1
|
Cai R, Miao S, Cao X, Nie M, Zhao Y. Freeze-Derived Anisotropic Porous Microparticles for Engineered Mesenchymal Stem Cell Loading and Wound Healing. RESEARCH (WASHINGTON, D.C.) 2025; 8:0668. [PMID: 40264653 PMCID: PMC12012297 DOI: 10.34133/research.0668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
Hydrogel microparticles that can effectively deliver mesenchymal stem cells (MSCs) are expected to accelerate wound repair progress. Attempts in the area are focusing on improving the functions of the microparticles and MSCs to promote the therapeutic effect. Here, inspired by the topological morphology of ice branches, we propose novel freeze-derived anisotropic porous microparticles for hepatocyte growth factor (HGF)-overexpressing MSCs (MSCsHGF) loading and wound healing. The microparticles were fabricated by introducing microfluidic methacrylated gelatin pre-gel droplets into low-temperature silicone oil, followed by photo-cross-linking and freeze-drying processes. Drawing an advantage from the biocompatible chemical composition and the structured pore arrangement of the microparticles, MSCsHGF can be efficiently encapsulated and released, maintaining continuous HGF secretion to enhance cell migration and support vascular regeneration. Leveraging these characteristics, we have shown that MSCsHGF-loaded porous microparticles could substantially promote angiogenesis, polarize macrophages toward the M2 phenotype, and reduce inflammation during the wound repair process, consequently enhancing skin wound repair efficiency. Thus, we believe that our MSCsHGF-integrated freeze-derived anisotropic porous microparticles hold promising prospects for clinical wound-healing applications.
Collapse
Affiliation(s)
- Rongwei Cai
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Shuangshuang Miao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Xinyue Cao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Min Nie
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
2
|
Saadh MJ, Ahmed HH, Sanghvi G, Bin Awang Isa MZ, Singh P, Kaur K, Kumar MR, Husseen B. Recent advances in the delivery of microRNAs via exosomes derived from MSCs, and their role in regulation of ferroptosis. Pathol Res Pract 2025; 270:155984. [PMID: 40315562 DOI: 10.1016/j.prp.2025.155984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 05/04/2025]
Abstract
Mesenchymal stem cell (MSC) therapy, with its unique properties, has garnered interest in cancer treatment. Exosomes (EXOs)-derived from MSC retain the paracrine components of MSCs and demonstrate increased stability, minimal immunogenicity, and low risk of unintended tumorigenesis. Enhanced endocytosis methods make them versatile delivery vehicles for therapeutic cargo. MSC-EXOs can either promote or inhibit carcinogenesis, mediated by paracrine factors and various RNA molecules, particularly microRNAs (miRNAs). The prospect of using MSC-EXOs as a delivery tool for antitumor miRNAs in solid tumor therapy is promising. Exosomes' intrinsic tumor-targeting abilities and low immunogenicity make them ideal for delivering miRNAs, which have shown potential as cancer therapeutics. miRNAs within MSC-EXOs molecules can stimulate tumor growth or induce non-apoptotic cell death pathways, such as ferroptosis, depending on context. Ferroptosis is a kind of controlled cell death that is associated with the pathophysiology of several illnesses and includes iron metabolism. There is growing evidence that miRNAs carried by exosomes derived from MSCs may control ferroptosis in tumor cells by altering key genes related to antioxidant defense, lipid peroxidation, and iron metabolism. Understanding their complex mechanisms in the tumor microenvironment and optimizing their cargo are critical steps toward harnessing their full therapeutic potential. This review provides a comprehensive overview of MSC-EXOs and their role in cancer treatment. We also discuss the potential of MSC-EXOs as delivery vehicles for miRNAs to enhance therapeutic efficacy, as well as the role of exosomal miRNAs in the induction of ferroptosis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | | | - Priyanka Singh
- NIMS School of Allied Sciences and Technology, NIMS University, Jaipur, Rajasthan 303121, India
| | - Kiranjeet Kaur
- Chandigarh Pharmacy College, Chandigarh Group of colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
3
|
Sabanciogullarindan F, Bozkurt M, Erdogan NY, Gokceoglu YS, Karakol P. Comparative effects of epidermal and fibroblast growth factor-infused collagen patches on wound healing in a full-thickness rat model. J Tissue Viability 2025; 34:100903. [PMID: 40253882 DOI: 10.1016/j.jtv.2025.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
OBJECTIVE This study aimed to investigate the effects of Epidermal Growth Factor (EGF)- and Fibroblast Growth Factor (FGF)-infused collagen patches on wound healing in an experimental rat model. The focus was on acute and chronic inflammation, granulation tissue formation, fibroblast maturation, re-epithelialization, neovascularization, and collagen remodeling. METHODS Full-thickness cranial wounds (12 mm) were created on the dorsal regions of 21 male Wistar rats and divided into four groups: Group 1 (collagen patch alone), Group 2 (collagen + EGF), Group 3 (collagen + FGF). The kaudal defects served as a chronic wound model with secondary intention healing, monitored for 21 days. Tissue biopsies were collected on days 3, 7, and 21. Histopathological evaluation included inflammation scores, granulation tissue formation, fibroblast maturation, re-epithelialization, neovascularization, and Type 1/Type 3 collagen ratio. Data were analyzed using one-way ANOVA, Kruskal-Wallis test, and other appropriate post hoc tests. Statistical significance was set at p < 0.05. RESULTS Acute inflammation significantly decreased in Group 3 on day 7 (p = 0.001), while chronic inflammation was minimal by day 21 in Groups 1 and 3. Group 2 showed the highest granulation tissue formation on day 21 (p < 0.05). Fibroblast maturation peaked in Group 3 on day 21 (p = 0.004). Re-epithelialization was complete in Groups 1 and 3 by day 21, significantly outperforming Group 2 (p < 0.005). Group 3 demonstrated superior collagen deposition and the highest Type 1/Type 3 collagen ratio (p < 0.05). CONCLUSIONS FGF-infused collagen patches significantly improved fibroblast maturation, epithelialization, and collagen remodeling, outperforming EGF and standalone collagen patches. These findings highlight the potential of FGF as a therapeutic agent in wound healing.
Collapse
Affiliation(s)
- Fahri Sabanciogullarindan
- Department of Plastic Reconstructive and Aesthetic Surgery, Duzce Ataturk State Hospital Ministry of Health, Duzce, Turkey.
| | - Mehmet Bozkurt
- Department of Plastic, Reconstructive and Aesthetic Surgery, Bagcilar Training and Research Hospital, Health Science University, Istanbul, Turkey.
| | - Nilsen Yildirim Erdogan
- Department of Medical Pathology, Hamidiye Medical Faculty, University of Health Sciences, Bagcilar, Istanbul, Turkey.
| | - Yasar Samet Gokceoglu
- Department of Orthopedics and Traumatology, Sanliurfa Mehmet Akif Inan Training and Research Hospital, Sanliurfa, Turkey.
| | - Percin Karakol
- Department of Plastic Reconstructive and Aesthetic Surgery, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
4
|
Li W, Zhang H, Chen L, Huang C, Jiang Z, Zhou H, Zhu X, Liu X, Zheng Z, Yu Q, He Y, Gao Y, Ma J, Yang L. Cell membrane-derived nanovesicles as extracellular vesicle-mimetics in wound healing. Mater Today Bio 2025; 31:101595. [PMID: 40104636 PMCID: PMC11914519 DOI: 10.1016/j.mtbio.2025.101595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/28/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Cell membrane-derived nanovesicles (NVs) have emerged as promising alternatives to extracellular vesicles (EVs) for wound healing applications, addressing the limitations of traditional EVs, which include insufficient targeting capability, low production yield, and limited drug-loading capacity. Through mechanical cell extrusion methods, NVs exhibit superior characteristics, demonstrating enhanced yield, stability, and purity compared to natural EVs. These NVs can be derived from various membrane sources, including single cell types (stem cells, blood cells, immune cells, and bacterial membranes), hybrid cell membranes and cell membranes mixed with liposomes, with each offering unique therapeutic properties. The integration of genetic engineering and surface modifications has further enhanced NV functionality, enabling precise targeting and improved drug delivery capabilities. Recent advances in NV-based therapies have demonstrated their potential across multiple biomedical applications. Although challenges persist in terms of standardization, storage stability, and clinical translation, the combination of natural cell-derived functions with artificial modification potential positions NVs as a promising platform for next-generation therapeutic delivery systems, thereby offering new possibilities in wound healing applications. Finally, we explore the challenges and future prospects of translating NV-based therapeutics into clinical practice, providing insights into the future development of this innovative approach in wound healing and tissue repair.
Collapse
Affiliation(s)
- Wenwen Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huihui Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chaoyang Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hai Zhou
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinxi Zhu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyang Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zesen Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiuyi Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yufang He
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
5
|
Sadeghi M, Moghaddam A, Amiri AM, Charoghdoozi K, Mohammadi M, Dehnavi S, Orazizadeh M. Improving the Wound Healing Process: Pivotal role of Mesenchymal stromal/stem Cells and Immune Cells. Stem Cell Rev Rep 2025; 21:680-697. [PMID: 39921839 DOI: 10.1007/s12015-025-10849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Wound healing, a physiological process, involves several different types of cells, from immune cells to non-immune cells, including mesenchymal stromal/stem cells (MSC), and their interactions. Immune cells including macrophages, neutrophils, dendritic cells (DC), innate lymphoid cells (ILC), natural killer (NK) cells, and B and T lymphocytes participate in wound healing by secreting various mediators and interacting with other cells. MSCs, as self-renewing, fast proliferating, and multipotent stromal/stem cells, are found in a wide variety of tissues and critically involved in different phases of wound healing by secreting various molecules that help to improve tissue healing and regeneration. In this review, first, we described the four main phases of wound healing, second, we reviewed the function of MSCs, MSC secretome and immune cells in improving the progress of wound repair (mainly focusing on skin wound healing), third, we explained the immune cells/MSCs interactions in the process of wound healing and regeneration, and finally, we introduce clinical applications of MSCs to improve the process of wound healing.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Moghaddam
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohammad Amiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kianush Charoghdoozi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Kamrani S, Naseramini R, Khani P, Razavi ZS, Afkhami H, Atashzar MR, Nasri F, Alavimanesh S, Saeidi F, Ronaghi H. Mesenchymal stromal cells in bone marrow niche of patients with multiple myeloma: a double-edged sword. Cancer Cell Int 2025; 25:117. [PMID: 40140850 PMCID: PMC11948648 DOI: 10.1186/s12935-025-03741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy defined by the abnormal proliferation and accumulation of plasma cells (PC) within the bone marrow (BM). While multiple myeloma impacts the bone, it is not classified as a primary bone cancer. The bone marrow microenvironment significantly influences the progression of myeloma and its treatment response. Mesenchymal stromal cells (MSCs) in this environment engage with myeloma cells and other bone marrow components via direct contact and the secretion of soluble factors. This review examines the established roles of MSCs in multiple facets of MM pathology, encompassing their pro-inflammatory functions, contributions to tumor epigenetics, effects on immune checkpoint inhibitors (ICIs), influence on reprogramming, chemotherapy resistance, and senescence. This review investigates the role of MSCs in the development and progression of MM.
Collapse
Affiliation(s)
- Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Naseramini
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Mohammad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzad Nasri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farzane Saeidi
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Ronaghi
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
7
|
Liu Z, Bian X, Luo L, Björklund ÅK, Li L, Zhang L, Chen Y, Guo L, Gao J, Cao C, Wang J, He W, Xiao Y, Zhu L, Annusver K, Gopee NH, Basurto-Lozada D, Horsfall D, Bennett CL, Kasper M, Haniffa M, Sommar P, Li D, Landén NX. Spatiotemporal single-cell roadmap of human skin wound healing. Cell Stem Cell 2025; 32:479-498.e8. [PMID: 39729995 DOI: 10.1016/j.stem.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/24/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Wound healing is vital for human health, yet the details of cellular dynamics and coordination in human wound repair remain largely unexplored. To address this, we conducted single-cell multi-omics analyses on human skin wound tissues through inflammation, proliferation, and remodeling phases of wound repair from the same individuals, monitoring the cellular and molecular dynamics of human skin wound healing at an unprecedented spatiotemporal resolution. This singular roadmap reveals the cellular architecture of the wound margin and identifies FOSL1 as a critical driver of re-epithelialization. It shows that pro-inflammatory macrophages and fibroblasts sequentially support keratinocyte migration like a relay race across different healing stages. Comparison with single-cell data from venous and diabetic foot ulcers uncovers a link between failed keratinocyte migration and impaired inflammatory response in chronic wounds. Additionally, comparing human and mouse acute wound transcriptomes underscores the indispensable value of this roadmap in bridging basic research with clinical innovations.
Collapse
Affiliation(s)
- Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Lihua Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Åsa K Björklund
- Department of Life Science, National Bioinformatics Infrastructure Sweden, Göteborg, Sweden; Science for Life Laboratory, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Li Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Lei Guo
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Juan Gao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Chunyan Cao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Jiating Wang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Wenjun He
- The first affiliated hospital of Soochow University, Department of Plastic and Burn Surgery. NO.188, Shizi Street, Suzhou, Jiangsu, China
| | - Yunting Xiao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Liping Zhu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Daniela Basurto-Lozada
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Horsfall
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Clare L Bennett
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China.
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden.
| |
Collapse
|
8
|
Wu D, Liu R, Cen X, Dong W, Chen Q, Lin J, Wang X, Ling Y, Mao R, Sun H, Huang R, Su H, Xu H, Qin D. Preclinical study of engineering MSCs promoting diabetic wound healing and other inflammatory diseases through M2 polarization. Stem Cell Res Ther 2025; 16:113. [PMID: 40038782 DOI: 10.1186/s13287-025-04248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) represents a common and severe complication of diabetes mellitus. Effective and safe treatments need to be developed. Mesenchymal stem cells (MSCs) have demonstrated crucial roles in tissue regeneration, wound repair and inflammation regulation. However, the function is limited. The safety and efficacy of gene-modified MSCs is unknown. Therefore, this study aimed to investigate whether genetically modified MSCs with highly efficient expression of anti-inflammatory factors promote diabetic wound repair by regulating macrophage phenotype transition. This may provide a new approach to treating diabetic wound healing. METHODS In this study, human umbilical cord-derived MSCs (hUMSCs) were genetically modified using recombinant lentiviral vectors to simultaneously overexpress three anti-inflammatory factors, interleukin (IL)-4, IL-10, IL-13 (MSCs-3IL). Cell counting kit-8, flow cytometry and differentiation assay were used to detect the criteria of MSCs. Overexpression efficiency was evaluated using flow cytometry, quantitative real-time PCR, Western blot, enzyme-linked immunosorbent assay, and cell scratch assay. We also assessed MSCs-3IL's ability to modulate Raw264.7 macrophage phenotype using flow cytometry and quantitative real-time PCR. In addition, we evaluated diabetic wound healing through healing rate calculation, HE staining, Masson staining, and immunohistochemical analysis of PCNA, F4/80, CD31, CD86, CD206, IL-4, IL-10 and IL-13. In addition, we evaluated the safety of the MSCs-3IL cells and the effect of the cells on several other models of inflammation. RESULTS MSCs-3IL efficiently expressed high levels of IL-4 and IL-10 (mRNA transcription increased by 15,000-fold and 800,000-fold, protein secretion 400 and 200 ng/mL), and IL-13 (mRNA transcription increased by 950,000-fold, protein secretion 6 ng/mL). MSCs-3IL effectively induced phenotypic polarization of pro-inflammatory M1-like macrophages (M1) towards anti-inflammatory M2-like macrophages (M2). The enhancement of function does not change the cell phenotype. The dynamic distribution in vivo was normal and no karyotype variation and tumor risk was observed. In a mouse diabetic wound model, MSCs-3IL promoted diabetic wound healing with a wound closure rate exceeding 96% after 14 days of cell treatment. The healing process was aided by altering macrophage phenotype (reduced CD86 and increased CD206 expression) and accelerating re-epithelialization. CONCLUSIONS In summary, our study demonstrates that genetically modified hUMSCs effectively overexpressed three key anti-inflammatory factors (IL-4, IL-10, IL-13). MSCs-3IL-based therapy enhances diabetic wound healing with high efficiency and safety. This suggests that genetically modified hUMSCs could be used as a novel therapeutic approach for DFU repair.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rencun Liu
- Shandong Province Key Laboratory of Detection Technology for Tumour Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Xiaotong Cen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wanwen Dong
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Qing Chen
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiali Lin
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xia Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yixia Ling
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rui Mao
- Laboratory Animal Research Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haitao Sun
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, The National Key Clinical Specialty, Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Huang
- The Fifth Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- , No.621 Gangwan Road, Huangpu District, Guangzhou, China.
| | - Hongjie Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- , No.621 Gangwan Road, Huangpu District, Guangzhou, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- , No.621 Gangwan Road, Huangpu District, Guangzhou, China.
| |
Collapse
|
9
|
Asaad GF, Doghish AS, Rashad AA, El-Dakroury WA. Exploring cutting-edge approaches in diabetes care: from nanotechnology to personalized therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2443-2458. [PMID: 39453501 PMCID: PMC11919990 DOI: 10.1007/s00210-024-03532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Diabetes mellitus (DM) is a persistent condition characterized by high levels of glucose in the blood due to irregularities in the secretion of insulin, its action, or both. The disease was believed to be incurable until insulin was extracted, refined, and produced for sale. In DM, insulin delivery devices and insulin analogs have improved glycemic management even further. Sulfonylureas, biguanides, alpha-glucosidase inhibitors, and thiazolidinediones are examples of newer-generation medications having high efficacy in decreasing hyperglycemia as a result of scientific and technological advancements. Incretin mimetics, dual glucose-dependent insulinotropic polypeptide, GLP-1 agonists, PPARs, dipeptidyl peptidase-4 inhibitors, anti-CD3 mAbs, glucokinase activators, and glimins as targets have all performed well in recent clinical studies. Considerable focus was placed on free FA receptor 1 agonist, protein tyrosine phosphatase-1B inhibitors, and Sparc-related modular calcium-binding protein 1 which are still being studied. Theranostics, stem cell therapy, gene therapy, siRNA, and nanotechnology are some of the new therapeutic techniques. Traditional Chinese medicinal plants will also be discussed. This study seeks to present a comprehensive analysis of the latest research advancements, the emerging trends in medication therapy, and the utilization of delivery systems in treating DM. The objective is to provide valuable insights into the application of different pharmaceuticals in the field of diabetes mellitus treatment. Also, the therapeutic approach for diabetic patients infected with COVID-19 will be highlighted. Recent clinical and experimental studies evidence the Egyptian experience. Finally, as per the knowledge of the state of the art, our conclusion and future perspective will be declared.
Collapse
Affiliation(s)
- Gihan F Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11651, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| |
Collapse
|
10
|
Zhang K, Xiao D, Li F, Song G, Huang G, Wang Y, Liu H. Combination therapy of placenta-derived mesenchymal stem cells and artificial dermal scaffold promotes full-thickness skin defects vascularization in rat animal model. Adv Med Sci 2025; 70:8-16. [PMID: 39424001 DOI: 10.1016/j.advms.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Recently, placenta-derived mesenchymal stem cells (PMSCs) have garnered considerable attention in tissue repair and regeneration. The present study was conducted to evaluate the effect of PMSCs on artificial dermal scaffold (ADS) angiogenesis and their combination therapy on wound closure. MATERIAL AND METHODS Herein, the growth and survival of PMSCs in ADS were explored. CCK8, scratch wound, and tubule formation assays were employed to investigate the effects of ADS conditioned medium (CM) and ADS-PMSCs CM on human umbilical vein endothelial cells (HUVECs). The effect of ADS-PMSCs on full-thickness skin defects healing was evaluated based on a rat model. Wound healing progresses was meticulously investigated through hematoxylin and eosin (HE), Masson's trichrome, and immunohistochemical staining analyses. RESULTS In vitro cell culture results demonstrated the proliferation of PMSCs in ADS. The ADS-PMSCs CM notably stimulated the proliferation, migration, and tube formation of HUVECs compared to the ADS CM group. In the rat full-thickness skin defect model, the ADS-PMSCs treatment significantly accelerated the vascularization area of ADS after 2 weeks. Besides, HE and Masson's trichrome staining results indicated that ADS-PMSCs treatment significantly enhanced fibroblast proliferation and collagen fiber 2 weeks after surgical procedure. Compared to the ADS group, collagen fiber arrangement was thicker in the ADS-PMSCs group. Immunohistochemical staining reinforced this finding, illustrating a substantial increase in CD31 expression within the ADS-PMSCs group. CONCLUSIONS The results suggest that the combination of ADS with PMSCs accelerates ADS vascularization by fostering granulation tissue development and boosting the formation of new blood vessels.
Collapse
Affiliation(s)
- Kun Zhang
- Cell Therapy Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dongjie Xiao
- Cell Therapy Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fang Li
- Cell Therapy Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guodong Song
- Department of Burns and Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guobao Huang
- Department of Burns and Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yunshan Wang
- Cell Therapy Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hua Liu
- Cell Therapy Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
11
|
Kaokaen P, Pangjantuk A, Kunhorm P, Promjantuek W, Chaicharoenaudomrung N, Noisa P. Conditioned medium of human umbilical cord-mesenchymal stem cells cultivated with human cord blood serum enhances stem cell stemness and secretome profiles. Toxicol In Vitro 2025; 103:105973. [PMID: 39561911 DOI: 10.1016/j.tiv.2024.105973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The proteins secreted by human umbilical cord mesenchymal stem cells (hUC-MSCs) may enhance tissue regeneration and wound healing. Traditional hUC-MSC cultures may not be enough since they undergo recurrent cellular senescence during large-scale production. This decreases the therapeutic ability of hUC-MSCs by altering genes and proteins that control stemness, proliferation, and protein release. Human cord blood serum (CBS) and the middle-density technique were used to evaluate hUC-MSC regeneration ability. To evaluate early-passage hMSCs for secretome-based therapies, they were expanded and secreted in vitro. After 4 days, hUC-MSCs cultivated at 3000 cells/cm2 and supplemented with 1 ng/ml CBS showed increased growth, cell proliferation, and a much lower population doubling time. CBS treatment reduced CD34, CD45, and HLA-DR levels in human umbilical cord mesenchymal stem cells (hUC-MSCs) by less than 2 %. Positive markers such CD73, CD90, and CD105 were found at >97 %, like control hUC-MSCs. Over extended culture, this combination culture can increase survival, proliferation, and stemness and postpone cell death and hUC-MSC senescence. The protein profile and hUC-MSC secretion were improved to make MSC secretion protein therapeutic. This improves cell-free treatment, proliferation, and wound healing in human skin cells. To improve cell-based transplantation or cosmeceutical manufacturing, this technique can boost hUC-MSC regeneration capacity.
Collapse
Affiliation(s)
- Palakorn Kaokaen
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Amorn Pangjantuk
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Wilasinee Promjantuek
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
12
|
Xia J, Dong R, Fang Y, Guo J, Xiong Z, Zhang T, Sun W. A micro-lung chip with macrophages for targeted anti-fibrotic therapy. Biofabrication 2025; 17:025020. [PMID: 39914008 DOI: 10.1088/1758-5090/adb338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. Macrophages are implicated in the fibrotic process, but exhibit remarkable plasticity in the activated immune environmentin vivo, presenting significant challenges as therapeutic targets. To explore the influence of macrophages on IPF and develop macrophage-targeted therapies, we engineered a micro-lung chip with a lung epithelium-interstitium tissue unit to establish a controlled immune environment containing only macrophages. We discovered that macrophages exacerbated inflammation and fibrosis by comparing microchips treated with bleomycin (BLM) in the presence and absence of macrophages. Based on the duration of BLM treatment, we established pathological models corresponding to inflammation and fibrosis stages. Transcriptome analysis revealed that activation of the PI3K-AKT signalling pathway facilitates the transition from inflammation to fibrosis. However, LY294002, a PI3K inhibitor, not only suppressed fibrosis and decreased the accumulation of M2 macrophages but also intensified the severity of inflammation. These findings suggest that macrophages play a pivotal role in the potential development at the tissue level. The micro-lung chip co-cultured with macrophages holds significant potential for exploring the pathological progression of IPF and elucidating the mechanisms of anti-fibrotic drugs.
Collapse
Affiliation(s)
- Jingjing Xia
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Ruming Dong
- School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Yongcong Fang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Jiabin Guo
- School of Public Health, China Medical University, Shenyang 110122, People's Republic of China
| | - Zhuo Xiong
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Ting Zhang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | - Wei Sun
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China
- 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104, United States of America
| |
Collapse
|
13
|
Jin W, Li Y, Yu M, Ren D, Han C, Guo S. Advances of exosomes in diabetic wound healing. BURNS & TRAUMA 2025; 13:tkae078. [PMID: 39980588 PMCID: PMC11836438 DOI: 10.1093/burnst/tkae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 11/09/2024] [Indexed: 02/22/2025]
Abstract
Poor wound healing is a refractory process that places an enormous medical and financial burden on diabetic patients. Exosomes have recently been recognized as crucial players in the healing of diabetic lesions. They have excellent stability, homing effects, biocompatibility, and reduced immunogenicity as novel cell-free therapies. In addition to transporting cargos to target cells to enhance intercellular communication, exosomes are beneficial in nearly every phase of diabetic wound healing. They participate in modulating the inflammatory response, accelerating proliferation and reepithelization, increasing angiogenesis, and regulating extracellular matrix remodeling. Accumulating evidence indicates that hydrogels or dressings in conjunction with exosomes can prolong the duration of exosome residency in diabetic wounds. This review provides an overview of the mechanisms, delivery, clinical application, engineering, and existing challenges of the use of exosomes in diabetic wound repair. We also propose future directions for biomaterials incorporating exosomes: 2D or 3D scaffolds, biomaterials loaded with wound healing-promoting gases, intelligent biomaterials, and the prospect of systematic application of exosomes. These findings may might shed light on future treatments and enlighten some studies to improve quality of life among diabetes patients.
Collapse
Affiliation(s)
- Weixue Jin
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Yi Li
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Meirong Yu
- Center for Basic and Translational Research, Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Danyang Ren
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Chunmao Han
- Department of Burns and Wound Repair, Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
14
|
Huang J, Deng Q, Tsang LL, Chang G, Guo J, Ruan YC, Wang CC, Li G, Chan HF, Zhang X, Jiang X. Mesenchymal stem cells from perinatal tissues promote diabetic wound healing via PI3K/AKT activation. Stem Cell Res Ther 2025; 16:59. [PMID: 39923118 PMCID: PMC11807333 DOI: 10.1186/s13287-025-04141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/13/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) represent a major complication of diabetes, often leading to poor healing outcomes with conventional treatments. Mesenchymal stem cell (MSC) therapies have emerged as a promising alternative, given their potential to modulate various pathways involved in wound healing. This study evaluates and compares the therapeutic potential of MSCs derived from perinatal tissues-human umbilical cord MSCs (hUCMSCs), human chorionic villi MSCs (hCVMSCs), and human decidua basalis MSCs (hDCMSCs)-in a diabetic wound healing model. METHODS We performed in vitro and in vivo studies to compare the efficacy of hUCMSCs, hCVMSCs, and hDCMSCs. Mass spectrometry was used to analyze the secreted proteins of the MSCs. We incorporated the MSCs into a polyethylene glycol diacrylate (PEGDA) and sodium alginate (SA) hydrogel matrix with collagen I (Col-I) to evaluate their effects on wound healing. RESULTS All three types of MSCs promoted wound healing, with hUCMSCs and hCVMSCs showing stronger effects compared to hDCMSCs. Both hUCMSCs and hCVMSCs demonstrated robust wound healing kinetics, with enhanced keratinocyte proliferation (KRT14+/Ki67+ cells), maturation (KRT10/KRT14 ratio), and angiogenesis. In vitro studies demonstrated that the MSC-derived secretome enhanced keratinocyte proliferation and migration, endothelial cell function and stem cell recruitment, indicating robust paracrine effects. Mass spectrometry revealed a conserved set of proteins including THBS1 (thrombospondin 1), SERPINE1 (serpin family E member 1), ANXA1 (annexin A1), LOX (lysyl oxidase), and ITGB1 (integrin beta-1) which are involved in extracellular matrix (ECM) organization and wound healing, with the PI3K/AKT signaling pathway playing a central role. The PEGDA/SA/Col-I hydrogel demonstrated a unique balance of mechanical and biological properties and an optimal environment for MSC viability and function. Application of either hUCMSC- or hCVMSC-laden hydrogels resulted in accelerated wound closure, improved re-epithelialization, increased collagen deposition, and enhanced vascularization in vivo. CONCLUSIONS MSCs From perinatal tissues particularly hUCMSCs and hCVMSCs significantly enhance diabetic wound healing through PI3K/AKT pathway activation while hDCMSCs exhibited weaker efficacy. The PEGDA/SA/Col-I hydrogel supports MSC viability and function offering a promising scaffold for DFU treatment. These findings underscore the potential of specific perinatal MSCs and optimized hydrogel formulations in advancing diabetic wound care.
Collapse
Affiliation(s)
- Jiawei Huang
- School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory On Stem Cell and Regenerative Medicine; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qingwen Deng
- School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory On Stem Cell and Regenerative Medicine; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lai Ling Tsang
- School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory On Stem Cell and Regenerative Medicine; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Guozhu Chang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong; Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaohu Zhang
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xiaohua Jiang
- School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory On Stem Cell and Regenerative Medicine; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, The Chinese University of Hong Kong, Hong Kong SAR, China.
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
15
|
Yarahmadi A, Dorri Giv M, Hosseininejad R, Rezaie A, Mohammadi N, Afkhami H, Farokhi A. Mesenchymal stem cells and their extracellular vesicle therapy for neurological disorders: traumatic brain injury and beyond. Front Neurol 2025; 16:1472679. [PMID: 39974358 PMCID: PMC11835705 DOI: 10.3389/fneur.2025.1472679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex condition involving mechanisms that lead to brain dysfunction and nerve damage, resulting in significant morbidity and mortality globally. Affecting ~50 million people annually, TBI's impact includes a high death rate, exceeding that of heart disease and cancer. Complications arising from TBI encompass concussion, cerebral hemorrhage, tumors, encephalitis, delayed apoptosis, and necrosis. Current treatment methods, such as pharmacotherapy with dihydropyridines, high-pressure oxygen therapy, behavioral therapy, and non-invasive brain stimulation, have shown limited efficacy. A comprehensive understanding of vascular components is essential for developing new treatments to improve blood vessel-related brain damage. Recently, mesenchymal stem cells (MSCs) have shown promising results in repairing and mitigating brain damage. Studies indicate that MSCs can promote neurogenesis and angiogenesis through various mechanisms, including releasing bioactive molecules and extracellular vesicles (EVs), which help reduce neuroinflammation. In research, the distinctive characteristics of MSCs have positioned them as highly desirable cell sources. Extensive investigations have been conducted on the regulatory properties of MSCs and their manipulation, tagging, and transportation techniques for brain-related applications. This review explores the progress and prospects of MSC therapy in TBI, focusing on mechanisms of action, therapeutic benefits, and the challenges and potential limitations of using MSCs in treating neurological disorders.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Masoumeh Dorri Giv
- Nuclear Medicine Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Hosseininejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azin Rezaie
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Narges Mohammadi
- Department of Molecular Cell Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arastoo Farokhi
- Department of Anesthesiology, Kermanshah University of Medical Sciences, Imam Reza Hospital, Kermanshah, Iran
| |
Collapse
|
16
|
Chelmu Voda C, Stefanopol IA, Gurau G, Hîncu MA, Popa GV, Mateescu OG, Baroiu L, Mehedinti MC. Update on the Study of Angiogenesis in Surgical Wounds in Patients with Childhood Obesity. Biomedicines 2025; 13:375. [PMID: 40002788 PMCID: PMC11852480 DOI: 10.3390/biomedicines13020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Angiogenesis, the formation of new blood vessels from pre-existing ones, plays a pivotal role in wound healing, particularly in surgical contexts. Methods and results: However, this process can be significantly impaired in patients with childhood obesity, resulting in delayed healing and additional complications. The biological process of wound healing is complex, involving angiogenesis, cell proliferation, inflammation, and tissue remodeling. This review aims to explore recent advancements in research on angiogenesis in surgical wounds in patients with childhood obesity, with a focus on growth factors, inflammation, microcirculation, and innovative therapeutic strategies. Conclusions: It highlights therapeutic approaches such as the administration of growth factors and the application of biomaterials to enhance angiogenesis.
Collapse
Affiliation(s)
- Cristina Chelmu Voda
- School for Doctoral Studies in Biomedical Sciences, “Dunarea de Jos” University, 800008 Galați, Romania; (C.C.V.)
- Department of Morphology and Functional Sciences, “Dunarea de Jos” University, 800008 Galați, Romania
| | - Ioana Anca Stefanopol
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galați, Romania
- Department of Pediatric Surgery, Sf. Ioan Clinical Emergency Pediatric Hospital, 800487 Galați, Romania
| | - Gabriela Gurau
- Department of Morphology and Functional Sciences, “Dunarea de Jos” University, 800008 Galați, Romania
| | - Maria Andrada Hîncu
- School for Doctoral Studies in Biomedical Sciences, “Dunarea de Jos” University, 800008 Galați, Romania; (C.C.V.)
| | - Gabriel Valeriu Popa
- Department of Morphology and Functional Sciences, “Dunarea de Jos” University, 800008 Galați, Romania
| | - Olivia Garofita Mateescu
- Department of Morphology and Functional Sciences, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| | - Liliana Baroiu
- Clinical Medical Department, “Dunarea de Jos” University, 800008 Galați, Romania
- Department of Infectious Diseases, Sf. Cuvioasa Parascheva Clinical Hospital of Infectious Diseases, 800179 Galați, Romania
| | | |
Collapse
|
17
|
Deng X, Liu H, Chen H, Yang Z, Wu Y, He L, Guo W. A gene-encoded bioprotein second harmonic generation (SHG) probe from Autographa californica nuclear polyhedrosis virus (AcMNPV) polyhedrin for live cell imaging. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2025; 54:21-32. [PMID: 39812816 DOI: 10.1007/s00249-024-01728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/12/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025]
Abstract
Compared to fluorescence, second harmonic generation (SHG) has recently emerged as an excellent signal for imaging probes due to its unmatched advantages in terms of no photobleaching, no phototoxicity, no signal saturation, as well as the superior imaging accuracy with excellent avoidance of background noise. Existing SHG probes are constructed from heavy metals and are cellular exogenous, presenting with high cytotoxicity, difficult cellular uptake, and the limitation of non-heritability. We, therefore, initially propose an innovative gene-encoded bioprotein SHG probe derived from Autographa californica nuclear polyhedrosis virus (AcMNPV) polyhedrin. The primitive gene of AcMNPV polyhedrin was codon-optimized and mutated in its nuclear localization sequence to achieve cytoplasmic expression in mammalian cells. While providing strong SHG signals, this gene-modified AcMNPV (GM-AcMNPV) polyhedrin could be utilized as an SHG probe for cell imaging. Our experimental results demonstrated successful expression of GM-AcMNPV polyhedrin in the cytoplasm of HEK293T cells and bone mesenchymal stem cells (BMSCs), and verified its characteristic features as an SHG probe. Such SHG probes exhibit high biocompatibility and showed no hindering of central physiological activities such as the differentiation of stem cells. Most importantly, our SHG probes may be successfully used for imaging in living cells. This work will inspire the development of gene encoding-derived bioprotein SHG probes, for long-term tracing of cells/stem cells along with their division, to understand stem cell cycles, reveal stem cell-based therapy mechanisms in regenerative medicine, and unravel cell lineage origins and fates in developmental biology, among other potential applications.
Collapse
Affiliation(s)
- Xiaoyuan Deng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Hao Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Heting Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zuojun Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yuhan Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Li He
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Wenjing Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| |
Collapse
|
18
|
Ma ZX, Wu XF, Cao L, Jiao CY, Ma DP, Zhao YH, Yang ZX, Hu M. Regenerative fibroblasts derived from autologous skin tissue for the treatment of Sjögren's syndrome: a case report. Front Immunol 2025; 16:1529883. [PMID: 39931068 PMCID: PMC11808821 DOI: 10.3389/fimmu.2025.1529883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Background Sjögren's syndrome (SS) is a systemic autoimmune disease, with major symptoms including dry mouth and dry eyes, for which there is no effective treatment. Recent studies have demonstrated that mesenchymal stem cells (MSCs) are effective in the treatment of SS, but the efficacy of allogeneic MSCs is affected by variability among different cell donors, and they are easily cleared by the immune system of the recipient. Autologous MSCs are one of the ideal options for the treatment of SS; however, their function decreases with age. Regenerative fibroblast (rFib) is a type of new MSC obtained through chemical reprogramming technology from skin fibroblasts. In this study, we report the safety and efficacy of intravenous infusion of autologous rFib in a volunteer with SS. Case report In March 2021, the volunteer was diagnosed with SS due to positive anti-SSB antibodies, lymphocyte infiltration in the lip gland, dry eyes, and a large area of purpura in both lower limbs. From May 2021 to November 2022, she received allogeneic Umbilical cord mesenchymal stem cells (UCMSC) therapy (5.0 × 107 UCMSCs per time, totaling 10 infusions), but her condition did not improve. In May 2023, the rFib for the volunteer was prepared, meeting the quality standard of T/CSCB0003-2021 Human Mesenchymal Stem Cells. Between October 2023 and June 2024, the volunteer received a total of 12 intravenous transfusions of autologous rFib. After the treatments, the volunteer experienced no recurrence of purpura in both lower limbs. Symptoms of dry mouth, dry eyes, and fatigue were relieved. ESR, B lymphocytes, rheumatoid factor IgM, and IgA declined, while the proportion of NK cells increased, and most of the cytokines returned to normal levels. In vitro experiments showed that rFib could significantly inhibit the proliferation of T lymphocytes after PHA stimulation. No adverse effects were associated with the use of rFib in the volunteer during the clinical trial. Summary The results of this clinical trial indicate that intravenous injections of autologous rFib are both safe and effective for treating SS. Autologous rFib may be more suitable for treating autoimmune diseases than allogeneic MSCs.
Collapse
Affiliation(s)
- Zhao-Xia Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, China
| | - Xing-Fei Wu
- Production Department, Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, China
| | - Li Cao
- Production Department, Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, China
| | - Cheng-Yan Jiao
- Production Department, Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, China
| | - Dai-Ping Ma
- Production Department, Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, China
| | - Yun-Hui Zhao
- Production Department, Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, China
| | - Zhi-Xing Yang
- Production Department, Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, China
| | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, China
- Research and Development Department, Shenzhen Zhendejici Pharmaceutical Research and Development Co., Ltd., Shenzhen, Guangdong, China
| |
Collapse
|
19
|
Galbiati M, Maiullari F, Ceraolo MG, Bousselmi S, Fratini N, Gega K, Recchia S, Ferretti AM, Scala G, Costantini M, Sciarra T, Rizzi R, Bearzi C. Bioactive Hydrogel Supplemented with Stromal Cell-Derived Extracellular Vesicles Enhance Wound Healing. Pharmaceutics 2025; 17:162. [PMID: 40006529 PMCID: PMC11859224 DOI: 10.3390/pharmaceutics17020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Skin regeneration is a rapidly advancing field with significant implications for regenerative medicine, particularly in treating wounds and burns. This study explores the potential of hydrogels functionalized with fibroblast-derived extracellular vesicles (EVs) to enhance skin regeneration in vivo. Being immunoprivileged, EVs minimize immune rejection, offering an attractive alternative to whole-cell therapies by replicating fibroblasts' key roles in tissue repair. Methods: To promote EVs' versatility and effective application across different conditions, a lyophilization method with lyoprotectants was optimized. Then, EVs were used to functionalize a hydrogel to perform experiments on murine cutaneous wound models. Results: Gelatin methacrylate (GelMA) was selected as the polymeric hydrogel due to its biocompatibility, tunable mechanical properties, and ability to support wound healing. Mechanical tests confirmed GelMA's strength and elasticity for this application. Fibroblast-derived EVs were characterized using Western blot, Transmission Electron Microscopy, and NanoSight analysis, proving their integrity, size distribution, and stability. miRNome profiling identified enriched biological pathways related to cell migration, differentiation, and angiogenesis, emphasizing the critical role of EV cargo in promoting wound repair. In a murine model, hydrogels loaded with fibroblast-derived EVs significantly accelerated wound healing compared to controls (mean wound area 0.62 mm2 and 4.4 mm2, respectively), with faster closure, enhanced epithelialization, increased vascularization, and reduced fibrosis. Notably, the lyoprotectants successfully preserved the EVs' structure and bioactivity during freeze-drying, reducing EVs loss by 35% compared to the control group and underscoring the feasibility of this approach for long-term storage and clinical application. Conclusions: This study introduces a novel scalable and adaptable strategy for regenerative medicine by combining fibroblast-derived EVs with GelMA, optimizing EVs' stability and functionality for enhanced wound healing in clinical settings, even in challenging contexts such as combat zones or large-scale natural disasters.
Collapse
Affiliation(s)
- Matteo Galbiati
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, Segrate, 20054 Milan, Italy; (M.G.); (F.M.); (K.G.)
| | - Fabio Maiullari
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, Segrate, 20054 Milan, Italy; (M.G.); (F.M.); (K.G.)
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | - Maria Grazia Ceraolo
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.G.C.); (S.B.)
| | - Salma Bousselmi
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.G.C.); (S.B.)
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 1, 00133 Rome, Italy
| | - Nicole Fratini
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena, 324, 00161 Rome, Italy;
| | - Klajdi Gega
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, Segrate, 20054 Milan, Italy; (M.G.); (F.M.); (K.G.)
| | - Sandro Recchia
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy;
| | - Anna Maria Ferretti
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “G. Natta”, Via G. Fantoli 16/15, 20138 Milan, Italy;
| | - Giovanni Scala
- Department of Biology, University Federico II, 80128 Naples, Italy;
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, 00184 Rome, Italy;
| | - Roberto Rizzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Corso della Repubblica 79, 04100 Latina, Italy
| | - Claudia Bearzi
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi, 93, Segrate, 20054 Milan, Italy; (M.G.); (F.M.); (K.G.)
| |
Collapse
|
20
|
AlJunaydil NA, Lambarte RNA, Sumague TS, Alghamdi OG, Niazy AA. Lovastatin and Resveratrol Synergistically Improve Wound Healing and Inhibit Bacterial Growth. Int J Mol Sci 2025; 26:851. [PMID: 39859566 PMCID: PMC11766293 DOI: 10.3390/ijms26020851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Wound healing is a complex physiological process, with scarring and infection caused by Staphylococcus aureus and Pseudomonas aeruginosa being the most common complications. The reutilization of known medications has received increased attention for their role in cell function as small molecules. Examples of these include lovastatin, a cholesterol-lowering agent, and resveratrol, which have multiple biological properties. Both molecules have been reported to improve wound healing and possess antibacterial properties, with conflicting results. The wound-healing capabilities of human mesenchymal stem cells were evaluated after exposure to lovastatin, resveratrol, and their combination through scratch test, migrations assay, and qPCR. Protein docking was performed to assess the lovastatin/resveratrol combination as potential wound-healing targets. AlamarBlue assay was used to determine cell viability. Additionally, the impact of lovastatin and resveratrol combination to inhibit the growth of S. aureus and P. aeruginosa was tested using broth microdilution test and checkerboard assay to determine synergism. The combination of lovastatin 0.1 μM and resveratrol 0.1 μM synergistically improved wound healing and demonstrated an additive effect against S. aureus and P. aeruginosa, presenting potential antibacterial applications.
Collapse
Affiliation(s)
- Norah A. AlJunaydil
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.A.); (O.G.A.)
| | - Rhodanne Nicole A. Lambarte
- Molecular and Cell Biology Laboratory, Prince Naif bin Abdulaziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.)
| | - Terrence S. Sumague
- Molecular and Cell Biology Laboratory, Prince Naif bin Abdulaziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.)
| | - Osama G. Alghamdi
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.A.); (O.G.A.)
| | - Abdurahman A. Niazy
- Molecular and Cell Biology Laboratory, Prince Naif bin Abdulaziz Health Research Center, College of Dentistry, King Saud University Medical City, King Saud University, Riyadh 11545, Saudi Arabia; (R.N.A.L.); (T.S.S.)
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
21
|
Shah M, Dukharan V, Broughton L, Stegura C, Schur N, Samman L, Schlesinger T. Exosomes for Aesthetic Dermatology: A Comprehensive Literature Review and Update. J Cosmet Dermatol 2025; 24:e16766. [PMID: 39764639 PMCID: PMC11704993 DOI: 10.1111/jocd.16766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Exosomes are nanoscale vesicles derived from various cell types and tissues that have many potential applications, generating great interest from researchers. One particularly intriguing application of exosomes is their use as a direct therapeutic for aesthetic indications. Several studies and case reports have explored the impact of exosomes for numerous cosmetic concerns but a consensus on the outcomes of these studies has not been established. AIMS In this review, we summarize the proposed mechanism of action, application, and efficacy of treatments with exosomes for alopecia and hair rejuvenation, facial rejuvenation, hyperpigmentation, and scarring. METHODS We conducted a comprehensive literature review on the use of exosomes for the treatment of alopecia and hair rejuvenation, facial rejuvenation, hyperpigmentation, and scarring. Additionally, several practical clinical cases where exosomes were applied for these indications were included. RESULTS The general consensus from the literature review showed that the early evidence supports the efficacy of exosomes for the treatment of alopecia, facial rejuvenation, hyperpigmentation, and scarring. The clinical cases included demonstrated promising improvements in the patients that received treatment. Several limitations regarding the lack of standardization in the production and application of exosomes may limit their current use until more studies are conducted. CONCLUSIONS Exosomes may serve as a potentially beneficial therapeutic option for several aesthetic dermatologic indications but further investigation is required to fully characterize the scope of their application.
Collapse
Affiliation(s)
- Milaan Shah
- Department of DermatologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Victoria Dukharan
- Department of DermatologyKansas City University—GME Consortium/Advanced Dermatology and Cosmetic SurgeryOrlandoFloridaUSA
| | - Luke Broughton
- School of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Carol Stegura
- School of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Nina Schur
- School of MedicineLake Erie College of Osteopathic MedicineBradentonFloridaUSA
| | - Luna Samman
- Department of DermatologyGarnet Health Medical CenterMiddletownNew YorkUSA
| | - Todd Schlesinger
- Clinical Research Center of the CarolinasCharlestonSouth CarolinaUSA
| |
Collapse
|
22
|
Thai NLB, Fittante E, Ma Z, Monroe MB. Rapid Fabrication of Polyvinyl Alcohol Hydrogel Foams With Encapsulated Mesenchymal Stem Cells for Chronic Wound Treatment. J Biomed Mater Res A 2025; 113:e37868. [PMID: 39794931 DOI: 10.1002/jbm.a.37868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Chronic wounds present a major healthcare challenge around the world, and significant hurdles remain in their effective treatment due to limitations in accessible treatment options. Mesenchymal stem cells (MSCs) with multifunctional differentiation and modulatory properties have been delivered to chronic wounds to enhance closure but have limited engraftment when delivered without a scaffold. In this study, hybrid porous hydrogel foams composed of modified polyvinyl alcohol and gelatin were developed that are suitable for rapid and facile MSC encapsulation, fully degradable, and supportive of wound healing. Rapid fabrication and encapsulation within porous foams was achieved using a cytocompatible gas blowing process. The hybrid hydrogels have tunable degradation rates based on chemistry, with complete mass loss achieved within 2-6 weeks, which is compatible with chronic wound closure rates. High encapsulated A375 epithelial cell and MSC viability with maintained cell functionality over 2 weeks reveals the potential of these hydrogels to serve as cell delivery systems for chronic wound treatment. An ex vivo porcine skin wound model demonstrated enhanced healing after application of cell-laden hydrogel foams. Overall, hybrid hydrogel foams with encapsulated therapeutic cells have the capacity for robust wound healing and are a promising platform for chronic wound dressings.
Collapse
Affiliation(s)
- Nghia Le Ba Thai
- Biomedical and Chemical Engineering and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| | - Emily Fittante
- Biomedical and Chemical Engineering and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| | - Zhen Ma
- Biomedical and Chemical Engineering and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| | - Mary Beth Monroe
- Biomedical and Chemical Engineering and BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
23
|
Majewska L, Dorosz K, Kijowski J. Efficacy of Rose Stem Cell-Derived Exosomes (RSCEs) in Skin Treatment: From Healing to Hyperpigmentation Management: Case Series and Review. J Cosmet Dermatol 2025; 24:e16776. [PMID: 39815650 PMCID: PMC11736088 DOI: 10.1111/jocd.16776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/03/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025]
Abstract
OBJECTIVE To present and analyze eight clinical cases illustrating the use of rose stem cell-derived exosomes (RSCEs) in treating various dermatological conditions and to review current literature on plant-derived exosomes in medicine and dermatology. BACKGROUND RSCEs possess low cytotoxicity, high biocompatibility, and effective cellular uptake, making them promising agents for dermatological therapies. A literature review included in the introduction and discussion covers the broader role of plant-derived exosomes, highlighting their therapeutic potential in skin treatment. METHODS A case-by-case analysis was conducted on eight patients with conditions including atopic dermatitis (AD), hyperpigmentation, scarring, wounds, melasma, and antiaging concerns. Each case provided insights into RSCEs' efficacy, with a focus on their antioxidant and anti-inflammatory properties, as well as specific learning points derived from clinical observations. RESULTS The cases demonstrated RSCEs' multifaceted therapeutic effects across different skin conditions, supporting their role in enhancing skin regeneration, wound healing, and reducing hyperpigmentation and scarring. The literature review underscored RSCEs' unique bioactivity, suggesting mechanisms for their observed effects, including anti-inflammatory and rejuvenating properties, which contributed to favorable clinical outcomes. CONCLUSION RSCEs show potential as a valuable treatment in dermatology, as evidenced by the positive results across multiple skin conditions and their alignment with existing literature on plant-derived exosomes. This case series emphasizes the need for further randomized and controlled clinical trials to confirm these preliminary findings and expand RSCEs' clinical application in dermatology.
Collapse
Affiliation(s)
| | | | - Jacek Kijowski
- Małopolska Centre of Biotechnology, Stem Cell LaboratoryJagiellonian UniversityKrakówPoland
| |
Collapse
|
24
|
Kasherwal V, Kale V, Vaidya A. Extracellular vesicles secreted by leukemic cells as mediators of dysregulated hematopoiesis: acute myeloid leukemia as a case in point. Expert Rev Hematol 2025; 18:225-237. [PMID: 40008450 DOI: 10.1080/17474086.2025.2471860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/23/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) cells exhibit a profound capacity for resistance to conventional chemotherapeutic agents, posing a substantial challenge to existing therapeutic paradigms. Interestingly, this happens in the face of a luxuriant proliferation of leukemic blasts in the peripheral blood. This paradox of concurrent proliferative activity and cellular quiescence underscores a complex biological phenomenon that is intricately mediated by AML-derived Extracellular vesicles (EVs). AREAS COVERED An extensive literature review search was done on PubMed/Scopus/Web of Sciences databases to identify studies published between 2013 and 2024 elucidating and demonstrating the effect of AML-derived EVs, Microvesicles (MVs) and Exosomes (Exos) in regulating the normal and dysregulated bone marrow (BM) niche. EXPERT OPINION The review delves into understanding the molecular mechanisms underlying the dual behavior of AML cells - proliferation and quiescence, with a special focus on the role of the EVs and their subtypes viz. Exos and MVs in establishing a discrete BM microenvironment that is subversive to chemotherapy. It offers a novel perspective on the intricate interplay between the leukemic cells and their microenvironment, with implications for therapeutic interventions targeting AML persistence and drug resistance.
Collapse
Affiliation(s)
- Vishakha Kasherwal
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, India
| | - Anuradha Vaidya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
25
|
Zheng R, Yu C, Yao D, Cai M, Zhang L, Ye F, Huang X. Engineering Stimuli-Responsive Materials for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406439. [PMID: 39444066 PMCID: PMC11707583 DOI: 10.1002/smll.202406439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, precision medicine has garnered increasing attention, making significant strides in discovering new therapeutic drugs and mechanisms, resulting in notable achievements in symptom alleviation, pain reduction, and extended survival rates. However, the limited target specificity of primary drugs and inter-individual differences have often necessitated high-dosage strategies, leading to challenges such as restricted deep tissue penetration rates and systemic side effects. Material science advancements present a promising avenue for these issues. By leveraging the distinct internal features of diseased regions and the application of specific external stimuli, responsive materials can be tailored to achieve targeted delivery, controllable release, and specific biochemical reactions. This review aims to highlight the latest advancements in stimuli-responsive materials and their potential in precision medicine. Initially, we introduce disease-related internal stimuli and capable external stimuli, elucidating the reaction principles of responsive functional groups. Subsequently, we provide a detailed analysis of representative pre-clinical achievements of stimuli responsive materials across various clinical applications, including enhancements in the treatment of cancers, injury diseases, inflammatory diseases, infection diseases, and high-throughput microfluidic biosensors. Finally, we discuss some clinical challenges, such as off-target effects, long-term impacts of nano-materials, potential ethical concerns, and offer insights into future perspectives of stimuli-responsive materials.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Chang Yu
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
- Intervention DepartmentThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Dan Yao
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Mengsi Cai
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| | - Lexiang Zhang
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Fangfu Ye
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Xiaoying Huang
- Joint Centre of Translational MedicineDivision of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical University WenzhouWenzhouZhejiang325000China
| |
Collapse
|
26
|
Wang S, Fu L, Wang B, Cai Y, Jiang J, Shi YB. Thyroid hormone receptor- and stage-dependent transcriptome changes affect the initial period of Xenopus tropicalis tail regeneration. BMC Genomics 2024; 25:1260. [PMID: 39736516 DOI: 10.1186/s12864-024-11175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Thyroid hormone (T3) has an inhibitory effect on tissue/organ regeneration. It is still elusive how T3 regulates this process. It is well established that the developmental effects of T3 are primarily mediated through transcriptional regulation by thyroid hormone receptors (TRs). Here we have taken advantage of mutant tadpoles lacking both TRα and TRβ (TRDKO), the only receptor genes in vertebrates, for RNA-seq analyses to investigate the transcriptome changes underlying the initiation of tail regeneration, i.e., wound healing and blastema formation, because this crucial initial step determines the extent of the functional regeneration in the later phase of tissue regrowth. RESULTS We discovered that GO (gene ontology) terms related to inflammatory response, metabolic process, cell apoptosis, and epithelial cell migration were highly enriched among commonly regulated genes during wound healing at either stage 56 or 61 or with either wild type (WT) or TRDKO tadpoles, consistent with the morphological changes associated with wound healing occurring in both regenerative (WT stage 56, TRDKO stage 56, TRDKO stage 61) and nonregenerative (WT stage 61) animals. Interestingly, ECM-receptor interaction and cytokine-cytokine receptor interaction, which are essential for blastema formation and regeneration, were significantly enriched among regulated genes in the 3 regenerative groups but not the non-regenerative group at the blastema formation period. In addition, the regulated genes specific to the nonregenerative group were highly enriched with genes involved in cellular senescence. Finally, T3 treatment at stage 56, while not inducing any measurable tail resorption, inhibited tail regeneration in the wild type but not TRDKO tadpoles. CONCLUSIONS Our study suggests that TR-mediated, T3-induced gene regulation changed the permissive environment during the initial period of regeneration and affected the subsequent patterning/outgrowth period of the regeneration process. Specifically, T3 signaling via TRs inhibits the expression of ECM-related genes while promoting the expression of inflammation-related genes during the blastema formation period. Interestingly, our findings indicate that amputation-induced changes in DNA replication-related pathways can occur during this nonregenerative period. Further studies, particularly on the regenerative microenvironment that may depend on ECM-receptor interaction and cytokine-cytokine receptor interaction, should provide important insights on the regulation of regenerative capacity during vertebrate development.
Collapse
Affiliation(s)
- Shouhong Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Liezhen Fu
- Section On Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bin Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yanmei Cai
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yun-Bo Shi
- Section On Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
27
|
Klabukov I, Shatveryan G, Bagmet N, Aleshina O, Ivanova E, Savina V, Gilmutdinova I, Atiakshin D, Ignatyuk M, Baranovskii D, Shegay P, Kaprin A, Eremin I, Chardarov N. Local Application of Minimally Manipulated Autologous Stromal Vascular Fraction (SVF) Reduces Inflammation and Improves Bilio-Biliary Anastomosis Integrity. Int J Mol Sci 2024; 26:222. [PMID: 39796076 PMCID: PMC11720677 DOI: 10.3390/ijms26010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Bilio-biliary anastomosis (BBA) is a critical surgical procedure that is performed with the objective of restoring bile duct continuity. This procedure is often required in cases where there has been an injury to the extrahepatic bile ducts or during liver transplantation. Despite advances in surgical techniques, the healing of BBA remains a significant challenge, with complications such as stricture formation and leakage affecting patient outcomes. The stromal vascular fraction (SVF), a heterogeneous cell population derived from adipose tissue, has demonstrated promise in regenerative medicine due to its rich content of stem cells, endothelial progenitor cells, and growth factors. The objective of this study was to evaluate the potential of locally administered autologous SVF to enhance the healing of BBAs. Bilio-biliary anastomosis was performed on a swine model (female Landrace pigs). Six swine were divided into two groups: the treatment group (n = 3) received a local application of autologous SVF around the anastomosis site immediately following BBA formation, while the control group (n = 3) received saline. The primary outcomes were assessed over an eight-week period post-surgery, and included anastomosis healing, stricture formation, and bile leakage. Histological analysis was performed to evaluate fibrosis, angiogenesis, and inflammation. Immunohistochemistry was conducted to assess healing-related markers (CD34, α-SMA) and the immunological microenvironment (CD3, CD10, tryptase). The SVF-treated group exhibited significantly enhanced healing of the BBA. Histological examination revealed increased angiogenesis and reduced fibrosis in the SVF group. Immunohistochemical staining demonstrated higher vascular density in the anastomosed area of the SVF-treated group (390 vs. 210 vessels per 1 mm2, p = 0.0027), as well as a decrease in wall thickness (1.9 vs. 1.0 mm, p = 0.0014). There were no statistically significant differences in mast cell presence (p = 0.40). Immunohistochemical staining confirmed the overexpression of markers associated with tissue repair. Local injections of autologous SVF at the site of BBA have been demonstrated to significantly enhance healing and promote tissue regeneration. These findings suggest that SVF could be a valuable adjunctive therapy in BBA surgery, potentially improving surgical outcomes. However, further investigation is needed to explore the clinical applicability and long-term benefits of this novel approach in clinical practice as a minimally manipulated cell application.
Collapse
Affiliation(s)
- Ilya Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036 Obninsk, Russia
| | - Garnik Shatveryan
- Petrovsky National Research Centre of Surgery, Abrikosovsky per. 2, 119991 Moscow, Russia
| | - Nikolay Bagmet
- Petrovsky National Research Centre of Surgery, Abrikosovsky per. 2, 119991 Moscow, Russia
| | - Olga Aleshina
- Petrovsky National Research Centre of Surgery, Abrikosovsky per. 2, 119991 Moscow, Russia
| | - Elena Ivanova
- Petrovsky National Research Centre of Surgery, Abrikosovsky per. 2, 119991 Moscow, Russia
| | - Victoria Savina
- Petrovsky National Research Centre of Surgery, Abrikosovsky per. 2, 119991 Moscow, Russia
| | - Ilmira Gilmutdinova
- National Medical Research Center for Rehabilitation and Balneology of the Ministry of Health of the Russian Federation, Novyy Arbat Str. 2, 121099 Moscow, Russia
| | - Dmitry Atiakshin
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Michael Ignatyuk
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Denis Baranovskii
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036 Obninsk, Russia
- Department of Biomedicine, University Hospital Basel, Basel University, 4001 Basel, Switzerland
- Research and Educational Resource Center for Cellular Technologies, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Peter Shegay
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036 Obninsk, Russia
| | - Andrey Kaprin
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ilya Eremin
- Petrovsky National Research Centre of Surgery, Abrikosovsky per. 2, 119991 Moscow, Russia
| | - Nikita Chardarov
- Petrovsky National Research Centre of Surgery, Abrikosovsky per. 2, 119991 Moscow, Russia
| |
Collapse
|
28
|
Nasadiuk K, Kolanowski T, Kowalewski C, Wozniak K, Oldak T, Rozwadowska N. Harnessing Mesenchymal Stromal Cells for Advanced Wound Healing: A Comprehensive Review of Mechanisms and Applications. Int J Mol Sci 2024; 26:199. [PMID: 39796055 PMCID: PMC11719717 DOI: 10.3390/ijms26010199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic wounds and injuries remain a substantial healthcare challenge, with significant burdens on patient quality of life and healthcare resources. Mesenchymal stromal cells (MSCs) present an innovative approach to enhance tissue repair and regeneration in the context of wound healing. The intrinsic presence of MSCs in skin tissue, combined with their roles in wound repair, ease of isolation, broad secretory profile, and low immunogenicity, makes them especially promising for treating chronic wounds. This review explores the current landscape of MSC application, focusing on preclinical and clinical data across chronic wounds, diabetic ulcers, burns, non-union bone fractures, lower extremity venous ulcers, pressure ulcers, and genetic skin conditions like epidermolysis bullosa. Special emphasis is given to the mechanisms through which MSCs exert their regenerative effects, underscoring their potential in advancing wound healing therapies and supporting the broader field of regenerative medicine.
Collapse
Affiliation(s)
- Khrystyna Nasadiuk
- Research and Development Department, Polski Bank Komórek Macierzystych S.A. (FamiCord Group), 00-867 Warsaw, Poland; (K.N.); (T.K.)
| | - Tomasz Kolanowski
- Research and Development Department, Polski Bank Komórek Macierzystych S.A. (FamiCord Group), 00-867 Warsaw, Poland; (K.N.); (T.K.)
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Cezary Kowalewski
- Department of Dermatology, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland; (C.K.); (K.W.)
| | - Katarzyna Wozniak
- Department of Dermatology, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland; (C.K.); (K.W.)
| | - Tomasz Oldak
- Research and Development Department, Polski Bank Komórek Macierzystych S.A. (FamiCord Group), 00-867 Warsaw, Poland; (K.N.); (T.K.)
| | - Natalia Rozwadowska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| |
Collapse
|
29
|
Mungai RW, Hartman RJ, Jolin GE, Piskorowski KW, Billiar KL. Towards a more objective and high-throughput spheroid invasion assay quantification method. Sci Rep 2024; 14:31007. [PMID: 39730859 DOI: 10.1038/s41598-024-82191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Multicellular spheroids embedded in 3D hydrogels are prominent in vitro models for 3D cell invasion. Yet, quantification methods for spheroid cell invasion that are high-throughput, objective and accessible are still lacking. Variations in spheroid sizes and the shapes of the cells within render it difficult to objectively assess invasion extent. The goal of this work is to develop a high-throughput quantification method of cell invasion into 3D matrices that minimizes sensitivity to initial spheroid size and cell spreading and provides precise integrative directionally-dependent metrics of invasion. By analyzing images of fluorescent cell nuclei, invasion metrics are automatically calculated at the pixel level. The initial spheroid boundary is segmented and automated calculations of the nuclear pixel distances from the initial boundary are used to compute common invasion metrics (i.e., the change in invasion area, mean distance) for the same spheroid at a later timepoint. We also introduce the area moment of inertia as an integrative metric of cell invasion that considers the invasion area as well as the pixel distances from the initial spheroid boundary. Further, we show that principal component analysis can be used to quantify the directional influence of a stimuli to invasion (e.g., due to a chemotactic gradient or contact guidance). To demonstrate the power of the analysis for cell types with different invasive potentials and the utility of this method for a variety of biological applications, the method is used to analyze the invasiveness of five different cell types. In all, implementation of this high-throughput quantification method results in consistent and objective analysis of 3D multicellular spheroid invasion. We provide the analysis code in both MATLAB and Python languages as well as a GUI for ease of use for researchers with a range of computer programming skills and for applications in a variety of biological research areas such as wound healing and cancer metastasis.
Collapse
Affiliation(s)
- Rozanne W Mungai
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01605, USA
| | | | - Grace E Jolin
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01605, USA
| | - Kevin W Piskorowski
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01605, USA
| | - Kristen L Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01605, USA.
| |
Collapse
|
30
|
Teymouri S, Yousefi MH, Heidari S, Farokhi S, Afkhami H, Kashfi M. Beyond antibiotics: mesenchymal stem cells and bacteriophages-new approaches to combat bacterial resistance in wound infections. Mol Biol Rep 2024; 52:64. [PMID: 39699690 DOI: 10.1007/s11033-024-10163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Wound management is a major global health problem. With the rising incidence of diabetic wounds, accidents, and other injuries, the demand for prompt wound treatment has become increasingly critical. Millions of people suffer from serious, large wounds resulting from major accidents, surgeries, and wars. These wounds require considerable time to heal and are susceptible to infection. Furthermore, chronic wounds, particularly in elderly and diabetic patients, often require frequent medical interventions to prevent complications. Consequently, wound management imposes a significant economic burden worldwide. The complications arising from wound infections can vary from localized issues to systemic effects. The most severe local complication of wound infection is the non-healing, which results from the disruption of the wound-healing process. This often leads to significant pain, discomfort, and psychological trauma for the patient. Systemic complications may include cellulitis, osteomyelitis, and septicemia. Mesenchymal stem cells are characterized by their high capacity for division, making them suitable candidates for the treatment of tissue damage. Additionally, they produce antimicrobial peptides and various cytokines, which enhance their antimicrobial activity. Evidence shows that phages are effective in treating wound-related infections, and phage therapy has proven to be highly effective for patients when administered correctly. The purpose of this article is to explore the use of bacteriophages and mesenchymal stem cells in wound healing and infection management.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Lowdell MW. Considerations for manufacturing of cell and gene medicines for clinical development. Cytotherapy 2024:S1465-3249(24)00941-1. [PMID: 39797851 DOI: 10.1016/j.jcyt.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 01/13/2025]
Abstract
The global changes from 2001 that elevated substantially modified cell therapies to the definition of "medicinal product" have been the catalyst for the dramatic expansion of the field to its current and future commercial success. Europe was the first to incorporate human somatic cells into drug legislation with the medicines directive of 2001 (2001/83/EC), which led to the development of the term "advanced therapy medicinal products" (ATMPs) to cover all substantially modified products, tissue-engineered products and somatic cells that are not substantially modified but that are used non-homologously. For convenience, I use the term "ATMPs" throughout this review. The transition from "cell therapy" to "cellular medicine" coincided with changes in clinical trial legislation in Europe and, subsequently, across many drug jurisdictions throughout the world. As medicines, there is a clear path through multiple phases of trials and associated requirements for compliance with the good practice standards of drug development, and manufacturability is central to this development.
Collapse
Affiliation(s)
- Mark W Lowdell
- Cancer Institute, University College London, London, UK.
| |
Collapse
|
32
|
Ding Y, Song M, Huang R, Chen W. Adipose-mesenchymal stem cell-derived extracellular vesicles enhance angiogenesis and skin wound healing via bFGF-mediated VEGF expression. Cell Tissue Bank 2024; 26:2. [PMID: 39625539 DOI: 10.1007/s10561-024-10150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/04/2024] [Indexed: 02/22/2025]
Abstract
This study aimed to investigate whether extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ASCs) promote skin wound healing by delivering basic fibroblast growth factor (bFGF) to enhance vascular endothelial growth factor (VEGF) expression. ASCs were isolated and transfected with either a bFGF knockdown lentivirus (Lv-sh-bFGF) or a control lentivirus (Lv-sh-NC). EVs were extracted from ASCs cultures and characterized by transmission electron microscopy, nanoparticle tracking analysis, and Western blotting for surface markers. EVs were extracted from the conditioned mediums of ASCs and subjected to different treatments. These EVs or control treatments were injected at the wound edges. Wound healing was assessed using histological techniques, including H&E and Masson's trichrome staining to evaluate tissue regeneration, collagen organization, and immunohistochemistry for CD31 to quantify microvessel density. Protein expression of bFGF and VEGF was measured by Western blotting. ASC-derived EVs significantly promoted angiogenesis and improved skin wound healing. EVs encapsulating bFGF enhanced VEGF expression in the wound tissue, while knockdown of bFGF reduced both bFGF and VEGF expression, leading to delayed wound healing. Further knockdown of VEGF partially reversed the pro-angiogenic and wound-healing effects of bFGF-encapsulated EVs. This study demonstrates that ASC-derived EVs promoted skin wound repair by enhancing angiogenesis and accelerating tissue regeneration through the bFGF/VEGF axis. These findings highlight the therapeutic potential of ASCs-derived EVs in improving skin wound healing.
Collapse
Affiliation(s)
- Yonghu Ding
- Department of Orthopedics, The Third People's Hospital Health Care Group of Cixi, 51-139 Zhouxi Road, Zhouxiang Town, Cixi City, Ningbo, 315000, China
| | - Mengsheng Song
- Department of Orthopedics, The Third People's Hospital Health Care Group of Cixi, 51-139 Zhouxi Road, Zhouxiang Town, Cixi City, Ningbo, 315000, China
| | - Rong Huang
- Department of Orthopedics, The Third People's Hospital Health Care Group of Cixi, 51-139 Zhouxi Road, Zhouxiang Town, Cixi City, Ningbo, 315000, China
| | - Weiting Chen
- Department of Orthopedics, The Third People's Hospital Health Care Group of Cixi, 51-139 Zhouxi Road, Zhouxiang Town, Cixi City, Ningbo, 315000, China.
| |
Collapse
|
33
|
Cao X, Wu X, Zhang Y, Qian X, Sun W, Zhao Y. Emerging biomedical technologies for scarless wound healing. Bioact Mater 2024; 42:449-477. [PMID: 39308549 PMCID: PMC11415838 DOI: 10.1016/j.bioactmat.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Complete wound healing without scar formation has attracted increasing attention, prompting the development of various strategies to address this challenge. In clinical settings, there is a growing preference for emerging biomedical technologies that effectively manage fibrosis following skin injury, as they provide high efficacy, cost-effectiveness, and minimal side effects compared to invasive and costly surgical techniques. This review gives an overview of the latest developments in advanced biomedical technologies for scarless wound management. We first introduce the wound healing process and key mechanisms involved in scar formation. Subsequently, we explore common strategies for wound treatment, including their fabrication methods, superior performance and the latest research developments in this field. We then shift our focus to emerging biomedical technologies for scarless wound healing, detailing the mechanism of action, unique properties, and advanced practical applications of various biomedical technology-based therapies, such as cell therapy, drug therapy, biomaterial therapy, and synergistic therapy. Finally, we critically assess the shortcomings and potential applications of these biomedical technologies and therapeutic methods in the realm of scar treatment.
Collapse
Affiliation(s)
- Xinyue Cao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiangyi Wu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanjin Zhao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China
| |
Collapse
|
34
|
Niebergall-Roth E, Dieter K, Frank MH, Kluth MA. Systemic treatment of recessive dystrophic epidermolysis bullosa with mesenchymal stromal cells: a scoping review of the literature and conclusions for future clinical research. J DERMATOL TREAT 2024; 35:2419931. [PMID: 39551482 DOI: 10.1080/09546634.2024.2419931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Background: The ability of mesenchymal stromal cells (MSCs) to facilitate regenerative responses in inflamed and injured tissues, coupled with preclinical data suggesting potential to restore defective collagen VII at the dermo-epidermal junction, has raised the hope that MSCs may provide an effective disease-modifying therapy for patients suffering from recessive dystrophic epidermolysis bullosa (RDEB). Methods: We present a descriptive analysis of the clinical research on systemic MSC administration to RDEB patients available in PubMed, including six early-phase studies and one case report, involving 59 patients who received 1-3 intravenous infusions of MSCs from various sources. Results: Based on 133 MSC infusions, a total of 44 mostly mild adverse events were reported as definitely, possibly or likely related to the study treatment, only two of which led to treatment discontinuation. Improvements were seen in skin manifestations, disease activity, pain, pruritus and quality of life, with considerable heterogeneity in reported outcome variables and measurement tools between studies, and large inter-patient variability within studies. Conclusions: Although the current evidence base is limited, reflecting the typical challenges of clinical research in rare diseases, the reported results suggest potential treatment benefits for patients and provide a rationale for continuing to pursue this therapeutic approach.
Collapse
Affiliation(s)
| | | | - Markus H Frank
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | | |
Collapse
|
35
|
Hu Y, Wang Y, Zhi L, Yu L, Hu X, Shen Y, Du W. SDC4 protein action and related key genes in nonhealing diabetic foot ulcers based on bioinformatics analysis and machine learning. Int J Biol Macromol 2024; 283:137789. [PMID: 39557273 DOI: 10.1016/j.ijbiomac.2024.137789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Diabetic foot ulcers (DFU) is a complication associated with diabetes characterised by high morbidity, disability, and mortality, involving chronic inflammation and infiltration of multiple immune cells. We aimed to identify the critical genes in nonhealing DFU using single-cell RNA sequencing, transcriptomic analysis and machine learning. The GSE165816, GSE134431, and GSE143735 datasets were downloaded from the GEO database. We processed and screened the datasets, and identified the cell subsets. Each cell subtype was annotated, and the predominant cell types contributing to the disease were analysed. Key genes were identified using the LASSO regression algorithm, followed by verification of model accuracy and stability. We investigated the molecular mechanisms and changes in signalling pathways associated with this disease using immunoinfiltration analysis, GSEA, and GSVA. Through scRNA-seq analysis, we identified 12 distinct cell clusters and determined that the basalKera cell type was important in disease development. A high accuracy and stability prediction model was constructed incorporating five key genes (TXN, PHLDA2, RPLP1, MT1G, and SDC4). Among these five genes, SDC4 has the strongest correlation and plays an important role in the development of DFU. Our study identified SDC4 significantly associated with nonhealing DFU development, potentially serving as new prevention and treatment strategies for DFU.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China; Department of Plastic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Yiwen Wang
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Lin Zhi
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Lu Yu
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Xiaohua Hu
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Yuming Shen
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Weili Du
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China.
| |
Collapse
|
36
|
Aliniay-Sharafshadehi S, Yousefi MH, Ghodratie M, Kashfi M, Afkhami H, Ghoreyshiamiri SM. Exploring the therapeutic potential of different sources of mesenchymal stem cells: a novel approach to combat burn wound infections. Front Microbiol 2024; 15:1495011. [PMID: 39678916 PMCID: PMC11638218 DOI: 10.3389/fmicb.2024.1495011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
The most prevalent and harmful injuries are burns, which are still a major global health problem. Burn injuries can cause issues because they boost the inflammatory and metabolic response, which can cause organ malfunction and systemic failure. On the other hand, a burn wound infection creates an environment that is conducive to the growth of bacteria and might put the patient at risk for sepsis. In addition, scarring is unavoidable, and this results in patients having functional and cosmetic issues. Wound healing is an amazing phenomenon with a complex mechanism that deals with different types of cells and biomolecules. Cell therapy using stem cells is one of the most challenging treatment methods that accelerates the healing of burn wounds. Since 2000, the use of mesenchymal stem cells (MSCs) in regenerative medicine and wound healing has increased. They can be extracted from various tissues, such as bone marrow, fat, the umbilical cord, and the amniotic membrane. According to studies, stem cell therapy for burn wounds increases angiogenesis, has anti-inflammatory properties, slows the progression of fibrosis, and has an excellent ability to differentiate and regenerate damaged tissue. Figuring out the main preclinical and clinical problems that stop people from using MSCs and then suggesting the right ways to improve therapy could help show the benefits of MSCs and move stem cell-based therapy forward. This review's objective was to assess mesenchymal stem cell therapy's contribution to the promotion of burn wound healing.
Collapse
Affiliation(s)
- Shahrzad Aliniay-Sharafshadehi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Ghodratie
- Department of Medical Microbiology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mojtaba Kashfi
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
37
|
Tobo C, Jain A, Gamage ME, Jelliss P, Garg K. Electrostatic Gelatin Nanoparticles for Biotherapeutic Delivery. Gels 2024; 10:757. [PMID: 39727515 DOI: 10.3390/gels10120757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Biological agents such as extracellular vesicles (EVs) and growth factors, when administered in vivo, often face rapid clearance, limiting their therapeutic potential. To address this challenge and enhance their efficacy, we propose the electrostatic conjugation and sequestration of these agents into gelatin-based biomaterials. In this study, gelatin nanoparticles (GNPs) were synthesized via the nanoprecipitation method, with adjustments to the pH of the gelatin solution (4.0 or 10.0) to introduce either a positive or negative charge to the nanoparticles. The GNPs were characterized using dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM) imaging. Both positively and negatively charged GNPs were confirmed to be endotoxin-free and non-cytotoxic. Mesenchymal stem cell (MSC)-derived EVs exhibited characteristic surface markers and a notable negative charge. Zeta potential measurements validated the electrostatic conjugation of MSC-EVs with positively charged GNPs. Utilizing a transwell culture system, we evaluated the impact of EV-GNP conjugates encapsulated within a gelatin hydrogel on macrophage secretory activity. The results demonstrated the bioactivity of EV-GNP conjugates and their synergistic effect on macrophage secretome over five days of culture. In summary, these findings demonstrate the efficacy of electrostatically coupled biotherapeutics with biomaterials for tissue regeneration applications.
Collapse
Affiliation(s)
- Connor Tobo
- Biomedical Engineering Department, Saint Louis University, Saint Louis, MO 63103, USA
| | - Avantika Jain
- Pharmacology and Physiology Department, Saint Louis University, Saint Louis, MO 63104, USA
| | | | - Paul Jelliss
- Chemistry Department, Saint Louis University, Saint Louis, MO 63103, USA
| | - Koyal Garg
- Biomedical Engineering Department, Saint Louis University, Saint Louis, MO 63103, USA
| |
Collapse
|
38
|
Hu Z, Zhu L, Zhu Y, Xu Y. Mesenchymal Stem Extracellular Vesicles in Various Respiratory Diseases: A New Opportunity. J Inflamm Res 2024; 17:9041-9058. [PMID: 39583853 PMCID: PMC11586120 DOI: 10.2147/jir.s480345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024] Open
Abstract
Lung diseases are associated with high morbidity and mortality rates, thereby jeopardizing human health and imposing a great burden on society. Currently, lung diseases are mainly treated with medications, oxygen therapy and mechanical ventilation, but these approaches are unable to effectively reduce the mortality rate. Therefore, lung transplantation remains the ultimate treatment for various chronic lung diseases, but this treatment is also hindered by the limited availability of lung sources, immature technology and a low survival rate after transplantation. With constant changes in the environment, pathogens, type and amount of harmful substances and the prevalence of respiratory diseases, there is an urgent need to identify alternative treatment methods. Research on stem cell therapy has been very successful in recent years, and mesenchymal stem cells (MSCs), together with their secretory bodies, play a significant therapeutic role. Extracellular vesicles of MSCs (MSC-EVs) are also major components of the paracrine secretion of MSCs, including exosomes, microvesicles, and apoptotic bodies, among which exosomes are the most typical. MSC-EVs are believed to be present in various tissues of the human body where they can carry proteins, DNA, RNA and biologically active factors, just to name a few. They can also transmit various biological signals to participate in different biological activities, including the maintenance of homeostasis within the tissue. Several studies have further demonstrated that MSCs and their generated extracellular vesicles play an important role in the treatment of diseases. In this paper, the origin, properties and roles of MSCs and MSC-EVs are reviewed, the mechanisms of different lung diseases, the limitations of current therapeutic options and the roles of MSC-EVs in Chronic Obstructive Pulmonary Disease, asthma, infectious lung disease, lung cancer, pulmonary fibrosis, pulmonary arterial hypertension, and acute lung injury/ acute respiratory distress syndrome are also discussed (Figure 1). In addition, the current limitations and possible future research directions are also discussed in view of providing new ideas for the role of MSC-EVs in the treatment of lung diseases.
Collapse
Affiliation(s)
- Zijun Hu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, People’s Republic of China
| | - Lujian Zhu
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, People’s Republic of China
| | - Yanglin Zhu
- Department of Hepatobiliary Pancreatic Gastrointestinal Surgery 2, Affiliated Jinhua Hospital of Wenzhou Medical University, Jinhua, Zhejiang, People’s Republic of China
| | - Yejin Xu
- Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, People’s Republic of China
| |
Collapse
|
39
|
Sieńko D, Szabłowska-Gadomska I, Nowak-Szwed A, Rudziński S, Gofron M, Zygmunciak P, Lewandowska-Szumieł M, Zgliczyński WS, Czupryniak L, Mrozikiewicz-Rakowska B. The Potential of Mesenchymal Stem/Stromal Cells in Diabetic Wounds and Future Directions for Research and Therapy-Is It Time for Use in Everyday Practice? Int J Mol Sci 2024; 25:12171. [PMID: 39596237 PMCID: PMC11594847 DOI: 10.3390/ijms252212171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The treatment of diabetic wounds is impaired by the intricate nature of diabetes and its associated complications, necessitating novel strategies. The utilization of mesenchymal stem/stromal cells (MSCs) as a therapeutic modality for chronic and recalcitrant wounds in diabetic patients is an active area of investigation aimed at enhancing its therapeutic potential covering tissue regeneration. The threat posed to the patient and their environment by the presence of a diabetic foot ulcer (DFU) is so significant that any additional therapeutic approach that opens new pathways to halt the progression of local changes, which subsequently lead to a generalized inflammatory process, offers a chance to reduce the risk of amputation or even death. This article explores the potential of MSCs in diabetic foot ulcer treatment, examining their mechanisms of action, clinical application challenges, and future directions for research and therapy.
Collapse
Affiliation(s)
- Damian Sieńko
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (D.S.); (A.N.-S.); (L.C.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Ilona Szabłowska-Gadomska
- Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097 Warsaw, Poland; (I.S.-G.); (S.R.); (M.L.-S.)
| | - Anna Nowak-Szwed
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (D.S.); (A.N.-S.); (L.C.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Stefan Rudziński
- Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097 Warsaw, Poland; (I.S.-G.); (S.R.); (M.L.-S.)
| | - Maksymilian Gofron
- Department of Urology, Municipal Complex Hospital, 42-200 Czestochowa, Poland;
| | - Przemysław Zygmunciak
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland; (P.Z.); (W.S.Z.)
| | - Małgorzata Lewandowska-Szumieł
- Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097 Warsaw, Poland; (I.S.-G.); (S.R.); (M.L.-S.)
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Wojciech Stanisław Zgliczyński
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland; (P.Z.); (W.S.Z.)
| | - Leszek Czupryniak
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (D.S.); (A.N.-S.); (L.C.)
| | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland; (P.Z.); (W.S.Z.)
| |
Collapse
|
40
|
Melo WGGD, Bezerra DDO, Silva ERDDFS, Campêlo CB, Carvalho MAMD, Argôlo Neto NM. Behavioral dynamics of medicinal signaling cells from porcine bone marrow in long-term culture. Can J Physiol Pharmacol 2024; 102:672-679. [PMID: 39189463 DOI: 10.1139/cjpp-2023-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Medicinal signaling cells (MSC) hold promise for regenerative medicine due to their ability to repair damaged tissues. However, their effectiveness can be affected by how long they are cultured in the lab. This study investigated how passage number influences key properties for regenerative medicine of pig bone marrow MSC. The medicinal signiling cells derived from pig bone marrow (BM-MSC) were cultured in D-MEM High Glucose supplemented with 15% foetal bovine serum until the 25th passage and assessed their growth, viability, ability to differentiate into different cell types (plasticity), and cell cycle activity. Our findings showed that while the cells remained viable until the 25th passage, their ability to grow and differentiate declined after the 5th passage. Additionally, cells in later passages spent more time in a resting phase, suggesting reduced activity. In conclusion, the number of passages is a critical factor for maintaining ideal MSC characteristics. From the 9th passage BM-MSC exhibit decline in proliferation, differentiation potential, and cell cycle activity. Given this, it is possible to suggest that the use of 5th passage cells is the most suitable for therapeutic applications.
Collapse
Affiliation(s)
- Wanderson Gabriel Gomes de Melo
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Dayseanny de Oliveira Bezerra
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | | | - Camile Benício Campêlo
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Maria Acelina Martins de Carvalho
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Napoleão Martins Argôlo Neto
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
41
|
Rajesh A, Ju EDE, Oxford KA, Harman RM, Van de Walle GR. The mesenchymal stromal cell secretome promotes tissue regeneration and increases macrophage infiltration in acute and methicillin-resistant Staphylococcus aureus-infected skin wounds in vivo. Cytotherapy 2024; 26:1400-1410. [PMID: 38944795 DOI: 10.1016/j.jcyt.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AIMS The prevalence of chronic wounds continues to be a burden in human medicine. Methicillin-resistant Staphylococcus aureus (MRSA) is commonly isolated from infected wounds. MRSA infections primarily delay healing by impairing local immune cell functions. This study aimed to investigate the potential of mesenchymal stromal cell (MSC)-secreted bioactive factors, defined as the secretome, to improve innate immune responses in vivo. MSCs were isolated from the bone marrow of horses, which serve as valuable translational models for wound healing. The MSC secretome, collected as conditioned medium (CM), was evaluated in vivo using mouse models of acute and MRSA-infected skin wounds. METHODS Punch biopsies were used to create two full-thickness skin wounds on the back of each mouse. Acute wounds were treated daily with control medium or bone marrow-derived MSC (BM-MSC) CM. The antibiotic mupirocin was administered as a positive control for the MRSA-infected wound experiments. Wounds were photographed daily, and wound images were measured to determine the rate of closure. Trichrome staining was carried out to examine wound tissue histologically, and immunofluorescence antibody binding was used to assess immune cell infiltration. Wounds in the MRSA-infected model were swabbed for quantification of bacterial load. RESULTS Acute wounds treated with BM-MSC CM showed accelerated wound closure compared with controls, as illustrated by enhanced granulation tissue formation and resolution, increased vasculature and regeneration of hair follicles. This treatment also led to increased neutrophil and macrophage infiltration. Chronic MRSA-infected wounds treated with BM-MSC CM showed reduced bacterial load accompanied by better resolution of granulation tissue formation and increased infiltration of pro-healing M2 macrophages compared with control-treated infected wounds. CONCLUSIONS Collectively, our findings indicate that BM-MSC CM exerts pro-healing, immunomodulatory and anti-bacterial effects on wound healing in vivo, validating further exploration of the MSC secretome as a novel treatment option to improve healing of both acute and chronic wounds, especially those infected with antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Aarthi Rajesh
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Esther Da Eun Ju
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Kelly A Oxford
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
42
|
Prakash M, Mathikere Naganna C, Radhakrishnan V, Somayaji P, Sabu L. Therapeutic potential of silkworm sericin in wound healing applications. Wound Repair Regen 2024; 32:916-940. [PMID: 39225112 DOI: 10.1111/wrr.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic wounds are characterised by an imbalance between pro and anti-inflammatory signals, which result in permanent inflammation and delayed re-epithelialization, consequently hindering wound healing. They are associated with bacterial infections, tissue hypoxia, local ischemia, reduced vascularization and MMP-9 upregulation. The global prevalence of chronic wounds has been estimated at 40 million in the adult population, with an alarming annual growth rate of 6.6%, making it an increasingly significant clinical problem. Sericin is a natural hydrophilic protein obtained from the silkworm cocoon. Due to its biocompatibility, biodegradability, non-immunogenicity and oxidation resistance, coupled with its excellent affinity for target biomolecules, it holds great potential in wound healing applications. The silk industry discards 50,000 tonnes of sericin annually, making it a readily available material. Sericin increases cell union sites and promotes cell proliferation in fibroblasts and keratinocytes, thanks to its cytoprotective and mitogenic effects. Additionally, it stimulates macrophages to release more therapeutic cytokines, thus improving vascularization. This review focuses on the biological properties of sericin that contribute towards enhanced wound healing process and its mechanism of interaction with important biological targets involved in wound healing. Emphasis is placed on diverse wound dressing products that are sericin based and the utilisation of nanotechnology to design sericin nanoparticles that aid in chronic wound management.
Collapse
Affiliation(s)
- Monika Prakash
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | | | - Vivek Radhakrishnan
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Prathik Somayaji
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Leah Sabu
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| |
Collapse
|
43
|
Chen Z, Zou Y, Sun H, He Y, Ye K, Li Y, Qiu L, Mai Y, Chen X, Mao Z, Yi C, Wang W. Engineered Enucleated Mesenchymal Stem Cells Regulating Immune Microenvironment and Promoting Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412253. [PMID: 39295480 DOI: 10.1002/adma.202412253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Indexed: 09/21/2024]
Abstract
Persistent excessive inflammation caused by neutrophil and macrophage dysfunction in the wound bed leads to refractory response during wound healing. However, previous studies using cytokines or drugs often suffer from short half-lives and limited targeting, resulting in unsatisfactory therapeutic effects. Herein, the enucleated mesenchymal stem cell is engineered by aptamer bioorthogonal chemistry to modify the cell membrane and mRNA loading in the cell cytoplasm as a novel delivery vector (Cargocyte) with accurate targeting and sustained cytokine secretion. Cargocytes can successfully reduce NETosis by targeting the nuclear chromatin protein DEK protein with aptamers and sustaining interleukin (IL)-4 expression to overcome the challenges associated with the high cost and short half-life of IL-4 protein and significantly prevent the transition of macrophages into the M1 phenotype. Therapeutic effects have been demonstrated in murine and porcine wound models and have powerful potential to improve wound immune microenvironments effectively. Overall, the use of engineered enucleated mesenchymal stem cells as a delivery system may be a promising approach for wound healing.
Collapse
Affiliation(s)
- Zhengtai Chen
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Yang Zou
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Hanxiao Sun
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Yan He
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Kai Ye
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Yi Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Lihong Qiu
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Yuexue Mai
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Xinghong Chen
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Chenggang Yi
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Wei Wang
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| |
Collapse
|
44
|
Mungai RW, Hartman II RJ, Jolin GE, Piskorowski KW, Billiar KL. Towards a More Objective and High-throughput Spheroid Invasion Assay Quantification Method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600893. [PMID: 39005385 PMCID: PMC11244881 DOI: 10.1101/2024.06.27.600893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Multicellular spheroids embedded in 3D hydrogels are prominent in vitro models for 3D cell invasion. Yet, quantification methods for spheroid cell invasion that are high throughput, objective and accessible are still lacking. Variations in spheroid sizes and the shapes of the cells within render it difficult to objectively assess invasion extent. The goal of this work is to develop a high-throughput quantification method of cell invasion into 3D matrices that minimizes sensitivity to initial spheroid size and cell spreading and provides precise integrative directionally-dependent metrics of invasion. By analyzing images of fluorescent cell nuclei, invasion metrics are automatically calculated at the pixel level. The initial spheroid boundary is segmented and automated calculations of the nuclear pixel distances from the initial boundary are used to compute common invasion metrics (i.e., the change in invasion area, mean distance) for the same spheroid at a later timepoint. We also introduce the area moment of inertia as an integrative metric of cell invasion that considers the invasion area as well as the pixel distances from the initial spheroid boundary. Further, we show that principal component analysis can be used to quantify the directional influence of a stimuli to invasion (e.g., due to a chemotactic gradient or contact guidance). To demonstrate the power of the analysis for cell types with different invasive potentials and the utility of this method for a variety of biological applications, the method is used to analyze the invasiveness of five different cell types. In all, implementation of this high throughput quantification method results in consistent and objective analysis of 3D multicellular spheroid invasion. We provide the analysis code in both MATLAB and Python languages as well as a GUI for ease of use for researchers with a range of computer programming skills and for applications in a variety of biological research areas such as wound healing and cancer metastasis.
Collapse
Affiliation(s)
- Rozanne W. Mungai
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA 01605
| | | | - Grace E. Jolin
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA 01605
| | - Kevin W. Piskorowski
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA 01605
| | - Kristen L. Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA 01605
| |
Collapse
|
45
|
Heisler EV, Osmarim Turra B, Cardoso de Afonso Bonotto N, da Cruz IBM, Aurélio Echart Montano M, Farina Azzolin V, Dal Magro J, Zaniol F, Perottoni J, Chelotti ME, dos Santos Trombini F, Maia-Ribeiro EA, Barbisan F, Schimith MD. The Modulatory Effect of an Ethanolic Extract of Anredera cordifolia (Ten.) on the Proliferation and Migration of Hyperglycemic Fibroblasts in an In Vitro Diabetic Wound Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:2812290. [PMID: 39411276 PMCID: PMC11479783 DOI: 10.1155/2024/2812290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 10/19/2024]
Abstract
Diabetes mellitus is associated with chronic wound-healing problems that significantly impact patients' quality of life and substantially increase expenditure on healthcare. Therefore, the identification of compounds that can aid healing is justified. Anredera cordifolia (Ten.) has been used in folk medicine for curative purposes; however, the causal mechanisms underlying its healing effects remain to be elucidated. In this study, the effect of the ethanolic extract of A. cordifolia was evaluated in an in vitro healing model using fibroblasts cultivated under normoglycemic and hyperglycemic environments. The extract was predominantly composed of phytol and exhibited genoprotective activity. Fibroblast migration attenuated the adverse effects of hyperglycemia, favoring cell proliferation. Collagen levels were significantly increased in ruptured fibroblasts under both standard and hyperglycemic environments. The phytogenomic effect of the extract on three genes related to extracellular matrix formation, maintenance, and degradation showed that A. cordifolia increased the expression of genes related to matrix synthesis and maintenance in both normoglycemic and hyperglycemic individuals. Furthermore, it reduced the expression of genes related to matrix degradation. Overall, this is the first study to demonstrate the effectiveness of A. cordifolia in wound healing, elucidating possible causal mechanisms that appear to be based on the genoprotective effect of this plant on the migratory and proliferative phases of the wound healing process; these effects are probably related to phytol, its main constituent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Felipe Zaniol
- Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Juliano Perottoni
- Department of Zootechnics and Biological Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | | - Fernanda Barbisan
- Department of Pathology, Federal University of Santa Maria, Santa Maria, Brazil
| | | |
Collapse
|
46
|
Liu G, Wang D, Jia J, Hao C, Ge Q, Xu L, Zhang C, Li X, Mi Y, Wang H, Miao L, Chen Y, Zhou J, Xu X, Liu Y. Neuroprotection of Human Umbilical Cord-Derived Mesenchymal Stem Cells (hUC-MSCs) in Alleviating Ischemic Stroke-Induced Brain Injury by Regulating Inflammation and Oxidative Stress. Neurochem Res 2024; 49:2871-2887. [PMID: 39026086 DOI: 10.1007/s11064-024-04212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Brain injury caused by stroke has a high rate of mortality and remains a major medical challenge worldwide. In recent years, there has been significant attention given to the use of human Umbilical cord-derived Mesenchymal Stem Cells (hUC-MSCs) for the treatment of stroke in different adult and neonate animal models of stroke. However, using hUC-MSCs by systemic administration to treat ischemic stroke has not been investigated sufficiently. In this study, we conducted various experiments to explore the neuroprotection of hUC-MSCs in rats. Our findings demonstrate that an intravenous injection of a high dose of hUC-MSCs at 2 × 10^7 cells/kg markedly ameliorated brain injury resulting from ischemic stroke. This improvement was observed one day after inducing transient middle cerebral artery occlusion (MCAO) and subsequent reperfusion in rats. Notably, the efficacy of this single administration of hUC-MSCs surpassed that of edaravone, even when the latter was used continuously over three days. Mechanistically, secretory factors derived from hUC-MSCs, such as HGF, BDNF, and TNFR1, ameliorated the levels of MDA and T-SOD to regulate oxidative stress. In particular, TNFR1 also improved the expression of NQO-1 and HO-1, important proteins associated with oxidative stress. More importantly, TNFR1 played a significant role in reducing inflammation by modulating IL-6 levels in the blood. Furthermore, TNFR1 was observed to influence the permeability of the blood-brain barrier (BBB) as demonstrated in the evan's blue experiment and protein expression of ZO-1. This study represented a breakthrough in traditional methods and provided a novel strategy for clinical medication and trials.
Collapse
Affiliation(s)
- Guangyang Liu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Daohui Wang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Jianru Jia
- Baoding People's Hospital, Baoding, China
| | - Chunhua Hao
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Qinggang Ge
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Liqiang Xu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Chenliang Zhang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Xin Li
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Yi Mi
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Herui Wang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Li Miao
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Yaoyao Chen
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Jingwen Zhou
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Xiaodan Xu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Yongjun Liu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China.
| |
Collapse
|
47
|
Setiawan E, Putra A, Nabih DI, Ovaditya SZ, Rizaldy R. Mesenchymal stem cells suppress inflammation by downregulating interleukin-6 expression in intestinal perforation animal model. Ann Med Surg (Lond) 2024; 86:5776-5783. [PMID: 39359817 PMCID: PMC11444626 DOI: 10.1097/ms9.0000000000002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Intestinal perforation has significant fatality due to sepsis contamination and prolonged inflammation. Studies showed that mesenchymal stem cells (MSCs) secreted cytokines and growth factors to reduce inflammation. This study aims to reveal the role of MSCs in controlling inflammation in intestinal perforation wound healing by measuring interleukin-6 (IL-6) and leukocytes in injured tissue. Materials and methods A total of 48 rat models with a 10-mm longitudinal incision at the small intestine were divided into four groups: sham, control, Treatment group 1 (T1) injected with MSC doses of 1.5×106 cells and Treatment group 2 (T2) with 3×106 cells. IL-6 expressions were determined using western blot analysis, whereas the leukocyte infiltrations were assessed using the histopathological examination. All variables were evaluated on day 3 and 7. Results Leukocyte infiltration is significantly lower in T1 and T2 compared to control group in day 3 and 7 (P<0.05), while there were no differences between the two treatment groups. The expression of IL-6 was found to be significantly lower in the T1 and T2 groups compared to the control group on days 3 and 7 (P<0.05), with no significant differences observed between the two treatment groups. Conclusion MSCs administration in rats with intestinal perforation reduced inflammation by controlling leukocyte infiltration and IL-6 expression.
Collapse
Affiliation(s)
- Eko Setiawan
- Department of Surgery, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang
| | - Agung Putra
- Stem Cell and Cancer Research (SCCR) Laboratory, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang
- Department of Pathological Anatomy, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang
- Department of Postgraduate Biomedical Science, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang
| | - Dimas Irfan Nabih
- Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia
| | | | - Rheza Rizaldy
- Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia
| |
Collapse
|
48
|
Meng F, Fu Q, Zhou G, Chen M. Efficacy of Fractional Micro-plasma Radio Frequency Technology in Treating Hypertrophic Burn Scars in Asian Patients Under General Anesthesia: A Retrospective Study of 104 Cases. Aesthetic Plast Surg 2024; 48:4194-4202. [PMID: 38744686 DOI: 10.1007/s00266-024-04018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/11/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Laser and other energy devices have been widely used in the minimally invasive treatment of scars. Among various technologies, Fractional Micro-Plasma Radio Frequency Technology (FMRT) has gained extensive consensus in the treatment of various types of scars and skin disorders, such as wrinkles, skin laxity, and pigmentation. OBJECTIVE This study is a retrospective clinical trial aimed at assessing the effectiveness and safety of FMRT for hypertrophic burn scars treatment in the Asian population under different anesthesia methods. METHODS A total of 104 patients with hypertrophic burn scars treated in our department from May 2018 to May 2022 were selected. Scar assessment scales were applied to observe changes in scars before and after FMRT treatment. RESULTS A prospective study of 104 patients found that female patients were more likely to undergo laser treatment under general anesthesia (P < 0.05). Postoperative VSS total score, VSS total score difference, and immediate postoperative pain score were all better with general anesthesia compared to local anesthesia (P < 0.05). There were more significant improvements in scar color, vascular distribution, and flexibility (P < 0.05). When comparing the treatment outcomes between females and males, it was found that general anesthesia patients were superior to local anesthesia patients in terms of color score, vascular distribution score, flexibility score, and postoperative VSS total score 6 months after the final treatment. General anesthesia patients had a shorter hospital stay. Overall treatment evaluation was better for female general anesthesia patients than male patients. CONCLUSION General anesthesia combined with FMRT is an effective, safe, and more acceptable treatment method for hypertrophic burn scars in the Asian population. BULLET POINTS In the Asian population, the combined use of general anesthesia and Fractional Micro-Plasma Radio Frequency Technology (FMRT) is an effective, safe, and accepted method for treating skin scars. LEVEL OF EVIDENCE II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Fanting Meng
- Department of Plastic and Reconstructive Surgery, Senior Department of Burns and Plastic Surgery, The Forth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 10048, China
| | - Qiang Fu
- Department of Plastic and Reconstructive Surgery, Senior Department of Burns and Plastic Surgery, The Forth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 10048, China
| | - Guiwen Zhou
- Department of Plastic and Reconstructive Surgery, Senior Department of Burns and Plastic Surgery, The Forth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 10048, China
| | - Minliang Chen
- Department of Plastic and Reconstructive Surgery, Senior Department of Burns and Plastic Surgery, The Forth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 10048, China.
| |
Collapse
|
49
|
Chen YK, Mohamed AH, Amer Alsaiari A, Olegovich Bokov D, Ali Patel A, Al Abdulmonem W, Shafie A, Adnan Ashour A, Azhar Kamal M, Ahmad F, Ahmad I. The role of mesenchymal stem cells in the treatment and pathogenesis of psoriasis. Cytokine 2024; 182:156699. [PMID: 39033730 DOI: 10.1016/j.cyto.2024.156699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Psoriasis, a prevalent inflammatory skin condition impacting millions globally, continues to pose treatment challenges, despite the availability of multiple therapies. This underscores the demand for innovative treatments. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option due to their capacity to modulate the immune system and facilitate tissue healing. Recent research indicates that MSCs don't just work through direct cell-to-cell interactions but also release extracellular vesicles (EVs), containing various bioactive substances like proteins, lipids, and nucleic acids. This article explores our current knowledge of psoriasis's origins and the potential utilization of MSCs and their EVs, particularly exosomes, in managing the condition. Additionally, we delve into how MSCs and EVs function in therapy, including their roles in regulating immune responses and promoting tissue repair. Lastly, we discuss the obstacles and opportunities associated with translating MSC-based treatments for psoriasis into clinical practice.
Collapse
Affiliation(s)
- Yan-Kun Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518109, China; Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, China
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil 51001, Hilla, Iraq.
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Ayyub Ali Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
50
|
Maldonado F, Albornoz M, Enríquez I, Espinoza C, Chang H, Carrasco L, Díaz-Papapietro C, Medina F, González R, Cáceres M. Association of neutrophil-to-lymphocyte ratio with age and 180-day mortality after emergency surgery. BMC Anesthesiol 2024; 24:329. [PMID: 39289610 PMCID: PMC11406743 DOI: 10.1186/s12871-024-02718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND To examine the relationship between neutrophil-to-lymphocyte ratio (NLR), age, and mortality rates after emergency surgery. METHODS In this observational study, a total of 851 patients undergoing emergency surgery between January 2022 and January 2023 were retrospective examined. Using 30 and 180 days mortality data, NLR differences and receiver operating characteristic (ROC) curves were analyzed using a 65-year threshold. A multiple logistic regression model was constructed incorporating age and NLR. Finally, Kaplan-Meier curves were constructed for mortality. RESULTS Among 851 patients, the 30 and 180 days mortality rates were 5.2% and 10.8%, respectively. Median NLR in 30 days was 5.6 (3.1 to 9.6) in survivors and 8.7 (4.6 to 13.4) in deceased patients (p < 0.0001); in 180 days, it was 5.5 (3.1 to 9.8) and 8.8 (4.8 to 14.5), respectively (p < 0.0001). In the 30- and 180-days mortality analyses, median NLRs were 5.1 (2.9 to 8.9) and 4.9 (2.9 to 8.8) in survivors and 10.6 (6.9 to 16.6) and 9.3 (5.4 to 14.9) in deceased patients aged < 65 years, respectively. The ROC AUC in patients younger than 65 years was higher for 30 days (AUC 0.75; 95% CI 0.72 to 0.87) and 180 days (AUC 0.73; 95% CI 0.64 to 0.81). Multivariate logistic regression revealed that the NLR (odds ratio, 1.03 [95% CI 1.005 to 1.053; p = 0.0133) and age (odds ratio, 1.05 [95% CI 1.034 to 1.064; p < 0.0001) significantly contributed to the model. Survival analysis revealed differences in the 180 days mortality (p = 0.0006). CONCLUSION We observed differences in preoperative NLR between patients who survived and those who died after emergency surgery. Age impacts the use of NLR as a mortality risk factor. TRIAL REGISTRATION NCT06549101, retrospectively registered.
Collapse
Affiliation(s)
- Felipe Maldonado
- Department of Anesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.
| | | | | | | | - Hui Chang
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Laura Carrasco
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Díaz-Papapietro
- Department of Anesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Felipe Medina
- Instituto de Salud Poblacional, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Roberto González
- Department of Anesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Mónica Cáceres
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|