1
|
Miao X, Liu P, Liu Y, Zhang W, Li C, Wang X. Epigenetic targets and their inhibitors in the treatment of idiopathic pulmonary fibrosis. Eur J Med Chem 2025; 289:117463. [PMID: 40048798 DOI: 10.1016/j.ejmech.2025.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a deadly lung disease characterized by fibroblast proliferation, excessive extracellular matrix buildup, inflammation, and tissue damage, resulting in respiratory failure and death. Recent studies suggest that impaired interactions among epithelial, mesenchymal, immune, and endothelial cells play a key role in IPF development. Advances in bioinformatics have also linked epigenetics, which bridges gene expression and environmental factors, to IPF. Despite the incomplete understanding of the pathogenic mechanisms underlying IPF, recent preclinical studies have identified several novel epigenetic therapeutic targets, including DNMT, EZH2, G9a/GLP, PRMT1/7, KDM6B, HDAC, CBP/p300, BRD4, METTL3, FTO, and ALKBH5, along with potential small-molecule inhibitors relevant for its treatment. This review explores the pathogenesis of IPF, emphasizing epigenetic therapeutic targets and potential small molecule drugs. It also analyzes the structure-activity relationships of these epigenetic drugs and summarizes their biological activities. The objective is to advance the development of innovative epigenetic therapies for IPF.
Collapse
Affiliation(s)
- Xiaohui Miao
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Pan Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yangyang Liu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Wenying Zhang
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Chunxin Li
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Xiujiang Wang
- Department of Pulmonary Diseases, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
2
|
Kang ZY, Xuan NX, Zhou QC, Huang QY, Yu MJ, Zhang GS, Cui W, Zhang ZC, Du Y, Tian BP. Targeting alveolar epithelial cells with lipid micelle-encapsulated necroptosis inhibitors to alleviate acute lung injury. Commun Biol 2025; 8:573. [PMID: 40188179 PMCID: PMC11972349 DOI: 10.1038/s42003-025-08010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Acute lung injury (ALI) or its more severe form, acute respiratory distress syndrome (ARDS), represents a critical condition characterized by extensive inflammation within the airways. Necroptosis, a form of cell death, has been implicated in the pathogenesis of various inflammatory diseases. However, the precise characteristics and mechanisms of necroptosis in ARDS remain unclear. Thus, our study seeks to elucidate the specific alterations and regulatory factors associated with necroptosis in ARDS and to identify potential therapeutic targets for the disease. We discovered that necroptosis mediates the progression of ALI through the activation and formation of the RIPK1/RIPK3/MLKL complex. Moreover, we substantiated the involvement of both MYD88 and TRIF in the activation of the TLR4 signaling pathway in ALI. Furthermore, we have developed a lipid micelle-encapsulated drug targeting MLKL in alveolar type II epithelial cells and successfully applied it to treat ALI in mice. This targeted nanoparticle selectively inhibited necroptosis, thereby mitigating epithelial cell damage and reducing inflammatory injury. Our study delves into the specific mechanisms of necroptosis in ALI and proposes novel targeted therapeutic agents, presenting innovative strategies for the management of ARDS.
Collapse
Affiliation(s)
- Zhi-Ying Kang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Nan-Xia Xuan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Qi-Chao Zhou
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Qian-Yu Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Meng-Jia Yu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Gen-Sheng Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Wei Cui
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Zhao-Cai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Yang Du
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Bao-Ping Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
3
|
Chavda VP, Bezbaruah R, Ahmed N, Alom S, Bhattacharjee B, Nalla LV, Rynjah D, Gadanec LK, Apostolopoulos V. Proinflammatory Cytokines in Chronic Respiratory Diseases and Their Management. Cells 2025; 14:400. [PMID: 40136649 PMCID: PMC11941495 DOI: 10.3390/cells14060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Pulmonary homeostasis can be agitated either by external environmental insults or endogenous factors produced during respiratory/pulmonary diseases. The lungs counter these insults by initiating mechanisms of inflammation as a localized, non-specific first-line defense response. Cytokines are small signaling glycoprotein molecules that control the immune response. They are formed by numerous categories of cell types and induce the movement, growth, differentiation, and death of cells. During respiratory diseases, multiple proinflammatory cytokines play a crucial role in orchestrating chronic inflammation and structural changes in the respiratory tract by recruiting inflammatory cells and maintaining the release of growth factors to maintain inflammation. The issue aggravates when the inflammatory response is exaggerated and/or cytokine production becomes dysregulated. In such instances, unresolving and chronic inflammatory reactions and cytokine production accelerate airway remodeling and maladaptive outcomes. Pro-inflammatory cytokines generate these deleterious consequences through interactions with receptors, which in turn initiate a signal in the cell, triggering a response. The cytokine profile and inflammatory cascade seen in different pulmonary diseases vary and have become fundamental targets for advancement in new therapeutic strategies for lung diseases. There are considerable therapeutic approaches that target cytokine-mediated inflammation in pulmonary diseases; however, blocking specific cytokines may not contribute to clinical benefit. Alternatively, broad-spectrum anti-inflammatory approaches are more likely to be clinically effective. Herein, this comprehensive review of the literature identifies various cytokines (e.g., interleukins, chemokines, and growth factors) involved in pulmonary inflammation and the pathogenesis of respiratory diseases (e.g., asthma, chronic obstructive pulmonary, lung cancer, pneumonia, and pulmonary fibrosis) and investigates targeted therapeutic treatment approaches.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
- Institute of Pharmacy, Assam Medical College and Hospital, Dibrugarh 786002, Assam, India
| | - Nasima Ahmed
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Lakshmi Vineela Nalla
- Department of Pharmacology, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India;
| | - Damanbhalang Rynjah
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Laura Kate Gadanec
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, VIC 3030, Australia;
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
| |
Collapse
|
4
|
Burns GW, Fu Z, Vegter EL, Madaj ZB, Greaves E, Flores I, Fazleabas AT. Spatial transcriptomic analysis identifies epithelium-macrophage crosstalk in endometriotic lesions. iScience 2025; 28:111790. [PMID: 39935459 PMCID: PMC11810701 DOI: 10.1016/j.isci.2025.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/27/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
The mechanisms underlying the pathophysiology of endometriosis, characterized by the presence of endometrium-like tissue outside the uterus, remain poorly understood. This study aimed to identify cell type-specific gene expression changes in superficial peritoneal endometriotic lesions and elucidate the crosstalk among the stroma, epithelium, and macrophages compared to patient-matched eutopic endometrium. Surprisingly, comparison between lesions and eutopic endometrium revealed transcriptional similarities, indicating minimal alterations in the sub-epithelial stroma and epithelium of lesions. Spatial transcriptomics highlighted increased signaling between the lesion epithelium and macrophages, emphasizing the role of the epithelium in driving lesion inflammation. We propose that the superficial endometriotic lesion epithelium orchestrates inflammatory signaling and promotes a pro-repair phenotype in macrophages, providing a new role for complement 3 in lesion pathobiology. This study underscores the significance of considering spatial context and cellular interactions in uncovering mechanisms governing disease in endometriotic lesions.
Collapse
Affiliation(s)
- Gregory W. Burns
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Zhen Fu
- Bioinformatics and Biostatistics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Erin L. Vegter
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Zachary B. Madaj
- Bioinformatics and Biostatistics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Early Life, University of Warwick, Coventry CV4 7AL, UK
| | - Idhaliz Flores
- Department of Basic Sciences, Ponce Health Sciences University, Ponce, PR 00716, USA
- Department of Obstetrics & Gynecology, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| |
Collapse
|
5
|
Manji A, Wang L, Pape CM, McCaig LA, Troitskaya A, Batnyam O, McDonald LJ, Appleton CT, Veldhuizen RA, Gill SE. Effect of aging on pulmonary cellular responses during mechanical ventilation. JCI Insight 2025; 10:e185834. [PMID: 39946196 PMCID: PMC11949020 DOI: 10.1172/jci.insight.185834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) results in substantial morbidity and mortality, especially in elderly people. Mechanical ventilation, a common supportive treatment for ARDS, is necessary for maintaining gas exchange but can also propagate injury. We hypothesized that aging leads to alterations in surfactant function, inflammatory signaling, and microvascular permeability within the lung during mechanical ventilation. Young and aged male mice were mechanically ventilated, and surfactant function, inflammation, and vascular permeability were assessed. Additionally, single-cell RNA-Seq was used to delineate cell-specific transcriptional changes. The results showed that, in aged mice, surfactant dysfunction and vascular permeability were significantly augmented, while inflammation was less pronounced. Differential gene expression and pathway analyses revealed that alveolar macrophages in aged mice showed a blunted inflammatory response, while aged endothelial cells exhibited altered cell-cell junction formation. In vitro functional analysis revealed that aged endothelial cells had an impaired ability to form a barrier. These results highlight the complex interplay between aging and mechanical ventilation, including an age-related predisposition to endothelial barrier dysfunction, due to altered cell-cell junction formation, and decreased inflammation, potentially due to immune exhaustion. It is concluded that age-related vascular changes may underlie the increased susceptibility to injury during mechanical ventilation in elderly patients.
Collapse
Affiliation(s)
- Aminmohamed Manji
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
| | - Lefeng Wang
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Medicine, and
| | - Cynthia M. Pape
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Medicine, and
| | - Lynda A. McCaig
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Medicine, and
| | - Alexandra Troitskaya
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
| | - Onon Batnyam
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
| | - Leah J.J. McDonald
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Ruud A.W. Veldhuizen
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
- Department of Medicine, and
| | - Sean E. Gill
- Centre for Critical Illness Research, London Health Sciences Centre Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology
- Department of Medicine, and
| |
Collapse
|
6
|
Gupta J, Almulla AF, Jalil AT, Jasim NY, Aminov Z, Alsaikhan F, Ramaiah P, Chinnasamy L, Jawhar ZH. Melatonin in Chemo/Radiation Therapy; Implications for Normal Tissues Sparing and Tumor Suppression: An Updated Review. Curr Med Chem 2025; 32:511-538. [PMID: 37916636 DOI: 10.2174/0109298673262122231011172100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 11/03/2023]
Abstract
Resistance to therapy and the toxicity of normal tissue are the major problems for efficacy associated with chemotherapy and radiotherapy. Drug resistance is responsible for most cases of mortality associated with cancer. Furthermore, their side effects can decrease the quality of life for surviving patients. An enhancement in the tumor response to therapy and alleviation of toxic effects remain unsolved challenges. One of the interesting topics is the administration of agents with low toxicity to protect normal tissues and/or sensitize cancers to chemo/radiotherapy. Melatonin is a natural body hormone that is known as a multitasking molecule. Although it has antioxidant properties, a large number of experiments have uncovered interesting effects of melatonin that can increase the therapeutic efficacy of chemo/radiation therapy. Melatonin can enhance anticancer therapy efficacy through various mechanisms, cells such as the immune system, and modulation of cell cycle and death pathways, tumor suppressor genes, and also through suppression of some drug resistance mediators. However, melatonin may protect normal tissues through the suppression of inflammation, fibrosis, and massive oxidative stress in normal cells and tissues. In this review, we will discuss the distinct effects of melatonin on both tumors and normal tissues. We review how melatonin may enhance radio/chemosensitivity of tumors while protecting normal tissues such as the lung, heart, gastrointestinal system, reproductive system, brain, liver, and kidney.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P., India
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | | | | | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
7
|
Dietrich J, Kang A, Tielemans B, Verleden SE, Khalil H, Länger F, Bruners P, Mentzer SJ, Welte T, Dreher M, Jonigk DD, Ackermann M. The role of vascularity and the fibrovascular interface in interstitial lung diseases. Eur Respir Rev 2025; 34:240080. [PMID: 39909504 PMCID: PMC11795288 DOI: 10.1183/16000617.0080-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/24/2024] [Indexed: 02/07/2025] Open
Abstract
Interstitial lung disease (ILD) is a clinical term that refers to a diverse group of non-neoplastic lung diseases. This group includes idiopathic and secondary pulmonary entities that are often associated with progressive pulmonary fibrosis. Currently, therapeutic approaches based on specific structural targeting of pulmonary fibrosis are limited to nintedanib and pirfenidone, which can only slow down disease progression leading to a lower mortality rate. Lung transplantation is currently the only available curative treatment, but it is associated with high perioperative mortality. The pulmonary vasculature plays a central role in physiological lung function, and vascular remodelling is considered a hallmark of the initiation and progression of pulmonary fibrosis. Different patterns of pulmonary fibrosis commonly exhibit detectable pathological features such as morphomolecular changes, including intussusceptive and sprouting angiogenesis, vascular morphometry, broncho-systemic anastomoses, and aberrant angiogenesis-related gene expression patterns. Dynamic cellular interactions within the fibrovascular interface, such as endothelial activation and endothelial-mesenchymal transition, are also observed. This review aims to summarise the current clinical, radiological and pathological diagnostic algorithm for different ILDs, including usual interstitial pneumonia/idiopathic pulmonary fibrosis, non-specific interstitial pneumonia, alveolar fibroelastosis/pleuroparenchymal fibroelastosis, hypersensitivity pneumonitis, systemic sclerosis-related ILD and coronavirus disease 2019 injury. It emphasises an interdisciplinary clinicopathological perspective. Additionally, the review covers current therapeutic strategies and knowledge about associated vascular abnormalities.
Collapse
Affiliation(s)
- Jana Dietrich
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
- J. Dietrich and A. Kang share first authorship
| | - Alice Kang
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
- J. Dietrich and A. Kang share first authorship
| | - Birger Tielemans
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
| | - Stijn E Verleden
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Edegem, Belgium
- Department of Respiratory Medicine, University Hospital Antwerp, Edegem, Belgium
| | - Hassan Khalil
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Thoracic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Florian Länger
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
| | - Philipp Bruners
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Thoracic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Danny D Jonigk
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- D.D. Jonigk and M. Ackermann share senior authorship
| | - Maximilian Ackermann
- Institute of Pathology, University Clinics Aachen, RWTH University of Aachen, Aachen, Germany
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Anatomy, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
- D.D. Jonigk and M. Ackermann share senior authorship
| |
Collapse
|
8
|
Li D, Kortekaas RK, Douglas KBI, Douwenga W, Eisel ULM, Melgert BN, Gosens R, Schmidt M. TNF signaling mediates lipopolysaccharide-induced lung epithelial progenitor cell responses in mouse lung organoids. Biomed Pharmacother 2024; 181:117704. [PMID: 39581145 DOI: 10.1016/j.biopha.2024.117704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
Bacterial respiratory infections are a major global health concern, often leading to lung injury and triggering lung repair mechanisms. Endogenous epithelial progenitor cells are crucial in this repair, yet the mechanisms remain poorly understood. This study investigates the response of lung epithelial progenitor cells to injury induced by lipopolysaccharide (LPS), a component of gram-negative bacteria, focusing on their regulation during lung repair. Lung epithelial cells (CD31-CD45-Epcam+) from wild-type and tumor necrosis factor (TNF) receptor 1/2 knock-out mice were co-cultured with wild-type fibroblasts. Organoid numbers and size were measured after 14 days of exposure to 100 ng/mL LPS. Immunofluorescence was used to assess differentiation (after 14 days), RNA sequencing analyzed gene expression changes (after 72 hours), and MTS assay assessed proliferative effects of LPS on individual cell types (after 24 hours). LPS treatment increased the number and size of wild-type lung organoids and promoted alveolar differentiation, indicated by more SPC+ organoids. RNA sequencing revealed upregulation of inflammatory and fibrosis-related markers, including Cxcl3, Cxcl5, Ccl20, Mmp13, and Il33, and enrichment of TNF-α signaling and epithelial-mesenchymal transition pathways. TNF receptor 1 deficiency inhibited LPS-induced progenitor cell activation and organoid growth. In conclusion, LPS enhances lung epithelial progenitor cell proliferation and differentiation via TNF receptor 1 signaling, highlighting potential therapeutic targets for bacterial lung injury.
Collapse
MESH Headings
- Animals
- Lipopolysaccharides/pharmacology
- Organoids/drug effects
- Organoids/metabolism
- Lung/pathology
- Lung/drug effects
- Lung/metabolism
- Mice
- Stem Cells/drug effects
- Stem Cells/metabolism
- Signal Transduction/drug effects
- Mice, Knockout
- Tumor Necrosis Factor-alpha/metabolism
- Mice, Inbred C57BL
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Cell Differentiation/drug effects
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Epithelial-Mesenchymal Transition/drug effects
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Cell Proliferation/drug effects
Collapse
Affiliation(s)
- Dan Li
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rosa K Kortekaas
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kelly B I Douglas
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Wanda Douwenga
- Department of Molecular Neurobiology and Neuroimmunology, Groningen Institute of Evolutionary Life Science, University of Groningen, Groningen, Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology and Neuroimmunology, Groningen Institute of Evolutionary Life Science, University of Groningen, Groningen, Netherlands
| | - Barbro N Melgert
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
9
|
Kaur G, Wang Q, Tjitropranoto A, Unwalla H, Rahman I. Cold ischemia time alters cell-type specific senescence leading to loss of cellular integrity in mouse lungs. Exp Lung Res 2024; 50:184-198. [PMID: 39427288 PMCID: PMC11513191 DOI: 10.1080/01902148.2024.2414974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Purpose: Ischemia-reperfusion injury (IRI) is a major challenge in lung transplantation often causing graft dysfunction and chronic airway illnesses in recipients. To prevent potential transplant related complications, strict guidelines were put in place to choose viable donor lungs with minimal risk of IRI. These regulations deem most of the donor organs unfit for transplant which then are donated for research to understand the mechanisms of health and diseases in human. However, resected organs that are being transported undergo cold ischemia that can negatively affect the tissue architecture and other cellular functions under study. Thus, it is important to assess how cold ischemia time (CIT) affects the physiological mechanism. In this respect, we are interested in studying how CIT affects cellular senescence in normal aging and various pulmonary pathologies. We thus hypothesized that prolonged CIT exhibits cell-type specific changes in lung cellular senescence in mice. Methods: Lung lobes from C57BL/6J (n = 5-8) mice were harvested and stored in UW Belzer cold storage solution for 0, 4-, 9-, 12-, 24-, and 48-h CIT. Lung cellular senescence was determined using fluorescence (C12FdG) assay and co-immunolabelling was performed to identify changes in individual cell types. Results: We found a rapid decline in the overall lung cellular senescence after 4-h of CIT in our study. Co-immunolabelling revealed the endothelial cells to be most affected by cold ischemia, demonstrating significant decrease in the endothelial cell senescence immediately after harvest. Annexin V-PI staining further revealed a prominent increase in the number of necrotic cells at 4-h CIT, thus suggesting that most of the cells undergo cell death within a few hours of cold ischemic injury. Conclusions: We thus concluded that CIT significantly lowers the cellular senescence in lung tissues and must be considered as a confounding factor for mechanistic studies in the future.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY
| | - Ariel Tjitropranoto
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY
| | - Hoshang Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
10
|
Wang J, Peng X, Yuan N, Wang B, Chen S, Wang B, Xie L. Interplay between pulmonary epithelial stem cells and innate immune cells contribute to the repair and regeneration of ALI/ARDS. Transl Res 2024; 272:111-125. [PMID: 38897427 DOI: 10.1016/j.trsl.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Mammalian lung is the important organ for ventilation and exchange of air and blood. Fresh air and venous blood are constantly delivered through the airway and vascular tree to the alveolus. Based on this, the airways and alveolis are persistently exposed to the external environment and are easily suffered from toxins, irritants and pathogens. For example, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common cause of respiratory failure in critical patients, whose typical pathological characters are diffuse epithelial and endothelial damage resulting in excessive accumulation of inflammatory fluid in the alveolar cavity. The supportive treatment is the main current treatment for ALI/ARDS with the lack of targeted effective treatment strategies. However, ALI/ARDS needs more targeted treatment measures. Therefore, it is extremely urgent to understand the cellular and molecular mechanisms that maintain alveolar epithelial barrier and airway integrity. Previous researches have shown that the lung epithelial cells with tissue stem cell function have the ability to repair and regenerate after injury. Also, it is able to regulate the phenotype and function of innate immune cells involving in regeneration of tissue repair. Meanwhile, we emphasize that interaction between the lung epithelial cells and innate immune cells is more supportive to repair and regenerate in the lung epithelium following acute lung injury. We reviewed the recent advances in injury and repair of lung epithelial stem cells and innate immune cells in ALI/ARDS, concentrating on alveolar type 2 cells and alveolar macrophages and their contribution to post-injury repair behavior of ALI/ARDS through the latest potential molecular communication mechanisms. This will help to develop new research strategies and therapeutic targets for ALI/ARDS.
Collapse
Affiliation(s)
- Jiang Wang
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Xinyue Peng
- Fu Xing Hospital, Capital Medical University, Beijing 100038, China
| | - Na Yuan
- Department of Pulmonary & Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Bin Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Siyu Chen
- Department of Thoracic Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Bo Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
11
|
Serna Villa V, Ren X. Lung Progenitor and Stem Cell Transplantation as a Potential Regenerative Therapy for Lung Diseases. Transplantation 2024; 108:e282-e291. [PMID: 38416452 DOI: 10.1097/tp.0000000000004959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Chronic lung diseases are debilitating illnesses ranking among the top causes of death globally. Currently, clinically available therapeutic options capable of curing chronic lung diseases are limited to lung transplantation, which is hindered by donor organ shortage. This highlights the urgent need for alternative strategies to repair damaged lung tissues. Stem cell transplantation has emerged as a promising avenue for regenerative treatment of the lung, which involves delivery of healthy lung epithelial progenitor cells that subsequently engraft in the injured tissue and further differentiate to reconstitute the functional respiratory epithelium. These transplanted progenitor cells possess the remarkable ability to self-renew, thereby offering the potential for sustained long-term treatment effects. Notably, the transplantation of basal cells, the airway stem cells, holds the promise for rehabilitating airway injuries resulting from environmental factors or genetic conditions such as cystic fibrosis. Similarly, for diseases affecting the alveoli, alveolar type II cells have garnered interest as a viable alveolar stem cell source for restoring the lung parenchyma from genetic or environmentally induced dysfunctions. Expanding upon these advancements, the use of induced pluripotent stem cells to derive lung progenitor cells for transplantation offers advantages such as scalability and patient specificity. In this review, we comprehensively explore the progress made in lung stem cell transplantation, providing insights into the current state of the field and its future prospects.
Collapse
Affiliation(s)
- Vanessa Serna Villa
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | | |
Collapse
|
12
|
Chen YC, Chen JH, Tsai CF, Wu CY, Chang CN, Wu CT, Yeh WL. Protective effects of paeonol against cognitive impairment in lung diseases. J Pharmacol Sci 2024; 155:101-112. [PMID: 38797534 DOI: 10.1016/j.jphs.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Pulmonary inflammation may lead to neuroinflammation resulting in neurological dysfunction, and it is associated with a variety of acute and chronic lung diseases. Paeonol is a herbal phenolic compound with anti-inflammatory and anti-oxidative properties. The aim of this study is to understand the beneficial effects of paeonol on cognitive impairment, pulmonary inflammation and its underlying mechanisms. Pulmonary inflammation-associated cognitive deficit was observed in TNFα-stimulated mice, and paeonol mitigated the cognitive impairment by reducing the expressions of interleukin (IL)-1β, IL-6, and NOD-like receptor family pyrin domain-containing 3 (NLRP3) in hippocampus. Moreover, elevated plasma miR-34c-5p in lung-inflamed mice was also reduced by paeonol. Pulmonary inflammation induced by intratracheal instillation of TNFα in mice resulted in immune cells infiltration in bronchoalveolar lavage fluid, pulmonary edema, and acute fibrosis, and these inflammatory responses were alleviated by paeonol orally. In MH-S alveolar macrophages, tumor necrosis factor (TNF) α- and phorbol myristate acetate (PMA)-induced inflammasome activation was ameliorated by paeonol. In addition, the expressions of antioxidants were elevated by paeonol, and reactive oxygen species production was reduced. In this study, paeonol demonstrates protective effects against cognitive deficits and pulmonary inflammation by exerting anti-inflammatory and anti-oxidative properties, suggesting a powerful benefit as a potential therapeutic agent.
Collapse
Affiliation(s)
- Yen-Chang Chen
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, 404333, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 88, Sec. 1, Fengxing Road, Taichung, 427213, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, No.500 Lioufeng Road, Taichung, 413305, Taiwan
| | - Chen-Yun Wu
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, 404333, Taiwan
| | - Chen-Ni Chang
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, 404333, Taiwan
| | - Chen-Teng Wu
- Department of Surgery, China Medical University Hospital, No. 2, Yude Road, Taichung, 404332, Taiwan
| | - Wei-Lan Yeh
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, 404333, Taiwan; Department of Biochemistry, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, 404333, Taiwan.
| |
Collapse
|
13
|
Di Vincenzo S, Di Sano C, D'Anna C, Ferraro M, Malizia V, Bruno A, Cristaldi M, Cipollina C, Lazzara V, Pinto P, La Grutta S, Pace E. Tyndallized bacteria prime bronchial epithelial cells to mount an effective innate immune response against infections. Hum Cell 2024; 37:1080-1090. [PMID: 38814518 PMCID: PMC11194193 DOI: 10.1007/s13577-024-01080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Airway epithelium represents a physical barrier against toxic substances and pathogens but also presents pattern recognition receptors on the epithelial cells that detect pathogens leading to molecule release and sending signals that activate both the innate and adaptive immune responses. Thus, impaired airway epithelial function and poor integrity may increase the recurrence of infections. Probiotic use in respiratory diseases as adjuvant of traditional therapy is increasingly widespread. There is growing interest in the use of non-viable heat-killed bacteria, such as tyndallized bacteria (TB), due to safety concerns and to their immunomodulatory properties. This study explores in vitro the effects of a TB blend on the immune activation of airway epithelium. 16HBE bronchial epithelial cells were exposed to different concentrations of TB. Cell viability, TB internalization, TLR2 expression, IL-6, IL-8 and TGF-βl expression/release, E-cadherin expression and wound healing were assessed. We found that TB were tolerated, internalized, increased TLR2, E-cadherin expression, IL-6 release and wound healing but decreased both IL-8 and TGF-βl release. In conclusion, TB activate TLR2 pathway without inducing a relevant pro-inflammatory response and improve barrier function, leading to the concept that TB preserve epithelial homeostasis and could be used as strategy to prevent and to manage respiratory infection, exacerbations included.
Collapse
Affiliation(s)
- Serena Di Vincenzo
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy
| | - Caterina Di Sano
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy
| | - Claudia D'Anna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy
| | - Maria Ferraro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy
| | - Velia Malizia
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy
| | - Andreina Bruno
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy.
| | | | - Chiara Cipollina
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy
- Rimed Foundation, 90100, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90100, Palermo, Italy
| | - Valentina Lazzara
- Dipartimento di Scienze Economiche, Aziendali E Statistiche-Università Degli Studi Di Palermo, 90100, Palermo, Italy
| | - Paola Pinto
- Dipartimento di Sanità Pubblica, Medicina Sperimentale e Forense-Università di Pavia, 27100, Pavia, Italy
| | - Stefania La Grutta
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy
| | - Elisabetta Pace
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy
| |
Collapse
|
14
|
Wei X, Liu N, Feng Y, Wang H, Han W, Zhuang M, Zhang H, Gao W, Lin Y, Tang X, Zheng Y. Competitive-like binding between carbon black and CTNNB1 to ΔNp63 interpreting the abnormal respiratory epithelial repair after injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172652. [PMID: 38653146 DOI: 10.1016/j.scitotenv.2024.172652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Airway epithelium is extraordinary vulnerable to damage owning to continuous environment exposure. Subsequent repair is therefore essential to restore the homeostasis of respiratory system. Disruptions in respiratory epithelial repair caused by nanoparticles exposure have been linked to various human diseases, yet implications in repair process remain incompletely elucidated. This study aims to elucidate the key stage in epithelial repair disturbed by carbon black (CB) nanoparticles, highlighting the pivotal role of ΔNp63 in mediating the epithelium repair. A competitive-like binding between CB and beta-catenin 1 (CTNNB1) to ΔNp63 is proposed to elaborate the underlying toxicity mechanism. Specifically, CB exhibits a remarkable inhibitory effect on cell proliferation, leading to aberrant airway epithelial repair, as validated in air-liquid culture. ΔNp63 drives efficient epithelial proliferation during CB exposure, and CTNNB1 was identified as a target of ΔNp63 by bioinformatics analysis. Further molecular dynamics simulation reveals that oxygen-containing functional groups on CB disrupt the native interaction of CTNNB1 with ΔNp63 through competitive-like binding pattern. This process modulates CTNNB1 expression, ultimately restraining proliferation during respiratory epithelial repair. Overall, the current study elucidates that the diminished interaction between CTNNB1 and ΔNp63 impedes respiratory epithelial repair in response to CB exposure, thereby enriching the public health risk assessment on CB-related respiratory diseases.
Collapse
Affiliation(s)
- Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Nan Liu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yawen Feng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Hongmei Wang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Weizhong Han
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Min Zhuang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Hongna Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wei Gao
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaowen Tang
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
15
|
Burns GW, Fu Z, Vegter EL, Madaj ZB, Greaves E, Flores I, Fazleabas AT. Spatial Transcriptomic Analysis Identifies Epithelium-Macrophage Crosstalk in Endometriotic Lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.586434. [PMID: 38798560 PMCID: PMC11118356 DOI: 10.1101/2024.03.23.586434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The mechanisms underlying the pathophysiology of endometriosis, characterized by the presence of endometrium-like tissue outside the uterus, remain poorly understood. This study aimed to identify cell type-specific gene expression changes in superficial peritoneal endometriotic lesions and elucidate the crosstalk among the stroma, epithelium, and macrophages compared to patient-matched eutopic endometrium. Surprisingly, comparison between lesions and eutopic endometrium revealed transcriptional similarities, indicating minimal alterations in the sub-epithelial stroma and epithelium of lesions. Spatial transcriptomics highlighted increased signaling between the lesion epithelium and macrophages, emphasizing the role of the epithelium in driving lesion inflammation. We propose that the superficial endometriotic lesion epithelium orchestrates inflammatory signaling and promotes a pro-repair phenotype in macrophages, providing a new role for Complement 3 in lesion pathobiology. This study underscores the significance of considering spatial context and cellular interactions in uncovering mechanisms governing disease in endometriotic lesions.
Collapse
|
16
|
Ambrogi M, Vezina CM. Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis. Front Cell Infect Microbiol 2024; 14:1346087. [PMID: 38736751 PMCID: PMC11082347 DOI: 10.3389/fcimb.2024.1346087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.
Collapse
Affiliation(s)
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
17
|
Zhou M, Meng L, He Q, Ren C, Li C. Valsartan attenuates LPS-induced ALI by modulating NF-κB and MAPK pathways. Front Pharmacol 2024; 15:1321095. [PMID: 38288441 PMCID: PMC10822936 DOI: 10.3389/fphar.2024.1321095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
Background: Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common respiratory disease characterized by persistent hypoxemia and an uncontrolled inflammatory response. Valsartan, an angiotensin II type 1 receptor antagonist, is clinically used to treat hypertension and has anti-inflammatory and antioxidant effects on gefitinib-induced pneumonia in rats. However, the potential therapeutic effects of valsartan on lipopolysaccharide (LPS)-induced ALI remain unclear. This study investigated the protective role of valsartan in LPS-induced ALI and its underlying mechanisms. Methods: LPS-treated BEAS-2B cells and ALI mouse model were established. BEAS-2B cells were treated with LPS (10 μg/mL) for 24h, with or without valsartan (20, 40, and 80 µM). For ALI mouse models, LPS (5 mg/kg) was administered through intratracheal injection to treat the mice for 24h, and valsartan (10 or 30 mg/kg) was injected intraperitoneally twice 2 h before and 12 h after the LPS injection. Pulmonary functional parameters were examined by an EMKA pulmonary system. Hematoxylin and eosin staining, flow cytometry, CCK-8 assay, qRT-PCR, ELISA, immunofluorescence, Western blotting, and related commercial kits were used to assess the pathological damage to the lungs, neutrophil recruitment in the lung tissue and bronchoalveolar lavage fluid (BALF), cell viability, inflammation, oxidative activity, and mucus production, respectively. Potential mechanisms were further explored using network pharmacology and Western blotting. Results: Valsartan rescued LPS-reduced cell viability of BEAS-2B cells, improved the pulmonary function, ameliorated pathological lung injury in mice with ALI, ameliorated LPS-induced neutrophil recruitment in BALF and lung tissue of mice, attenuated oxidative stress by increasing the level of SOD and decreasing that of MDA and GSSG, inhibited LPS-induced MUC5AC overproduction, decreased the LPS-induced increase in expression of pro-inflammatory cytokines/chemokines including TNF-α, IL-6, IL-1β, CXCL-1 and CXCL-2, and restored the expression of anti-inflammatory IL-10. Mechanistic studies showed that valsartan inhibits LPS-induced phosphorylation of nuclear factor-kappa B (NF-κΒ) and mitogen-activated protein kinases (MAPKs) including P38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) in both LPS-treated cells and the mouse model of ALI. Conclusion: Valsartan protects against LPS-induced ALI by attenuating oxidative stress, reducing MUC5AC production, and attenuating the inflammatory response that may involve MAPK and NF-κΒ pathways.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Respiratory and Critical Care, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Ling Meng
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Qinke He
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Chunguang Ren
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Changyi Li
- Department of Respiratory and Critical Care, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Losol P, Sokolowska M, Hwang YK, Ogulur I, Mitamura Y, Yazici D, Pat Y, Radzikowska U, Ardicli S, Yoon JE, Choi JP, Kim SH, van de Veen W, Akdis M, Chang YS, Akdis CA. Epithelial Barrier Theory: The Role of Exposome, Microbiome, and Barrier Function in Allergic Diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:705-724. [PMID: 37957791 PMCID: PMC10643858 DOI: 10.4168/aair.2023.15.6.705] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023]
Abstract
Allergic diseases are a major public health problem with increasing prevalence. These immune-mediated diseases are characterized by defective epithelial barriers, which are explained by the epithelial barrier theory and continuously emerging evidence. Environmental exposures (exposome) including global warming, changes and loss of biodiversity, pollution, pathogens, allergens and mites, laundry and dishwasher detergents, surfactants, shampoos, body cleaners and household cleaners, microplastics, nanoparticles, toothpaste, enzymes and emulsifiers in processed foods, and dietary habits are responsible for the mucosal and skin barrier disruption. Exposure to barrier-damaging agents causes epithelial cell injury and barrier damage, colonization of opportunistic pathogens, loss of commensal bacteria, decreased microbiota diversity, bacterial translocation, allergic sensitization, and inflammation in the periepithelial area. Here, we review scientific evidence on the environmental components that impact epithelial barriers and microbiome composition and their influence on asthma and allergic diseases. We also discuss the historical overview of allergic diseases and the evolution of the hygiene hypothesis with theoretical evidence.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Medical Research Center, Seoul National University, Seoul, Korea
- Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yu-Kyoung Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Jeong-Eun Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jun-Pyo Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Medical Research Center, Seoul National University, Seoul, Korea
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Medical Research Center, Seoul National University, Seoul, Korea.
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
19
|
Germano DPJ, Zanca A, Johnston ST, Flegg JA, Osborne JM. Free and Interfacial Boundaries in Individual-Based Models of Multicellular Biological systems. Bull Math Biol 2023; 85:111. [PMID: 37805982 PMCID: PMC10560655 DOI: 10.1007/s11538-023-01214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Coordination of cell behaviour is key to a myriad of biological processes including tissue morphogenesis, wound healing, and tumour growth. As such, individual-based computational models, which explicitly describe inter-cellular interactions, are commonly used to model collective cell dynamics. However, when using individual-based models, it is unclear how descriptions of cell boundaries affect overall population dynamics. In order to investigate this we define three cell boundary descriptions of varying complexities for each of three widely used off-lattice individual-based models: overlapping spheres, Voronoi tessellation, and vertex models. We apply our models to multiple biological scenarios to investigate how cell boundary description can influence tissue-scale behaviour. We find that the Voronoi tessellation model is most sensitive to changes in the cell boundary description with basic models being inappropriate in many cases. The timescale of tissue evolution when using an overlapping spheres model is coupled to the boundary description. The vertex model is demonstrated to be the most stable to changes in boundary description, though still exhibits timescale sensitivity. When using individual-based computational models one should carefully consider how cell boundaries are defined. To inform future work, we provide an exploration of common individual-based models and cell boundary descriptions in frequently studied biological scenarios and discuss their benefits and disadvantages.
Collapse
Affiliation(s)
- Domenic P. J. Germano
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010 Australia
| | - Adriana Zanca
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010 Australia
| | - Stuart T. Johnston
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010 Australia
| | - Jennifer A. Flegg
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010 Australia
| | - James M. Osborne
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010 Australia
| |
Collapse
|
20
|
Makena P, Kikalova T, Prasad GL, Baxter SA. Oxidative Stress and Lung Fibrosis: Towards an Adverse Outcome Pathway. Int J Mol Sci 2023; 24:12490. [PMID: 37569865 PMCID: PMC10419527 DOI: 10.3390/ijms241512490] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Lung fibrosis is a progressive fatal disease in which deregulated wound healing of lung epithelial cells drives progressive fibrotic changes. Persistent lung injury due to oxidative stress and chronic inflammation are central features of lung fibrosis. Chronic cigarette smoking causes oxidative stress and is a major risk factor for lung fibrosis. The objective of this manuscript is to develop an adverse outcome pathway (AOP) that serves as a framework for investigation of the mechanisms of lung fibrosis due to lung injury caused by inhaled toxicants, including cigarette smoke. Based on the weight of evidence, oxidative stress is proposed as a molecular initiating event (MIE) which leads to increased secretion of proinflammatory and profibrotic mediators (key event 1 (KE1)). At the cellular level, these proinflammatory signals induce the recruitment of inflammatory cells (KE2), which in turn, increase fibroblast proliferation and myofibroblast differentiation (KE3). At the tissue level, an increase in extracellular matrix deposition (KE4) subsequently culminates in lung fibrosis, the adverse outcome. We have also defined a new KE relationship between the MIE and KE3. This AOP provides a mechanistic platform to understand and evaluate how persistent oxidative stress from lung injury may develop into lung fibrosis.
Collapse
Affiliation(s)
- Patrudu Makena
- RAI Services Company, P.O. Box 1487, Winston-Salem, NC 27102, USA;
| | - Tatiana Kikalova
- Clarivate Analytics, 1500 Spring Garden, Philadelphia, PA 19130, USA
| | - Gaddamanugu L. Prasad
- Former Employee of RAI Services Company, Winston-Salem, NC 27101, USA
- Prasad Scientific Consulting LLC, 490 Friendship Place Ct, Lewisville, NC 27023, USA
| | - Sarah A. Baxter
- RAI Services Company, P.O. Box 1487, Winston-Salem, NC 27102, USA;
| |
Collapse
|
21
|
Yoon JK, Park S, Lee KH, Jeong D, Woo J, Park J, Yi SM, Han D, Yoo CG, Kim S, Lee CH. Machine Learning-Based Proteomics Reveals Ferroptosis in COPD Patient-Derived Airway Epithelial Cells Upon Smoking Exposure. J Korean Med Sci 2023; 38:e220. [PMID: 37489716 PMCID: PMC10366413 DOI: 10.3346/jkms.2023.38.e220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/27/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Proteomics and genomics studies have contributed to understanding the pathogenesis of chronic obstructive pulmonary disease (COPD), but previous studies have limitations. Here, using a machine learning (ML) algorithm, we attempted to identify pathways in cultured bronchial epithelial cells of COPD patients that were significantly affected when the cells were exposed to a cigarette smoke extract (CSE). METHODS Small airway epithelial cells were collected from patients with COPD and those without COPD who underwent bronchoscopy. After expansion through primary cell culture, the cells were treated with or without CSEs, and the proteomics of the cells were analyzed by mass spectrometry. ML-based feature selection was used to determine the most distinctive patterns in the proteomes of COPD and non-COPD cells after exposure to smoke extract. Publicly available single-cell RNA sequencing data from patients with COPD (GSE136831) were used to analyze and validate our findings. RESULTS Five patients with COPD and five without COPD were enrolled, and 7,953 proteins were detected. Ferroptosis was enriched in both COPD and non-COPD epithelial cells after their exposure to smoke extract. However, the ML-based analysis identified ferroptosis as the most dramatically different response between COPD and non-COPD epithelial cells, adjusted P value = 4.172 × 10-6, showing that epithelial cells from COPD patients are particularly vulnerable to the effects of smoke. Single-cell RNA sequencing data showed that in cells from COPD patients, ferroptosis is enriched in basal, goblet, and club cells in COPD but not in other cell types. CONCLUSION Our ML-based feature selection from proteomic data reveals ferroptosis to be the most distinctive feature of cultured COPD epithelial cells compared to non-COPD epithelial cells upon exposure to smoke extract.
Collapse
Affiliation(s)
- Jung-Ki Yoon
- Division of Pulmonary, and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Sungjoon Park
- Department of Computer Science and Engineering, Seoul National University, Seoul, Korea
| | - Kyoung-Hee Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dabin Jeong
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
| | - Jisu Woo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jieun Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Seung-Muk Yi
- Graduate School of Public Health, Seoul National University, Seoul, Korea
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, Korea
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Chul-Gyu Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sun Kim
- Department of Computer Science and Engineering, Seoul National University, Seoul, Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
22
|
Cheng D, Zhu X, Yan S, Shi L, Liu Z, Zhou X, Bi X. New insights into inflammatory memory of epidermal stem cells. Front Immunol 2023; 14:1188559. [PMID: 37325632 PMCID: PMC10264694 DOI: 10.3389/fimmu.2023.1188559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Inflammatory memory, as one form of innate immune memory, has a wide range of manifestations, and its occurrence is related to cell epigenetic modification or metabolic transformation. When re-encountering similar stimuli, executing cells with inflammatory memory function show enhanced or tolerated inflammatory response. Studies have identified that not only hematopoietic stem cells and fibroblasts have immune memory effects, but also stem cells from various barrier epithelial tissues generate and maintain inflammatory memory. Epidermal stem cells, especially hair follicle stem cells, play an essential role in wound healing, immune-related skin diseases, and skin cancer development. In recent years, it has been found that epidermal stem cells from hair follicle can remember the inflammatory response and implement a more rapid response to subsequent stimuli. This review updates the advances of inflammatory memory and focuses on its mechanisms in epidermal stem cells. We are finally looking forward to further research on inflammatory memory, which will allow for the development of precise strategies to manipulate host responses to infection, injury, and inflammatory skin disease.
Collapse
Affiliation(s)
- Dapeng Cheng
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaochen Zhu
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shaochen Yan
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Linli Shi
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi Liu
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhou
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xinling Bi
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
23
|
Furci F, Murdaca G, Pelaia C, Imbalzano E, Pelaia G, Caminati M, Allegra A, Senna G, Gangemi S. TSLP and HMGB1: Inflammatory Targets and Potential Biomarkers for Precision Medicine in Asthma and COPD. Biomedicines 2023; 11:437. [PMID: 36830972 PMCID: PMC9953666 DOI: 10.3390/biomedicines11020437] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The airway epithelium, through pattern recognition receptors expressed transmembrane or intracellularly, acts as a first line of defense for the lungs against many environmental triggers. It is involved in the release of alarmin cytokines, which are important mediators of inflammation, with receptors widely expressed in structural cells as well as innate and adaptive immune cells. Knowledge of the role of epithelial cells in orchestrating the immune response and mediating the clearance of invading pathogens and dead/damaged cells to facilitate resolution of inflammation is necessary to understand how, in many chronic lung diseases, there is a persistent inflammatory response that becomes the basis of underlying pathogenesis. This review will focus on the role of pulmonary epithelial cells and of airway epithelial cell alarmins, in particular thymic stromal lymphopoietin (TSLP) and high mobility group box 1 (HMGB1), as key mediators in driving the inflammation of chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD), evaluating the similarities and differences. Moreover, emerging concepts regarding the therapeutic role of molecules that act on airway epithelial cell alarmins will be explored for a precision medicine approach in the context of pulmonary diseases, thus allowing the use of these molecules as possible predictive biomarkers of clinical and biological response.
Collapse
Affiliation(s)
- Fabiana Furci
- Allergy Unit and Asthma Center, Verona University Hospital, 37134 Verona, Italy
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino IRCCS, University of Genova, Viale Benedetto XV, n. 6, 16132 Genova, Italy
| | - Corrado Pelaia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Egidio Imbalzano
- Division of Internal Medicine, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Marco Caminati
- Department of Medicine, University of Verona and Verona University Hospital, 37134 Verona, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Gianenrico Senna
- Allergy Unit and Asthma Center, Verona University Hospital, 37134 Verona, Italy
- Department of Medicine, University of Verona and Verona University Hospital, 37134 Verona, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
24
|
Christenson JL, Williams MM, Richer JK. The underappreciated role of resident epithelial cell populations in metastatic progression: contributions of the lung alveolar epithelium. Am J Physiol Cell Physiol 2022; 323:C1777-C1790. [PMID: 36252127 PMCID: PMC9744653 DOI: 10.1152/ajpcell.00181.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Metastatic cancer is difficult to treat and is responsible for the majority of cancer-related deaths. After cancer cells initiate metastasis and successfully seed a distant site, resident cells in the tissue play a key role in determining how metastatic progression develops. The lung is the second most frequent site of metastatic spread, and the primary site of metastasis within the lung is alveoli. The most abundant cell type in the alveolar niche is the epithelium. This review will examine the potential contributions of the alveolar epithelium to metastatic progression. It will also provide insight into other ways in which alveolar epithelial cells, acting as immune sentinels within the lung, may influence metastatic progression through their various interactions with cells in the surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michelle M Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
25
|
Townsend L, Martin-Loeches I. Invasive Aspergillosis in the Intensive Care Unit. Diagnostics (Basel) 2022; 12:2712. [PMID: 36359555 PMCID: PMC9689891 DOI: 10.3390/diagnostics12112712] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 08/28/2023] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a serious condition resulting in significant mortality and morbidity among patients in intensive care units (ICUs). There is a growing number of at-risk patients for this condition with the increasing use of immunosuppressive therapies. The diagnosis of IPA can be difficult in ICUs, and relies on integration of clinical, radiological, and microbiological features. In this review, we discuss patient populations at risk for IPA, as well as the diagnostic criteria employed. We review the fungal biomarkers used, as well as the challenges in distinguishing colonization with Aspergillus from invasive disease. We also address the growing concern of multidrug-resistant Aspergillosis and review the new and novel therapeutics which are in development to combat this.
Collapse
Affiliation(s)
- Liam Townsend
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James’s Hospital, D08 NHY1 Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, D02 PN91 Dublin, Ireland
- Hospital Clinic, Institut D’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Ciberes, 08036 Barcelona, Spain
| |
Collapse
|
26
|
Spagnolo P, Tonelli R, Samarelli AV, Castelli G, Cocconcelli E, Petrarulo S, Cerri S, Bernardinello N, Clini E, Saetta M, Balestro E. The role of immune response in the pathogenesis of idiopathic pulmonary fibrosis: far beyond the Th1/Th2 imbalance. Expert Opin Ther Targets 2022; 26:617-631. [PMID: 35983984 DOI: 10.1080/14728222.2022.2114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION . Idiopathic pulmonary fibrosis (IPF) is a chronic disease of unknown origin characterized by progressive scarring of the lung leading to irreversible loss of function. Despite the availability of two drugs that are able to slow down disease progression, IPF remains a deadly disease. The pathogenesis of IPF is poorly understood, but a dysregulated wound healing response following recurrent alveolar epithelial injury is thought to be crucial. Areas covered. In the last few years, the role of the immune system in IPF pathobiology has been reconsidered; indeed, recent data suggest that a dysfunctional immune system may promote and unfavorable interplay with pro-fibrotic pathways thus acting as a cofactor in disease development and progression. In this article, we review and critically discuss the role of T cells in the pathogenesis and progression of IPF in the attempt to highlight ways in which further research in this area may enable the development of targeted immunomodulatory therapies for this dreadful disease. EXPERT OPINION A better understanding of T cells interactions has the potential to facilitate the development of immune modulators targeting multiple T cell-mediated pathways thus halting disease initiation and progression.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gioele Castelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisabetta Cocconcelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Simone Petrarulo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicol Bernardinello
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marina Saetta
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisabetta Balestro
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
27
|
Kandhwal M, Behl T, Singh S, Sharma N, Arora S, Bhatia S, Al-Harrasi A, Sachdeva M, Bungau S. Role of matrix metalloproteinase in wound healing. Am J Transl Res 2022; 14:4391-4405. [PMID: 35958464 PMCID: PMC9360851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Matrix metalloproteinases (MMPs) are a group of endopeptidases that play a vital role in the restoration of damaged skin. Through mediating various cellular events such as angiogenesis and vasodilation, MMPs are very crucial for the mechanism of wound healing. These enzymes are endopeptidases that are reliant on zinc which are concealed through the extracellular matrix (ECM). MMPs have different targets in different phases of wound healing through which they are capable of promoting timely healing in the body. This review discusses all the possible role of MMPs and their inhibitors that are involved during every step of the wound healing process. This review highlights the latest advances in the respective field about the regulation and mediation of MMPs in human skin and how these studies can be applied to other branches of medical sciences as well. Published papers were searched via MEDLINE, PubMed and MDPI from the available peer reviewed journals. Research done in the past suggests that active MMPs are involved in the healing progression of the wounds or they have a positive effect towards healing of wounds. Present studies in the relative field will further enhance the knowledge about enzymes working along with their inhibitors. These studies will help in a way to resolve some of the parameters that are necessary for modulating them either positively or negatively.
Collapse
Affiliation(s)
- Mimansa Kandhwal
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of NizwaNizwa 342001, Oman
- School of Health Science, University of Petroleum and Energy StudiesDehradun 248007, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of NizwaNizwa 342001, Oman
| | - Monika Sachdeva
- Fatima College of Health SciencesAl Ain 50, United Arab Emirates
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of OradeaOradea 410028, Romania
| |
Collapse
|
28
|
Protective Abilities of an Inhaled DPI Formulation Based on Sodium Hyaluronate against Environmental Hazards Targeting the Upper Respiratory Tract. Pharmaceutics 2022; 14:pharmaceutics14071323. [PMID: 35890219 PMCID: PMC9318658 DOI: 10.3390/pharmaceutics14071323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The exposure of lung epithelium to environmental hazards is linked to several chronic respiratory diseases. We assessed the ability of an inhaled dry powder (DPI) medical device product (PolmonYDEFENCE/DYFESATM, SOFAR SpA, Trezzano Rosa, Italy), using a formulation of sodium hyaluronate (Na-Hya) as the key ingredient as a defensive barrier to protect the upper respiratory tract. Specifically, it was evaluated if the presence of the barrier formed by sodium hyaluronate present on the cells, reducing direct contact of the urban dust (UD) with the surface of cells can protect them in an indirect manner by the inflammatory and oxidative process started in the presence of the UD. Cytotoxicity and the protection capability against the oxidative stress of the product were tested in vitro using Calu-3 cells exposure to UD as a trigger for oxidative stress. Inflammation and wound healing were assessed using an air-liquid interface (ALI) culture model of the Calu-3 cells. Deposition studies of the formulation were conducted using a modified Anderson cascade impactor (ACI) and the monodose PillHaler® dry powder inhaler (DPI) device, Na-Hya was detected and quantified using high-performance-liquid-chromatography (HPLC). Solubilised PolmonYDEFENCE/DYFESATM gives protection against oxidative stress in Calu-3 cells in the short term (2 h) without any cytotoxic effects. ALI culture experiments, testing the barrier-forming (non-solubilised) capabilities of PolmonYDEFENCE/DYFESATM, showed that the barrier layer reduced inflammation triggered by UD and the time for wound closure compared to Na-Hya alone. Deposition experiments using the ACI and the PillHaler® DPI device showed that the majority of the product was deposited in the upper part of the respiratory tract. Finally, the protective effect of the product was efficacious for up to 24 h without affecting mucus production. We demonstrated the potential of PolmonYDEFENCE/DYFESATM as a preventative barrier against UD, which may aid in protecting the upper respiratory tract against environmental hazards and help with chronic respiratory diseases.
Collapse
|
29
|
Lucas CD, Medina CB, Bruton FA, Dorward DA, Raymond MH, Tufan T, Etchegaray JI, Barron B, Oremek ME, Arandjelovic S, Farber E, Onngut-Gumuscu S, Ke E, Whyte MKB, Rossi AG, Ravichandran KS. Pannexin 1 drives efficient epithelial repair after tissue injury. Sci Immunol 2022; 7:eabm4032. [PMID: 35559667 PMCID: PMC7612772 DOI: 10.1126/sciimmunol.abm4032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Epithelial tissues such as lung and skin are exposed to the environment and therefore particularly vulnerable to damage during injury or infection. Rapid repair is therefore essential to restore function and organ homeostasis. Dysregulated epithelial tissue repair occurs in several human disease states, yet how individual cell types communicate and interact to coordinate tissue regeneration is incompletely understood. Here, we show that pannexin 1 (Panx1), a cell membrane channel activated by caspases in dying cells, drives efficient epithelial regeneration after tissue injury by regulating injury-induced epithelial proliferation. Lung airway epithelial injury promotes the Panx1-dependent release of factors including ATP, from dying epithelial cells, which regulates macrophage phenotype after injury. This process, in turn, induces a reparative response in tissue macrophages that includes the induction of the soluble mitogen amphiregulin, which promotes injury-induced epithelial proliferation. Analysis of regenerating lung epithelium identified Panx1-dependent induction of Nras and Bcas2, both of which positively promoted epithelial proliferation and tissue regeneration in vivo. We also established that this role of Panx1 in boosting epithelial repair after injury is conserved between mouse lung and zebrafish tailfin. These data identify a Panx1-mediated communication circuit between epithelial cells and macrophages as a key step in promoting epithelial regeneration after injury.
Collapse
Affiliation(s)
- Christopher D. Lucas
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, UK
- Institute for Regeneration and Repair, Edinburgh BioQuarter, UK
| | - Christopher B. Medina
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Finnius A. Bruton
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, UK
| | - David A. Dorward
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, UK
| | - Michael H. Raymond
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Turan Tufan
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - J. Iker Etchegaray
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Brady Barron
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Magdalena E.M. Oremek
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, UK
| | - Sanja Arandjelovic
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Suna Onngut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Eugene Ke
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Moira KB Whyte
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, UK
| | - Adriano G. Rossi
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, UK
| | - Kodi S. Ravichandran
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Inflammation Research Centre, VIB, and the Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
30
|
Vitamin D: A Role Also in Long COVID-19? Nutrients 2022; 14:nu14081625. [PMID: 35458189 PMCID: PMC9028162 DOI: 10.3390/nu14081625] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has quickly become a global pandemic. Reports from different parts of the world indicate that a significant proportion of people who have recovered from COVID-19 are suffering from various health problems collectively referred to as “long COVID-19”. Common symptoms include fatigue, shortness of breath, cough, joint pain, chest pain, muscle aches, headaches, and so on. Vitamin D is an immunomodulatory hormone with proven efficacy against various upper respiratory tract infections. Vitamin D can inhibit hyperinflammatory reactions and accelerate the healing process in the affected areas, especially in lung tissue. Moreover, vitamin D deficiency has been associated with the severity and mortality of COVID-19 cases, with a high prevalence of hypovitaminosis D found in patients with COVID-19 and acute respiratory failure. Thus, there are promising reasons to promote research into the effects of vitamin D supplementation in COVID-19 patients. However, no studies to date have found that vitamin D affects post-COVID-19 symptoms or biomarkers. Based on this scenario, this review aims to provide an up-to-date overview of the potential role of vitamin D in long COVID-19 and of the current literature on this topic.
Collapse
|
31
|
Shi Q, Wang Q, Liu L, Chen J, Wang B, Bellusci S, Chen C, Dong N. FGF10 protects against particulate matter (PM)-induced lung injury via regulation of endoplasmic reticulum stress. Int Immunopharmacol 2022; 105:108552. [PMID: 35114441 DOI: 10.1016/j.intimp.2022.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/08/2022] [Accepted: 01/16/2022] [Indexed: 11/05/2022]
Abstract
Exposure of the lungs to particulate matter (PM) leads to the development of respiratory disease and involves mechanisms such as oxydative stress, mitochondrial dysfunction and endoplasmic reticulum (ER) stress. However, there are no effective therapies to treat PM-induced lung diseases. Fibroblast growth factor 10 (FGF10) is a multifunctional growth factor mediating mesenchymal-to-epithelial signaling and displaying a significant therapeutic potential following injury. The present research aims to investigate the regulatory mechanism of FGF10 on ER stress in PM-induced lung injury. PM-induced lung injury leads to peribronchial wall thickening and marked infiltration of inflammatory cells which is associated with increased secretion of inflammatory cytokines. The results show that FGF10 treatment attenuates PM-induced lung injury in vivo and reversed ER stress protein GRP78 and CHOP levels. Moreover, comparison of human bronchial epithelial cells cultured with PM and FGF10 vs PM alone shows sustained cell proliferation and restrained secretion of inflammatory cytokines supporting FGF10's protective role. Significantly, both ERK1/2 and PI3K/AKT inhibitors largely abolished the impact of FGF10 on PM-induced ER stress. Taken together, both in vivo and in vitro experiments showed that FGF10, via the activation of ERK1/2 and PI3K/AKT signaling, protects against PM-induced lung injury through the regulation of ER stress. Therefore, FGF10 represents a potential therapy for PM-induced lung injury.
Collapse
Affiliation(s)
- Qiangqiang Shi
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Qiang Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Li Liu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Junjie Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Beibei Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Saverio Bellusci
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392, Giessen, Germany.
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| | - Nian Dong
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| |
Collapse
|
32
|
Kazmi S, Khan MA, Shamma T, Altuhami A, Ahmed HA, Mohammed Assiri A, Broering DC. Targeting Interleukin-10 Restores Graft Microvascular Supply and Airway Epithelium in Rejecting Allografts. Int J Mol Sci 2022; 23:1269. [PMID: 35163192 PMCID: PMC8836023 DOI: 10.3390/ijms23031269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Interleukin-10 (IL-10) is a vital regulatory cytokine, which plays a constructive role in maintaining immune tolerance during an alloimmune inflammation. Our previous study highlighted that IL-10 mediated immunosuppression established the immune tolerance phase and thereby modulated both microvascular and epithelial integrity, which affected inflammation-associated graft malfunctioning and sub-epithelial fibrosis in rejecting allografts. Here, we further investigated the reparative effects of IL-10 on microvasculature and epithelium in a mouse model of airway transplantation. To investigate the IL-10 mediated microvascular and epithelial repair, we depleted and reconstituted IL-10, and monitored graft microvasculature, airway epithelium, and associated repair proteins. Our data demonstrated that both untreated control allografts and IL-10 (-) allografts showed a significant early (d6) increase in microvascular leakiness, drop-in tissue oxygenation, blood perfusion, and denuded airway epithelium, which is associated with loss of adhesion protein Fascin-1 and β-catenin on vascular endothelial cells at d10 post-transplantation. However, IL-10 (+) promotes early microvascular and airway epithelial repair, and a proportional increase in endothelial Fascin-1, and β-catenin at d10 post-transplantation. Moreover, airway epithelial cells also express a significantly higher expression of FOXJ1 and β-catenin in syngrafts and IL-10 (+) allografts as compared to IL-10 (-) and untreated controls at d10 post-transplantation. Collectively, these findings demonstrated that IL-10 mediated microvascular and epithelial changes are associated with the expression of FOXJ1, β-catenin, and Fascin-1 proteins on the airway epithelial and vascular endothelial cells, respectively. These findings establish a potential reparative modulation of IL-10 associated microvascular and epithelial repair, which could provide a vital therapeutic strategy to facilitate graft repair in clinical settings.
Collapse
Affiliation(s)
- Shadab Kazmi
- Transplantation Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (S.K.); (T.S.); (A.A.); (D.C.B.)
| | - Mohammad Afzal Khan
- Transplantation Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (S.K.); (T.S.); (A.A.); (D.C.B.)
| | - Talal Shamma
- Transplantation Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (S.K.); (T.S.); (A.A.); (D.C.B.)
| | - Abdullah Altuhami
- Transplantation Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (S.K.); (T.S.); (A.A.); (D.C.B.)
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (H.A.A.); (A.M.A.)
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (H.A.A.); (A.M.A.)
- College of Medicine, Alfaisal University, Riyadh 12713, Saudi Arabia
| | - Dieter Clemens Broering
- Transplantation Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (S.K.); (T.S.); (A.A.); (D.C.B.)
| |
Collapse
|
33
|
Park K, Kim K, Ryu TY, Lee J, Lee MS, Son MY, Lee SJ, Park YJ, Cho HS, Kim DS. Cellular response of lung fibroblasts and epithelial cells to particulate matter 10 treatment examined via comparative transcriptome analysis. Mol Med Rep 2022; 25:82. [PMID: 35029293 DOI: 10.3892/mmr.2022.12598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/09/2021] [Indexed: 11/06/2022] Open
Abstract
Particulate matter (PM) can be categorized by particle size (PM10, PM2.5 and PM1.0), which is an important factor affecting the biological response. Exposure to PM in the air (dust, smoke, dirt and biological contaminants) is clearly associated with lung disease (lung cancer, pneumonia and asthma). Although PM primarily affects lung epithelial cells, the specific response of related cell types to PM remains to be elucidated. The present study performed Gene Ontology (GO) analysis programs (Clustering GO and Database for Annotation, Visualization and Integrated Discovery) on differentially expressed genes in lung epithelial cells (WI‑38 VA‑13) and fibroblasts (WI‑38) following treatment with PM10 and evaluated the cell‑specific biological responses related to cell proliferation, apoptosis, adhesion and extracellular matrix production. The results suggested that short‑ or long‑term exposure to PM may affect cell condition and may consequently be related to several human diseases, including lung cancer and cardiopulmonary disease.
Collapse
Affiliation(s)
- Kunhyang Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kwangho Kim
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Tae Young Ryu
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jinkwon Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Mi-Young Son
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Seon-Jin Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Jun Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyun-Soo Cho
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dae-Soo Kim
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
34
|
Gong F, Li R, Zheng X, Chen W, Zheng Y, Yang Z, Chen Y, Qu H, Mao E, Chen E. OLFM4 Regulates Lung Epithelial Cell Function in Sepsis-Associated ARDS/ALI via LDHA-Mediated NF-κB Signaling. J Inflamm Res 2021; 14:7035-7051. [PMID: 34955649 PMCID: PMC8694847 DOI: 10.2147/jir.s335915] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is one of the leading causes of death in patients with sepsis. As such, early and accurate identification of sepsis-related ARDS is critical. METHODS Bioinformatic analysis was used to explore the GEO datasets. ELISA method was used to detect the plasma or cellular supernatant of relevant proteins. Quantitative real-time PCR was used for mRNA measurements and Western blot was applied for protein measurements. Immunohistochemistry staining and Immunofluorescence staining were used to identify the localization of OLFM4. Cecal ligation and puncture (CLP) model was used to establish sepsis model. RESULTS The bioinformatic analysis results identified ten genes (CAMP, LTF, RETN, LCN2, ELANE, PGLYRP1, BPI, DEFA4, MPO, and OLFM4) as critical in sepsis and sepsis-related ARDS. OLFM4, LCN2, and BPI were further demonstrated to have diagnostic values in sepsis-related ARDS. Plasma expression of OLFM4 and LCN2 was also upregulated in sepsis-related ARDS patients compared to septic patients alone. OLFM4 expression was significantly increased in the lung tissues of septic mice and was co-localized with Ly6G+ neutrophils, F4/80+ macrophages and pro-surfactant C+ lung epithelial cells. In vitro data showed that OLFM4 expression in lung epithelial cells was downregulated upon LPS stimulation, whereas neutrophil media induced OLFM4 expression in lung epithelial cells. Overexpression of OLFM4 and treatment with recombinant OLFM4 effectively suppressed LPS-induced pro-inflammatory responses in lung epithelial cells. Furthermore, the increased levels of LDHA phosphorylation and the downstream NF-κB activation induced by LPS in epithelial cells were effectively diminished by OLFM4 overexpression and recombinant OLFM4 treatment via a reduction in ROS production and HIF1α expression. CONCLUSION OLFM4 may regulate the pro-inflammatory response of lung epithelial cells in sepsis-related ARDS by modulating metabolic disorders; this result could provide new insights into the treatment of sepsis-induced ARDS.
Collapse
Affiliation(s)
- Fangchen Gong
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiangtao Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Weiwei Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Yanjun Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
35
|
Differential Expression of Mitosis and Cell Cycle Regulatory Genes during Recovery from an Acute Respiratory Virus Infection. Pathogens 2021; 10:pathogens10121625. [PMID: 34959580 PMCID: PMC8708581 DOI: 10.3390/pathogens10121625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/27/2022] Open
Abstract
Acute respiratory virus infections can have profound and long-term effects on lung function that persist even after the acute responses have fully resolved. In this study, we examined gene expression by RNA sequencing in the lung tissue of wild-type BALB/c mice that were recovering from a sublethal infection with the pneumonia virus of mice (PVM), a natural rodent pathogen of the same virus family and genus as the human respiratory syncytial virus. We compared these responses to gene expression in PVM-infected mice treated with Lactobacillus plantarum, an immunobiotic agent that limits inflammation and averts the negative clinical sequelae typically observed in response to acute infection with this pathogen. Our findings revealed prominent differential expression of inflammation-associated genes as well as numerous genes and gene families implicated in mitosis and cell-cycle regulation, including cyclins, cyclin-dependent kinases, cell division cycle genes, E2F transcription factors, kinesins, centromere proteins, and aurora kinases, among others. Of particular note was the differential expression of the cell division cycle gene Cdc20b, which was previously identified as critical for the ex vivo differentiation of multi-ciliated cells. Collectively, these findings provided us with substantial insight into post-viral repair processes and broadened our understanding of the mechanisms underlying Lactobacillus-mediated protection.
Collapse
|
36
|
Wang J, Gao S, Zhang J, Li C, Li H, Lin J. Interleukin-22 attenuates allergic airway inflammation in ovalbumin-induced asthma mouse model. BMC Pulm Med 2021; 21:385. [PMID: 34836520 PMCID: PMC8620641 DOI: 10.1186/s12890-021-01698-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Allergic asthma is a chronic airway inflammatory disease with a number of cytokines participating in its pathogenesis and progress. Interleukin (IL)-22, which is derived from lymphocytes, acts on epithelial cells and play a role in the chronic airway inflammation. However, the actual role of IL-22 in allergic asthma is still unclear. Therefore, we explored the effect of IL-22 on allergic airway inflammation and airway hyperresponsiveness (AHR) in an ovalbumin (OVA)-induced asthma mouse model. METHODS To evaluate the effect of IL-22 in an allergic asthma model, BALB/c mice were sensitized and challenged with OVA; then the recombinant mouse IL-22 was administered intranasally 24 h prior to each challenge. The IL-22 levels in lung homogenates and bronchoalveolar lavage fluid (BALF) were measured by enzyme linked immunosorbent assay, respectively. AHR was evaluated through indicators including airways resistance (Rrs), elastance (Ers) and compliance (Crs); the inflammatory cell infiltration was assessed by quantification of differential cells counts in BALF and lung tissues stained by hematoxylin and eosin (H&E); IL-22 specific receptors were determined by immunohistochemistry staining. RESULTS The concentration of IL-22 was significantly elevated in the OVA-induced mice compared with the control mice in lung homogenates and BALF. In the OVA-induced mouse model, IL-22 administration could significantly attenuate AHR, including Rrs, Ers and Crs, decrease the proportion of eosinophils in BALF and reduce inflammatory cell infiltration around bronchi and their concomitant vessels, compared with the OVA-induced group. In addition, the expression of IL-22RA1 and IL-10RB in the lung tissues of OVA-induced mice was significantly increased compared with the control mice, while it was dramatically decreased after the treatment with IL-22, but not completely attenuated in the IL-22-treated mice when compared with the control mice. CONCLUSION Interleukin-22 could play a protective role in an OVA-induced asthma model, by suppressing the inflammatory cell infiltration around bronchi and their concomitant vessels and airway hyperresponsiveness, which might associate with the expression of its heterodimer receptors. Thus, IL-22 administration might be an effective strategy to attenuate allergic airway inflammation.
Collapse
Affiliation(s)
- Jingru Wang
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2, East Yinghua Road, Chaoyang Disteict, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Shengnan Gao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, Graduate School of Chinese Academy of Medical Sciences, Peking Union Medical College, China-Japan Friendship Hospital, Beijing, 100730 China
| | - Jingyuan Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, Graduate School of Chinese Academy of Medical Sciences, Peking Union Medical College, China-Japan Friendship Hospital, Beijing, 100730 China
| | - Chunxiao Li
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2, East Yinghua Road, Chaoyang Disteict, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Hongwen Li
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2, East Yinghua Road, Chaoyang Disteict, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Jiangtao Lin
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2, East Yinghua Road, Chaoyang Disteict, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| |
Collapse
|
37
|
Zhang D, Zhang JT, Pan Y, Liu XF, Xu JW, Cui WJ, Qiao XR, Dong L. Syndecan-1 Shedding by Matrix Metalloproteinase-9 Signaling Regulates Alveolar Epithelial Tight Junction in Lipopolysaccharide-Induced Early Acute Lung Injury. J Inflamm Res 2021; 14:5801-5816. [PMID: 34764672 PMCID: PMC8576260 DOI: 10.2147/jir.s331020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Alveolar epithelial tight junction damage and glycocalyx syndecan-1 (SDC-1) degrading are key factors to pulmonary edema of acute lung injury (ALI). Matrix metalloproteinase-9 (MMP-9) was involved in glycocalyx shedding, which was vital in SDC-1 degrading. This study aimed to investigate the effects of MMP-9-mediated SDC-1 shedding on tight junction in LPS-induced ALI. METHODS Mice were intratracheally atomized with 5 mg/kg LPS to stimulate different periods and LPS stimulation for 6 hours for further studies. A549 cells was stimulated for 6 hours by active MMP-9 protein to assess the effects of active MMP-9 protein on SDC-1 and tight junction. Afterward, the mice treated with MMP-9 shRNA or A549 cells were treated with MMP-9 siRNA before LPS stimulation for 6 hours to explore the effects on glycocalyx SDC-1 and tight junction. Moreover, the mice were treated with recombinant SDC-1 protein or A549 cells were over-expressed by pc-SDC-1 before LPS stimulation for 6 hours to explore the effects of SDC-1 on tight junction. RESULTS The mice persistent exposure to LPS showed that MMP-9 expression, glycocalyx SDC-1 shedding (SDC-1 decreased in alveolar epithelium and increased in the BALF), tight junction impairment, FITC-albumin infiltration, and other phenomena began to appear after 6 hours of LPS treatment in this study. The levels of SDC-1 and tight junction significantly decreased by active MMP-9 protein stimulation for 6 hours in the A549 cells. Therefore, LPS stimulation for six hours was selected for investigating the underlying effects of MMP-9-mediated SDC-1 shedding on the alveolar epithelial tight junction and pulmonary edema. Further vivo analysis showed that down regulation MMP-9 expression by MMP-9 shRNA significantly alleviated glycocalyx SDC-1 shedding (SDC-1 increased in alveolar epithelium and decreased in the BALF), tight junction (occludin and ZO-1) damage, and FITC-albumin infiltration in LPS-induced early ALI mice. The vitro results also showed that MMP-9 siRNA alleviated glycocalyx SDC-1 shedding (SDC-1 increased in cell culture medium and decreased in cell surface) and tight junction damage by downregulating MMP-9 expression in LPS-stimulated A549 cells. In addition, pretreatment with recombinant mouse SDC-1 protein significantly alleviated glycocalyx (SDC-1 increased in alveolar epithelium) and tight junction damage, and FITC-albumin infiltration in LPS-induced early ALI mice. Overexpression SDC-1 by pc-SDC-1 also significantly decreased tight junction damage in LPS-stimulated A549 cells. CONCLUSION Glycocalyx SDC-1 shedding mediated by MMP-9 significantly aggravated tight junction damage, which further increased the pulmonary edema.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jin-tao Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yun Pan
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Xiao-fei Liu
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jia-wei Xu
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, People’s Republic of China
| | - Wen-jing Cui
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Xin-rui Qiao
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Liang Dong
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, People’s Republic of China
| |
Collapse
|
38
|
Burgoyne RA, Fisher AJ, Borthwick LA. The Role of Epithelial Damage in the Pulmonary Immune Response. Cells 2021; 10:cells10102763. [PMID: 34685744 PMCID: PMC8534416 DOI: 10.3390/cells10102763] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.
Collapse
Affiliation(s)
- Rachel Ann Burgoyne
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Andrew John Fisher
- Regenerative Medicine, Stem Cells and Transplantation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Lee Anthony Borthwick
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: ; Tel.: +44-191-208-3112
| |
Collapse
|
39
|
Reparation of an Inflamed Air-Liquid Interface Cultured A549 Cells with Nebulized Nanocurcumin. Pharmaceutics 2021; 13:pharmaceutics13091331. [PMID: 34575407 PMCID: PMC8466083 DOI: 10.3390/pharmaceutics13091331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022] Open
Abstract
The anti-inflammatory, antifibrotic and antimicrobial activities of curcumin (CUR) are missed because of its low solubility in aqueous media, low bioavailability, and structural lability upon oral intake. Soft nanoparticles such as nanoliposomes are not efficient as CUR carriers, since crystalline CUR is expelled from them to physiological media. Nanostructures to efficiently trap and increase the aqueous solubility of CUR are needed to improve both oral or nebulized delivery of CUR. Here we showed that SRA1 targeted nanoarchaeosomes (nATC) [1:0.4 w:w:0.04] archaeolipids, tween 80 and CUR, 155 ± 16 nm sized of −20.7 ± 3.3 z potential, retained 0.22 mg CUR ± 0.09 per 12.9 mg lipids ± 4.0 (~600 μM CUR) in front to dilution, storage, and nebulization. Raman and fluorescence spectra and SAXS patterns were compatible with a mixture of enol and keto CUR tautomers trapped within the depths of nATC bilayer. Between 20 and 5 µg CUR/mL, nATC was endocytosed by THP1 and A549 liquid–liquid monolayers without noticeable cytotoxicity. Five micrograms of CUR/mL nATC nebulized on an inflamed air–liquid interface of A549 cells increased TEER, normalized the permeation of LY, and decreased il6, tnfα, and il8 levels. Overall, these results suggest the modified pharmacodynamics of CUR in nATC is useful for epithelia repair upon inflammatory damage, deserving further deeper exploration, particularly related to its targeting ability.
Collapse
|
40
|
Sierra-Rodero B, Cruz-Bermúdez A, Nadal E, Garitaonaindía Y, Insa A, Mosquera J, Casal-Rubio J, Dómine M, Majem M, Rodriguez-Abreu D, Martinez-Marti A, De Castro Carpeño J, Cobo M, López Vivanco G, Del Barco E, Bernabé Caro R, Viñolas N, Barneto Aranda I, Viteri S, Massuti B, Laza-Briviesca R, Casarrubios M, García-Grande A, Romero A, Franco F, Provencio M. Clinical and molecular parameters associated to pneumonitis development in non-small-cell lung cancer patients receiving chemoimmunotherapy from NADIM trial. J Immunother Cancer 2021; 9:e002804. [PMID: 34446577 PMCID: PMC8395363 DOI: 10.1136/jitc-2021-002804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Pneumonitis (Pn) is one of the main immune-related adverse effects, having a special importance in lung cancer, since they share affected tissue. Despite its clinical relevance, Pn development remains an unpredictable treatment adverse effect, whose mechanisms are mainly unknown, being even more obscure when it is associated to chemoimmunotherapy. METHODS In order to identify parameters associated to treatment related Pn, we analyzed clinical variables and molecular parameters from 46 patients with potentially resectable stage IIIA non-small-cell lung cancer treated with neoadjuvant chemoimmunotherapy included in the NADIM clinical trial (NCT03081689). Pn was defined as clinical or radiographic evidence of lung inflammation without alternative diagnoses, from treatment initiation to 180 days. RESULTS Among 46 patients, 12 developed Pn (26.1%). Sex, age, smoking status, packs-year, histological subtype, clinical or pathological response, progression-free survival, overall survival and number of nivolumab cycles, were not associated to Pn development. Regarding molecular parameters at diagnosis, Pn development was not associated to programmed death ligand 1, TPS, T cell receptor repertoire parameters, or tumor mutational burden. However, patients who developed Pn had statistically significant lower blood median levels of platelet to monocyte ratio (p=0.012) and teratocarcinoma-derived growth factor 1 (p=0.013; area under the curve (AUC) 0.801), but higher median percentages of natural killers (NKs) (p=0.019; AUC 0.786), monocytes (p=0.017; AUC 0.791), MSP (p=0.006; AUC 0.838), PARN (p=0.017; AUC 0.790), and E-Cadherin (p=0.022; AUC 0.788). In addition, the immune scenario of Pn after neoadjuvant treatment involves: high levels of neutrophils and NK cells, but low levels of B and T cells in peripheral blood; increased clonality of intratumoral T cells; and elevated plasma levels of several growth factors (EGF, HGF, VEGF, ANG-1, PDGF, NGF, and NT4) and inflammatory cytokines (MIF, CCL16, neutrophil gelatinase-associated lipocalin, BMP-4, and u-PAR). CONCLUSIONS Although statistically underpowered, our results shed light on the possible mechanisms behind Pn development, involving innate and adaptative immunity, and open the possibility to predict patients at high risk. If confirmed, this may allow the personalization of both, the surveillance strategy and the therapeutic approaches to manage Pn in patients receiving chemoimmunotherapy.
Collapse
Affiliation(s)
- Belén Sierra-Rodero
- Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Alberto Cruz-Bermúdez
- Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Ernest Nadal
- Department of Medical Oncology, Catalan Institute of Oncology, Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, L'Hospitalet, Barcelona, Spain
| | - Yago Garitaonaindía
- Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Amelia Insa
- Medical Oncology, INCLIVA, Valencia, Valencia, Spain
| | - Joaquín Mosquera
- Medical Oncology, Hospital Universitario A Coruña, A Coruña, Spain
| | | | - Manuel Dómine
- Medical Oncology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Margarita Majem
- Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
| | - Delvys Rodriguez-Abreu
- Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas, Canarias, Spain
| | | | | | - Manuel Cobo
- Medical Oncology, Hospital Regional Universitario de Málaga, Malaga, Andalucía, Spain
| | | | - Edel Del Barco
- Medical Oncology, Hospital Universitario de Salamanca, Salamanca, Spain
| | | | - Nuria Viñolas
- Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Catalunya, Spain
| | | | - Santiago Viteri
- Instituto Oncológico Dr. Rosell. Hospital Universitario Quiron Dexeus, Barcelona, Spain
| | - Bartomeu Massuti
- Medical Oncology, Alicante General University Hospital, Alicante, Valencia, Spain
| | - Raquel Laza-Briviesca
- Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Marta Casarrubios
- Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Aránzazu García-Grande
- Flow Cytometry Core Facility, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Majadahonda, Spain
| | - Atocha Romero
- Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Fernando Franco
- Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Mariano Provencio
- Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| |
Collapse
|
41
|
Leukocytes in Inflammation, Resolution of Inflammation, Autoimmune Diseases and Cancer. Cells 2021; 10:cells10071735. [PMID: 34359905 PMCID: PMC8307052 DOI: 10.3390/cells10071735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/30/2022] Open
Abstract
Inflammation is a double-edged sword [...].
Collapse
|
42
|
Khan MA, Ashoor GA, Shamma T, Alanazi F, Altuhami A, Kazmi S, Ahmed HA, Mohammed Assiri A, Clemens Broering D. IL-10 Mediated Immunomodulation Limits Subepithelial Fibrosis and Repairs Airway Epithelium in Rejecting Airway Allografts. Cells 2021; 10:1248. [PMID: 34069395 PMCID: PMC8158696 DOI: 10.3390/cells10051248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Interleukin-10 plays a vital role in maintaining peripheral immunotolerance and favors a regulatory immune milieu through the suppression of T effector cells. Inflammation-induced microvascular loss has been associated with airway epithelial injury, which is a key pathological source of graft malfunctioning and subepithelial fibrosis in rejecting allografts. The regulatory immune phase maneuvers alloimmune inflammation through various regulatory modulators, and thereby promotes graft microvascular repair and suppresses the progression of fibrosis after transplantation. The present study was designed to investigate the therapeutic impact of IL-10 on immunotolerance, in particular, the reparative microenvironment, which negates airway epithelial injury, and fibrosis in a mouse model of airway graft rejection. Here, we depleted and reconstituted IL-10, and serially monitored the phase of immunotolerance, graft microvasculature, inflammatory cytokines, airway epithelium, and subepithelial collagen in rejecting airway transplants. We demonstrated that the IL-10 depletion suppresses FOXP3+ Tregs, tumor necrosis factor-inducible gene 6 protein (TSG-6), graft microvasculature, and establishes a pro-inflammatory phase, which augments airway epithelial injury and subepithelial collagen deposition while the IL-10 reconstitution facilitates FOXP3+ Tregs, TSG-6 deposition, graft microvasculature, and thereby favors airway epithelial repair and subepithelial collagen suppression. These findings establish a potential reparative modulation of IL-10-associated immunotolerance on microvascular, epithelial, and fibrotic remodeling, which could provide a vital therapeutic option to rescue rejecting transplants in clinical settings.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | | | - Talal Shamma
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | - Fatimah Alanazi
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | - Abdullah Altuhami
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | - Shadab Kazmi
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (H.A.A.); (A.M.A.)
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (H.A.A.); (A.M.A.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Dieter Clemens Broering
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; (T.S.); (F.A.); (A.A.); (S.K.); (D.C.B.)
| |
Collapse
|