1
|
Ma Y, Boycott C, Zhang J, Gomilar R, Yang T, Stefanska B. SIRT1/DNMT3B-mediated epigenetic gene silencing in response to phytoestrogens in mammary epithelial cells. Epigenetics 2025; 20:2473770. [PMID: 40029260 PMCID: PMC11881848 DOI: 10.1080/15592294.2025.2473770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
We performed an integrated analysis of genome-wide DNA methylation and expression datasets in normal cells and healthy animals exposed to polyphenols with estrogenic activity (i.e. phytoestrogens). We identified that phytoestrogens target genes linked to disrupted cellular homeostasis, e.g. genes limiting DNA break repair (RNF169) or promoting ribosomal biogenesis (rDNA). Existing evidence suggests that DNA methylation may be governed by sirtuin 1 (SIRT1) deacetylase via interactions with DNA methylating enzymes, specifically DNMT3B. Since SIRT1 was reported to be regulated by phytoestrogens, we test whether phytoestrogens suppress genes related to disrupted homeostasis via SIRT1/DNMT3B-mediated transcriptional silencing. Human MCF10A mammary epithelial cells were treated with phytoestrogens, pterostilbene (PTS) or genistein (GEN), followed by analysis of cell growth, DNA methylation, gene expression, and SIRT1/DNMT3B binding. SIRT1 occupancy at the selected phytoestrogen-target genes, RNF169 and rDNA, was accompanied by consistent promoter hypermethylation and gene downregulation in response to GEN, but not PTS. GEN-mediated hypermethylation and SIRT1 binding were linked to a robust DNMT3B enrichment at RNF169 and rDNA promoters. This was not observed in cells exposed to PTS, suggesting a distinct mechanism of action. Although both SIRT1 and DNMT3B bind to RNF169 and rDNA promoters upon GEN, the two proteins do not co-occupy the regions. Depletion of SIRT1 abolishes GEN-mediated decrease in rDNA expression, suggesting SIRT1-dependent epigenetic suppression of rDNA by GEN. These findings enhance our understanding of the role of SIRT1-DNMT3B interplay in epigenetic mechanisms mediating the impact of phytoestrogens on cell biology and cellular homeostasis.
Collapse
Affiliation(s)
- Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Jiaxi Zhang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Rekha Gomilar
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Alamoudi MK, Alibrahim NN, Alsaleh AA, Raza ML. Epigenetic regulation of stress. PROGRESS IN BRAIN RESEARCH 2025; 291:205-238. [PMID: 40222780 DOI: 10.1016/bs.pbr.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Stress can have powerful and lasting effects on our bodies and behavior, partly because it changes how our genes work. These processes, such as DNA methylation, histones modifications, and non-coding RNAs, help decide when genes are active or inactive in cells experiencing stress. This can lead to lasting changes in how the cells function. It's important to understand how these changes in our genes affect our response to stress, as they can lead to problems like anxiety, depression, and heart disease. This chapter explores the link between stress and epigenetics. It talks about how our surroundings and lifestyle can impact these processes. It also shows that epigenetic treatments might help with issues created by stress. By looking at how stress affects our genes, we can discover new ways to treat stress and make medicine better for individuals, helping to lessen the bad impact of stress on our health.
Collapse
Affiliation(s)
- Mariam K Alamoudi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Noura N Alibrahim
- Medical Laboratory Department, Mohammed Al-Mana College for Medical Sciences, As Safa, Dammam, Saudi Arabia
| | - Abdulmonem A Alsaleh
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Zuo X, Bai HJ, Zhao QL, Zhang SH, Zhao X, Feng XZ. 17β-Trenbolone Exposure Enhances Muscle Activity and Exacerbates Parkinson's Disease Progression in Male Mice. Mol Neurobiol 2025; 62:3053-3066. [PMID: 39222261 DOI: 10.1007/s12035-024-04455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder, and while the neuroprotective effects of estrogen are well-documented, the impact of androgens on neurological disorders remains understudied. The consequences of exposure to 17-trenbolone (17-TB), an environmental endocrine disruptor with androgen-like properties, on the mammalian nervous system have received limited attention. Therefore, in this study, we aimed to investigate the biological effects of 17-TB exposure on PD. In our investigation using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, we discovered that 17-TB exposure elevated testosterone hormone levels prevented androgen receptor (AR) reduction, upregulated the expression of muscular dystrophic factors (Atrogin1, MuRF1, Musa1, and Myostatin), improved muscle strength, and enhanced locomotor activity in the open field test. However, it is noteworthy that exposure to 17-TB also led to an upregulation of neuroinflammatory cytokines (NLRP3, IL-6, IL-1α, and IL-1β) in PD mice. Crucially, 17-TB exposure induced downregulation of nigral apoptotic proteins DJ-1 and Bcl-2 while upregulating Bax and Caspase-3 in PD mice. This exacerbated neuronal apoptosis, ultimately intensifying dopaminergic neuronal degeneration and death in the substantia nigra and striatum of PD mice. In conclusion, our findings indicate that while 17-TB mitigates muscle atrophy and enhances motor activity in PD mice, it concurrently exacerbates neuroinflammation, induces neuronal apoptosis, and worsens dopaminergic neuronal death, thereby aggravating the progression of MPTP-induced Parkinsonism. This underscores the importance of considering potential environmental risks in neurodegeneration associated with Parkinson's disease, providing a cautionary tale for our daily exposure to environmental endocrine chemical disruptors.
Collapse
Affiliation(s)
- Xiang Zuo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Hui-Juan Bai
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qi-Li Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Shu-Hui Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China.
| | - Xi-Zeng Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Wu C, Tong Y, Huang J, Wang S, Kobori H, Zhang Z, Suzuki K. Atrophic C2C12 Myotubes Activate Inflammatory Response of Macrophages In Vitro. Cells 2025; 14:317. [PMID: 40072046 PMCID: PMC11899532 DOI: 10.3390/cells14050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Skeletal muscle wasting is commonly observed in aging, immobility, and chronic diseases. In pathological conditions, the impairment of skeletal muscle and immune system often occurs simultaneously. Recent studies have highlighted the initiative role of skeletal muscle in interactions with immune cells. However, the impact of skeletal muscle wasting on macrophage inflammatory responses remains poorly understood. METHODS To investigate the effect of atrophic myotubes on the inflammatory response of macrophages, we established two in vitro models to induce myotube atrophy: one induced by D-galactose and the other by starvation. Conditioned medium (CM) from normal and atrophic myotubes were collected and administered to bone marrow-derived macrophages (BMDMs) from mice. Subsequently, lipopolysaccharide (LPS) stimulation was applied, and the expression of inflammatory cytokines was measured via RT-qPCR. RESULTS Both D-galactose and starvation treatments reduced myotube diameter and upregulated muscle atrophy-related gene expression. CM from both atrophic myotubes models augmented the gene expression of pro-inflammatory factors in BMDMs following LPS stimulation, including Il6, Il1b, and Nfkb1. Notably, CM from starvation-induced atrophic myotubes also enhanced Il12b, Tnf, and Nos2 expression in BMDMs after stimulation, a response not observed in D-galactose-induced atrophic myotubes. CONCLUSIONS These findings suggest that CM from atrophic myotubes enhanced the expression of LPS-induced pro-inflammatory mediators in macrophages.
Collapse
Affiliation(s)
- Cong Wu
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Yishan Tong
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Jiapeng Huang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Shuo Wang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Haruki Kobori
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Ziwei Zhang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (C.W.); (Y.T.); (J.H.); (S.W.); (H.K.); (Z.Z.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
5
|
Kwag E, Park SJ, Lee JH, Lee JY, Khang R, Shin JH. Upregulation of p52-ZER6 (ZNF398) increases reactive oxygen species by suppressing metallothionein-3 in neuronal cells. Biochem Biophys Res Commun 2025; 748:151316. [PMID: 39809138 DOI: 10.1016/j.bbrc.2025.151316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
ZNF398/ZER6 belongs to the Krüppel-associated box (KRAB) domain-containing zinc finger proteins (K-ZNFs), the largest family of transcriptional repressors in higher organisms. ZER6 exists in two isoforms, p52 and p71, generated through alternative splicing. Our investigation revealed that p71-ZER6 is abundantly expressed in the stomach, kidney, liver, heart, and brown adipose tissue, while p52-ZER6 is predominantly found in the stomach and brain. The role of p52-ZER6 in neurons has remained unclear. Leveraging open-source RNA-seq data, we identified metallothionein 3 (MT3) as a target gene of p52-ZER6 in mouse hippocampal neuronal HT-22 cells. Through chromatin immunoprecipitation assays, we identified the putative DNA-binding motif (CTAGGGGGGTTGTTATCTCTTTGG) of p52-ZER6 in the promoter region of MT3. Furthermore, we demonstrated an interaction between p52-ZER6 and estrogen receptor alpha (ERα) in the nucleus of SH-SY5Y cells, which led to the inhibition of p52-ZER6's DNA occupancy on the promoter of the MT3 gene. MT3 is a cysteine-rich, low molecular-weight protein known for reducing oxidative stress, reactive oxygen species (ROS), and metal toxicity. Our study revealed that overexpression of p52-ZER6 reduced the levels of MT3, increasing ROS levels, which was mitigated by co-overexpression of ERα. Notably, we also observed upregulation of p52-ZER6 and reduction of MT3 in the cortex of 5xFAD, an Alzheimer's disease (AD) mouse model. These findings suggest a potential pathological mechanism involving p52-ZER6-mediated ROS production in AD pathogenesis.
Collapse
Affiliation(s)
- Eunsang Kwag
- Department of Pharmacology, Republic of Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 440-746, Republic of Korea
| | - Soo Jeong Park
- Department of Pharmacology, Republic of Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 440-746, Republic of Korea
| | - Jee-Ho Lee
- Department of Pharmacology, Republic of Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 440-746, Republic of Korea
| | - Ji-Yeong Lee
- Department of Pharmacology, Republic of Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 440-746, Republic of Korea
| | - Rin Khang
- Department of Pharmacology, Republic of Korea
| | - Joo-Ho Shin
- Department of Pharmacology, Republic of Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 440-746, Republic of Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea.
| |
Collapse
|
6
|
Biswal L, Sahu VK, Sardoiwala MN, Karmakar S, Choudhury SR. Antibody conjugated targeted nanotherapy epigenetically inhibits calpain-mediated mitochondrial dysfunction to attenuate Parkinson's disease. Carbohydr Polym 2024; 346:122575. [PMID: 39245478 DOI: 10.1016/j.carbpol.2024.122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024]
Abstract
Many neurodegenerative and psychiatric malignancies like Parkinson' disease (PD) originate from an imbalance of 17β-Estradiol (E2) in the human brain. However, the peripheral side effects of the usage of E2 for PD therapy and less understanding of the molecular mechanism hinder establishing its neurotherapeutic potential. In the present work, systemic side effects were overcome by targeted delivery using Dopamine receptor D3 (DRD3) conjugated E2-loaded chitosan nanoparticles (Ab-ECSnps) that showed a promising delivery to the brain. E2 is a specific calpain inhibitor that fosters neurodegeneration by disrupting mitochondrial function, while B-cell-specific Moloney murine leukemia virus integration region 1 (BMI1), an epigenetic regulator, is crucial in preserving mitochondrial homeostasis. We showed the administration of Ab-ECSnps inhibits calpain's translocation into mitochondria while promoting the translocation of BMI1 to mitochondria, thereby conferring neurotherapeutic benefits by enhancing cell viability, increasing mitochondrial DNA copy number, and preserving mitochondrial membrane potential. Further, we showed a novel molecular mechanism of BMI1 regulation by calpain that might contribute to maintaining mitochondrial homeostasis for attenuating PD. Concomitantly, Ab-ECSnps showed neurotherapeutic potential in the in vivo PD model. We showed for the first time that our brain-specific targeted delivery might regulate calpain-mediated BMI1 expression, thereby preserving mitochondrial homeostasis to alleviate PD.
Collapse
Affiliation(s)
- Liku Biswal
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Vikas Kumar Sahu
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Mohammed Nadim Sardoiwala
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Surajit Karmakar
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Subhasree Roy Choudhury
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
7
|
Lee JJ, Woo HD, Kim JH, Jung EJ, Lee K. Association of sarcopenia, ambient air pollution and cognitive function in a community-dwelling middle-aged and elderly Korean population: a community-based cohort study. BMJ Open 2024; 14:e092448. [PMID: 39638595 PMCID: PMC11624758 DOI: 10.1136/bmjopen-2024-092448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVES To investigate the association of sarcopenia, exposure to medium-term to long-term ambient particulate matter 2.5 µm and 10 µm (PM2.5 and PM10) pollution and cognitive function in a community-dwelling cohort of middle-aged and older adults in South Korea. DESIGN A community-based prospective cohort study. SETTING In the Korean Genome and Epidemiology Study (KoGES). PARTICIPANTS The participants were drawn from the seventh follow-up visit conducted between 2015 and 2016 in the KoGES community-based Ansung cohort who had participated in an ageing substudy. OUTCOME MEASURES Cognitive function was evaluated by the Korean version of the Mini-Mental State Examination (K-MMSE) and decreased cognitive function was defined as a K-MMSE score of 23 or less. RESULTS Of the 2274 participants (mean age 70.1 years, 58.3% women and mean annual PM2.5 and PM10 levels of 30.7 and 52.2 μg/m3, respectively), 8.7% (n=197) were sarcopenic, 35.8% (n=814) were possible sarcopenic and 55.5% (n=1263) were non-sarcopenic. The predictors of sarcopenia included body mass index, cognitive function, age, marital status, hypertension and physical activity. Exposure to PM2.5 and PM10 for an average duration of 1 month to 3 years was not selected as a predictor of sarcopenia. Participants with sarcopenia were associated with lower cognitive scores (β=-1.51, p<0.0001) and decreased cognitive function compared with those without sarcopenia (OR 2.34, 95% CI 1.56 to 3.52). Exposure to medium-term and long-term PM2.5 or PM10 was not associated with sarcopenia. The effect modification of PM exposure on the association between sarcopenia and cognitive function was generally not detected. CONCLUSIONS In this community-based observational cohort study of KoGES participants aged 50 years and older, sarcopenia was associated with decreased cognitive function. However, medium-term to long-term exposure to PM2.5 or PM10 was not associated with sarcopenia and did not modify the relationship between sarcopenia and cognitive function.
Collapse
Affiliation(s)
- Jane J Lee
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, The Republic of Korea
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women’s University, Seoul, The Republic of Korea
| | - Hae Dong Woo
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, The Republic of Korea
| | - Ji Hyun Kim
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, The Republic of Korea
| | - Eun Ju Jung
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, The Republic of Korea
| | - Kyoungho Lee
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, The Republic of Korea
| |
Collapse
|
8
|
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Hassan Almalki W, Kazmi I, Alzarea SI, Pant K, Singh TG, Singh SK, Ali H. The role of sirtuin 1 in ageing and neurodegenerative disease: A molecular perspective. Ageing Res Rev 2024; 102:102545. [PMID: 39423873 DOI: 10.1016/j.arr.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, has emerged as a key regulator of cellular processes linked to ageing and neurodegeneration. SIRT1 modulates various signalling pathways, including those involved in autophagy, oxidative stress, and mitochondrial function, which are critical in the pathogenesis of neurodegenerative diseases. This review explores the therapeutic potential of SIRT1 in several neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS). Preclinical studies have demonstrated that SIRT1 activators, such as resveratrol, SRT1720, and SRT2104, can alleviate disease symptoms by reducing oxidative stress, enhancing autophagic flux, and promoting neuronal survival. Ongoing clinical trials are evaluating the efficacy of these SIRT1 activators, providing hope for future therapeutic strategies targeting SIRT1 in neurodegenerative diseases. This review explores the role of SIRT1 in ageing and neurodegenerative diseases, with a particular focus on its molecular mechanisms, therapeutic potential, and clinical applications.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
9
|
Zhang Y, Liu M, Yu D, Wang J, Li J. 17β-Estradiol Ameliorates Postoperative Cognitive Dysfunction in Aged Mice via miR-138-5p/SIRT1/HMGB1 Pathway. Int J Neuropsychopharmacol 2024; 27:pyae054. [PMID: 39520138 PMCID: PMC11631145 DOI: 10.1093/ijnp/pyae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common neurological complication in older patients and correlated with adverse outcomes. 17β-estradiol treatment was reported to provide neuroprotective protection in various neurologic disorders, but whether it attenuated POCD was unknown. The purpose of this study was to explore the effects of 17β-estradiol treatment on POCD and its mechanisms. METHODS We generated a POCD model in 15-month-old mice via laparotomy, followed by subcutaneous injection of 17β-estradiol, intraperitoneal injection of EX527 (a Sirtuin 1 [SIRT1] inhibitor), or bilateral hippocampal injection of miR-138-5p-agomir. Morris water maze test and open field test were applied to evaluate the cognitive function. The neuronal apoptosis in the hippocampus was detected using the terminal transferase dUTP nick end labeling assay. Meanwhile, the levels of interleukin-1β (IL-1β) and microglia activation were measured by enzymelinked immunosorbent assay and immunofluorescence, respectively. Western blot was utilized to assess the expression of SIRT1 and high mobility group box 1 (HMGB1) protein, and gene expression of miR-138-5p was determined through quantitative real-time polymerase chain reaction. RESULTS Behavioral tests showed that 17β-estradiol treatment improved cognitive function in aged POCD mice. In addition, 17β-estradiol attenuated neuronal apoptosis and microglia activation as well as IL-1β expression in the hippocampus. Nonetheless, injection with EX527 abolished the beneficial impacts of 17β-estradiol against POCD. Furthermore, miR-138-5p was verified to bind with SIRT1, which regulated the expression of HMGB1. After treatment with 17β-estradiol, miR-138-5p expression was reduced in the hippocampus, and the neuroprotective influence of 17β-estradiol on aged POCD mice was reversed after administration of miR-138-5p-agomir. CONCLUSIONS 17β-estradiol treatment exerted neuroprotection effects on POCD in aged mice, which might be relevant to alleviating neuroinflammation via miR-138-5p/SIRT1/HMGB1 pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Anesthesiology, Graduate Faculty, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Meinv Liu
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Dongdong Yu
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Jing Wang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Jianli Li
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| |
Collapse
|
10
|
Nasr MM, Wahdan SA, El-Naga RN, Salama RM. Neuroprotective effect of empagliflozin against doxorubicin-induced chemobrain in rats: Interplay between SIRT-1/MuRF-1/PARP-1/NLRP3 signaling pathways and enhanced expression of miRNA-34a and LncRNA HOTAIR. Neurotoxicology 2024; 105:216-230. [PMID: 39426736 DOI: 10.1016/j.neuro.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Chemobrain, a challenging side effect of doxorubicin (DOX)-based chemotherapy, impairs cognitive abilities in cancer survivors. DOX triggers chemobrain via oxidative stress, leading to inflammation and apoptosis. Empagliflozin (EMPA), a sodium glucose co-transporter-2 inhibitor, demonstrated neuroprotective effects by reducing reactive oxygen species (ROS) and inflammation, but its protective mechanisms against DOX-induced chemobrain is not fully known. Thus, this study aimed to investigate EMPA's neuroprotective effects on DOX-induced chemobrain in rats and to uncover the underlying protective mechanisms. Fifty male Wistar rats were divided into control, EMPA, DOX (2 mg/kg, IP, once/week for 4 weeks), and two treated groups (DOX+ EMPA 5 and 10 mg/kg/day, PO, for 4 weeks). Behavioral tests showed improved memory, motor performance, and reduced anxiety in EMPA-treated groups compared to DOX, with superior results at the higher dose. Histopathological analysis revealed increased intact neurons in the cortex and hippocampus in EMPA-treated groups, with 346.4 % increase in CA3 (p < 0.0001), 19.1 % in dentate gyrus (p = 0.0006), and 362.6 % in cortex (p < 0.0001) in the high-dose EMPA group. Biochemical investigations of the high-dose EMPA group revealed significant decreases in inflammatory and apoptotic markers (JNK/PARP-1/NLRP3/MuRF-1/FOXO-1), increased SIRT-1 protein expression by 389.9 % (p < 0.0001), and reduced miRNA-34a and LncRNA HOTAIR gene expression (50.4 % and 53.4 % respectively, p < 0.0001) relative to DOX group. Conclusively, EMPA demonstrated superior behavioral and histopathological outcomes particularly at higher dose, positioning it as a promising neuroprotective candidate against DOX-induced chemobrain, possibly through modulating SIRT-1, NF-κb, NLRP3, and oxidative stress pathways.
Collapse
Affiliation(s)
- Merihane M Nasr
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| |
Collapse
|
11
|
Zhao Y, Klionsky DJ, Wang X, Huang Q, Deng Z, Xiang J. The Estrogen-Autophagy Axis: Insights into Cytoprotection and Therapeutic Potential in Cancer and Infection. Int J Mol Sci 2024; 25:12576. [PMID: 39684286 PMCID: PMC11641569 DOI: 10.3390/ijms252312576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Macroautophagy, commonly referred to as autophagy, is an essential cytoprotective mechanism that plays a significant role in cellular homeostasis. It has emerged as a promising target for drug development aimed at treating various cancers and infectious diseases. However, the scientific community has yet to reach a consensus on the most effective approach to manipulating autophagy, with ongoing debates about whether its inhibition or stimulation is preferable for managing these complex conditions. One critical factor contributing to the variability in treatment responses for both cancers and infectious diseases is estrogen, a hormone known for its diverse biological effects. Given the strong correlations observed between estrogen signaling and autophagy, this review seeks to summarize the intricate molecular mechanisms that underlie the dual cytoprotective effects of estrogen signaling in conjunction with autophagy. We highlight recent findings from studies that involve various ligands, disease contexts, and cell types, including immune cells. Furthermore, we discuss several factors that regulate autophagy in the context of estrogen's influence. Ultimately, we propose a hypothetical model to elucidate the regulatory effects of the estrogen-autophagy axis on cell fate. Understanding these interactions is crucial for advancing our knowledge of related diseases and facilitating the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Ying Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.Z.); (X.W.); (Q.H.); (Z.D.)
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Mary Sue Coleman Hall, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA;
| | - Xin Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.Z.); (X.W.); (Q.H.); (Z.D.)
| | - Qiaoying Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.Z.); (X.W.); (Q.H.); (Z.D.)
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.Z.); (X.W.); (Q.H.); (Z.D.)
| | - Jin Xiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.Z.); (X.W.); (Q.H.); (Z.D.)
| |
Collapse
|
12
|
Long C, Zhao ZX, Willing BP, Sheng XH, Wang XG, Xiao LF, Qi XL. Alpha-Linolenic Acid Supplementation Improves Testosterone Production in an Aged Breeder Rooster Model: Role of Mitochondrial Modulation and SIRT1 Activation. Mol Nutr Food Res 2024; 68:e2400522. [PMID: 39491816 DOI: 10.1002/mnfr.202400522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Indexed: 11/05/2024]
Abstract
SCOPE Aging in males can lead to declines in testosterone production, essential for maintaining male reproductive health. METHODS AND RESULTS To investigate the effects of dietary supplementation with alpha-linolenic acid (ALA) on testosterone production in aged breeder roosters and understand the underlying molecular mechanisms involved. An in vivo model is established to investigate the effects of dietary ALA supplementation on testosterone production in aged breeder roosters, and the Leydig cell culture is used to identify the potential molecular mechanism. Dietary supplementation with ALA increases in plasma testosterone. Congruently, ALA supplementation enhances the expression of testosterone biosynthesis-related enzymes. ALA supplementation exerts anti-apoptotic effects in testicular mitochondria, as evidenced by a lower expression of pro-apoptotic factors and a higher expression of the anti-apoptotic factor B-cell lymphoma 2 (Bcl-2). Moreover, In Leydig cells, ALA supplementation promotes mitochondrial biogenesis genes. The proposed mechanism is that ALA activates the sirtuin1 (SIRT1) pathway and is supported by higher SIRT1 transcript and protein in Leydig cells. Furthermore, blocking SIRT1 with siRNA reverses ALA's effects on testosterone biosynthesis and mitochondrial function-related genes. CONCLUSION These findings indicate that dietary supplementation with ALA can improve testosterone production in aged breeder roosters, possibly by modulation of mitochondrial function via activating the SIRT1 pathway.
Collapse
Affiliation(s)
- Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Zhi-Xian Zhao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Xi-Hui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiang-Guo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Long-Fei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing, 102206, China
| |
Collapse
|
13
|
Gogna T, Housden BE, Houldsworth A. Exploring the Role of Reactive Oxygen Species in the Pathogenesis and Pathophysiology of Alzheimer's and Parkinson's Disease and the Efficacy of Antioxidant Treatment. Antioxidants (Basel) 2024; 13:1138. [PMID: 39334797 PMCID: PMC11429442 DOI: 10.3390/antiox13091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's (AD) and Parkinson's Disease (PD) are life-altering diseases that are characterised by progressive memory loss and motor dysfunction. The prevalence of AD and PD is predicted to continuously increase. Symptoms of AD and PD are primarily mediated by progressive neuron death and dysfunction in the hippocampus and substantia nigra. Central features that drive neurodegeneration are caspase activation, DNA fragmentation, lipid peroxidation, protein carbonylation, amyloid-β, and/or α-synuclein formation. Reactive oxygen species (ROS) increase these central features. Currently, there are limited therapeutic options targeting these mechanisms. Antioxidants reduce ROS levels by the induction of antioxidant proteins and direct neutralisation of ROS. This review aims to assess the effectiveness of antioxidants in reducing ROS and neurodegeneration. Antioxidants enhance major endogenous defences against ROS including superoxide dismutase, catalase, and glutathione. Direct neutralisation of ROS by antioxidants protects against ROS-induced cytotoxicity. The combination of Indirect and direct protective mechanisms prevents ROS-induced α-synuclein and/or amyloid-β formation. Antioxidants ameliorate ROS-mediated oxidative stress and subsequent deleterious downstream effects that promote apoptosis. As a result, downstream harmful events including neuron death, dysfunction, and protein aggregation are decreased. The protective effects of antioxidants in human models have yet to directly replicate the success seen in cell and animal models. However, the lack of diversity in antioxidants for clinical trials prevents a definitive answer if antioxidants are protective. Taken together, antioxidant treatment is a promising avenue in neurodegenerative disease therapy and subsequent clinical trials are needed to provide a definitive answer on the protective effects of antioxidants. No current treatment strategies have significant impact in treating advanced AD and PD, but new mimetics of endogenous mitochondrial antioxidant enzymes (Avasopasem Manganese, GC4419 AVA) may be a promising innovative option for decelerating neurodegenerative progress in the future at the mitochondrial level of OS.
Collapse
Affiliation(s)
- Talin Gogna
- Neuroscience, Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| | - Benjamin E Housden
- Living Systems Institute, Clinical and Biomedical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Annwyne Houldsworth
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| |
Collapse
|
14
|
Peng H, Liang Z, Huang B, Zhang S, Yang Y. Negative association of serum neurofilament light chain with estimated glomerular filtration rate levels and the impact of gender. Front Neurol 2024; 15:1457984. [PMID: 39323436 PMCID: PMC11422151 DOI: 10.3389/fneur.2024.1457984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Background The relationship between kidney function and brain function is complex and poorly understood. This study aims to investigate the association between serum neurofilament light chain (sNfL) and levels of estimated glomerular filtration rate (eGFR), offering new insights into their interactions. Methods Data from the national health and nutrition examination survey (NHANES) in 2013-2014, linked with national death index records, were used. Participants who met specific criteria were analyzed. Baseline characteristics were stratified by tertiles of sNfL levels and compared using weighted Kruskal-Wallis and chi-square tests. Weighted linear regression models, both unadjusted and adjusted, evaluated the relationship between log sNfL and eGFR. Subgroup and interaction analyses validated the findings. Restricted cubic spline, scatter plots, and Spearman correlation confirmed the relationship between log sNfL and eGFR. Results A total of 2,038 eligible participants were included. Higher sNfL levels were significantly associated with lower eGFR (p < 0.01). The highest sNfL tertile had a significantly higher mortality rate (p < 0.01). Fully adjusted multivariable weighted linear regression showed a significant negative correlation between log sNfL and eGFR (per 10-unit increase; β = -0.07, 95% CI: -0.10 to -0.04, p < 0.01). Subgroup analyses consistently supported this negative correlation (p < 0.01). Interaction analysis revealed a significant gender difference (p = 0.032), with males showing a - 0.06 (-0.09, -0.04) decrease and females a - 0.07 (-0.11, -0.04) decrease in log sNfL per 10-unit increase in eGFR. Restricted cubic spline confirmed a linear relationship (p-non-linear = 0.121), and the Spearman correlation coefficient was -0.45. Females had slightly lower log sNfL levels compared to males at equivalent eGFR levels. Conclusion A significant negative correlation was found between log sNfL and eGFR levels. Gender influenced the degree of this negative association. Further research is needed to validate these findings and elucidate their underlying mechanisms.
Collapse
Affiliation(s)
- Hongyan Peng
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Intensive Care Medicine, Liuzhou Hospital of Affiliated Guangzhou Women and Children's Medical Center, Liuzhou, Guangxi, China
| | - Zhuoxin Liang
- Department of Intensive Care Medicine, Liuzhou Hospital of Affiliated Guangzhou Women and Children's Medical Center, Liuzhou, Guangxi, China
| | - Bolun Huang
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Senxiong Zhang
- Department of Intensive Care Medicine, Liuzhou Hospital of Affiliated Guangzhou Women and Children's Medical Center, Liuzhou, Guangxi, China
| | - Yiyu Yang
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Demetriou A, Lindqvist B, Ali HG, Shamekh MM, Maioli S, Inzunza J, Varshney M, Nilsson P, Nalvarte I. ERβ mediates sex-specific protection in the App-NL-G-F mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604543. [PMID: 39091856 PMCID: PMC11291054 DOI: 10.1101/2024.07.22.604543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Menopausal loss of neuroprotective estrogen is thought to contribute to the sex differences in Alzheimer's disease (AD). Activation of estrogen receptor beta (ERβ) can be clinically relevant since it avoids the negative systemic effects of ERα activation. However, very few studies have explored ERβ-mediated neuroprotection in AD, and no information on its contribution to the sex differences in AD exists. In the present study we specifically explored the role of ERβ in mediating sex-specific protection against AD pathology in the clinically relevant App NL-G-F knock-in mouse model of amyloidosis, and if surgical menopause (ovariectomy) modulates pathology in this model. We treated male and female App NL-G-F mice with the selective ERβ agonist LY500307 and subset of the females was ovariectomized prior to treatment. Memory performance was assessed and a battery of biochemical assays were used to evaluate amyloid pathology and neuroinflammation. Primary microglial cultures from male and female wild-type and ERβ-knockout mice were used to assess ERβ's effect on microglial activation and phagocytosis. We find that ERβ activation protects against amyloid pathology and cognitive decline in male and female App NL-G-F mice. Ovariectomy increased soluble amyloid beta (Aβ) in cortex and insoluble Aβ in hippocampus, but had otherwise limited effects on pathology. We further identify that ERβ does not alter APP processing, but rather exerts its protection through amyloid scavenging that at least in part is mediated via microglia in a sex-specific manner. Combined, we provide new understanding to the sex differences in AD by demonstrating that ERβ protects against AD pathology differently in males and females, warranting reassessment of ERβ in combating AD.
Collapse
Affiliation(s)
- Aphrodite Demetriou
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Birgitta Lindqvist
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Heba G. Ali
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
- Department of Biochemistry, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Mohamed M. Shamekh
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
- Department of Biochemistry, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Silvia Maioli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jose Inzunza
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Mukesh Varshney
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ivan Nalvarte
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
| |
Collapse
|
16
|
Zhang Y, Zhang P, Yin D. Association between a body shape index and cognitive impairment among us older adults from a cross-sectional survey of the NHANES 2011-2014. Lipids Health Dis 2024; 23:169. [PMID: 38840158 PMCID: PMC11151546 DOI: 10.1186/s12944-024-02165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE This study aimed to assess the relationship between A Body Shape Index (ABSI) and cognitive impairment among older adults in the United States. METHODS This cross-sectional study analyzed cognitive function in 2,752 individuals aged 60 and older using data from the 2011-2014 National Health and Nutrition Examination Survey (NHANES). Cognitive assessments were conducted using the Immediate Recall Test (IRT), Delayed Recall Test (DRT), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). A Body Shape Index (ABSI) was calculated from waist circumference (WC), weight, and height. The relationship between ABSI and cognitive outcomes was examined through multifactorial linear regression, smooth curve fitting, and subgroup and interaction analyses. RESULTS With complete data, 2752 persons 60 and older participated in the study. After adjusting for covariables, these results showed statistically significant negative relationships between ABSI, IRT, and DSST scores. The negative correlation between DSST and ABSI is more substantial in males than females. There is less of a negative link between ABSI, AFT, and DSST among drinkers who consume 12 or more drinks annually compared to those who consume less. Furthermore, compared to individuals without high blood pressure(HBP), those who suffered HBP showed a more significant negative connection between ABSI and AFT. CONCLUSION Lower cognitive function was linked to higher ABSI.
Collapse
Affiliation(s)
- Yanwei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dekun Yin
- Department of Anesthesiology, Funing People's Hospital of Jiangsu, Yancheng, Jiangsu province, China.
| |
Collapse
|
17
|
Hidalgo-Lanussa O, González Santos J, Barreto GE. Sex-specific vulnerabilities in human astrocytes underpin the differential impact of palmitic acid. Neurobiol Dis 2024; 195:106489. [PMID: 38552721 DOI: 10.1016/j.nbd.2024.106489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Obesity and neurometabolic diseases have been linked to neurodegenerative diseases. Our hypothesis is that the endogenous estrogenic component of human astrocytes plays a critical role in cell response during lipotoxic damage, given that obesity can disrupt hormonal homeostasis and cause brain inflammation. Our findings showed that high concentrations of palmitic acid (PA) significantly reduced cell viability more in male astrocytes, indicating sex-specific vulnerabilities. PA induced a greater increase in cytosolic reactive oxygen species (ROS) production in males, while female astrocytes exhibited higher superoxide ion levels in mitochondria. In addition, female astrocytes treated with PA showed increased expression of antioxidant proteins, including catalase, Gpx-1 and Nrf2 suggesting a stronger cellular defence mechanism. Interestingly, there was a difference in the expression of estrogenic components, such as estrogen, androgens, and progesterone receptors, as well as aromatase and 5α-reductase enzymes, between males and females. PA induced their expression mainly in females, indicating a potential protective mechanism mediated by endogenous hormones. In summary, our findings highlight the impact of sex on the response of human astrocytes to lipotoxicity. Male astrocytes appear to be more susceptible to cellular damage when exposed to high concentrations of fatty acids.
Collapse
Affiliation(s)
- Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Janneth González Santos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
18
|
Shadab A, Abbasi-Kolli M, Saharkhiz M, Ahadi SH, Shokouhi B, Nahand JS. The interplay between mitochondrial dysfunction and NLRP3 inflammasome in multiple sclerosis: Therapeutic implications and animal model studies. Biomed Pharmacother 2024; 175:116673. [PMID: 38713947 DOI: 10.1016/j.biopha.2024.116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder that impacts the central nervous system (CNS), resulting in inflammation, demyelination, and neurodegeneration. The NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome, a multiprotein complex of the innate immune system, serves an essential role in the pathogenesis of MS by regulating the production of pro-inflammatory cytokines (IL-1β & IL-18) and the induction of pyroptotic cell death. Mitochondrial dysfunction is one of the main potential factors that can trigger NLRP3 inflammasome activation and lead to inflammation and axonal damage in MS. This highlights the importance of understanding how mitochondrial dynamics modulate NLRP3 inflammasome activity and contribute to the inflammatory and neurodegenerative features of MS. The lack of a comprehensive understanding of the pathogenesis of MS and the urge for the introduction of new therapeutic strategies led us to review the therapeutic potential of targeting the interplay between mitochondrial dysfunction and the NLRP3 inflammasome in MS. This paper also evaluates the natural and synthetic compounds that can improve mitochondrial function and/or inhibit the NLRP3 inflammasome, thereby providing neuroprotection. Moreover, it summarizes the evidence from animal models of MS that demonstrate the beneficial effects of these compounds on reducing inflammation, demyelination, and neurodegeneration. Finally, this review advocates for a deeper investigation into the molecular crosstalk between mitochondrial dynamics and the NLRP3 inflammasome as a means to refine therapeutic targets for MS.
Collapse
Affiliation(s)
- Alireza Shadab
- Deputy of Health, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Abbasi-Kolli
- Deputy of Health, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoore Saharkhiz
- Department of immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Cellular and molecular research center, Birjand University of medical sciences, Birjand, Iran
| | | | - Behrooz Shokouhi
- Pathology Department, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Salama RM, Eissa N, Doghish AS, Abulsoud AI, Abdelmaksoud NM, Mohammed OA, Abdel Mageed SS, Darwish SF. Decoding the secrets of longevity: unraveling nutraceutical and miRNA-Mediated aging pathways and therapeutic strategies. FRONTIERS IN AGING 2024; 5:1373741. [PMID: 38605867 PMCID: PMC11007187 DOI: 10.3389/fragi.2024.1373741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
MicroRNAs (miRNAs) are short RNA molecules that are not involved in coding for proteins. They have a significant function in regulating gene expression after the process of transcription. Their participation in several biological processes has rendered them appealing subjects for investigating age-related disorders. Increasing data indicates that miRNAs can be influenced by dietary variables, such as macronutrients, micronutrients, trace minerals, and nutraceuticals. This review examines the influence of dietary factors and nutraceuticals on the regulation of miRNA in relation to the process of aging. We examine the present comprehension of miRNA disruption in age-related illnesses and emphasize the possibility of dietary manipulation as a means of prevention or treatment. Consolidating animal and human research is essential to validate the significance of dietary miRNA control in living organisms, despite the abundance of information already provided by several studies. This review elucidates the complex interaction among miRNAs, nutrition, and aging, offering valuable insights into promising areas for further research and potential therapies for age-related disorders.
Collapse
Affiliation(s)
- Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
| | - Ahmed I. Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | | - Osama A. Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Samar F. Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| |
Collapse
|
20
|
Paniri A, Hosseini MM, Akhavan-Niaki H. Alzheimer's Disease-Related Epigenetic Changes: Novel Therapeutic Targets. Mol Neurobiol 2024; 61:1282-1317. [PMID: 37700216 DOI: 10.1007/s12035-023-03626-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Aging is a significant risk factor for Alzheimer's disease (AD), although the precise mechanism and molecular basis of AD are not yet fully understood. Epigenetic mechanisms, such as DNA methylation and hydroxymethylation, mitochondrial DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), play a role in regulating gene expression related to neuron plasticity and integrity, which are closely associated with learning and memory development. This review describes the impact of dynamic and reversible epigenetic modifications and factors on memory and plasticity throughout life, emphasizing their potential as target for therapeutic intervention in AD. Additionally, we present insight from postmortem and animal studies on abnormal epigenetics regulation in AD, as well as current strategies aiming at targeting these factors in the context of AD therapy.
Collapse
Affiliation(s)
- Alireza Paniri
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Haleh Akhavan-Niaki
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
21
|
Shang G, Niu X, Tong Q, Zhao Y, Yin J, Zhou X, Xu J, Cao Y, Cheng F, Bao B, Li Z, Yao W. Integrated metabolomic and lipidomic analysis revealed the protective mechanisms of Erzhi Wan on senescent NRK cells through BRL cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117482. [PMID: 38000520 DOI: 10.1016/j.jep.2023.117482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erzhi Wan (EZW), as a prescription of traditional Chinese medicine, has been used for tonifying the liver and kidney. Although past studies have shown that EZW has potential anti-aging effect, the mechanisms associated with cellular metabolomics and lipidomics are not fully understood. AIM OF THE STUDY This study aimed to evaluate the anti-aging effect of EZW and investigate the mechanisms associated with cellular metabolomics and lipidomics. MATERIALS AND METHODS EZW solution at dosage of 3.6 g/kg in Sprague-Dawley rats was orally administered twice a day for 7 days and serum containing EZW was then collected. NRK cell senescence model induced by D-galactose was established in vitro, and non-contact co-culture cell assay was performed between senescent NRK cells and BRL cells intervened by serum containing EZW. The anti-aging effect of EZW on NRK cells was evaluated by metabolites identification, differential metabolites screening and metabolic pathways analysis through cellular metabolomics with GC-MS and lipidomics with UHPLC-Q-Exactive Orbitrap/MS. RESULTS Serum containing EZW indicated a protective effect through intervening BRL cells in non-contact co-culture system with D-gal-induced senescent NRK cells. For metabolic profiles, 71 endogenous metabolites were identified, among which 24 significantly differential metabolites were screened as metabolomics potential biomarkers. For lipidic profiles, 64 lipid components were identified in NRK cell samples under positive ion mode, among which 24 potential biomarkers of lipids were screened, mainly including PC and PE. 127 lipid components were identified in NRK cell samples under negative ion mode, among which 59 potential biomarkers of lipids were screened, including FA, PC, PE, PI and PS. Metabolic pathway analysis demonstrated that the identified differential metabolites found mainly involved in amino acids metabolism, energy metabolism and phospholipid biosynthesis pathways. CONCLUSION Serum containing EZW exhibited protective effect on D-gal-induced senescent NRK cells through intervening BRL cells by mainly regulating amino acids metabolism, energy metabolism and phospholipid biosynthesis pathways to possess its anti-aging function, providing a theoretical basis for clinical treatment of EZW.
Collapse
Affiliation(s)
- Guanxiong Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xuan Niu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qingheng Tong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yan Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jiu Yin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoqi Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jia Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Beihua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhipeng Li
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210009, China.
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
22
|
Chu J, Zhang W, Liu Y, Gong B, Ji W, Yin T, Gao C, Liangwen D, Hao M, Chen C, Zhuang J, Gao J, Yin Y. Biomaterials-based anti-inflammatory treatment strategies for Alzheimer's disease. Neural Regen Res 2024; 19:100-115. [PMID: 37488851 PMCID: PMC10479833 DOI: 10.4103/1673-5374.374137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 07/26/2023] Open
Abstract
The current therapeutic drugs for Alzheimer's disease only improve symptoms, they do not delay disease progression. Therefore, there is an urgent need for new effective drugs. The underlying pathogenic factors of Alzheimer's disease are not clear, but neuroinflammation can link various hypotheses of Alzheimer's disease; hence, targeting neuroinflammation may be a new hope for Alzheimer's disease treatment. Inhibiting inflammation can restore neuronal function, promote neuroregeneration, reduce the pathological burden of Alzheimer's disease, and improve or even reverse symptoms of Alzheimer's disease. This review focuses on the relationship between inflammation and various pathological hypotheses of Alzheimer's disease; reports the mechanisms and characteristics of small-molecule drugs (e.g., nonsteroidal anti-inflammatory drugs, neurosteroids, and plant extracts); macromolecule drugs (e.g., peptides, proteins, and gene therapeutics); and nanocarriers (e.g., lipid-based nanoparticles, polymeric nanoparticles, nanoemulsions, and inorganic nanoparticles) in the treatment of Alzheimer's disease. The review also makes recommendations for the prospective development of anti-inflammatory strategies based on nanocarriers for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jianjian Chu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Weicong Zhang
- School of Pharmacy, University College London, London, UK
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baofeng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Chao Gao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Danqi Liangwen
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengqi Hao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| |
Collapse
|
23
|
Kang H, Kim SC, Oh Y. Fucoxanthin Abrogates Ionizing Radiation-Induced Inflammatory Responses by Modulating Sirtuin 1 in Macrophages. Mar Drugs 2023; 21:635. [PMID: 38132956 PMCID: PMC10744970 DOI: 10.3390/md21120635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Ionizing radiation (IR) triggers an overproduction of reactive oxygen species (ROS), disrupting the normal function of both immune and metabolic systems, leading to inflammation and metabolic disturbances. To address the pressing requirement for protection against IR, fucoxanthin (FX), a naturally occurring compound extracted from algae, was utilized as an efficient radioprotective agent in macrophages. In this study, we cultured murine RAW 264.7 macrophages and treated them with FX, along with agents influencing the activity of sirtuin 1 (SIRT1) and estrogen receptor α (ERα), to investigate their impact on IR-induced cellular responses. FX significantly attenuated IR-induced upregulation of pro-inflammatory genes (Il1b, Tnf, and Ccl2) and inhibited macrophage polarization toward the pro-inflammatory M1 phenotype. Additionally, FX regulated IR-induced metabolic genes mediating glycolysis and mitochondrial biogenesis. The ability of FX to mitigate IR-induced inflammation and glycolysis was ascribed to the expression and activity of SIRT1 and ERα in macrophages. This study not only uncovers the underlying mechanisms of FX's radioprotective properties but also highlights its potential as a protective agent against the detrimental effects of IR, thus offering new opportunities for enhancing radiation protection in the future.
Collapse
Affiliation(s)
- Hyunju Kang
- Department of Food and Nutrition, Keimyung University, 1095 Dalgubeol-Daero, Daegu 42601, Republic of Korea;
| | - Seon-Chil Kim
- Department of Biomedical Engineering, Keimyung University, 1095 Dalgubeol-Daero, Daegu 42601, Republic of Korea
- Department of Medical Informatics, School of Medicine, Keimyung University, 1095 Dalgubeol-Daero, Daegu 42601, Republic of Korea
| | - Youngkee Oh
- Department of Radiation Oncology, School of Medicine, Keimyung University, 1095 Dalgubeol-Daero, Daegu 42601, Republic of Korea;
| |
Collapse
|
24
|
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12:2595. [PMID: 37998330 PMCID: PMC10670256 DOI: 10.3390/cells12222595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
25
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Karolczak K, Watala C. Estradiol as the Trigger of Sirtuin-1-Dependent Cell Signaling with a Potential Utility in Anti-Aging Therapies. Int J Mol Sci 2023; 24:13753. [PMID: 37762053 PMCID: PMC10530977 DOI: 10.3390/ijms241813753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Aging entails the inevitable loss of the structural and functional integrity of cells and tissues during the lifetime. It is a highly hormone-dependent process; although, the exact mechanism of hormone involvement, including sex hormones, is unclear. The marked suppression of estradiol synthesis during menopause suggests that the hormone may be crucial in maintaining cell lifespan and viability in women. Recent studies also indicate that the same may be true for men. Similar anti-aging features are attributed to sirtuin 1 (SIRT1), which may possibly be linked at the molecular level with estradiol. This finding may be valuable for understanding the aging process, its regulation, and possible prevention against unhealthy aging. The following article summarizes the initial studies published in this field with a focus on age-associated diseases, like cancer, cardiovascular disease and atherogenic metabolic shift, osteoarthritis, osteoporosis, and muscle damage, as well as neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Kamil Karolczak
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland;
| | | |
Collapse
|
27
|
Salemi S, Zamanian MY, Giménez‐Llort L, Jalali Z, Mahmoodi M, Golmohammadi M, Kaeidi A, Taghipour Z, Khademalhosseini M, Modanloo M, Hajizadehi MR. Distinct signatures on d-galactose-induced aging and preventive/protective potency of two low-dose vitamin D supplementation regimens on working memory, muscular damage, cardiac and cerebral oxidative stress, and SIRT1 and calstabin2 downregulation. Food Sci Nutr 2023; 11:5050-5062. [PMID: 37701236 PMCID: PMC10494626 DOI: 10.1002/fsn3.3422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 09/14/2023] Open
Abstract
Chronic administration of d-galactose (d-gal) in rodents reproduces the overproduction of reactive oxygen species of physiological aging. The present research shows for the first time distinct signatures on d-gal-induced aging (500 mg/kg, 6 weeks) and the preventive and protective potential of two vitamin D (50 IU) supplementation regimens (pre-induction and simultaneous, respectively) in two vital organs (heart and brain). d-gal-induced notorious alterations in working memory, a strong increase in brain malondialdehyde (MDA) oxidative levels, and strong downregulation of sirtuin 1 (SIRT1) in the heart and hippocampus and of calstabin2 in the heart. Cardiac and brain superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymatic antioxidant capacities were damaged, brain calstabin2 was downregulated, and neuropathology was observed. Heart damage also included a moderate increase in MDA levels, serologic lactate dehydrogenase (LDH), total creatine kinase (CK) activities, and histopathological alterations. The used dose of vitamin D was enough to prevent cognitive impairment, avoid muscular damage, hamper cardiac and cerebral oxidative stress, and SIRT1 and calstabin2 downregulation. Most importantly, the potencies of the two preventive schedules depended on the tissue and level of study. The pre-induction schedule prevented d-gal-induced aging by 1 order of magnitude higher than simultaneous administration in all the variables studied except for SIRT1, whose strong downregulation induced by d-gal was equally prevented by both schedules. The benefits of vitamin D for oxidative stress were stronger in the brain than in the heart. Brain MDA levels were more sensitive to damage, while SOD and GPx antioxidant enzymatic activities were in the heart. In this order, the magnitude of SOD, MDA, and GPx oxidative stress markers was sensitive to prevention. In summary, the results unveiled distinct aging induction, preventive signatures, and sensitivity of markers depending on different levels of study and tissues, which are relevant from a mechanistic view and in the design of targeted interventions.
Collapse
Affiliation(s)
- Sahar Salemi
- Department of Biochemistry, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Mohammad Yasin Zamanian
- Neurophysiology Research CenterHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Lydia Giménez‐Llort
- Institute of Neuroscience & Department of Psychiatry and Forensic MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Zahra Jalali
- Department of Biochemistry, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipoor Faculty of MedicineKerman University of Medical SciencesKermanIran
| | | | - Ayat Kaeidi
- Department of Physiology, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Zahra Taghipour
- Department of Anatomy, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Morteza Khademalhosseini
- Department of Pathology, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Mona Modanloo
- Pharmaceutical Sciences Research CenterMazandaran University of Medical SciencesSariIran
| | - Mohammad Reza Hajizadehi
- Department of Biochemistry, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| |
Collapse
|
28
|
Husn M, Amin Z, Ali Y, Kanwal L, Sabir K, Shah SA, Shah SF. Neuroprotective effects of vitamin B1 on memory impairment and suppression of pro-inflammatory cytokines in traumatic brain injury. Metab Brain Dis 2023; 38:2175-2184. [PMID: 37314619 DOI: 10.1007/s11011-023-01245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Traumatic Brain Injury (TBI) remains one of the prevailing disorders that affect millions of people around the globe. There is a cascade of secondary attributes attached to TBI including excitotoxicity, axonal degeneration, neuroinflammation, oxidative stress, and apoptosis. Neuroinflammation is caused due to the activation of microglia along with pro-inflammatory cytokines. The activation of microglia triggers TNF-α which sequentially results in the triggering and upregulation of NF-kB. The aim of the current research was to investigate vitamin B1's potential as neuroprotective agent against TBI-induced neuroinflammation arbitrated memory impairment together with pre- and post-synaptic dysfunction in an adult albino male mice model. TBI was induced using the weight-drop method which caused the microglial activation resulting in neuroinflammation along with synaptic dysfunction leading to the memory impairment of the adult mice. Vitamin B1 was administered for seven days via the intraperitoneal pathway. To analyze the memory impairment and efficacy of vitamin B1, Morris water maze and Y-maze tests were performed. The escape latency time and short-term memories of the experimental mice treated with vitamin B1 were significantly different from the reference mice. The western blot results showed that vitamin B1 has reduced neuroinflammation by downregulating proinflammatory cytokines (NFκ-B, TNF- α). Vitamin B1 also proved its worthiness as a convincing neuroprotective agent by reducing memory dysfunction and recovering the activities of pre- and post-synapse via upregulation of synaptophysin and Postsynaptic density protein 95 (PSD-95).
Collapse
Affiliation(s)
- Mansoor Husn
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
| | - Zarnosh Amin
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
| | - Yousaf Ali
- Department of Chemistry, Federal Government College Batkhela, FGEIs (C/G), Khyber Pakhtunkhwa, Pakistan.
- Faculty of Allied Health Sciences, Iqra National University Swat Campus, Khyber Pakhtunkhwa, Pakistan.
| | - Lubna Kanwal
- Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Science and Technology, Islamabad, 0000-0003-2618-3004, Pakistan
| | - Kehkashan Sabir
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
| | - Shahid Ali Shah
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
- Department of Biology The University of Haripur, Haripur, Pakistan
| | - Syed Farhan Shah
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
- Neuro Molecular Medicine Research Center (NMMRC), Ring Road Peshawar, Pakistan
| |
Collapse
|
29
|
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:871. [PMID: 37508898 PMCID: PMC10376413 DOI: 10.3390/bioengineering10070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
30
|
Li H, Zhang D, Wang X, Wang S, Xiao M. Protective effect of glutamic-oxaloacetic transaminase on hippocampal neurons in Alzheimer's disease using model mice. Neurosci Lett 2023; 803:137194. [PMID: 36931592 DOI: 10.1016/j.neulet.2023.137194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD), a neurodegenerative disease affecting the elderly, frequently causes cognitive impairment and memory decline, and there are currently no effective therapeutic drugs available. Glutamate excitotoxicity is one of the pathogeneses of AD, and there is evidence that glutamic-oxaloacetic transaminase (GOT) can significantly reduce glutamate concentrations in the hippocampi of mice, but its role in APP/PS1 transgenic mice is unknown. We investigated the improvement of neurological function and related protein expression following subcutaneous injection of GOT in mice with AD. We performed immunohistochemical staining on the brain tissue of 3-, 6-, and 12-month-old mice and found that the content of the β-amyloid protein Aβ1-42 in the 6 months old GOT treatment group was significantly reduced. Meanwhile, the APP-GOT group outperformed the APP group in the water maze and spatial object recognition experiments. The number of neurons in the hippocampal CA1 area of the APP-GOT group increased when compared to the APP group according to Nissl staining. Electron microscopic examination of the hippocampal CA1 area demonstrated that the number of synapses in the APP-GOT group was more than that in the APP group, and the mitochondrial structure was relatively complete. Finally, the protein content of the hippocampus was detected. In comparison to the APP group, SIRT1 content increased in the APP-GOT group whereas Aβ1-42 content decreased, and Ex527 could reverse this trend. These results suggest that GOT can significantly improve the cognitive function of mice in the early stage of AD, and the underlying mechanism may be through decreasing Aβ1-42 and increasing SIRT1 expressions.
Collapse
Affiliation(s)
- Haiming Li
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui 453100, Henan, China
| | - Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xiaoze Wang
- The First Affiliated Hospital of Xinxiang Medical University, Wei Hui 453100, Henan, China
| | - Shensheng Wang
- The First Affiliated Hospital of Xinxiang Medical University, Wei Hui 453100, Henan, China
| | - Meng Xiao
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui 453100, Henan, China; School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen 518000, China.
| |
Collapse
|
31
|
Dong C, Li Z, Wang X, Zou D, Duan H, Zhao C, Zhou Q, Shi W. SRT1720 attenuates UVA-induced corneal endothelial damage via inhibition of oxidative stress and cellular apoptosis. Exp Eye Res 2023; 231:109464. [PMID: 37015319 DOI: 10.1016/j.exer.2023.109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/06/2023]
Abstract
Corneal endothelium is mostly sensitive to oxidative pressure and mitochondrial dysfunction. However, the oxidative-antioxidant mechanism of corneal endothelial cells (CECs) remains partially defined. Silent information regulator 1 (SIRT1) is a well-studied therapeutic target of oxidative damage. This study aimed to determine the SIRT1 expression in ultraviolet A (UVA)-induced corneal endothelial damage and explore potential drugs to repair corneal endothelial oxidative injury. In this study, we showed that CECs exhibited cellular apoptosis, reactive oxygen species (ROS) accumulation and decreased SIRT1 expression. In addition, UVA induced the imbalance of mitochondrial homeostasis and function, involving in mitochondrial membrane potential, mitochondrial fusion/fission and mitochondrial energy metabolism. SRT1720, the SIRT1 activator, effectively increased SIRT1 expression and attenuated UVA-induced cell damage in CECs. The therapeutic effects of SRT1720 for corneal endothelial oxidative damage were also verified in UVA-irradiated mice model. Our findings indicated that SIRT1 maintained the oxidant-antioxidant balance in corneal endothelium, suggesting a new promising therapeutic target for corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Chunxiao Dong
- Qingdao University, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, Shandong, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Zongyi Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Xin Wang
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, Shandong, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Dulei Zou
- Qingdao University, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, Shandong, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Haoyun Duan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Can Zhao
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, Shandong, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Weiyun Shi
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250000, Shandong, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China.
| |
Collapse
|
32
|
Mishra P, Davies DA, Albensi BC. The Interaction Between NF-κB and Estrogen in Alzheimer's Disease. Mol Neurobiol 2023; 60:1515-1526. [PMID: 36512265 DOI: 10.1007/s12035-022-03152-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Post-menopausal women are at a higher risk of developing Alzheimer's disease (AD) than males. The higher rates of AD in women are associated with the sharp decline in the estrogen levels after menopause. Estrogen has been shown to downregulate inflammatory cytokines in the central nervous system (CNS), which has a neuroprotective role against neurodegenerative diseases including AD. Sustained neuroinflammation is associated with neurodegeneration and contributes to AD. Nuclear factor kappa-B (NF-κB) is a transcription factor involved with the modulation of inflammation and interacts with estrogen to influence the progression of AD. Application of 17β-estradiol (E2) has been shown to inhibit NF-κB, thereby reducing transcription of NF-κB target genes. Despite accumulating evidence showing that estrogens have beneficial effects in pre-clinical AD studies, there are mixed results with hormone replacement therapy in clinical trials. Furthering our understanding of how NF-κB interacts with estrogen and alters the progression of neurodegenerative disorders including AD, should be beneficial and result in the development of novel therapeutics.
Collapse
Affiliation(s)
- Pranav Mishra
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Don A Davies
- Department of Biology, York University, Toronto, ON, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada. .,Department of Pharmacology & Therapeutics, College of Medicine, University of Manitoba, Winnipeg, MB, Canada. .,Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
33
|
Huang J, Chen D, Lin X, Yang C, Lin X. miRNA-124 alleviated memory impairment induced by d-galactose rapidly in male rats via microglia polarization. Hippocampus 2023; 33:96-111. [PMID: 36541921 DOI: 10.1002/hipo.23491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/25/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022]
Abstract
MiRNA-124 has been considered to play a significant role in the formation of memory and a variety of neurodegenerative diseases. In this study, the aim is to verify whether miRNA-124 is involved in memory impairment induced by d-galactose, and explore the underlying neuroprotective mechanism. The results revealed that rapid administration of d-galactose (1000 mg/kg subcutaneously) in mice caused memory impairments, as determined by Novel Object Recognition test, Morris Water Maze test, and histological assessments. MiRNA-124 agomir is stereotactic injected into hippocampus, thus alleviated memory impairment induced by d-galactose and reversed the neural damage and neuroinflammation. Furthermore, the results of molecular biological analysis and immunohistochemistry revealed that miRNA-124 markedly reduced neuroinflammation induced by d-galactose through polarization of microglia as determined by detection of ionized calcium binding adapter molecule 1 (Iba-1), inducible nitric oxide synthase (iNOS) and arginase-1(Arg-1), which also downregulated inflammatory mediators, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and upregulated IL-4 and IL-10. Hence, taken together, the results of the present study suggested that miRNA-124 showed a significant negative correlation with memory impairment and neuroinflammation induced by d-galactose rapidly, possibly via polarization of microglia from M1 to M2. It is possible that miRNA-124 can be used as a new target for the pathogenesis of memory impairment, including age-associated neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Jinghao Huang
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dengchao Chen
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Stomatological Hospital, Fujian Medical University, Fuzhou, China
| | - Xinyi Lin
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chengxia Yang
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xianzhong Lin
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
34
|
Tecalco-Cruz AC, López-Canovas L, Azuara-Liceaga E. Estrogen signaling via estrogen receptor alpha and its implications for neurodegeneration associated with Alzheimer's disease in aging women. Metab Brain Dis 2023; 38:783-793. [PMID: 36640216 DOI: 10.1007/s11011-023-01161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Estrogen receptor alpha (ERα) is a transcription factor activated by estrogenic hormones to regulate gene expression in certain organs, including the brain. In the brain, estrogen signaling pathways are central for maintaining cognitive functions. Herein, we review the neuroprotective effects of estrogens mediated by ERα. The estrogen/ERα pathways are affected by the reduction of estrogens in menopause, and this event may be a risk factor for neurodegeneration associated with Alzheimer's disease in women. Thus, developing a better understanding of estrogen/ERα signaling may be critical for defining new biomarkers and potential therapeutic targets for Alzheimer's disease in women.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo, Postal 03100, Ciudad de México, Mexico.
| | - Lilia López-Canovas
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo, Postal 03100, Ciudad de México, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo, Postal 03100, Ciudad de México, Mexico
| |
Collapse
|
35
|
Yamaguchi T, Miyamoto T, Shikata E, Yamaguchi I, Shimada K, Yagi K, Tada Y, Korai M, Kitazato KT, Kanematsu Y, Takagi Y. Activation of the NLRP3/IL-1β/MMP-9 pathway and intracranial aneurysm rupture associated with the depletion of ERα and Sirt1 in oophorectomized rats. J Neurosurg 2023; 138:191-198. [PMID: 35594890 DOI: 10.3171/2022.4.jns212945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/14/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Subarachnoid hemorrhage (SAH) due to intracranial aneurysm (IA) rupture is often a devastating event. Since the incidence of SAH increases especially in menopause, it is crucial to clarify the detailed pathogenesis of these events. The activation of vascular nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes has been studied in ischemic stroke and cardiovascular disease. However, the role of NLRP3 in IA rupture still needs to be explained. The authors sought to test their hypothesis that, under estrogen-deficient conditions, activation of NLRP3 inflammasomes via downregulation of the estrogen receptor (ER) facilitates IA rupture. METHODS Ten-week-old female Sprague Dawley rats with and without oophorectomy were subjected to hemodynamic changes and hypertension (OVX+/HT and OVX-/HT, respectively) and fed a high-salt diet. Separately, using human brain endothelial cells (HBECs) and human brain smooth muscle cells (HBSMCs), the authors tested the effect of NLRP3 under estrogen-free conditions and in the presence of estradiol or of ER agonists. RESULTS In OVX+/HT rats, the frequency of IA rupture was significantly higher than in OVX-/HT rats (p = 0.03). In the left posterior cerebral artery prone to rupture in OVX+/HT rats, the levels of the mRNAs encoding ERα and Sirt1, but not of that encoding ERβ, were decreased, and the levels of the mRNAs encoding NLRP3, interleukin-1β (IL-1β), and matrix metalloproteinase 9 (MMP-9) were elevated. Immunohistochemical analysis demonstrated that the expression profiles of these proteins correlated with their mRNA levels. Treatment with an ER modulator, bazedoxifene, normalized the expression profiles of these proteins and improved SAH-free survival. In HBECs and HBSMCs under estrogen-free conditions, the depletion of ERα and Sirt1 and the accumulation of NLRP3 were counteracted by exposure to estradiol or to an ERα agonist but not to an ERβ agonist. CONCLUSIONS To the authors' knowledge, this work represents the first demonstration that, in an aneurysm model under estrogen-deficient conditions, the depletion of ERα and Sirt1 may contribute to activation of the NLRP3/IL-1β/MMP-9 pathway, facilitating the rupture of IAs in the estrogen-deficient rat IA rupture model.
Collapse
|
36
|
Hou JY, Xu H, Cao GZ, Tian LL, Wang LH, Zhu NQ, Zhang JJ, Yang HJ. Multi-omics reveals Dengzhan Shengmai formulation ameliorates cognitive impairments in D-galactose-induced aging mouse model by regulating CXCL12/CXCR4 and gut microbiota. Front Pharmacol 2023; 14:1175970. [PMID: 37101548 PMCID: PMC10123283 DOI: 10.3389/fphar.2023.1175970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
Dengzhan Shengmai (DZSM), a traditional Chinese medicine formulation, has been administered extensively to elderly individuals with cognitive impairment (CI). However, the underlying mechanisms by which Dengzhan Shengmai improves cognitive impairment remains unknown. This study aimed to elucidate the underlying mechanism of the effect of Dengzhan Shengmai on aging-associated cognitive impairment via a comprehensive combination of transcriptomics and microbiota assessment. Dengzhan Shengmai was orally administered to a D-galactose-induced aging mouse model, and evaluation with an open field task (OFT), Morris water maze (MWM), and histopathological staining was performed. Transcriptomics and 16S rDNA sequencing were applied to elucidate the mechanism of Dengzhan Shengmai in alleviating cognitive deficits, and enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (PCR), and immunofluorescence were employed to verify the results. The results first confirmed the therapeutic effects of Dengzhan Shengmai against cognitive defects; specifically, Dengzhan Shengmai improved learning and impairment, suppressed neuro loss, and increased Nissl body morphology repair. Comprehensive integrated transcriptomics and microbiota analysis indicated that chemokine CXC motif receptor 4 (CXCR4) and its ligand CXC chemokine ligand 12 (CXCL12) were targets for improving cognitive impairments with Dengzhan Shengmai and also indirectly suppressed the intestinal flora composition. Furthermore, in vivo results confirmed that Dengzhan Shengmai suppressed the expression of CXC motif receptor 4, CXC chemokine ligand 12, and inflammatory cytokines. This suggested that Dengzhan Shengmai inhibited CXC chemokine ligand 12/CXC motif receptor 4 expression and modulated intestinal microbiome composition by influencing inflammatory factors. Thus, Dengzhan Shengmai improves aging-related cognitive impairment effects via decreased CXC chemokine ligand 12/CXC motif receptor 4 and inflammatory factor modulation to improve gut microbiota composition.
Collapse
Affiliation(s)
- Jing-Yi Hou
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences and MEGAROBO, Beijing, China
- Postdoctoral Mobile Research Station of China Academy of Chinese Medicine Sciences, Beijing, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang-Zhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang-Liang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Han Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences and MEGAROBO, Beijing, China
- Postdoctoral Mobile Research Station of China Academy of Chinese Medicine Sciences, Beijing, China
| | - Nai-Qiang Zhu
- Postdoctoral Mobile Research Station of China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jing-Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jing-Jing Zhang, ; Hong-Jun Yang,
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences and MEGAROBO, Beijing, China
- *Correspondence: Jing-Jing Zhang, ; Hong-Jun Yang,
| |
Collapse
|
37
|
The Beneficial Role of Sirtuin 1 in Preventive or Therapeutic Options of Neurodegenerative Diseases. Neuroscience 2022; 504:79-92. [DOI: 10.1016/j.neuroscience.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
|
38
|
Zeng Z, Chen C, SiTu Y, Shen Z, Chen Y, Zhang Z, Tang C, Jiang T. Anoectochilus roxburghii flavonoids extract ameliorated the memory decline and reduced neuron apoptosis via modulating SIRT1 signaling pathway in senescent mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115361. [PMID: 35609756 DOI: 10.1016/j.jep.2022.115361] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anoectochilus roxburghii (A. roxburghii) is a precious herb and folk medicine in many Asian countries. It has been used traditionally to treat diabetes, etc., and also used as a dietary therapy to delay senescence. AIM OF THE STUDY This study was to evaluate the neuroprotective effects of A. roxburghii flavonoids extract (ARF) and whether its effects were due to the regulation of SIRT1 signaling pathway in senescent mice and in D-galactose (D-gal) induced aging in SH-SY5Y cells. MATERIALS AND METHODS 18-month-old mice were randomly divided into senescent model, low-dose ARF, high-dose ARF and vitamin E group. 2-Month-old mice were as a control group. After 8 weeks treatment, Morris water maze (MWM) was performed. The levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), monoamine oxidase (MAO) and acetylcholinesterase (ACh-E) in the cortex were determined. Hippocampus morphologic changes were observed with haematoxylin and eosin (H&E), Nissl, senescence-associated-galactosidase (SA-β-gal) and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) staining. Apoptosis-related molecular expressions in the hippocampus were performed by western blotting. Furthermore, after stimulated by EX527 (a SIRT1 inhibitor), the SIRT1-dependent neuroprotective effects of ARF were determined by measuring SRIT1 and p53 expression in SH-SY5Y aging cells induced by D-gal. RESULTS ARF could significantly ameliorate memory decline in senescent mice and reduce the generations of ROS, MDA and the activities of MAO and ACh-E, while increasing SOD activities in the cortex of aging mice. ARF obviously improved hippocampus pathological alterations, increased the number of Nissl bodies, while reducing senescent and apoptotic cells in senescent mice hippocampus. Further, ARF positively regulated SIRT1 expression, and reduced apoptosis-related molecules p53, p21 and Caspase-3 expression, while increasing the ratio of Bcl-2/Bax. In D-gal-induced SH-SY5Y cells, the effects of ARF on SIRT1 and p53, and the ability of scavenging ROS were mostly abolished after incubation with the EX527. CONCLUSIONS ARF, in a SIRT1-dependent manner, exerted neuroprotection via modulating SIRT1/p53 signaling pathway against memory decline and apoptosis due to age-induced oxidative stress damage in senescent mice.
Collapse
Affiliation(s)
- Zhijun Zeng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Cong Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Ying SiTu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhibin Shen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yanfen Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhisi Zhang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Chunping Tang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| | - Tao Jiang
- Laboratory Animal Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangzhou, 510006, China.
| |
Collapse
|
39
|
Machado AG, Silva Silveira AC, Peres AM, de Sá Couto-Pereira N, Trindade AA, Lúcio JA, Lampert C, August PM, Schild Lobo PM, Jorge RO, Matté C, Moreira JC, Dalmaz C, Krolow R. Olive oil-rich diet during pregnancy/lactation attenuated the early life stress effects on depressive-like behavior and altered energy metabolism in the dorsal hippocampus in a sex-specific manner. Nutr Neurosci 2022; 25:2033-2050. [PMID: 34030611 DOI: 10.1080/1028415x.2021.1929766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
METHODS and results: Pregnant Wistar rats received diets enriched in soybean oil (SO) or OO during gestation/lactation. At birth, litters were subdivided into MS or intact groups. After weaning, the pups received standard chow until adulthood, when they were subjected to behavioral tasks. At PND90 biochemical analyses were performed. Maternal OO-enriched diet prevented MS-induced higher weight gain, and decreased MS-induced anhedonic behavior. Increased latency to immobility and shorter immobility time were observed in the maternal OO-enrich diet groups. Maternal OO-enrich diet groups also presented reduced reactive oxygen species and increased activity of antioxidant enzymes. In addition, this diet showed sex-specific effects, by decreasing mitochondrial mass and potential, reducing AMPK activation, and increasing synaptophysin and PSD-95 immunocontent in the DH of male rats. Early stress, on the other hand, decreased production of free radicals and decreased levels of SIRT1 in the DH of male rats. In females, OO prevented the anhedonic behavior induced by MS. CONCLUSIONS Maternal OO-enrich diet attenuated MS-induced depressive behavior in both sexes. In addition, it affected energy metabolism in the DH of male rats, favored synaptic plasticity, and contributed to reducing pathophysiological conditions.
Collapse
Affiliation(s)
| | | | - Ariadni Mesquita Peres
- PPG Ciências Biológicas: Bioquímica/Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | | | | | - Joelma Alves Lúcio
- PPG Ciências Biológicas: Bioquímica/Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Carine Lampert
- PPG Ciências Biológicas: Bioquímica/Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Pauline Maciel August
- PPG Ciências Biológicas: Bioquímica/Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | | | | | - Cristiane Matté
- PPG Ciências Biológicas: Bioquímica/Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - José Cláudio Moreira
- PPG Ciências Biológicas: Bioquímica/Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Carla Dalmaz
- PPG Ciências Biológicas: Bioquímica/Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil.,PPG Neurociências, ICBS, UFRGS, Porto Alegre, Brazil
| | - Rachel Krolow
- PPG Ciências Biológicas: Bioquímica/Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
40
|
Mechanisms of Intervertebral Disc Degeneration Treatment with Deer Antlers Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8092848. [PMID: 36110184 PMCID: PMC9470325 DOI: 10.1155/2022/8092848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022]
Abstract
Background With the aging of the population, the prevalence of IVDD increases preoperatively. How to better treat IVDD has become an important clinical issue. Deer antlers proved to have a great effect on the treatment of IVDD in many studies, but the molecular mechanism has not been clarified. Objective To investigate the molecular mechanism and target of deer antlers in the treatment of IVDD. Methods Compounds from deer antlers were collected and targets were predicted using HERB, TCMSP, TCMID, SwissADME, and SwissTargetPrediction. Collection of disease targets for IVDD was done using GeneCards, TTD, DrugBank, DisGeNET, and OMIM. Cytoscape 3.7.2, AutoDock Vina (v1.1.2), and R software were used for data analysis and the construction of network diagrams. Results A total of 5 active compounds from deer antlers were screened and 104 therapeutic targets were predicted. A total of 1023 IVDD disease targets were collected. Subsequently, PPI network prediction analysis was performed for disease and treatment targets, and 112 core targets were collected after screening. After obtaining the core target, we used the clusterProfiler software package of R software to carry out GO and KEGG enrichment analyses for the core target and plot the bubble maps. According to the GO enrichment results, the main biological processes of IVDD treatment by deer antlers lie in the rhythmic process, mRNA catabolic process, and G1/S transition of the mitotic cell cycle. KEGG results were mainly related to the PI3K-Akt signaling pathway, thyroid hormone signaling pathway, and Notch signaling pathway. Molecular docking results showed that estrone had the best docking results on ESR1. Conclusion Deer antlers are rich in various compounds that can prevent the development of IVDD by upregulating the PI3K-Akt signaling pathway and Notch signaling pathway. Its key compounds estradiol and estrone can reduce the inflammatory response and oxidative stress in tissues and organs, thus slowing down the progression of IVDD. Estrone, the active compound in deer antlers, was found by molecular docking to have good results against ESR1, the target of the disease, which may be a potential site for drug therapy.
Collapse
|
41
|
Singh P, Paramanik V. Neuromodulating roles of estrogen and phytoestrogens in cognitive therapeutics through epigenetic modifications during aging. Front Aging Neurosci 2022; 14:945076. [PMID: 35992599 PMCID: PMC9381870 DOI: 10.3389/fnagi.2022.945076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Estrogen (E2) plays important role in regulating hippocampal learning and memory. The decline of E2 after menopause affects learning and memory and increases the risk of neurodegenerative diseases like Alzheimer's disease (AD). Additionally, from the estrogen receptor (ER) mediated gene regulation; E2 also regulates gene expression at the transcriptional and posttranscriptional levels through epigenetic modifications. E2 recruits a number of proteins called co-regulators at the promoter region of genes. These co-regulators act as chromatin modifiers, alter DNA and histone modifications and regulate gene expression. Several studies show that E2 regulates learning and memory by altering chromatin at the promoters of memory-linked genes. Due to structural similarities with E2 and low side effects, phytoestrogens are now used as neuroprotective agents to recover learning and memory in animal models as well as human subjects during aging and different neurological disorders. Growing evidence suggests that apart from anti-oxidative and anti-inflammatory properties, phytoestrogens also act as epigenetic modifiers and regulate gene expression through epigenetic modifications. The epigenetic modifying properties of phytoestrogens are mostly studied in cancer cells but very little is known regarding the regulation of synaptic plasticity genes, learning and memory, and neurological disorders. In this article, we discuss the epigenetic modifying properties of E2 and the roles of phytoestrogens as epigenetic modifiers in the brain to recover and maintain cognitive functions.
Collapse
|
42
|
Song S, Tang H, Quan W, Shang A, Ling C. Estradiol initiates the immune escape of non-small cell lung cancer cells via ERβ/SIRT1/FOXO3a/PD-L1 axis. Int Immunopharmacol 2022; 107:108629. [PMID: 35344811 DOI: 10.1016/j.intimp.2022.108629] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/24/2022]
Abstract
Mounting evidence has postulated estrogen as a contributor for lung cancer development and progression. Here, we focused on the effect of estradiol (E2) on the immune escape of non-small cell lung cancer (NSCLC). The expression of FOXO3a in NSCLC samples was screened by gene microarray and then verified using Western blot analysis in NSCLC cell lines. Interaction between E2, SIRT1, FOXO3a and PD-L1 was determined. Following ectopic expression and depletion experiments in A549 and H1435 cells, cell proliferation and killing of cytotoxic T lymphocytes (CTLs) on NSCLC cells were evaluated. Xenograft mouse models were prepared to validate the in vivo effect of E2. E2 activated SIRT1 by up-regulating the expression of ERβ and thereby weakened the killing of CTLs on NSCLC cells. E2 elevated PD-L1 by up-regulating the ERβ/SIRT1 axis to promote the immune escape of NSCLC cells. SIRT1 degraded FOXO3a by reducing the acetylation level of FOXO3a and increased its ubiquitination. E2 inhibited the expression of FOXO3a and elevated PD-L1 expression, thereby promoting the immune escape of NSCLC cells. In vivo results showed that E2 facilitated the growth and metastasis of NSCLC cells in nude mice by elevating ERβ via SIRT1/FOXO3a/PD-L1 axis. In summary, our data revealed the critical roles of E2/ERβ/SIRT1/FOXO3a/PD-L1 axis in the immune escape of NSCLC cells and suggested that the axis may be promising therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Shu Song
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China; Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
| | - Haicheng Tang
- Department of Respiratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
| | - Wenqiang Quan
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Shanghai 200065, PR China
| | - Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Shanghai 200065, PR China
| | - Chunhua Ling
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China.
| |
Collapse
|
43
|
Yao C, Guo G, Huang R, Tang C, Zhu Q, Cheng Y, Kong L, Ren J, Fang M. Manual therapy regulates oxidative stress in aging rat lumbar intervertebral discs through the SIRT1/FOXO1 pathway. Aging (Albany NY) 2022; 14:2400-2417. [PMID: 35289767 PMCID: PMC8954973 DOI: 10.18632/aging.203949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
With the increasing burden of a globally aging population, low back pain has become one of the most common musculoskeletal disorders, caused mainly by intervertebral disc (IVD) degeneration. There are currently several clinical methods to alleviate back pain, but there is scarce attention paid as to whether they can improve age-related IVD degeneration. It is therefore difficult to conduct an in-depth evaluation of these methods. A large number of clinical studies have shown that manual therapy (MT), a widely used comprehensive alternative method, has effects on pain, the mechanisms of which require further study. In this study, MT was performed on aging rats for 6 months, and their behaviors were compared with those of a non-intervention group of aging and young rats. After the intervention, all rats were examined by X-ray to observe lumbar spine degeneration, and the IVD tissues were dissected for detection, including pathological staining, immunofluorescence, Western bolt, etc. This study demonstrated the possibility that MT intervention delay the lumbar IVD degeneration in aging rats, specifically improving the motor function and regulating senescence-associated β-galactosidase, p53, p21, p16, and telomerase activity to retard the senescence of cells in IVDs. Moreover, MT intervention can modify oxidative stress, increase the expression of SIRT1 and FOXO1 in IVDs and decrease ac-FOXO1 expression, suggesting that MT can reduce oxidative stress through the SIRT1/FOXO1 pathway, thereby playing a role in delaying the aging of IVDs. This study shows that drug-free, non-invasive mechanical interventions could be of major significance in improving the physical function of the elderly.
Collapse
Affiliation(s)
- Chongjie Yao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Guangxin Guo
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Ruixin Huang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Cheng Tang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Qingguang Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China.,Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Yanbin Cheng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China.,Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Lingjun Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China.,Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Jun Ren
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Min Fang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China.,Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| |
Collapse
|
44
|
Sun W, Qing Q, Cheng X, Chen J, Yu N, Zhu L, Zhao M. Effects of chronic folate deficiency and sex differences on depression‑like behavior in mice. Exp Ther Med 2022; 23:206. [PMID: 35126709 PMCID: PMC8796619 DOI: 10.3892/etm.2022.11129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/03/2021] [Indexed: 11/06/2022] Open
Abstract
Although previous studies have reported that serum folate levels are negatively associated with depression in women but not men, it remains unclear whether folate deficiency can directly lead to depression and whether sex difference serves a role in this condition, since the potential mechanism remains elusive. Therefore, the present study aimed to investigate whether folate deficiency results in differences in parameters associated with depression between males and females. CD-1 mice received either a standard control diet or a folate-deficient diet from 10 to 38 weeks of age, following which behavioral assays, such as an open field test, sucrose preference test and forced swim test were performed throughout week 38. Serum and cerebral cortex samples were subsequently collected for assessment. Serum folate, homocysteine, estradiol (E2) and testosterone levels were measured using chemiluminescence, enzymatic cycling assay and electrochemiluminescence immunoassays. The cerebral cortex was used for western blot analysis, to detect the expression levels of estrogen receptor β (ERβ), PI3K/AKT pathway and caspase-3. The results revealed that compared with those in female mice that received standard control diet, female mice that received folate-deficient diet exhibited lower E2 concentrations, lower sucrose preferences (as determined through the sucrose preference test), longer durations of immobility (as determined in the forced swim test) and less time spent in the central areas of the open field test. Western blotting demonstrated that the expression levels of ERβ and the phosphorylation levels of PI3K and AKT were decreased, whilst the expression levels of cleaved caspase-3 were increased, in the cerebral cortex of female mice that received folate-deficient diet. However, no differences in E2 concentration, behavioral assay parameters or protein levels of ERβ, phosphorylated (p-)PI3K, p-AKT and cleaved caspase-3 could be observed in male mice regardless of whether they received standard control or folate-deficient diets. Collectively, these results revealed that folate deficiency only led to depression-like behavior in female mice. This may be associated with reduced E2 levels, which may inhibit the PI3K/AKT pathway and upregulate the expression of cleaved caspase-3 to promote neuronal apoptosis.
Collapse
Affiliation(s)
- Wanxiao Sun
- Department of Basic Nursing, School of Nursing, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiting Qing
- Department of Basic Nursing, School of Nursing, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xu Cheng
- Department of Basic Nursing, School of Nursing, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jing Chen
- Department of Basic Nursing, School of Nursing, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ningning Yu
- Department of Basic Nursing, School of Nursing, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liyuan Zhu
- Department of Basic Nursing, School of Nursing, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Mei Zhao
- Department of Basic Nursing, School of Nursing, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
45
|
Activation of GPR55 attenuates cognitive impairment, oxidative stress, neuroinflammation, and synaptic dysfunction in a streptozotocin-induced Alzheimer's mouse model. Pharmacol Biochem Behav 2022; 214:173340. [DOI: 10.1016/j.pbb.2022.173340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
|
46
|
17 β-Estradiol alleviates oxidative damage in osteoblasts by regulating miR-320/RUNX2 signaling pathway. J Biosci 2021. [DOI: 10.1007/s12038-021-00236-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
47
|
miR-223 Enhances the Neuroprotection of Estradiol Against Oxidative Stress Injury by Inhibiting the FOXO3/TXNIP Axis. Neurochem Res 2021; 47:1865-1877. [PMID: 34843004 DOI: 10.1007/s11064-021-03490-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder characterized by complex pathogenesis, of which oxidative stress has long been regarded as a major mechanism. Previously, the protective effects of estradiol on SH-SY5Y cells against Aβ42-induced injuries were demonstrated. In this study, the protection of SH-SY5Y cells by estradiol from H2O2-caused oxidative stress injury and Alzheimer's mice was further confirmed. H2O2 downregulated, whereas estradiol upregulated miR-223 expression. miR-223 overexpression promoted cell viability, inhibited cell apoptosis, reduced ROS levels, enhanced Superoxide Dismutase (SOD) activity, and decreased malondialdehyde (MDA) content. However, miR-223 inhibition exerted opposite effects. miR-223 directly targeted forkhead box O3 (FOXO3) and inhibited FOXO3 expression. H2O2 increased, whereas estradiol decreased thioredoxin interacting protein (TXNIP) levels; FOXO3 positively regulated TXNIP protein levels. In SH-SY5Y cells, FOXO3 overexpression increased, whereas FOXO3 knockdown reduced the cell apoptosis and ROS levels. FOXO3 bound to TXNIP promoter region and activated TXNIP transcription, whereas the activation could be partially inhibited by estradiol. Collectively, the FOXO3/TXNIP axis is downstream of miR-223. miR-223 enhances the neuroprotection of estradiol against oxidative stress injury through the FOXO3/TXNIP axis.
Collapse
|
48
|
Kim H, Jeon W, Hong J, Lee J, Yeo C, Lee Y, Baek S, Ha I. Gongjin-Dan Enhances Neurite Outgrowth of Cortical Neuron by Ameliorating H 2O 2-Induced Oxidative Damage via Sirtuin1 Signaling Pathway. Nutrients 2021; 13:4290. [PMID: 34959841 PMCID: PMC8707945 DOI: 10.3390/nu13124290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Gongjin-dan (GJD) is a multiherbal formula produced from 10 medicinal herbs and has been traditonally used as an oriental medicine to treat cardiovascular diseases, alcoholic hepatitis, mild dementia, and anemia. Additionally, increasing evidence suggests that GJD exerts neuroprotective effects by suppressing inflammation and oxidative stress-induced events to prevent neurological diseases. However, the mechanism by which GJD prevents oxidative stress-induced neuronal injury in a mature neuron remains unknown. Here, we examined the preventive effect and mechanism of GJD on primary cortical neurons exposed to hydrogen peroxide (H2O2). In the neuroprotection signaling pathway, Sirtuin1 is involved in neuroprotective action as a therapeutic target for neurological diseases. After pre-treatment with GJD at three concentrations (10, 25, and 50 µg/mL) and stimulation by H2O2 (30 µM) for 24 h, the influence of GJD on Sirtuin1 activation was assessed using immunocytochemistry, real-time PCR, western blotting, and flow cytometry. GJD effectively ameliorated H2O2-induced neuronal death against oxidative damage through Sirtuin1 activation. In addition, GJD-induced Sirtuin1 activation accelerated elongation of new axons and formation of synapses via increased expression of nerve growth factor and brain-derived neurotrophic factor, as well as regeneration-related genes. Thus, GJD shows potential for preventing neurological diseases via Sirtuin1 activation.
Collapse
Affiliation(s)
- Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (H.K.); (W.J.); (J.H.); (J.L.); (C.Y.); (Y.L.)
| | - Wanjin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (H.K.); (W.J.); (J.H.); (J.L.); (C.Y.); (Y.L.)
| | - Jinyoung Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (H.K.); (W.J.); (J.H.); (J.L.); (C.Y.); (Y.L.)
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (H.K.); (W.J.); (J.H.); (J.L.); (C.Y.); (Y.L.)
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (H.K.); (W.J.); (J.H.); (J.L.); (C.Y.); (Y.L.)
| | - Yoonjae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (H.K.); (W.J.); (J.H.); (J.L.); (C.Y.); (Y.L.)
| | - Seungho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Korea;
| | - Inhyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (H.K.); (W.J.); (J.H.); (J.L.); (C.Y.); (Y.L.)
| |
Collapse
|
49
|
Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021; 132:976-997. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Sirtuins, a class III histone/protein deacetylase, is a central regulator of metabolic function and cellular stress response. This plays a pivotal role in the pathogenesis and progression of diseases such as cancer, neurodegeneration, metabolic syndromes, and cardiovascular disease. Sirtuins regulate biological and cellular processes, for instance, mitochondrial biogenesis, lipid and fatty acid oxidation, oxidative stress, gene transcriptional activity, apoptosis, inflammatory response, DNA repair mechanism, and autophagic cell degradation, which are known components for the progression of the neurodegenerative diseases (NDDs). Emerging evidence suggests that sirtuins are the useful molecular targets against NDDs like, Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Amyotrophic Lateral Sclerosis (ALS). However, the exact mechanism of neuroprotection mediated through sirtuins remains unsettled. The manipulation of sirtuins activity with its modulators, calorie restriction (CR), and micro RNAs (miR) is a novel therapeutic approach for the treatment of NDDs. Herein, we reviewed the current putative therapeutic role of sirtuins in regulating synaptic plasticity and cognitive functions, which are mediated through the different molecular phenomenon to prevent neurodegeneration. We also explained the implications of sirtuin modulators, and miR based therapies for the treatment of life-threatening NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
50
|
Up-regulation of SIRT1 induced by 17beta-estradiol promotes autophagy and inhibits apoptosis in osteoblasts. Aging (Albany NY) 2021; 13:23652-23671. [PMID: 34711685 PMCID: PMC8580331 DOI: 10.18632/aging.203639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022]
Abstract
Osteoporosis is a common systemic skeletal metabolism disorder resulting in bone fragility and increased fracture risk. Silent information regulator factor 2 homolog 1 (SIRT1) is crucial in the regulation of several biological processes, including bone metabolism, autophagy, apoptosis, and aging. This study aimed to assess whether the up-regulation of SIRT1 induced by 17beta-estradiol (17β-E2) could promote autophagy and inhibit apoptosis in osteoblasts via the AMPK-mTOR and FOXO3a pathways, respectively. The study found that 17β-E2 (10-6 M) administration induced the up-regulation of SIRT1 in osteoblasts. Up-regulation of SIRT1 induced by 17β-E2 increased the expression level of LC3, Beclin-1, Bcl-2, p-AMPK, FOXO3a but decreased caspase-3 and p-mTOR expression, and then promoted autophagy and inhibited apoptosis. More autophagosomes were observed under a transmission electron microscope (TEM) in 17β-E2 and SRT1720 (a selective SIRT1 activator) co-treated group. When Ex527 (a SIRT1-specific inhibitor) was pretreated, the reversed changes were observed. Taken together, our findings demonstrated that the up-regulation of SIRT1 induced by 17β-E2 could promote autophagy via the AMPK-mTOR pathway and inhibit apoptosis via the FOXO3a activation in osteoblasts, and SIRT1 might become a more significant target in osteoporosis treatment.
Collapse
|