM treatment. The present review shed light on signaling pathways and intrinsically altered molecules implicated in GBM development. It discussed the main challenges impeding successful GBM treatment, such as the blood brain barrier and tumor microenvironment (TME), the plasticity and heterogeneity of both GBM and TME and the glioblastoma stem cells. The present review also presented current advancements in GBM molecular targeted therapy in clinical trials. Profound and comprehensive understanding of molecular participants opens doors for innovative, more targeted and personalized GBM therapeutic modalities.
Collapse
Affiliation(s)
- Oula El Atat
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Rayan Naser
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Maya Abdelkhalek
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Ralph Abi Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon,Correspondence to: Professor Mirvat El Sibai, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Koraytem Street, Beirut 1102 2801, Lebanon, E-mail:
| |
Collapse
|
49
|
BET protein inhibition sensitizes glioblastoma cells to temozolomide treatment by attenuating MGMT expression. Cell Death Dis 2022; 13:1037. [PMID: 36513631 PMCID: PMC9747918 DOI: 10.1038/s41419-022-05497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Bromodomain and extra-terminal tail (BET) proteins have been identified as potential epigenetic targets in cancer, including glioblastoma. These epigenetic modifiers link the histone code to gene transcription that can be disrupted with small molecule BET inhibitors (BETi). With the aim of developing rational combination treatments for glioblastoma, we analyzed BETi-induced differential gene expression in glioblastoma derived-spheres, and identified 6 distinct response patterns. To uncover emerging actionable vulnerabilities that can be targeted with a second drug, we extracted the 169 significantly disturbed DNA Damage Response genes and inspected their response pattern. The most prominent candidate with consistent downregulation, was the O-6-methylguanine-DNA methyltransferase (MGMT) gene, a known resistance factor for alkylating agent therapy in glioblastoma. BETi not only reduced MGMT expression in GBM cells, but also inhibited its induction, typically observed upon temozolomide treatment. To determine the potential clinical relevance, we evaluated the specificity of the effect on MGMT expression and MGMT mediated treatment resistance to temozolomide. BETi-mediated attenuation of MGMT expression was associated with reduction of BRD4- and Pol II-binding at the MGMT promoter. On the functional level, we demonstrated that ectopic expression of MGMT under an unrelated promoter was not affected by BETi, while under the same conditions, pharmacologic inhibition of MGMT restored the sensitivity to temozolomide, reflected in an increased level of γ-H2AX, a proxy for DNA double-strand breaks. Importantly, expression of MSH6 and MSH2, which are required for sensitivity to unrepaired O6-methylguanine-lesions, was only briefly affected by BETi. Taken together, the addition of BET-inhibitors to the current standard of care, comprising temozolomide treatment, may sensitize the 50% of patients whose glioblastoma exert an unmethylated MGMT promoter.
Collapse
|
50
|
Fabro F, Kannegieter NM, de Graaf EL, Queiroz K, Lamfers MLM, Ressa A, Leenstra S. Novel kinome profiling technology reveals drug treatment is patient and 2D/3D model dependent in glioblastoma. Front Oncol 2022; 12:1012236. [PMID: 36408180 PMCID: PMC9670801 DOI: 10.3389/fonc.2022.1012236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma is the deadliest brain cancer. One of the main reasons for poor outcome resides in therapy resistance, which adds additional challenges in finding an effective treatment. Small protein kinase inhibitors are molecules that have become widely studied for cancer treatments, including glioblastoma. However, none of these drugs have demonstrated a therapeutic activity or brought more benefit compared to the current standard procedure in clinical trials. Hence, understanding the reasons of the limited efficacy and drug resistance is valuable to develop more effective strategies toward the future. To gain novel insights into the method of action and drug resistance in glioblastoma, we established in parallel two patient-derived glioblastoma 2D and 3D organotypic multicellular spheroids models, and exposed them to a prolonged treatment of three weeks with temozolomide or either the two small protein kinase inhibitors enzastaurin and imatinib. We coupled the phenotypic evidence of cytotoxicity, proliferation, and migration to a novel kinase activity profiling platform (QuantaKinome™) that measured the activities of the intracellular network of kinases affected by the drug treatments. The results revealed a heterogeneous inter-patient phenotypic and molecular response to the different drugs. In general, small differences in kinase activation were observed, suggesting an intrinsic low influence of the drugs to the fundamental cellular processes like proliferation and migration. The pathway analysis indicated that many of the endogenously detected kinases were associated with the ErbB signaling pathway. We showed the intertumoral variability in drug responses, both in terms of efficacy and resistance, indicating the importance of pursuing a more personalized approach. In addition, we observed the influence derived from the application of 2D or 3D models in in vitro studies of kinases involved in the ErbB signaling pathway. We identified in one 3D sample a new resistance mechanism derived from imatinib treatment that results in a more invasive behavior. The present study applied a new approach to detect unique and specific drug effects associated with pathways in in vitro screening of compounds, to foster future drug development strategies for clinical research in glioblastoma.
Collapse
Affiliation(s)
- Federica Fabro
- Department of Neurosurgery, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | | | | | | | - Martine L. M. Lamfers
- Department of Neurosurgery, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | | | - Sieger Leenstra
- Department of Neurosurgery, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
- *Correspondence: Sieger Leenstra,
| |
Collapse
|