1
|
Das B, Keithellakpam OS, Chanu TB, Pathaw N, Rai S, Singh OS, Nanjappan SK, Soibam A, Sharma N, Bhardwaj PK, Mukherjee PK. Metabolomic study of Polygonum posumbu Buch. Ham. Ex D. Don integrating with anti-diabetic potential - a mechanistic approach. Fitoterapia 2025; 182:106440. [PMID: 39955013 DOI: 10.1016/j.fitote.2025.106440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/27/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The present investigation aimed to evaluate the anti-diabetic effect of the well-known food plant Polygonum posumbu along with the mechanism of combining its in-vitro, in-vivo effects and UHPLC-QTOF-MS based phytochemical profiling linked with the network pharmacology. In-vitro anti-diabetic potential of the extract was determined by testing against α-amylase and α-glucosidase enzymes. The in-vivo anti-diabetic effect of the extract was investigated in STZ-induced diabetic mice. Tissue and blood samples were taken for the assessment of tissue antioxidant capacity, biochemical markers and HbAc1 level estimation. Pancreas was subjected to histopathology examination. The anti-diabetic mechanism was further explored using UHPLC-QTOF-MS based metabolomic analysis combined with network pharmacology. The in-vitro findings showed that the extract has more selectivity towards α-amylase as compared to α-glucosidase. Administration of extract found to stimulate glucose utilization in OGTT study. Extract treated group also showed significant reduction in blood glucose level on 14th day. HbA1c, AST/GOT, ALP, creatinine, and urea level were also normalized in extract treated group. This is further evident by histopathology observation of pancreatic islets cells morphology. Moreover UHPLC-QTOF-MS based metabolomic study combined with network pharmacology analysis identified EGFR, SRC, IGF1R, MET, MMP9, ESR1, KDR, MMP2, ESR2, and SMAD3 as key targets for showing anti-diabetic activity. The findings integrating the phytochemical and therapeutic potential through the in-vitro, in-vivo and network pharmacology analysis of P. posumbu extract against diabetes suggested that the herb could be a good source for further development of functional food for the management of diabetic complications.
Collapse
Affiliation(s)
- Bhaskar Das
- BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Department of Biotechnology, Government of India, Imphal, Manipur 795001, India
| | - Ojit Singh Keithellakpam
- BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Department of Biotechnology, Government of India, Imphal, Manipur 795001, India
| | - Tonjam Bidyasana Chanu
- BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Department of Biotechnology, Government of India, Imphal, Manipur 795001, India
| | - Neeta Pathaw
- BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Department of Biotechnology, Government of India, Imphal, Manipur 795001, India
| | - Shweta Rai
- BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Department of Biotechnology, Government of India, Imphal, Manipur 795001, India
| | - Oinam Shajan Singh
- BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Department of Biotechnology, Government of India, Imphal, Manipur 795001, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Ahongjao Soibam
- Traditional Healer, Leimaram Waroiching, Bishnupur, Manipur 795126, India
| | - Nanaocha Sharma
- BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Department of Biotechnology, Government of India, Imphal, Manipur 795001, India
| | - Pardeep Kumar Bhardwaj
- BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Department of Biotechnology, Government of India, Imphal, Manipur 795001, India
| | - Pulok Kumar Mukherjee
- BRIC-Institute of Bioresources and Sustainable Development (BRIC-IBSD), Department of Biotechnology, Government of India, Imphal, Manipur 795001, India; BRIC-IBSD, Meghalaya Center, Shillong, Meghalaya 793009, India.
| |
Collapse
|
2
|
Huang X, Wang Y, Wan R, You Z, Huang L. Identification of lipid metabolism-related genes in dapagliflozin treated rats with diabetic cardiomyopathy by bioinformatics. Front Endocrinol (Lausanne) 2025; 16:1525831. [PMID: 40182633 PMCID: PMC11965135 DOI: 10.3389/fendo.2025.1525831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Background Diabetic cardiomyopathy (DCM) is a heart disease caused by the metabolic disorders of glucose and lipids associated with diabetes, leading to heart failure and death in diabetic patients. Dapagliflozin (DAPA) serves as a treatment for managing blood glucose levels in individuals with type 2 diabetes mellitus (DM). However, the specific mechanisms by which DAPA treats DCM are not yet fully understood. Methods Sprague-Dawley (SD) rats (n = 5/group) were randomly divided into control, model, and intervention groups. Lipid metabolism-related genes (LMRGs) were gotten from publicly available database. Differential expression analysis of model vs. control and intervention vs. model samples was performed to obtain differentially expressed genes (DEGs), and the result was recorded as DEGs-Model and DEGs-Intervention. The intersection of genes with opposing expression trends between DEGs-Model and DEGs-Intervention were considered as candidate genes. Subsequently, candidate genes and LMRGs were intersected to acquire hub genes, and the expression of hub genes was analyzed in each group of samples. Then, the mechanism of action of these hub genes were investigated through functional enrichment analysis, gene set enrichment analysis (GSEA), and predictive of m6A binding sites. Results Ultimately, 68 candidate genes and 590 LMRGs were intersected to derive 2 hub genes (Acsbg1 and Etnppl). Acsbg1 was significantly increase in model group compared with control group. RT-qPCR results confirmed Acsbg1 was obviously higher expression in model group, while Etnppl was significantly lower expression in model group compare to control groups and intervention group. While the expression of Etnppl was significantly increase in intervention group compared with model group. Functional enrichment analyses indicated that Acsbg1 and Etnppl were associated with fatty acid metabolism. The findings of GSEA indicated that Acsbg1 and Etnppl might affect the occurrence and progression of DCM through lysosome. And the Acsbg1 and Etnppl were located at UCAGG in the RNA secondary structure. Conclusion This study identified 2 hub genes (Acsbg1 and Etnppl) as potential new focal points for diagnosing and treating DCM.
Collapse
Affiliation(s)
- Xun Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yunhong Wang
- Department of Cardiology, Ningdu County People’s Hospital, Ganzhou, Jiangxi, China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhigang You
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lin Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
López-Cárdenas FG, Mateos R, Sánchez-Burgos JA, Zamora-Gasga VM, Blancas-Benítez FJ, González-Cordova AF, Sáyago-Ayerdi SG. In vitro gastrointestinal digestion of phlorotannins from Ulva lactuca: Nutritional value and implications in disease mechanisms through pharmacology network. Food Res Int 2025; 204:115928. [PMID: 39986775 DOI: 10.1016/j.foodres.2025.115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/24/2025]
Abstract
Ulva lactuca, a green marine macroalga, is known for its potential health benefits due to bioactive compounds such as phlorotannins (PhT). This study aimed to identify and characterize the PhT profile in Ulva lactuca, evaluate their bioaccessibility, and explore their potential therapeutic targets through pharmacological network analysis. The study identified twenty PhT, showing a bioaccessibility of 54 %. Pharmacological network analysis revealed 54 potential targets associated with various disease pathways, including cancer. The findings highlight the nutritional value of Ulva lactuca and suggest the therapeutic potential of its PhT, offering new insights for future research and health applications.
Collapse
Affiliation(s)
- Francia G López-Cárdenas
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic 63175 Nayarit, Mexico
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Calle José Antonio Novais 10, Madrid 28040, Spain
| | - Jorge A Sánchez-Burgos
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic 63175 Nayarit, Mexico
| | - Víctor M Zamora-Gasga
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic 63175 Nayarit, Mexico
| | - Francisco J Blancas-Benítez
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic 63175 Nayarit, Mexico
| | - Aaron F González-Cordova
- Laboratorio de Calidad, Autenticidad y Trazabilidad de Alimentos, Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, A. C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora 83304, Mexico
| | - Sonia G Sáyago-Ayerdi
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic 63175 Nayarit, Mexico.
| |
Collapse
|
4
|
Lu H, Zhang J, Wang Y. Identification of the Pharmacological Components and Its Targets of Sanghuang by Integration of Nontarget Metabolomics and Network Pharmacology Analysis. Biomed Chromatogr 2025; 39:e6066. [PMID: 39748251 DOI: 10.1002/bmc.6066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
The objective of this study is to comprehensively to identify the core pharmacological components and their respective targets of three medicinal fungi Sanghuangs including Sanghuangporus vaninii (SV), Sanghuangporus lonicericola (SL), and Inonotus hispidus (IH). Metabolomics analysis indicated that a total of 495 and 660 differential metabolites were obtained in mycelium and fermentation broth samples among three Sanghuangs, respectively. The network pharmacology analysis showed that 6-[1]-ladderane hexanol, R-nostrenol, candidone, ellagic acid, and quercetin were the overlapping active ingredients of three Sanghuang species for diabetes mellitus, immune system disease, and neoplasm. Certonardosterol A, dalamid, and ethylene brassylate are unique active ingredients in SV, and certonardosterol K, kaempferide, and esculetin are unique active ingredients in SL. Asbestinine, neoandrographolide, isosakuranetin, and daucosterin are unique active ingredients in IH. Accordingly, the common core targets of active ingredients of the three Sanghuangs were ESR1, PIK3CA, and LYN. PRKCA, EGFR, and STAT3 were the unique targets of SV, SL, and IH, respectively. The primary active components and their respective targets, in addition to the component-target interaction of Sanghuangs that have been identified in the present study, provide a foundation for future research on the prevention and treatment of disease using Sanghuangs.
Collapse
Affiliation(s)
- Hengqian Lu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Wuhu Dongyuan New Rural Co. Ltd., Wuhu, China
| | - Jintao Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Province Joint Construction Discipline key Laboratory of Nanobody Technology, Hefei, China
| |
Collapse
|
5
|
Yang B, Chi Q, Li X, Wang J. Prediction of traditional Chinese medicine for diabetes based on the multi-source ensemble method. Front Pharmacol 2025; 16:1454029. [PMID: 39950110 PMCID: PMC11822566 DOI: 10.3389/fphar.2025.1454029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/03/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Traditional Chinese medicine (TCM) prescriptions are generally formulated by experienced TCM researchers based on their expertise and data statistical methods. Methods In order to predict TCM formulas for diabetes more accurately, this paper proposes a novel multi-source ensemble prediction method that combines machine learning ensemble techniques and multi-source data. In this method, the multi-source data contain datasets based on the components and targets (DPP-4 and GLP-1). Gradient boosting decision tree (GBDT), flexible neural tree (FNT), and Light Gradient Boosting Machine (LightGBM) algorithms are trained using these two types of datasets, respectively. The compound dataset from the TCMSP database is then used as testing data to predict and screen the active ingredients. The frequencies of occurrences of medicinal herbs corresponding to these three algorithms are obtained, each containing an active ingredient list. Finally, the frequencies of occurrences of the medicinal herbs obtained from the three algorithms using the component and target datasets are integrated to select duplicate drugs as the candidate drugs for diabetes treatment. Results The identification results reveal that theproposed ensemble method has higher accuracy than GBDT, FNT, and LightGBM. The medicinal herbs predicted include Lycii fructus, Amygdalus communis vas, Chrysanthemi flos, Hippophae fructus, Mori folium, Croci stigma, Maydis stigma, Ephedrae herba, Cimicifugae rhizoma, licorice, and Epimedii herba, all of which have been proven effective in the treatment of diabetes. Discussions The results of network pharmacology show that myrrha can play a role in treating diabetes through multiple targets and pathways.
Collapse
Affiliation(s)
- Bin Yang
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, China
| | - Qingyun Chi
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, China
| | - Xiang Li
- Information Department, Qingdao Eighth People’s Hospital, Qingdao, China
| | - Jinglong Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, China
| |
Collapse
|
6
|
Kim M, Shin D. Effects of the Interaction Between Oxidative Balance Score and Polygenic Risk Scores on Incidence of Metabolic Syndrome in Middle-Aged Korean Adults. Antioxidants (Basel) 2024; 13:1556. [PMID: 39765884 PMCID: PMC11672919 DOI: 10.3390/antiox13121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/03/2025] Open
Abstract
Oxidative stress is implicated in insulin resistance, obesity, and metabolic syndromes (MetSs). However, the interplay between oxidative stress and genetic predisposition during the development of MetS remains unclear. In this study, we aimed to investigate the effects of the interaction between oxidative balance score (OBS) and polygenic risk score (PRS) on the incidence of MetS in middle-aged Korean adults. We analyzed data from 25,879 participants aged ≥40 years from the Health Examinees Cohort of the Korean Genome and Epidemiology Study. The OBS was calculated using 11 antioxidant and five pro-oxidant factors. A genome-wide association study and clumping analysis identified 16 independent single-nucleotide polymorphisms associated with MetS that were used to calculate individual PRSs. Multivariable Cox proportional hazard models adjusted for confounding variables were used to assess the impact of OBS and PRS on the incidence of MetS. During a mean follow-up period of 4.3 years, we recorded 3153 cases of MetS. In both men and women, the group with the lowest OBS and a high PRS had a 1.50-fold (hazard ratio [HR] 1.50, 95% confidence interval [CI] 1.07-2.11) and 1.89-fold (HR 1.89, 95% CI 1.40-2.56) higher incidence, respectively, of MetS compared to those with the highest OBS and a low PRS. Among women with a high PRS, the HRs decreased significantly across OBS quintiles 1 through 5 (p for trend = 0.009). These findings suggest that managing the oxidative balance may be particularly crucial for individuals with a high genetic risk for MetS.
Collapse
Affiliation(s)
| | - Dayeon Shin
- Department of Food and Nutrition, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea;
| |
Collapse
|
7
|
Lu J, Wang H, Chen X, Zhang K, Zhao X, Xiao Y, Yang F, Han M, Yuan W, Guo Y, Zhang Y. Exploration of potential antidiabetic and antioxidant components from the branches of Mitragyna diversifolia and possible mechanism. Biomed Pharmacother 2024; 180:117450. [PMID: 39312881 DOI: 10.1016/j.biopha.2024.117450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024] Open
Abstract
In this study, sixteen compounds were isolated from the branches of Mitragyna diversifolia, including twelve triterpenes (1-12), a phenolic compound (13), and three flavonoids (14-16). Among them, compounds 1-7, and 10-16 were reported for the first time from this plant. Compounds 7, 14, and 15 exhibited significant inhibitory activities against α-glucosidase, with IC50 values of 18.48 ± 2.74, 12.14 ± 1.58 and 35.77 ± 4.52 µM, respectively. Furthermore, the inhibitory kinetics of α-glucosidase revealed that all fractions, active compounds 7, 14, and 15 belong to the mix inhibition type. In molecular docking, the analysis showed that compounds 13, 14, 15, and 16 possessed superior binding capacities with α-glucosidase (-8.3, -9.6, -9.9, and -9.2 kcal/mol, respectively). The results of the glucose uptake experiment indicated that only compound 14 showed a significant promotion effect on the glucose uptake rate of 3T3-L1 adipocytes (P < 0.05). Meanwhile, compounds 13, 14, 15, and 16 possessed potent antioxidant abilities with DPPH, ABTS, and FRAP. In DNA and protein oxidative damage assays, compound 15 had a stronger effect than the positive control Vc. The network-based pharmacological analysis platform was used to predict the diabetes-related target proteins of active compounds 7, 13, 14, 15, and 16, and two candidate targets (ALB and PPARG) related to their therapeutic effects on diabetes were identified.
Collapse
Affiliation(s)
- Jing Lu
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanlei Wang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelin Chen
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Kun Zhang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Zhao
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Yunxue Xiao
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Fengxian Yang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Mei Han
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Wenyi Yuan
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuling Guo
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Yumei Zhang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Ruisch IH, Widomska J, De Witte W, Mota NR, Fanelli G, Van Gils V, Jansen WJ, Vos SJB, Fóthi A, Barta C, Berkel S, Alam KA, Martinez A, Haavik J, O'Leary A, Slattery D, Sullivan M, Glennon J, Buitelaar JK, Bralten J, Franke B, Poelmans G. Molecular landscape of the overlap between Alzheimer's disease and somatic insulin-related diseases. Alzheimers Res Ther 2024; 16:239. [PMID: 39465382 PMCID: PMC11514822 DOI: 10.1186/s13195-024-01609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial disease with both genetic and environmental factors contributing to its etiology. Previous evidence has implicated disturbed insulin signaling as a key mechanism that plays a role in both neurodegenerative diseases such as AD and comorbid somatic diseases such as diabetes mellitus type 2 (DM2). In this study, we analysed available genome-wide association studies (GWASs) of AD and somatic insulin-related diseases and conditions (SID), i.e., DM2, metabolic syndrome and obesity, to identify genes associated with both AD and SID that could increase our insights into their molecular underpinnings. We then performed functional enrichment analyses of these genes. Subsequently, using (additional) GWAS data, we conducted shared genetic etiology analyses between AD and SID, on the one hand, and blood and cerebrospinal fluid (CSF) metabolite levels on the other hand. Further, integrating all these analysis results with elaborate literature searches, we built a molecular landscape of the overlap between AD and SID. From the landscape, multiple functional themes emerged, including insulin signaling, estrogen signaling, synaptic transmission, lipid metabolism and tau signaling. We also found shared genetic etiologies between AD/SID and the blood/CSF levels of multiple metabolites, pointing towards "energy metabolism" as a key metabolic pathway that is affected in both AD and SID. Lastly, the landscape provided leads for putative novel drug targets for AD (including MARK4, TMEM219, FKBP5, NDUFS3 and IL34) that could be further developed into new AD treatments.
Collapse
Affiliation(s)
- I Hyun Ruisch
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nina R Mota
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Giuseppe Fanelli
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Veerle Van Gils
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Willemijn J Jansen
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Abel Fóthi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Csaba Barta
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Simone Berkel
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Kazi A Alam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Aet O'Leary
- Department of Psychiatry, University Hospital, Frankfurt, Germany
| | - David Slattery
- Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe-Universität, Frankfurt, Germany
| | - Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jeffrey Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Lv PP, Feng C, Ding GL, Yu DQ, Yan YS, Liu J, Lv M, Ying YY, Li JY, Chen XJ, Ye YH, Amanda K, Wu YT, Huang HF, Zhang D. The High Estradiol Environment after IVF Causes the Increased Risk of Glucose Metabolic Dysfunction in Offspring. J Clin Endocrinol Metab 2024:dgae671. [PMID: 39383320 DOI: 10.1210/clinem/dgae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/24/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
CONTEXT Assisted reproductive technology (ART) is associated with increased metabolic risks in offspring. The effect of high maternal estradiol (E2) levels during early pregnancy on the glucose metabolism of offspring remains unclear. OBJECTIVE To evaluate glucose metabolism in in vitro fertilization (IVF)-conceived children and assess whether high E2 exposure during early pregnancy is associated with metabolic alterations. DESIGN/SETTING/PARTICIPANTS This retrospective analysis included 500 singletons aged 3-10 years born after fresh embryo transfer (ET) (n=200), frozen ET (n=100), and natural conception (NC) (n=200) from a university hospital. METHODS Children underwent anthropometric measurements and examinations for fasting glucose, insulin, and lipid levels. A mouse model of high E2 exposure during early pregnancy was established to study glucose and insulin tolerance, and insulin secretion. RESULTS Compared with NC, children born after fresh ET showed higher fasting glucose/insulin levels, increased insulin resistance, and higher incidence of impaired fasting glucose, which might be associated with a higher maternal E2 levels. Frozen ET showed intermediate results. In mice, offspring exposed to high E2 levels during gestation exhibited impaired glucose/insulin tolerance and defects in insulin secretion. CONCLUSION High maternal E2 levels in early pregnancy are associated with altered glucose metabolism and increased metabolic risks in IVF-conceived children. Further studies are needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Ping-Ping Lv
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006, China
| | - Chun Feng
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006, China
| | - Guo-Lian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006, China
| | - Dan-Qin Yu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yi-Shang Yan
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Juan Liu
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Min Lv
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yan-Yun Ying
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jing-Yi Li
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xi-Jing Chen
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ying-Hui Ye
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Kallen Amanda
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - He-Feng Huang
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006, China
| | - Dan Zhang
- The Women's Hospital of Zhejiang University School of Medicine, Hangzhou 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang 310006, China
| |
Collapse
|
10
|
Liu X, Kuang Y, Bian C, Hu S, Xie Y, Zhao B, Jin Y. Exploring the mechanism of action of herbal compounding in the treatment of myasthenia gravis based on network pharmacology. Biotechnol Genet Eng Rev 2024; 40:1164-1179. [PMID: 36951554 DOI: 10.1080/02648725.2023.2193048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Myasthenia gravis is a major disease in the context of an ageing society, and the discovery of effective herbal compound and herbal active ingredients is a highly promising direction for the treatment of myasthenia gravis. In this study, we selected shujiao, dried ginger and ginseng from the compound ingredients through a network pathology approach. The three ingredients were used to obtain drug targets in Traditional Chinese Medicine Systems Pharmacology (TCMSP), HERB and BATMAN-TCM data and intersected with the disease targets of myasthenia gravis. The resulting regulatory network maps were then used to identify core genes through the String database, and finally the core genes were molecularly aligned with the corresponding active ingredients using Autodock vina software. The 'herbal-component-target' regulatory network of the Chinese herbal formulae was constructed, which is important for finding the potential molecular mechanism for the treatment of myasthenia gravis. It will provide a theoretical basis for the therapeutic and clinical research of myasthenia gravis.
Collapse
Affiliation(s)
- XiaoMing Liu
- Rehabilitation Department, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - YingYan Kuang
- Rehabilitation Department, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - CaiRu Bian
- Rehabilitation Department, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - ShaoWen Hu
- Rehabilitation Department, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - YuanFang Xie
- Rehabilitation Department, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - BeiBei Zhao
- Rehabilitation Department, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - YuanLin Jin
- Rehabilitation Department, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Brito Nunes C, Borges MC, Freathy RM, Lawlor DA, Qvigstad E, Evans DM, Moen GH. Understanding the Genetic Landscape of Gestational Diabetes: Insights into the Causes and Consequences of Elevated Glucose Levels in Pregnancy. Metabolites 2024; 14:508. [PMID: 39330515 PMCID: PMC11434570 DOI: 10.3390/metabo14090508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Objectives: During pregnancy, physiological changes in maternal circulating glucose levels and its metabolism are essential to meet maternal and fetal energy demands. Major changes in glucose metabolism occur throughout pregnancy and consist of higher insulin resistance and a compensatory increase in insulin secretion to maintain glucose homeostasis. For some women, this change is insufficient to maintain normoglycemia, leading to gestational diabetes mellitus (GDM), a condition characterized by maternal glucose intolerance and hyperglycaemia first diagnosed during the second or third trimester of pregnancy. GDM is diagnosed in approximately 14.0% of pregnancies globally, and it is often associated with short- and long-term adverse health outcomes in both mothers and offspring. Although recent studies have highlighted the role of genetic determinants in the development of GDM, research in this area is still lacking, hindering the development of prevention and treatment strategies. Methods: In this paper, we review recent advances in the understanding of genetic determinants of GDM and glycaemic traits during pregnancy. Results/Conclusions: Our review highlights the need for further collaborative efforts as well as larger and more diverse genotyped pregnancy cohorts to deepen our understanding of the genetic aetiology of GDM, address research gaps, and further improve diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Caroline Brito Nunes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Rachel M. Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4PY, UK;
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Elisabeth Qvigstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - David M. Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
12
|
Durrani IA, John P, Bhatti A, Khan JS. Network medicine based approach for identifying the type 2 diabetes, osteoarthritis and triple negative breast cancer interactome: Finding the hub of hub genes. Heliyon 2024; 10:e36650. [PMID: 39281650 PMCID: PMC11401126 DOI: 10.1016/j.heliyon.2024.e36650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
The increasing prevalence of multi-morbidities, particularly the incidence of breast cancer in diabetic/osteoarthritic patients emphasize on the need for exploring the underlying molecular mechanisms resulting in carcinogenesis. To address this, present study employed a systems biology approach to identify switch genes pivotal to the crosstalk between diseased states resulting in multi-morbid conditions. Hub genes previously reported for type 2 diabetes mellitus (T2DM), osteoarthritis (OA), and triple negative breast cancer (TNBC), were extracted from published literature and fed into an integrated bioinformatics analyses pipeline. Thirty-one hub genes common to all three diseases were identified. Functional enrichment analyses showed these were mainly enriched for immune and metabolism associated terms including advanced glycation end products (AGE) pathways, cancer pathways, particularly breast neoplasm, immune system signalling and adipose tissue. The T2DM-OA-TNBC interactome was subjected to protein-protein interaction network analyses to identify meta hub/clustered genes. These were prioritized and wired into a three disease signalling map presenting the enriched molecular crosstalk on T2DM-OA-TNBC axes to gain insight into the molecular mechanisms underlying disease-disease interactions. Deciphering the molecular bases for the intertwined metabolic and immune states may potentiate the discovery of biomarkers critical for identifying and targeting the immuno-metabolic origin of disease.
Collapse
Affiliation(s)
- Ilhaam Ayaz Durrani
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Peter John
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Attya Bhatti
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | | |
Collapse
|
13
|
Sobhy MH, Ismail A, Abdel-Hamid MS, Wagih M, Kamel M. 2-Methoxyestradiol ameliorates doxorubicin-induced cardiotoxicity by regulating the expression of GLUT4 and CPT-1B in female rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7129-7139. [PMID: 38652282 PMCID: PMC11422279 DOI: 10.1007/s00210-024-03073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
The clinical usage of doxorubicin (DOX) is hampered due to cardiomyopathy. Studies reveal that estrogen (E2) modulates DOX-induced cardiotoxicity. Yet, the exact mechanism is unclear. The objective of the current study is to evaluate the influence of E2 and more specifically its metabolite 2-methoxyestradiol (2ME) on cardiac remodeling and the reprogramming of cardiac metabolism in rats subjected to DOX cardiotoxicity. Seventy-two female rats were divided into groups. Cardiotoxicity was induced by administering DOX (2.5 mg/kg three times weekly for 2 weeks). In some groups, the effect of endogenous E2 was abolished by ovariectomy (OVX) or by using the estrogen receptor (ER) blocker Fulvestrant (FULV). The effect of administering exogenous E2 or 2ME in the OVX group was studied. Furthermore, the influence of entacapone (COMT inhibitor) on induced cardiotoxicity was investigated. The evaluated cardiac parameters included ECG, histopathology, cardiac-related enzymes (creatine kinase isoenzyme-MB (CK-MB) and lactate dehydrogenase (LDH)), and lipid profile markers (total cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL)). The expression levels of key metabolic enzymes (glucose transporter-4 (GLUT4) and carnitine palmitoyltransferase-1B (CPT-1B)) were assessed. Our results displayed that co-treatment of E2 and/or 2ME with DOX significantly reduced DOX-induced cardiomyopathy and enhanced the metabolism of the heart through the maintenance of GLUT4 and CPT-1B enzymes. On the other hand, co-treatment of DOX with OVX, entacapone, or FULV increased the toxic effect of DOX by further reducing these important metabolic enzymes. E2 and 2ME abrogate DOX-induced cardiomyopathy partly through modulation of GLUT 4 and CPT-1B enzymes.
Collapse
Affiliation(s)
- Mohamed H Sobhy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, Giza, Egypt
| | - Ahmed Ismail
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohammed S Abdel-Hamid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Mohamed Wagih
- Department of Pathology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa Kamel
- Department of Cancer Biology, Unit of Pharmacology and Experimental Therapeutics, National Cancer Institute, Cairo University, Cairo, Egypt.
| |
Collapse
|
14
|
Ahmad Hairi H, Ibrahim NI, Sadikan MZ, Jayusman PA, Shuid AN. Deciphering the role of classical oestrogen receptor in insulin resistance and type 2 diabetes mellitus: From molecular mechanism to clinical evidence. BIOIMPACTS : BI 2024; 15:30378. [PMID: 40256228 PMCID: PMC12008500 DOI: 10.34172/bi.30378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 04/22/2025]
Abstract
The biological actions of oestrogen are mediated by the oestrogen receptor α or β (ERα or ERβ), which are members of a broad nuclear receptor superfamily. Numerous in vivo and in vitro studies have demonstrated that loss of circulating oestrogen modulated by classical ERα and ERβ led to rapid changes in pancreatic β-cell and islet function, GLUT4 expression, insulin sensitivity and glucose tolerance, dysfunctional lipid homeostasis, oxidative stress, and inflammatory cascades. Remarkably, 17β-oestradiol (E2) can completely reverse these effects. This review evaluates the current understanding of the protective role of classical ER in critical pathways and molecular mechanisms associated with insulin resistance and type 2 diabetes mellitus (T2DM). It also examines the effectiveness of menopausal hormone therapy (MHT) in reducing the risk of developing T2DM in menopausal women. Clinical trials have shown the protective effects of MHT on glucose metabolism, which may be useful to treat T2DM in perimenopausal women. However, there are concerns about E2's potential side effects of obesity and hyperlipidaemia in menopausal women. Further studies are warranted to gain understanding and find other oestrogen alternatives for treatment of insulin resistance and T2DM in postmenopausal women.
Collapse
Affiliation(s)
- Haryati Ahmad Hairi
- Department of Biochemistry, Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, 75150 Melaka, Malaysia
| | - Nurul Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, 75150 Melaka, Malaysia
| | - Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi Mara (UITM), Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
15
|
Zhang MY, Zheng SQ. Network pharmacology and molecular dynamics study of the effect of the Astragalus-Coptis drug pair on diabetic kidney disease. World J Diabetes 2024; 15:1562-1588. [PMID: 39099827 PMCID: PMC11292324 DOI: 10.4239/wjd.v15.i7.1562] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the primary cause of end-stage renal disease. The Astragalus-Coptis drug pair is frequently employed in the management of DKD. However, the precise molecular mechanism underlying its therapeutic effect remains elusive. AIM To investigate the synergistic effects of multiple active ingredients in the Astragalus-Coptis drug pair on DKD through multiple targets and pathways. METHODS The ingredients of the Astragalus-Coptis drug pair were collected and screened using the TCMSP database and the SwissADME platform. The targets were predicted using the SwissTargetPrediction database, while the DKD differential gene expression analysis was obtained from the Gene Expression Omnibus database. DKD targets were acquired from the GeneCards, Online Mendelian Inheritance in Man database, and DisGeNET databases, with common targets identified through the Venny platform. The protein-protein interaction network and the "disease-active ingredient-target" network of the common targets were constructed utilizing the STRING database and Cytoscape software, followed by the analysis of the interaction relationships and further screening of key targets and core active ingredients. Gene Ontology (GO) function and Kyoto Ency-clopedia of Genes and Genomes (KEGG) pathway enrichments were performed using the DAVID database. The tissue and organ distributions of key targets were evaluated. PyMOL and AutoDock software validate the molecular docking between the core ingredients and key targets. Finally, molecular dynamics (MD) simulations were conducted to simulate the optimal complex formed by interactions between core ingredients and key target proteins. RESULTS A total of 27 active ingredients and 512 potential targets of the Astragalus-Coptis drug pair were identified. There were 273 common targets between DKD and the Astragalus-Coptis drug pair. Through protein-protein interaction network topology analysis, we identified 9 core active ingredients and 10 key targets. GO and KEGG pathway enrichment analyses revealed that Astragalus-Coptis drug pair treatment for DKD involves various biological processes, including protein phosphorylation, negative regulation of apoptosis, inflammatory response, and endoplasmic reticulum unfolded protein response. These pathways are mainly associated with the advanced glycation end products (AGE)-receptor for AGE products signaling pathway in diabetic complications, as well as the Lipid and atherosclerosis. Molecular docking and MD simulations demonstrated high affinity and stability between the core active ingredients and key targets. Notably, the quercetin-AKT serine/threonine kinase 1 (AKT1) and quercetin-tumor necrosis factor (TNF) protein complexes exhibited exceptional stability. CONCLUSION This study demonstrated that DKD treatment with the Astragalus-Coptis drug pair involves multiple ingredients, targets, and signaling pathways. We propose a novel approach for investigating the molecular mechanism underlying the therapeutic effects of the Astragalus-Coptis drug pair on DKD. Furthermore, we suggest that quercetin is the most potent active ingredient and specifically targets AKT1 and TNF, providing a theoretical foundation for further exploration of pharmacologically active ingredients and elucidating their molecular mechanisms in DKD treatment.
Collapse
Affiliation(s)
- Mo-Yan Zhang
- Liaoning University of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, Liaoning Province, China
| | - Shu-Qin Zheng
- Department of Endocrinology, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning Province, China
| |
Collapse
|
16
|
Szczepanska-Sadowska E, Czarzasta K, Bogacki-Rychlik W, Kowara M. The Interaction of Vasopressin with Hormones of the Hypothalamo-Pituitary-Adrenal Axis: The Significance for Therapeutic Strategies in Cardiovascular and Metabolic Diseases. Int J Mol Sci 2024; 25:7394. [PMID: 39000501 PMCID: PMC11242374 DOI: 10.3390/ijms25137394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
A large body of evidence indicates that vasopressin (AVP) and steroid hormones are frequently secreted together and closely cooperate in the regulation of blood pressure, metabolism, water-electrolyte balance, and behavior, thereby securing survival and the comfort of life. Vasopressin cooperates with hormones of the hypothalamo-pituitary-adrenal axis (HPA) at several levels through regulation of the release of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and multiple steroid hormones, as well as through interactions with steroids in the target organs. These interactions are facilitated by positive and negative feedback between specific components of the HPA. Altogether, AVP and the HPA cooperate closely as a coordinated functional AVP-HPA system. It has been shown that cooperation between AVP and steroid hormones may be affected by cellular stress combined with hypoxia, and by metabolic, cardiovascular, and respiratory disorders; neurogenic stress; and inflammation. Growing evidence indicates that central and peripheral interactions between AVP and steroid hormones are reprogrammed in cardiovascular and metabolic diseases and that these rearrangements exert either beneficial or harmful effects. The present review highlights specific mechanisms of the interactions between AVP and steroids at cellular and systemic levels and analyses the consequences of the inappropriate cooperation of various components of the AVP-HPA system for the pathogenesis of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | | | | |
Collapse
|
17
|
Mathyk BA, Tabetah M, Karim R, Zaksas V, Kim J, Anu RI, Muratani M, Tasoula A, Singh RS, Chen YK, Overbey E, Park J, Cope H, Fazelinia H, Povero D, Borg J, Klotz RV, Yu M, Young SL, Mason CE, Szewczyk N, St Clair RM, Karouia F, Beheshti A. Spaceflight induces changes in gene expression profiles linked to insulin and estrogen. Commun Biol 2024; 7:692. [PMID: 38862620 PMCID: PMC11166981 DOI: 10.1038/s42003-023-05213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 06/13/2024] Open
Abstract
Organismal adaptations to spaceflight have been characterized at the molecular level in model organisms, including Drosophila and C. elegans. Here, we extend molecular work to energy metabolism and sex hormone signaling in mice and humans. We found spaceflight induced changes in insulin and estrogen signaling in rodents and humans. Murine changes were most prominent in the liver, where we observed inhibition of insulin and estrogen receptor signaling with concomitant hepatic insulin resistance and steatosis. Based on the metabolic demand, metabolic pathways mediated by insulin and estrogen vary among muscles, specifically between the soleus and extensor digitorum longus. In humans, spaceflight induced changes in insulin and estrogen related genes and pathways. Pathway analysis demonstrated spaceflight induced changes in insulin resistance, estrogen signaling, stress response, and viral infection. These data strongly suggest the need for further research on the metabolic and reproductive endocrinologic effects of space travel, if we are to become a successful interplanetary species.
Collapse
Affiliation(s)
- Begum Aydogan Mathyk
- Department of Obstetrics and Gynecology, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| | - Marshall Tabetah
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Rashid Karim
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45220, USA
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Victoria Zaksas
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics and World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - R I Anu
- Department of Cancer Biology & Therapeutics, Precision Oncology and Multi-omics clinic, Genetic counseling clinic. Department of Clinical Biochemistry, MVR Cancer Centre and Research Institute, Calicut, India
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Alexia Tasoula
- Department of Life Science Engineering, FH Technikum, Vienna, Austria
| | | | - Yen-Kai Chen
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Eliah Overbey
- Department of Physiology and Biophysics and World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jiwoon Park
- Department of Physiology and Biophysics and World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Henry Cope
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Hossein Fazelinia
- Department of Biomedical and Health Informatics and Proteomics Core Facility, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Davide Povero
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, Msida, MSD2090, Malta
| | - Remi V Klotz
- Department of Stem Cell Biology & Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Min Yu
- Department of Stem Cell Biology & Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven L Young
- Division of Reproductive Endocrinology and Infertility, Duke School of Medicine, Durham, NC, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics and World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nathaniel Szewczyk
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Riley M St Clair
- Department of Life Sciences, Quest University, Squamish, BC, Canada
| | - Fathi Karouia
- Blue Marble Space Institute of Science, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Space Research Within Reach, San Francisco, CA, USA; Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
18
|
Ravi H, Das S, Devi Rajeswari V, Venkatraman G, Choudhury AA, Chakraborty S, Ramanathan G. Hormonal regulation in diabetes: Special emphasis on sex hormones and metabolic traits. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:257-291. [PMID: 39059988 DOI: 10.1016/bs.apcsb.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Diabetes constitutes a significant global public health challenge that is rapidly reaching epidemic proportions. Among the non-communicable diseases, the incidence of diabetes is rising at an alarming rate. The International Diabetes Federation has documented a 9.09% prevalence of diabetes among individuals aged between 20 and 79 years. The interplay of gonadal hormones and gender differences is critical in regulating insulin sensitivity and glucose tolerance, and this dynamic is particularly crucial because of the escalating incidence of diabetes. Variations in insulin sensitivity are observed across genders, levels of adiposity, and age groups. Both estrogen and testosterone are seen to influence glucose metabolism and insulin sensitivity. This chapter surveys the present knowledge of sex differences, sex hormones, and chromosomes on insulin imbalance and diabetes development. It further highlights the influence of metabolic traits in diabetes and changes in sex hormones during diabetic pregnancy. Notably, even stressful lifestyles have been acknowledged to induce hormonal imbalances. Furthermore, it discusses the potential of hormonal therapy to help stabilize sex hormones in diabetic individuals and focuses on the most recent research investigating the correlation between sex hormones and diabetes.
Collapse
Affiliation(s)
- Harini Ravi
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Soumik Das
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Abbas Alam Choudhury
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Shreya Chakraborty
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
19
|
Azmy Nabeh O, Amr A, Faoosa AM, Esmat E, Osama A, Khedr AS, Amin B, Saud AI, Elmorsy SA. Emerging Perspectives on the Impact of Diabetes Mellitus and Anti-Diabetic Drugs on Premenstrual Syndrome. A Narrative Review. Diabetes Ther 2024; 15:1279-1299. [PMID: 38668996 PMCID: PMC11096298 DOI: 10.1007/s13300-024-01585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetes mellitus (DM) and premenstrual syndrome (PMS) are global health challenges. Both disorders are often linked to a range of physical and psychological symptoms that significantly impact the quality of life of many women. Yet, the exact relation between DM and PMS is not clear, and the management of both conditions poses a considerable challenge. In this review, we aimed to investigate the interplay between DM, anti-diabetic drugs, and the different theories and symptoms of PMS. Female sex hormones are implicated in the pathophysiology of PMS and can also impair blood glucose control. In addition, patients with diabetes face a higher susceptibility to anxiety and depression disorders, with a significant number of patients experiencing symptoms such as fatigue and difficulty concentrating, which are reported in patients with PMS as well. Complications related to diabetic medications, such as hypoglycemia (with sulfonylurea) and fluid retention (with thiazolidinediones) may also mediate PMS-like symptoms. DM can, in addition, disturb the normal gut microbiota (GM), with a consequent loss of beneficial GM metabolites that guard against PMS, particularly the short-chain fatty acids and serotonin. Among the several available anti-diabetic drugs, those (1) with an anti-inflammatory potential, (2) that can preserve the beneficial GM, and (3) possessing a lower risk for hypoglycemia, might have a favorable outcome in PMS women. Yet, well-designed clinical trials are needed to investigate the anti-diabetic drug(s) of choice for patients with diabetes and PMS.
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Alaa Amr
- Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Eshraka Esmat
- Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alaa Osama
- Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Basma Amin
- Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alaa I Saud
- Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
20
|
Ma W, Long J, Dong L, Zhang J, Wang A, Zhang Y, Yan D. Uncovering the key pharmacodynamic material basis and possible molecular mechanism of Xiaoke formulation improve insulin resistant through a comprehensive investigation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117752. [PMID: 38216099 DOI: 10.1016/j.jep.2024.117752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoke formulation (XKF) has been utilized in clinical practice for decades in China as a treatment option for mild to moderate type 2 diabetes. However, there is still a need for systematic research to uncover the key pharmacodynamic material basis and mechanism of XKF. AIM OF THE STUDY Aim of to investigate the distribution and metabolism of XKF in normal and insulin resistant (IR) mice were different, and elucidate its key pharmacodynamic material basis and mechanism of action. MATERIALS AND METHODS Ultra performance liquid chromatography/time of flight mass spectrometry technology was employed to investigate the differences in XKF absorption, distribution, and metabolism between normal and IR mice across blood, liver, feces, and urine samples. Further, network pharmacology was used to predict target proteins and their associated signaling pathways. Then, molecular docking was utilized to validate the activity of key pharmacodynamic components and targets. Finally, IR HepG2 cells were used to detect the glucose consumption under the action of key pharmacodynamic material basis. In addition, the expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT) and phospho-protein kinase B (p-AKT) was determined using western blotting. RESULTS The study demonstrates significant distinctions in plasma and liver number and abundance of alkaloids, organic acids, flavonoids, iridoids and saponins between normal and IR mice when XKF was administered. Further analysis has shown that the representative components of XKF, including berberine, chlorogenic acid, calycosin, swertiamarin and astragaloside IV have significantly different metabolic pathways in plasma and liver. Prototypes and metabolites of these components were rarely detected in the urine and feces of mice. According to the network pharmacological analysis, these differential components are predicted to improve IR by targeting key factors such as SRC, JUN, HRAS, NOS3, FGF2, etc. Additionally, the signaling pathways involved in this process include PI3K-AKT pathway, GnRH signaling pathway, and T cell receptor signaling pathway. In addition, in vitro experiments indicate that berberine and its metabolites (berberine and demethyleneberine), chlorogenic acid and its metabolites (3-O-ferulic quinic acid and 5-O-ferulic quinic acid), calycosin and swertiamarin could improve IR in IR-HepG2 cells by elevating the expression of PI3K and AKT, leading to an increase in glucose consumption. CONCLUSION The key pharmacodynamic material basis of XKF, such as berberine and its metabolites (berberrubine and demethyleneberberine), chlorogenic acid and its metabolites (3-O-feruloylquinic acid and 5-O-feruloylquinic acid), calycosin and swertiamarin influence the glucose metabolism disorder of IR-HepG2 cells by regulating the PI3K/AKT signalling pathway, leading to an improvement in IR.
Collapse
Affiliation(s)
- Wenjuan Ma
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi, Liaoning, 110016, China
| | - Jianglan Long
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Linjie Dong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi, Liaoning, 110016, China
| | - Jian Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Aiting Wang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yu Zhang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
21
|
Garcia JPT, Tayo LL. Theoretical Studies of DNA Microarray Present Potential Molecular and Cellular Interconnectivity of Signaling Pathways in Immune System Dysregulation. Genes (Basel) 2024; 15:393. [PMID: 38674328 PMCID: PMC11049615 DOI: 10.3390/genes15040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Autoimmunity is defined as the inability to regulate immunological activities in the body, especially in response to external triggers, leading to the attack of the tissues and organs of the host. Outcomes include the onset of autoimmune diseases whose effects are primarily due to dysregulated immune responses. In past years, there have been cases that show an increased susceptibility to other autoimmune disorders in patients who are already experiencing the same type of disease. Research in this field has started analyzing the potential molecular and cellular causes of this interconnectedness, bearing in mind the possibility of advancing drugs and therapies for the treatment of autoimmunity. With that, this study aimed to determine the correlation of four autoimmune diseases, which are type 1 diabetes (T1D), psoriasis (PSR), systemic sclerosis (SSc), and systemic lupus erythematosus (SLE), by identifying highly preserved co-expressed genes among datasets using WGCNA. Functional annotation was then employed to characterize these sets of genes based on their systemic relationship as a whole to elucidate the biological processes, cellular components, and molecular functions of the pathways they are involved in. Lastly, drug repurposing analysis was performed to screen candidate drugs for repositioning that could regulate the abnormal expression of genes among the diseases. A total of thirteen modules were obtained from the analysis, the majority of which were associated with transcriptional, post-transcriptional, and post-translational modification processes. Also, the evaluation based on KEGG suggested the possible role of TH17 differentiation in the simultaneous onset of the four diseases. Furthermore, clomiphene was the top drug candidate for regulating overexpressed hub genes; meanwhile, prilocaine was the top drug for regulating under-expressed hub genes. This study was geared towards utilizing transcriptomics approaches for the assessment of microarray data, which is different from the use of traditional genomic analyses. Such a research design for investigating correlations among autoimmune diseases may be the first of its kind.
Collapse
Affiliation(s)
- Jon Patrick T. Garcia
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- Department of Biology, School of Medicine and Health Sciences, Mapúa University, Makati 1200, Philippines
| |
Collapse
|
22
|
Forma E, Urbańska K, Bryś M. Menopause Hot Flashes and Molecular Mechanisms Modulated by Food-Derived Nutrients. Nutrients 2024; 16:655. [PMID: 38474783 DOI: 10.3390/nu16050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The causes of vasomotor symptoms, including hot flashes, are not fully understood, may be related to molecular factors, and have a polygenic architecture. Nutrients and bioactive molecules supplied to the body with food are metabolized using various enzymatic pathways. They can induce molecular cell signaling pathways and, consequently, activate effector proteins that modulate processes related to hot flashes in menopausal women. In this review, we analyzed the literature data from the last 5 years, especially regarding genome-wide association study (GWAS) analysis, and selected molecular factors and cell signaling pathways that may potentially be related to hot flashes in women. These are the kisspeptin-GnRH pathway, adipocyte-derived hormones, aryl hydrocarbon receptor signaling, catechol estrogens and estrogen sulfotransferase, inflammatory and oxidative stress biomarkers, and glucose availability. Then, single compounds or groups of food ingredients were selected that, according to experimental data, influence the course of the discussed molecular pathways and thus can be considered as potential natural therapeutic agents to effectively reduce the troublesome symptoms of menopause in women.
Collapse
Affiliation(s)
- Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Karina Urbańska
- Faculty of Medicine, Medical University of Lodz, 90-419 Lodz, Poland
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
23
|
Yang W, Hou L, Wang B, Wu J, Zha C, Wu W. Integration of transcriptome and machine learning to identify the potential key genes and regulatory networks affecting drip loss in pork. J Anim Sci 2024; 102:skae164. [PMID: 38865489 PMCID: PMC11214104 DOI: 10.1093/jas/skae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Low level of drip loss (DL) is an important quality characteristic of meat with high economic value. However, the key genes and regulatory networks contributing to DL in pork remain largely unknown. To accurately identify the key genes affecting DL in muscles postmortem, 12 Duroc × (Landrace × Yorkshire) pigs with extremely high (n = 6, H group) and low (n = 6, L group) DL at both 24 and 48 h postmortem were selected for transcriptome sequencing. The analysis of differentially expressed genes and weighted gene co-expression network analysis (WGCNA) were performed to find the overlapping genes using the transcriptome data, and functional enrichment and protein-protein interaction (PPI) network analysis were conducted using the overlapping genes. Moreover, we used machine learning to identify the key genes and regulatory networks related to DL based on the interactive genes of the PPI network. Finally, nine potential key genes (IRS1, ESR1, HSPA6, INSR, SPOP, MSTN, LGALS4, MYLK2, and FRMD4B) mainly associated with the MAPK signaling pathway, the insulin signaling pathway, and the calcium signaling pathway were identified, and a single-gene set enrichment analysis (GSEA) was performed to further annotate the functions of these potential key genes. The GSEA results showed that these genes are mainly related to ubiquitin-mediated proteolysis and oxidative reactions. Taken together, our results indicate that the potential key genes influencing DL are mainly related to insulin signaling mediated differences in glycolysis and ubiquitin-mediated changes in muscle structure and improve the understanding of gene expression and regulation related to DL and contribute to future molecular breeding for improving pork quality.
Collapse
Affiliation(s)
- Wen Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liming Hou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Binbin Wang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chengwan Zha
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Li P, Zhang J, Wu J, Ma J, Huang W, Gong J, Xie Z, Chen Y, Liao Q. Integrating serum pharmacochemistry and network pharmacology to reveal the mechanism of chickpea in improving insulin resistance. Fitoterapia 2024; 172:105750. [PMID: 37977304 DOI: 10.1016/j.fitote.2023.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Although chickpea have great potential in the treatment of obesity and diabetes, the bioactive components and therapeutic targets of chickpea to prevent insulin resistance (IR) are still unclear. The purpose of this study was to investigate the chemical and pharmacological characteristics of chickpea on IR through serum pharmacochemistry and network pharmacology. The results revealed that compared with other polar fractions, the ethyl acetate extract of chickpea (CE) had the definitive performance on enhancing the capacities of glucose consumption and glycogen synthesis. In addition, we analyzed the components of CE in vivo and in vitro based on UPLC-Q-Orbitrap HRMS technology. There were 28 kinds of in vitro chemical components, among which the isoflavones included biochanin A, formononetin, ononin, sissotrin, and astragalin, etc. Concerningly, the chief prototype components of CE absorbed into the blood were biochanin A, formononetin, loliolide, and lenticin, etc. Furthermore, a total of 209 common targets between IR and active components of CE were screened out by network pharmacology, among which the key targets involved PI3K p85, NF-κB p65 and estrogen receptor 1, etc. Specifically, KEGG pathway analysis indicated that PI3K-AKT signaling pathway, HIF-1 signaling pathway, and AGE-RAGE signaling pathway may play critical roles in the IR remission by CE. Finally, the in vitro validation experiments disclosed that CE significantly balanced the oxidative stress state of IR-HepG2 cells and inhibited expressions of inflammatory cytokines. In conclusion, the present study will be an important reference for clarifying the pharmacodynamic substance basis and underlying mechanism of chickpea to alleviate IR.
Collapse
Affiliation(s)
- Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiaxian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jinyun Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
25
|
Chu M, He S, Zhao H, Yin S, Liu Z, Zhang W, Liu X, Bao H. Increasing expression of STING by ERα antagonizes LCN2 downregulation during chronic endometritis. J Reprod Immunol 2023; 160:104167. [PMID: 37952294 DOI: 10.1016/j.jri.2023.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Chronic endometritis has a high incidence in infertile women, which is caused by endometrial microbiome infection. In response to microbial infection, the role of defensins during chronic endometritis need explored. Besides, the expression of estrogen and its receptors vary in different menstrual cycles, but their roles in chronic endometritis are still unclear. In this study, we used the human endometrial tissues to examine the expression of antimicrobial peptides (AMPs) α-defensin hNP-1 and β-defensins hBD-1, hBD-2, hBD-3, hBD-4 and LCN2. We found the expression of hBD-1 and LCN2 were downregulated in endometritis tissues, while the expressions of hBD-2, hBD-3, hBD-4, hNP-1, and estrogen and ERα were upregulated in chronic endometritis tissues compared to normal tissues. The expression and phosphorylation of STING, which is a crucial mediator of mammalian innate immunity in response to pathogens, was regulated with the treatment of ERα inhibitor raloxifene (Rx). Furthermore, using with the estrogen receptor inhibitor Rx and STING inhibitor H-151 significantly decreases the LCN2 expression. Taken together, these results suggested ERα was upregulated to modulate STING expression inducing LCN2 antimicrobial peptide expression to modulate the mucosal immunity during chronic endometritis.
Collapse
Affiliation(s)
- Min Chu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Shunzhi He
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Huishan Zhao
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Shuyuan Yin
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Zhenteng Liu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Wei Zhang
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Xuemei Liu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China.
| | - Hongchu Bao
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China.
| |
Collapse
|
26
|
Corrêa DEDC, Bargi-Souza P, Oliveira IM, Razera A, Oliveira CA, Romano MA, Romano RM. Quantitative proteomic profile analysis of thyroid dysfunction effects on seminal vesicles and repercussions on male fertility. Mol Cell Endocrinol 2023; 578:112048. [PMID: 37633588 DOI: 10.1016/j.mce.2023.112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Hypothyroidism and thyrotoxicosis are associated with male reproductive disorders, but little is known about the influence of the thyroid hormone milieu on seminal vesicle (SV) function and metabolism. In this sense, we investigated the effects of hypothyroidism and thyrotoxicosis induced in adulthood Wistar male rats on SV function and identified new thyroid hormone targets on male reproduction regulation using novel proteomic approaches. Hypothyroidism reduces SV size and seminal fluid volume, which are directly associated with low testosterone and estradiol levels, while thyrotoxicosis increases Esr2 and Dio1 expression in the SV. We found 116 differentially expressed proteins. Hypothyroidism reduces the expression of molecular protein markers related to sperm viability, capacitation and fertilization, protection against oxidative stress and energetic metabolism in SV, while it increases the expression of proteins related to tissue damage. In conclusion, thyroid dysfunction in the adult phase impairs several morphological, molecular and functional characteristics of SV.
Collapse
Affiliation(s)
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Amanda Razera
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil
| | - Claudio Alvarenga Oliveira
- Department of Animal Reproduction, Faculty of Veterinary Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Marco Aurelio Romano
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil
| | - Renata Marino Romano
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil.
| |
Collapse
|
27
|
Ramírez-Hernández D, López-Sánchez P, Lezama-Martínez D, Kuyoc-Arroyo NM, Rodríguez-Rodríguez JE, Fonseca-Coronado S, Valencia-Hernández I, Flores-Monroy J. Timing Matters: Effects of Early and Late Estrogen Replacement Therapy on Glucose Metabolism and Vascular Reactivity in Ovariectomized Aged Wistar Rats. J Renin Angiotensin Aldosterone Syst 2023; 2023:6683989. [PMID: 38025203 PMCID: PMC10665112 DOI: 10.1155/2023/6683989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiovascular disease incidence increases after menopause due to the loss of estrogen cardioprotective effects. However, there are conflicting data regarding the timing of estrogen therapy (ERT) and its effect on vascular dysfunction associated with impaired glucose metabolism. The aim of this work was to evaluate the effect of early and late ERT on blood glucose/insulin balance and vascular reactivity in aged ovariectomized Wistar rats. Eighteen-month-old female Wistar rats were randomized as follows: (1) sham, (2) 10-week postovariectomy (10 w), (3) 10 w postovariectomy+early estradiol therapy (10 w-early E2), (4) 20-week postovariectomy (20 w), and (5) 20-week postovariectomy+late estradiol therapy (20 w-late E2). Early E2 was administered 3 days after ovariectomy and late therapy after 10 weeks, in both groups. 17β-Estradiol (E2) was administered daily for 10 weeks (5 μg/kg/day). Concentration-response curves to angiotensin II, KCl, and acetylcholine (ACh) were performed. Heart rate (HR), diastolic and systolic blood pressure (DBP and SBP), glucose, insulin, HOMA-IR, and nitric oxide (NO) levels were determined. Higher glucose levels were found in all groups compared to the sham group, except the 20 w-late E2 group. Insulin was increased in all ovariectomized groups compared to sham. The HOMA-IR index showed insulin resistance in all ovariectomized groups, except for the 10 w-early E2 group. The 10 w-early E2 group increased NO levels vs. the 10 w group. After 10 w postovariectomy, the vascular response to KCl and Ach increases, despite early E2 administration. Early and late E2 treatment decreased vascular reactivity to Ang II. At 20-week postovariectomy, DBP increased, even with E2 administration, while SBP and HR remained unchanged. The effects of E2 therapy on blood glucose/insulin balance and vascular reactivity depend on the timing of therapy. Early ERT may provide some protective effects on insulin resistance and vascular function, whereas late ERT may not have the same benefits.
Collapse
Affiliation(s)
- Diana Ramírez-Hernández
- Myocardial Pharmacology Laboratory, Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, 54740 State of Mexico, Mexico
| | - Pedro López-Sánchez
- Laboratorio de Farmacología Molecular, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico
| | - Diego Lezama-Martínez
- Myocardial Pharmacology Laboratory, Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, 54740 State of Mexico, Mexico
| | - Neidy M. Kuyoc-Arroyo
- Myocardial Pharmacology Laboratory, Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, 54740 State of Mexico, Mexico
| | - Jessica E. Rodríguez-Rodríguez
- Biological Pharmaceutical Chemist Career, Faculty of Higher Education Zaragoza, National Autonomous University of Mexico, Batalla 5 de Mayo S/N, Ejército de Oriente, Iztapalapa, 09230 Mexico City, Mexico
- Laboratory 7, Biomedicine Unit, Faculty of Higher Education Iztacala, National Autonomous University of Mexico, Avenida de los Barrios 1, Los Reyes Ixtacala, 54090 Tlalnepantla de Baz, Mexico
| | - Salvador Fonseca-Coronado
- Immunology Laboratory, Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, 54740 State of Mexico, Mexico
| | - Ignacio Valencia-Hernández
- Laboratorio de Farmacología Cardiovascular, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico
| | - Jazmin Flores-Monroy
- Myocardial Pharmacology Laboratory, Faculty of Higher Studies Cuautitlan, National Autonomous University of Mexico, 54740 State of Mexico, Mexico
| |
Collapse
|
28
|
Rinaldi F, Trink A, Mondadori G, Giuliani G, Pinto D. The Menopausal Transition: Is the Hair Follicle "Going through Menopause"? Biomedicines 2023; 11:3041. [PMID: 38002043 PMCID: PMC10669803 DOI: 10.3390/biomedicines11113041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
This article explores the link between menopause and changes in the hair follicle (HF) lifecycle, focusing on hormonal and metabolic dynamics. During menopause, hormonal fluctuations and aging can impact the HF, leading to phenomena such as thinning, loss of volume, and changes in hair texture. These changes are primarily attributed to a decrease in estrogen levels. However, not all women experience significant hair changes during menopause, and the extent of transformations can vary considerably from person to person, influenced by genetic factors, stress, diet, and other elements. Furthermore, menopause mirrors the aging process, affecting metabolism and blood flow to the HFs, influencing the availability of vital nutrients. The article also discusses the key role of energy metabolism in the HF lifecycle and the effect of hormones, particularly estrogens, on metabolic efficiency. The concept of a possible "menopause" clinically independent of menopause is introduced, related to changes in HF metabolism, emphasizing the importance of individual factors such as estrogen receptor responses, genetics, and last but not least, the microbiota in determining these dynamics.
Collapse
Affiliation(s)
| | | | | | | | - Daniela Pinto
- HMAP, Human Microbiome Advanced Project, 20129 Milan, Italy; (F.R.); (A.T.); (G.M.); (G.G.)
| |
Collapse
|
29
|
Anirudhan A, Ahmad SF, Emran TB, Angulo-Bejarano PI, Sharma A, Ahmed SSSJ. Comparative Efficacy of Metformin and Glimepiride in Modulating Pharmacological Network to Increase BDNF Levels and Benefit Type 2 Diabetes-Related Cognitive Impairment. Biomedicines 2023; 11:2939. [PMID: 38001940 PMCID: PMC10669717 DOI: 10.3390/biomedicines11112939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Cognitive impairment is anotable complication of type 2 diabetes (T2DM), accompanied by reduced brain-derived neurotrophic factor (BDNF) in the brain and blood. Anti-diabetic drugs reduce hyperglycemia, yet their effect on cognitive improvement is unknown. We aimed to investigate the effect of anti-diabetic drugs regulating BDNF in T2DM through computational and case-control study design. We obtained T2DMproteins viatext-mining to construct a T2DMprotein network. From the T2DMnetwork, the metformin and glimepiride interactomes and their crucial shortest-path-stimulating BDNF were identified. Using qRTPCR, the genes encoding the shortest-path proteins were assessed in four groups (untreated-T2DM, metformin-treated, glimepiride-treated, and healthy controls). Finally, ELISA was used to assess serum BDNF levels to validate drug efficacy. As a result of this investigation, aT2DMnetwork was constructed with 3683 text-mined proteins. Then, the T2DMnetwork was explored to generate a metformin and glimepiride interactome that establishes the critical shortest-path for BDNF stimulation. Metformin stimulates BDNF via APP binding to the PRKAB1 receptor. Whereas, glimepiride increases BDNF by binding to KCNJ11 via AP2M1 and ESR1 proteins. Both drug shortest-path encoding genes differed significantly between the groups. Unlike metformin, BDNF gene and protein expression rise significantly with glimepiride. Overall, glimepiride can effectively increase BDNF, which could benefit T2DM patients with cognitive deterioration.
Collapse
Affiliation(s)
- Athira Anirudhan
- Central Research Laboratory, Believers Church Medical College Hospital, Kuttapuzha, Thiruvalla 689101, Kerala, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Paola Isabel Angulo-Bejarano
- Regional Department of Bioengineering, NatProLab-Plant Innovation Lab, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Ashutosh Sharma
- Regional Department of Bioengineering, NatProLab-Plant Innovation Lab, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
30
|
Fonseca PAS, Lam S, Chen Y, Waters SM, Guan LL, Cánovas A. Multi-breed host rumen epithelium transcriptome and microbiome associations and their relationship with beef cattle feed efficiency. Sci Rep 2023; 13:16209. [PMID: 37758745 PMCID: PMC10533831 DOI: 10.1038/s41598-023-43097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Understanding host-microbial interactions in the rumen and its influence on desirable production traits may lead to potential microbiota manipulation or genetic selection for improved cattle feed efficiency. This study investigated the host transcriptome and its correlation with the rumen archaea and bacteria differential abundance of two pure beef cattle breeds (Angus and Charolais) and one composite beef hybrid (Kinsella) divergent for residual feed intake (RFI; low-RFI vs. high-RFI). Using RNA-Sequencing of rumen tissue and 16S rRNA gene amplicon sequencing, differentially expressed genes (FDR ≤ 0.05, |log2(Fold-change) >|2) and differentially abundant (p-value < 0.05) archaea and bacteria amplicon sequence variants (ASV) were determined. Significant correlations between gene expression and ASVs (p-value < 0.05) were determine using Spearman correlation. Interesting associations with muscle contraction and the modulation of the immune system were observed for the genes correlated with bacterial ASVs. Potential functional candidate genes for feed efficiency status were identified for Angus (CCL17, CCR3, and CXCL10), Charolais (KCNK9, GGT1 and IL6), and Kinsella breed (ESR2). The results obtained here provide more insights regarding the applicability of target host and rumen microbial traits for the selection and breeding of more feed efficient beef cattle.
Collapse
Grants
- Beef Farmers of Ontario, Genome Canada and the Sustainable Beef and Forage Science Cluster funded by the Canadian Beef Cattle Check-Off, Beef Cattle Research Council (BCRC), Alberta Beef Producers, Alberta Cattle Feeders’ Association, Beef Farmers of Ontario, La Fédération des Productuers de bovins du Québec, and Agriculture and Agri-Food Canada’s Canadian Agricultural Partnership
- Ontario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA), Ontario Ministry of Research and Innovation, and the Ontario Agri-Food Innovation Alliance
Collapse
Affiliation(s)
- P A S Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - S Lam
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Y Chen
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6H 2P5, Canada
| | - S M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, C15 PW93, Co. Meath, Ireland
| | - L L Guan
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6H 2P5, Canada
| | - A Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
31
|
Avnon Ziv C, Banon T, Ben Tov A, Chodick G, Gabay L, Auerbach A, Hirsch HJ, Levy Khademi F. Glucose levels are not the same for everyone: a real-world big data study evaluating fasting serum glucose levels by sex and age among children. J Pediatr Endocrinol Metab 2023; 36:851-858. [PMID: 37579024 DOI: 10.1515/jpem-2023-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES Understanding the normal range of laboratory values as pertained to different age groups and males or females is paramount in health care delivery. We aimed to assess the distribution of morning fasting serum glucose levels by age and sex in the general population of children using a large-scale population-based cohort. METHODS A retrospective study with real-world de-identified data from a large, state mandated health fund in Israel among children aged 2-18 years old between 2006 and 2019. Age, sex, and BMI differences in mean glucose levels were evaluated. RESULTS Study included 130,170 venous blood samples from 117,411 children, 53.3 % were female. After adjusting for age boys had higher fasting serum glucose levels than girls, with a mean of 89.21 ± 8.66 mg/dL vs. 87.59 ± 8.35 (p<0.001) [4.95 ± 0.48 mmol/L vs. 4.86 ± 0.46]. Compared to the 15 to 18 year-olds (88.49 ± 7.63 mg/dL) [4.92 ± 0.42 mmol/L], 2 to 5 year-olds had lower glucose levels (84.19 ± 10.65, [4.68 ± 0.59] (p<0.001)), 11 to 14 year-olds had higher glucose (90.40 ± 7.42 [5.02 ± 0.41], (p<0.001)) and 6 to 10 year-olds showed no difference (88.45 ± 8.25) [4.91 ± 0.46]. 33.0 % (n=42,991) had a BMI percentile record the same year as their glucose test result. There was a weak yet significant positive association between blood glucose levels and BMI. CONCLUSIONS Our large cohort indicates that boys have slightly higher fasting serum glucose levels than girls, as do adolescents compared to younger children. This finding is important for the delivery of adequate health care, screening for illness and avoiding unnecessary investigations and tests.
Collapse
Affiliation(s)
- Carmit Avnon Ziv
- Maccabi Healthcare Services and Division of Pediatric Endocrinology, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
- Maccabi Healthcare Services, Tel Aviv, Israel
| | - Tamar Banon
- Kahn-Sagol-Maccabi Research and Innovation Institute, Tel Aviv, Israel
| | - Amir Ben Tov
- Maccabi Healthcare Services, Tel Aviv, Israel
- Kahn-Sagol-Maccabi Research and Innovation Institute, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gabriel Chodick
- Kahn-Sagol-Maccabi Research and Innovation Institute, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Linoy Gabay
- Kahn-Sagol-Maccabi Research and Innovation Institute, Tel Aviv, Israel
| | - Adi Auerbach
- Maccabi Healthcare Services and Division of Pediatric Endocrinology, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
- Maccabi Healthcare Services, Tel Aviv, Israel
| | - Harry J Hirsch
- Maccabi Healthcare Services and Division of Pediatric Endocrinology, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
- Maccabi Healthcare Services, Tel Aviv, Israel
| | - Floris Levy Khademi
- Maccabi Healthcare Services and Division of Pediatric Endocrinology, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
- The Faculty of Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
32
|
Guzmán-Flores JM, Pérez-Vázquez V, Martínez-Esquivias F, Isiordia-Espinoza MA, Viveros-Paredes JM. Molecular Docking Integrated with Network Pharmacology Explores the Therapeutic Mechanism of Cannabis sativa against Type 2 Diabetes. Curr Issues Mol Biol 2023; 45:7228-7241. [PMID: 37754241 PMCID: PMC10529732 DOI: 10.3390/cimb45090457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
The incidence of type 2 diabetes (T2D) is rising, and finding new treatments is important. C. sativa is a plant suggested as a potential treatment for T2D, but how it works needs to be clarified. This study explored the pharmacological mechanism of C. sativa in treating T2D. We identified the active compounds in C. sativa and their targets. From there, we examined the genes associated with T2D and found overlapping genes. We conducted an enrichment analysis and created a protein-protein and target-compound interactions network. We confirmed the binding activities of the hub proteins and compounds with molecular docking. We identified thirteen active compounds from C. sativa, which have 150 therapeutic targets in T2D. The enrichment analysis showed that these proteins are involved in the hormone, lipid, and stress responses. They bind transcription factors and metals and participate in the insulin, PI3K/Akt, HIF-1, and FoxO signaling pathways. We found four hub proteins (EGFR, ESR1, HSP90AA1, and SRC) that bind to the thirteen bioactive compounds. This was verified using molecular docking. Our findings suggest that C. sativa's antidiabetic action is carried out through the insulin signaling pathway, with the participation of HIF-1 and FoxO.
Collapse
Affiliation(s)
- Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos C.P. 47620, Jalisco, Mexico;
| | - Victoriano Pérez-Vázquez
- Department of Medical Sciences, University of Guanajuato, Campus León, León C.P. 37220, Guanajuato, Mexico;
| | - Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos C.P. 47620, Jalisco, Mexico;
| | - Mario Alberto Isiordia-Espinoza
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlan de Morelos C.P. 47620, Jalisco, Mexico;
| | - Juan Manuel Viveros-Paredes
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara C.P. 44430, Jalisco, Mexico;
| |
Collapse
|
33
|
Chen J, Zhou Z, Li P, Ye S, Li W, Li M, Zhu L, Ding Y. Investigation of the Potential Phlorotannins and Mechanism of Six Brown Algae in Treating Type II Diabetes Mellitus Based on Biological Activity, UPLC-QE-MS/MS, and Network Pharmacology. Foods 2023; 12:3000. [PMID: 37627999 PMCID: PMC10453309 DOI: 10.3390/foods12163000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has developed into an important health concern worldwide. The discovery of phlorotannins and their efficacy in the treatment of T2DM has become a hotspot for research in various fields. In this study, the potential phlorotannins and mechanism of six brown algae against T2DM were in-depth investigated using biological activity assays, LC-MS, and network pharmacology. First, the ethyl acetate fraction (EA frac.) showed high polyphenolic content and possessed significantly antioxidant and enzyme inhibitory abilities. Further, a total of fifty-nine peaks were obtained from six EA fracs. via UPLC-QE-MS/MS analysis, and fifteen of them were identified as phlorotannins and their isomers or derivatives. In detail, the chemical structures of six phlorotannins were inferred as dibenzodioxine-1,3,6,8-tetraol, bifuhalol, dioxinodehydroeckol, eckol, fucofurodiphlorethol, and fucotriphlorethol; three phlorotannin isomers were deduced to be fucophlorethol, trifucol, triphlorethol A, or triphlorethol B; and the phlorotannin derivative of m/z 263 was determined to be dibenzodioxine-1,2,3,6,8-pentanol or dibenzodioxine-1,2,4,5,7-pentanol. Moreover, 43 T2DM-related targets acted on by these chemicals were identified, and the function of phlorotannin to prevent and treat T2DM was elucidated in a holistic way based on the established compound-target-disease network, and GO function and KEGG pathway enrichment analysis.
Collapse
Affiliation(s)
- Jialiang Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.C.); (P.L.); (S.Y.); (L.Z.)
| | - Zheng Zhou
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
| | - Ping Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.C.); (P.L.); (S.Y.); (L.Z.)
| | - Shuhong Ye
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.C.); (P.L.); (S.Y.); (L.Z.)
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, China;
| | - Lin Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.C.); (P.L.); (S.Y.); (L.Z.)
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.C.); (P.L.); (S.Y.); (L.Z.)
| |
Collapse
|
34
|
Yang HJ, Zhang T, Yue Y, Jeong SJ, Ryu MS, Wu X, Li C, Jeong DY, Park S. Protective Effect of Long-Term Fermented Soybeans with Abundant Bacillus subtilis on Glucose and Bone Metabolism and Memory Function in Ovariectomized Rats: Modulation of the Gut Microbiota. Foods 2023; 12:2958. [PMID: 37569228 PMCID: PMC10418888 DOI: 10.3390/foods12152958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
We investigated the effects of different types of long-term fermented soybeans (traditionally made doenjang; TMD) on glucose and bone metabolism and memory function in ovariectomized (OVX) rats. The rats were categorized into six groups: Control, cooked unfermented soybeans (CSB), and four TMDs based on Bacillus subtilis (B. subtilis) and biogenic amine contents analyzed previously: high B. subtilis (HS) and high biogenic amines (HA; HSHA), low B. subtilis (LS) and HA (LSHA), HS and low biogenic amines (LA; HSLA), and LS and LA (LSLA). The rats in the CSB and TMD groups fed orally had a 4% high-fat diet for 12 weeks. Rats in the Control (OVX rats) and Normal-control (Sham-operated rats) groups did not consume CSB or TMD, although macronutrient contents were the same in all groups. Uterine weight and serum 17β-estradiol concentrations were much lower in the Control than the Normal-control group, but CSB and TMD intake did not alter them regardless of B. subtilis and biogenic amine contents. HOMA-IR, a measure of insulin resistance, decreased with TMD with high B. subtilis (HSLA and HSHA) compared to the Control group. In OGTT and IPGTT, serum glucose concentrations at each time point were higher in the Control than in the Normal-control, and HSLA and HSHA lowered them. Memory function was preserved with HSHA and HSLA administration. Bone mineral density decline measured by DEXA analysis was prevented in the HSHA and HSLA groups. Bone metabolism changes were associated with decreased osteoclastic activity, parathyroid hormone levels, and osteoclastic activity-related parameters. Micro-CT results demonstrated that TMD, especially HSLA and HSHA, preserved bone structure in OVX rats. TMD also modulated the fecal bacterial community, increasing Lactobacillus, Ligalactobacillus, and Bacillus. In conclusion, through gut microbiota modulation, TMD, particularly with high B. subtilis content, acts as a synbiotic to benefit glucose, bone, and memory function in OVX rats. Further research is needed to make specific recommendations for B. subtilis-rich TMD for menopausal women.
Collapse
Affiliation(s)
- Hee-Jong Yang
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-gun 56048, Republic of Korea; (H.-J.Y.); (S.-J.J.); (M.-S.R.)
| | - Ting Zhang
- Department of Bioconvergence, Hoseo University, Asan-si 31499, Republic of Korea; (T.Z.); (X.W.)
| | - Yu Yue
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan-si 31499, Republic of Korea; (Y.Y.); (C.L.)
| | - Su-Ji Jeong
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-gun 56048, Republic of Korea; (H.-J.Y.); (S.-J.J.); (M.-S.R.)
| | - Myeong-Seon Ryu
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-gun 56048, Republic of Korea; (H.-J.Y.); (S.-J.J.); (M.-S.R.)
| | - Xuangao Wu
- Department of Bioconvergence, Hoseo University, Asan-si 31499, Republic of Korea; (T.Z.); (X.W.)
| | - Chen Li
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan-si 31499, Republic of Korea; (Y.Y.); (C.L.)
| | - Do-Yeon Jeong
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-gun 56048, Republic of Korea; (H.-J.Y.); (S.-J.J.); (M.-S.R.)
| | - Sunmin Park
- Department of Bioconvergence, Hoseo University, Asan-si 31499, Republic of Korea; (T.Z.); (X.W.)
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan-si 31499, Republic of Korea; (Y.Y.); (C.L.)
| |
Collapse
|
35
|
Qin L, Zhang D, Liu S, Liu Q, Liu M, Huang B. Dissecting the molecular trajectory of fibroblast reprogramming to chemically induced mammary epithelial cells. Front Cell Dev Biol 2023; 11:1194070. [PMID: 37601103 PMCID: PMC10433763 DOI: 10.3389/fcell.2023.1194070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction: The plasticity of cell identity allows cellular reprogramming that manipulates the lineage of cells to generate the target cell types, bringing new avenues for disease modeling and autologous tailored cell therapy. Previously, we had already successfully established a technical platform for inducing fibroblast reprogramming to chemically induced mammary epithelial cells (CiMECs) by small-molecule compounds. However, exactly how the molecular mechanism driving the lineage conversion remains unknown. Methods: We employ the RNA-sequencing technology to investigate the transcriptome event during the reprogramming process and reveal the molecular mechanisms for the fate acquisition of mammary lineage. Results: The multi-step reprogramming process first overcomes multiple barriers, including the inhibition of mesenchymal characteristics, pro-inflammatory and cell death signals, and then enters an intermediate plastic state. Subsequently, the hormone and mammary development genes were rapidly activated, leading to the acquisition of the mammary program together with upregulation of the milk protein synthesis signal. Moreover, the gene network analyses reveal the potential relationship between the TGF-β signaling pathway to mammary lineage activation, and the changes in the expression of these genes may play important roles in coordinating the reprogramming process. Conclusion: Together, these findings provide critical insights into the molecular route and mechanism triggered by small-molecule compounds that induce fibroblast reprogramming into the fate of mammary epithelial cells, and they also laid a foundation for the subsequent research on the development and differentiation of mammary epithelial cells and lactation.
Collapse
Affiliation(s)
- Liangshan Qin
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Academy of Medical Sciences, Nanning, China
| | - Dandan Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Academy of Medical Sciences, Nanning, China
| | - Siyi Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Academy of Medical Sciences, Nanning, China
| | - Quanhui Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Academy of Medical Sciences, Nanning, China
| | - Mingxing Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Academy of Medical Sciences, Nanning, China
| | - Ben Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
36
|
Zhang R, Akhtar N, Wani AK, Raza K, Kaushik V. Discovering Deleterious Single Nucleotide Polymorphisms of Human AKT1 Oncogene: An In Silico Study. Life (Basel) 2023; 13:1532. [PMID: 37511907 PMCID: PMC10381612 DOI: 10.3390/life13071532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND AKT1 is a serine/threonine kinase necessary for the mediation of apoptosis, angiogenesis, metabolism, and cell proliferation in both normal and cancerous cells. The mutations in the AKT1 gene have been associated with different types of cancer. Further, the AKT1 gene mutations are also reported to be associated with other diseases such as Proteus syndrome and Cowden syndromes. Hence, this study aims to identify the deleterious AKT1 missense SNPs and predict their effect on the function and structure of the AKT1 protein using various computational tools. METHODS Extensive in silico approaches were applied to identify deleterious SNPs of the human AKT1 gene and assessment of their impact on the function and structure of the AKT1 protein. The association of these highly deleterious missense SNPs with different forms of cancers was also analyzed. The in silico approach can help in reducing the cost and time required to identify SNPs associated with diseases. RESULTS In this study, 12 highly deleterious SNPs were identified which could affect the structure and function of the AKT1 protein. Out of the 12, four SNPs-namely, G157R, G159V, G336D, and H265Y-were predicted to be located at highly conserved residues. G157R could affect the ligand binding to the AKT1 protein. Another highly deleterious SNP, R273Q, was predicted to be associated with liver cancer. CONCLUSIONS This study can be useful for pharmacogenomics, molecular diagnosis of diseases, and developing inhibitors of the AKT1 oncogene.
Collapse
Affiliation(s)
- Ruojun Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Vikas Kaushik
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| |
Collapse
|
37
|
Tao Z, Cheng Z. Hormonal regulation of metabolism-recent lessons learned from insulin and estrogen. Clin Sci (Lond) 2023; 137:415-434. [PMID: 36942499 PMCID: PMC10031253 DOI: 10.1042/cs20210519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
Hormonal signaling plays key roles in tissue and metabolic homeostasis. Accumulated evidence has revealed a great deal of insulin and estrogen signaling pathways and their interplays in the regulation of mitochondrial, cellular remodeling, and macronutrient metabolism. Insulin signaling regulates nutrient and mitochondrial metabolism by targeting the IRS-PI3K-Akt-FoxOs signaling cascade and PGC1α. Estrogen signaling fine-tunes protein turnover and mitochondrial metabolism through its receptors (ERα, ERβ, and GPER). Insulin and estrogen signaling converge on Sirt1, mTOR, and PI3K in the joint regulation of autophagy and mitochondrial metabolism. Dysregulated insulin and estrogen signaling lead to metabolic diseases. This article reviews the up-to-date evidence that depicts the pathways of insulin signaling and estrogen-ER signaling in the regulation of metabolism. In addition, we discuss the cross-talk between estrogen signaling and insulin signaling via Sirt1, mTOR, and PI3K, as well as new therapeutic options such as agonists of GLP1 receptor, GIP receptor, and β3-AR. Mapping the molecular pathways of insulin signaling, estrogen signaling, and their interplays advances our understanding of metabolism and discovery of new therapeutic options for metabolic disorders.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, U.S.A
| | - Zhiyong Cheng
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, U.S.A
| |
Collapse
|
38
|
Shahbazian M, Jafarynezhad F, Yadeghari M, Farhadi Z, Samani SL, Esmailidehaj M, Safari F, Azizian H. The effects of G protein-coupled receptor 30 (GPR30) on cardiac glucose metabolism in diabetic ovariectomized female rats. J Basic Clin Physiol Pharmacol 2023; 34:205-213. [PMID: 35170266 DOI: 10.1515/jbcpp-2021-0374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diabetic cardiometabolic disorders are characterized by significant changes in cardiac metabolism and are increased in postmenopausal women, which emphasize the role of 17β-estradiol (E2). Despite this, there are few safe and effective pharmacological treatments for these disorders. The role of G protein-coupled estrogen receptor (GPR30), which mediates the non-genomic effects of E2, is mostly unexplored. METHODS In this study, we used ovariectomy (menopausal model) and type 2 diabetic (T2D) rats' models to evaluate the preclinical action of G-1 (GPR30 agonist) against cardiometabolic disorders. T2D was induced by a high-fat diet and a low dose of streptozotocin. G-1 was administrated for six weeks after the establishment of T2D. RESULTS We found that G-1 counteracts the effects of T2D and ovariectomy by increasing the body weight, reducing fasting blood sugar, heart weight, and heart weight to body weight ratio. Also, both ovariectomy and T2D led to decreases in the cardiac protein levels of hexokinase 2 (HK2) and GLUT4, while G-1-treated female rats reversed these changes and only increased HK2 protein level. In addition, T2D and ovariectomy increased glucose and glycogen content in the heart, but G-1 treatment significantly reduced them. CONCLUSIONS In conclusion, our work demonstrates that G-1 as a selective GPR30 agonist is a viable therapeutic approach against T2D and cardiometabolic diseases in multiple preclinical female models.
Collapse
Affiliation(s)
- Mohammad Shahbazian
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Faezeh Jafarynezhad
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Yadeghari
- Department of Anatomy and Cell Biology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Neuroendocrine Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeinab Farhadi
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Lotfi Samani
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mansour Esmailidehaj
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Azizian
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
39
|
Understanding the female athlete: molecular mechanisms underpinning menstrual phase differences in exercise metabolism. Eur J Appl Physiol 2023; 123:423-450. [PMID: 36402915 DOI: 10.1007/s00421-022-05090-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 11/20/2022]
Abstract
Research should equitably reflect responses in men and women. Including women in research, however, necessitates an understanding of the ovarian hormones and menstrual phase variations in both cellular and systems physiology. This review outlines recent advances in the multiplicity of ovarian hormone molecular signaling that elucidates the mechanisms for menstrual phase variability in exercise metabolism. The prominent endogenous estrogen, 17-β-estradiol (E2), molecular structure is bioactive in stabilizing plasma membranes and quenching free radicals and both E2 and progesterone (P4) promote the expression of antioxidant enzymes attenuating exercise-induced muscle damage in the late follicular (LF) and mid-luteal (ML) phases. E2 and P4 bind nuclear hormone receptors and membrane-bound receptors to regulate gene expression directly or indirectly, which importantly includes cross-regulated expression of their own receptors. Activation of membrane-bound receptors also regulates kinases causing rapid cellular responses. Careful analysis of these signaling pathways explains menstrual phase-specific differences. Namely, E2-promoted plasma glucose uptake during exercise, via GLUT4 expression and kinases, is nullified by E2-dominant suppression of gluconeogenic gene expression in LF and ML phases, ameliorated by carbohydrate ingestion. E2 signaling maximizes fat oxidation capacity in LF and ML phases, pending low-moderate exercise intensities, restricted nutrient availability, and high E2:P4 ratios. P4 increases protein catabolism during the luteal phase by indeterminate mechanisms. Satellite cell function supported by E2-targeted gene expression is countered by P4, explaining greater muscle strengthening from follicular phase-based training. In totality, this integrative review provides causative effects, supported by meta-analyses for quantitative actuality, highlighting research opportunities and evidence-based relevance for female athletes.
Collapse
|
40
|
Zeng F, Xu Y, Tang C, Yan Z, Wei C. Integrated bioinformatics and in silico approaches reveal the biological targets and molecular mechanisms of 1,25-dihydroxyvitamin D against COVID-19 and diabetes mellitus. Front Nutr 2022; 9:1060095. [DOI: 10.3389/fnut.2022.1060095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) and diabetes mellitus (DM) are two major diseases threatening human health. The susceptibility of DM patients to COVID-19 and their worse outcomes have forced us to explore efficient routes to combat COVID-19/DM. As the most active form of Vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D) has been shown a beneficial effect in the treatment of COVID-19/DM. However, the anti-COVID-19/DM mechanisms of 1,25(OH)2D remain unclear. In this study, an approach combining network pharmacology and molecular docking was performed to reveal the potential hub target genes and underlying mechanisms of 1,25(OH)2D in the treatment of COVID-19/DM. The hub targets and interaction pathways related to 1,25(OH)2D were identified by integrating the key 1,25(OH)2D-target-signaling pathway-COVID-19/DM networks. Fifteen hub targets of 1,25(OH)2D against COVID-19DM were determined, including EGFR, PIK3R1, PIK3CA, STAT3, MAPK1, ESR1, HSP90AA1, LCK, MTOR, IGF1, AR, NFKB1, PIK3CB, PTPN1, and MAPK14. An enrichment analysis of the hub targets further revealed that the effect of 1,25(OH)2D against COVID-19/DM involved multiple biological processes, cellular components, molecular functions and biological signaling pathways. Molecular docking disclosed that 1,25(OH)2D docked nicely with the hub target proteins, including EGFR, PIK3R1, and PIK3CA. These findings suggested that the potential mechanisms of 1,25(OH)2D against COVID-19/DM may be related to multiple biological targets and biological signaling pathways.
Collapse
|
41
|
Thapa S, Nandy A, Rendina-Ruedy E. Endocrinal metabolic regulation on the skeletal system in post-menopausal women. Front Physiol 2022; 13:1052429. [PMID: 36439254 PMCID: PMC9691779 DOI: 10.3389/fphys.2022.1052429] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/27/2022] [Indexed: 08/13/2023] Open
Abstract
Osteoporosis is a common endocrinologic disorder characterized as a chronic bone loss condition. Sexual dimorphism is ubiquitous in the incidence of osteoporosis with post-menopausal women being acutely affected. Gonadal sex hormones including estrogen act as crucial regulators of bone mass; therefore, loss of such hormones leads to an imbalance in skeletal turnover leading to osteoporosis. Estrogen can influence both bone formation as well as resorption by reducing osteoblast activity and enhancing osteoclastogenesis. Additionally, estrogen is a potent regulator of systemic metabolism. Recent studies have provided clues that estrogenic effect on bone might also involve alterations in bone cell metabolism and bioenergetic potential. While direct effects of gonadal hormones ability to alter intracellular metabolism of bone cells has not been studied, there is precedence within the literature that this is occurring and contributing to post-menopausal bone loss. This review aims to serve as a perspective piece detailing the prospective role of gonadal hormones regulating bone cell metabolic potential.
Collapse
Affiliation(s)
- Santosh Thapa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ananya Nandy
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Elizabeth Rendina-Ruedy
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
42
|
ESR1 dysfunction triggers neuroinflammation as a critical upstream causative factor of the Alzheimer’s disease process. Aging (Albany NY) 2022; 14:8595-8614. [DOI: 10.18632/aging.204359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
|
43
|
Network pharmacology and molecular docking approaches to elucidate the potential compounds and targets of Saeng-Ji-Hwang-Ko for treatment of type 2 diabetes mellitus. Comput Biol Med 2022; 149:106041. [DOI: 10.1016/j.compbiomed.2022.106041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/06/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022]
|
44
|
Lin Q, Lu Y, Lu R, Chen Y, Wang L, Lu J, Ye X. Assessing Metabolic Risk Factors for LVSI in Endometrial Cancer: A Cross-Sectional Study. Ther Clin Risk Manag 2022; 18:789-798. [PMID: 35971461 PMCID: PMC9375567 DOI: 10.2147/tcrm.s372371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Objective This study analyzed metabolic factors associated with lymphovascular space invasion (LVSI) and compared the difference between type 1 and type 2 endometrial cancer (EC). Methods Four hundred patients primarily diagnosed with EC who underwent hysterectomy with pathological results at Fujian Medical University Cancer Hospital from January 2019 to January 2021 were included. Demographic variable data were collected as well as pathological results. Laboratory evaluations included fasting blood glucose (FBG), serum cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), apolipoprotein A (Apo A) and apolipoprotein B (Apo B). Characterization of binary logistic regression models was used to test the odds ratios (ORs) between LVSI and its metabolic parameters with different subtypes of EC. Results The results indicated that CA125, ROMA, Ki67 score, FBG and TC were higher in EC patients with LVSI (all p<0.05). Negative ER and PR expression was positively associated with LVSI (P<0.05). CA125, ROMA, FBG, TC and ER were found to be independent risk factors for LVSI. CA125, ROMA and FBG were significantly elevated in type 1 EC patients with LVSI compared with those without LVSI (all p<0.05). TC and Ki67 scores were much higher in type 2 EC patients with vs without LVSI (all p<0.05). Negative PR expression was positively related to both type 1 and type 2 EC patients with LVSI. Consequently, CA125, ROMA, FBG and Apo B were found to be independent risk factors for LVSI in type 1 EC, and TC was found to be an independent risk factor for LVSI in type 2 EC. Conclusion FBG and TC were both independent risk factors for LVSI in EC. FBG and Apo B were independent risk factors for LVSI in type 1 EC. TC was an independent risk factor for LVSI in type 2 EC.
Collapse
Affiliation(s)
- Qiaoyan Lin
- Department of Blood Transfusion, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Yongwei Lu
- Department of Gyn-Surgical Oncology Section 9, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Rong Lu
- Department of Blood Transfusion, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Yujuan Chen
- Department of Blood Transfusion, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Linghua Wang
- Department of Gynecologic Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Jianping Lu
- Department of Pathology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Xianren Ye
- Department of Blood Transfusion, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, People's Republic of China.,Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, People's Republic of China
| |
Collapse
|
45
|
Zhang X, Lu JJ, Abudukeyoumu A, Hou DY, Dong J, Wu JN, Liu LB, Li MQ, Xie F. Glucose transporters: Important regulators of endometrial cancer therapy sensitivity. Front Oncol 2022; 12:933827. [PMID: 35992779 PMCID: PMC9389465 DOI: 10.3389/fonc.2022.933827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
Glucose is of great importance in cancer cellular metabolism. Working together with several glucose transporters (GLUTs), it provides enough energy for biological growth. The main glucose transporters in endometrial cancer (EC) are Class 1 (GLUTs 1-4) and Class 3 (GLUTs 6 and 8), and the overexpression of these GLUTs has been observed. Apart from providing abundant glucose uptake, these highly expressed GLUTs also participate in the activation of many crucial signaling pathways concerning the proliferation, angiogenesis, and metastasis of EC. In addition, overexpressed GLUTs may also cause endometrial cancer cells (ECCs) to be insensitive to hormone therapy or even resistant to radiotherapy and chemoradiotherapy. Therefore, GLUT inhibitors may hopefully become a sensitizer for EC precision-targeted therapies. This review aims to summarize the expression regulation, function, and therapy sensitivity of GLUTs in ECCs, aiming to provide a new clue for better diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Xing Zhang
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Jia-Jing Lu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ayitila Abudukeyoumu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ding-Yu Hou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Jing Dong
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiang-Nan Wu
- Clinical Epidemiology, Clinical Research Center, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Li-Bing Liu
- Department of Gynecology, Changzhou No. 2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
46
|
Schäfer-Graf U, Seifert-Klauss V. Typ-1-Diabetes – besondere Herausforderungen für Frauen. DIABETOLOGE 2022. [DOI: 10.1007/s11428-022-00857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Investigating the Mechanisms of Pollen Typhae in the Treatment of Diabetic Retinopathy Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5728408. [PMID: 35024051 PMCID: PMC8747905 DOI: 10.1155/2022/5728408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the main bioactive compounds and investigate the underlying mechanism of Pollen Typhae (PT) against diabetic retinopathy (DR) by network pharmacology and molecular docking analysis. METHODS Bioactive ingredients and the target proteins of PT were obtained from TCMSP, and the related target genes were acquired from the SwissTargetPrediction database. The target genes of DR were obtained from GeneCards, TTD database, DisGeNET database, and DrugBank. The compound-target interaction network was established based on Cytoscape 3.7.2. The protein-protein interaction (PPI) network was constructed via STRING database and Cytoscape 3.7.2. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were visualized through DAVID database and Bioinformatics. Ingredient-gene-pathway network analysis was conducted to further screen the ingredients, target proteins, and pathways closely related to the biological mechanism on PT for DR, and molecular docking analysis was performed by SYBYL-X 2.1.1 software. Finally, the mechanism and underlying targets of PT in the treatment of DR were predicted. RESULTS A total of 8 compounds and 171 intersection targets were obtained based on the online network database. 7 main compounds were screened from compound-target network, and 53 targets including the top six key targets (PTGS2, AKT1, VEGFA, MAPK3, TNF, and EGFR) were further acquired from PPI analysis. The 53 key targets covered 80 signaling pathways, among which PI3K-Akt signaling pathway, focal adhesion, Rap1 signaling pathway, VEGF signaling pathway, and HIF-1 signaling pathway were closely connected with the biological mechanism involved in the alleviation of DR by PT. Ingredient-gene-pathway network shows that AKTI, EGFR, and VEGFA were core genes, kaempferol and isorhamnetin were pivotal ingredients, and VEGF signaling pathway and Rap1 signaling pathway were closely involved in anti-DR. The docking results indicated that five main compounds (arachidonic acid, isorhamnetin, quercetin, kaempferol, and (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one) had good binding activity with EGFR and AKT1 targets. CONCLUSION The active ingredients in PT may regulate the levels of inflammatory factors, suppress the oxidative stress, and inhibit the proliferation, migration, and invasion of retinal pericytes by acting on PTGS2, AKT1, VEGFA, MAPK3, TNF, and EGFR targets through VEGF signaling pathway, PI3K-Akt signaling pathway, Rap1 signaling pathway, and HIF-1 signaling pathway to play a therapeutic role in diabetic retinopathy.
Collapse
|
48
|
Nuclear Receptors in Pregnancy and Outcomes: Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:3-19. [DOI: 10.1007/978-3-031-11836-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Guo Q, Zhu Q, Zhang T, Qu Q, Cheang I, Liao S, Chen M, Zhu X, Shi M, Li X. Integrated bioinformatic analysis reveals immune molecular markers and potential drugs for diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2022; 13:933635. [PMID: 36046789 PMCID: PMC9421304 DOI: 10.3389/fendo.2022.933635] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a pathophysiological condition induced by diabetes mellitus that often causes heart failure (HF). However, their mechanistic relationships remain unclear. This study aimed to identify immune gene signatures and molecular mechanisms of DCM. Microarray data from the Gene Expression Omnibus (GEO) database from patients with DCM were subjected to weighted gene co-expression network analysis (WGCNA) identify co-expression modules. Core expression modules were intersected with the immune gene database. We analyzed and mapped protein-protein interaction (PPI) networks using the STRING database and MCODE and filtering out 17 hub genes using cytoHubba software. Finally, potential transcriptional regulatory factors and therapeutic drugs were identified and molecular docking between gene targets and small molecules was performed. We identified five potential immune biomarkers: proteosome subunit beta type-8 (PSMB8), nuclear factor kappa B1 (NFKB1), albumin (ALB), endothelin 1 (EDN1), and estrogen receptor 1 (ESR1). Their expression levels in animal models were consistent with the changes observed in the datasets. EDN1 showed significant differences in expression in both the dataset and the validation model by real-time quantitative PCR (qPCR) and Western blotting(WB). Subsequently, we confirmed that the potential transcription factors upstream of EDN1 were PRDM5 and KLF4, as its expression was positively correlated with the expression of the two transcription factors. To repurpose known therapeutic drugs, a connectivity map (CMap) database was retrieved, and nine candidate compounds were identified. Finally, molecular docking simulations of the proteins encoded by the five genes with small-molecule drugs were performed. Our data suggest that EDN1 may play a key role in the development of DCM and is a potential DCM biomarker.
Collapse
|
50
|
Molecular Proof of a Clinical Concept: Expression of Estrogen Alpha-, Beta-Receptors and G Protein-Coupled Estrogen Receptor 1 (GPER) in Histologically Assessed Common Nevi, Dysplastic Nevi and Melanomas. Medicina (B Aires) 2021; 57:medicina57111228. [PMID: 34833446 PMCID: PMC8621316 DOI: 10.3390/medicina57111228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Objectives: Epidemiologic data show significant differences in melanoma incidence and outcomes between sexes. The role of hormonal receptors in the pathogenesis of melanocytic lesions remains unclear, thus we performed this study aiming to assess estrogen receptors expression in different melanocytic lesions. Materials and Methods: We performed a cross-sectional study that included 73 consecutively excised melanocytic lesions. Estrogen receptor alpha (ERα), beta (ERβ), and G-protein coupled estrogen receptor (GPER) expression was analyzed in melanocytes and keratinocytes of common nevi, dysplastic nevi, melanoma, healthy skin margin, and in sebaceous and sweat gland cells. Results: ERβ expression was higher in dysplastic nevi margin melanocytes compared to common nevi (p = 0.046) and in dysplastic nevi keratinocytes compared to melanoma keratinocytes (p = 0.021). ERβ expression was significantly higher in margin melanocytes compared to melanoma melanocytes (p = 0.009). No difference in ERβ expression was shown between melanocytes of three types of lesions. GPER expression was higher in nuclei and cytoplasm of dysplastic nevi (p = 0.02 and p = 0.036 respectively) and at the margin compared to melanoma. GPER expression was lower in sebaceous glands of tissue surrounding common nevi (p = 0.025) compared to dysplastic nevi. GPER expression was higher in skin margin tissue melanocytes (p = 0.016 nuclear, p = 0.029 cytoplasmic) compared to melanoma melanocytes. There were no differences in ERα expression between the melanocytic lesions. Conclusion: Further large-scale studies are warranted to investigate the potential role of ERβ and GPER in the pathogenesis of melanocytic lesions.
Collapse
|