1
|
Skawratananond S, Xiong DX, Zhang C, Tonk S, Pinili A, Delacruz B, Pham P, Smith SC, Navab R, Reddy PH. Mitophagy in Alzheimer's disease and other metabolic disorders: A focus on mitochondrial-targeted therapeutics. Ageing Res Rev 2025; 108:102732. [PMID: 40122398 DOI: 10.1016/j.arr.2025.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Mitochondria, as central regulators of cellular processes such as energy production, apoptosis, and metabolic homeostasis, are essential to cellular function and health. The maintenance of mitochondrial integrity, especially through mitophagy-the selective removal of impaired mitochondria-is crucial for cellular homeostasis. Dysregulation of mitochondrial function, dynamics, and biogenesis is linked to neurodegenerative and metabolic diseases, notably Alzheimer's disease (AD), which is increasingly recognized as a metabolic disorder due to its shared pathophysiologic features: insulin resistance, oxidative stress, and chronic inflammation. In this review, we highlight recent advancements in pharmacological interventions, focusing on agents that modulate mitophagy, mitochondrial uncouplers that reduce oxidative phosphorylation, compounds that directly scavenge reactive oxygen species to alleviate oxidative stress, and molecules that ameliorate amyloid beta plaque accumulation and phosphorylated tau pathology. Additionally, we explore dietary and lifestyle interventions-MIND and ketogenic diets, caloric restriction, physical activity, hormone modulation, and stress management-that complement pharmacological approaches and support mitochondrial health. Our review underscores mitochondria's central role in the pathogenesis and potential treatment of neurodegenerative and metabolic diseases, particularly AD. By advocating for an integrated therapeutic model that combines pharmacological and lifestyle interventions, we propose a comprehensive approach aimed at mitigating mitochondrial dysfunction and improving clinical outcomes in these complex, interrelated diseases.
Collapse
Affiliation(s)
- Shadt Skawratananond
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Daniel X Xiong
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Charlie Zhang
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Sahil Tonk
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Aljon Pinili
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Brad Delacruz
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Patrick Pham
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Shane C Smith
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Rahul Navab
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Internal Medicine, PES Institute of Medical Sciences and Research, Kuppam, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Dong H, Shi Y, Ma Y, Cheng Y, Liu L, Xiao S, Yuan Z, Wang Z, Li T, Zhao J, Fan X. Novel metabolic and inflammatory stratification of overweight/obesity to characterize risks of adverse outcomes: A large population-based cohort study. Diabetes Obes Metab 2025; 27:2613-2625. [PMID: 39972192 DOI: 10.1111/dom.16262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/27/2025] [Accepted: 02/02/2025] [Indexed: 02/21/2025]
Abstract
AIMS The growing epidemic of overweight and obesity elevates disease risks, with metabolic disorders and inflammation critically involved in the pathogenic mechanisms. This study refines the subtyping of overweight and obesity using metabolic and inflammatory markers to enhance risk assessment and personalized prevention. MATERIALS AND METHODS Based on the UK Biobank, this retrospective study included participants classified as overweight or obese (BMI ≥25 kg/m2). K-means clustering was performed using metabolic and inflammatory biomarkers. Multivariate Cox regression analysis assessed the risk of complications and mortality over a follow-up period of 13.5 years. Genome-Wide Association Studies (GWAS) and Phenome-Wide Association Studies (PheWAS) explored cluster-specific genetic traits. RESULTS Among 126 145 participants (mean [IQR] age: 55.0 [14.0] years; 61 983 males [49.1%]), five clusters were identified: (1) Low Metabolic Risk-related, (2) Hypertension-Related, (3) Mixed Hyperlipidemia-Related, (4) Elevated Lipoprotein(a)-Related and (5) High BMI and Inflammation-Related. Cluster 1 exhibited a lower risk of complications than other clusters. Cluster 2 had the highest incidence of stroke, linked to variants affecting blood circulation. Cluster 3 showed the highest risks for ischaemic heart disease, characterized by variants enriched in cholesterol metabolism pathways. Cluster 4 was associated with high cardiovascular risks. Cluster 5 had the highest risks for diabetes, asthma, chronic obstructive pulmonary disease, osteoarthritis and mortality, linked to obesity-related genetic variants. We also proposed a method for applying this classification in clinical settings. CONCLUSIONS This classification provides insights into the heterogeneity of individuals with overweight and obesity, aiding in the identification of high-risk patients who may benefit from targeted interventions.
Collapse
Affiliation(s)
- Hang Dong
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yingzhou Shi
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yicheng Ma
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Yiping Cheng
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Luna Liu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Shengyang Xiao
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Zinuo Yuan
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Zhen Wang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Tuo Li
- Department of Endocrinology, Second Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- "Chuangxin China" Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| |
Collapse
|
3
|
Dorranipour D, Pourjafari F, Malekpour-Afshar R, Basiri M, Hosseini M. Assessment of melatonin's therapeutic effectiveness against hepatic steatosis induced by a high-carbohydrate high-fat diet in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2971-2985. [PMID: 37864588 DOI: 10.1007/s00210-023-02784-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Several studies have demonstrated the protective effects of melatonin against metabolic diseases, such as liver steatosis. However, its therapeutic effects have received less scrutiny. The present study aimed to explore melatonin's therapeutic effectiveness in treating non-alcoholic fatty liver disease (NAFLD) induced by a high-carbohydrate high-fat (HCHF) diet in rats. The NAFLD was developed in male Wistar rats using an HCHF diet for 8 weeks. Afterward, they were given melatonin orally for four weeks at doses of 5 mg/kg, 10 mg/kg, and 30 mg/kg, along with the HCHF diet. In addition, six age-matched healthy rats received the highest dose of melatonin (30 mg/kg) for the same duration. Rats on the HCHF diet exhibited obesity, dyslipidemia, hyperglycemia, glucose intolerance, insulin resistance, inflammation, oxidative stress, and liver injury (steatosis). Melatonin treatment at 10 mg/kg and 30 mg/kg reduced body weight, adiposity index, oxidative damage, and inflammation but did not affect impaired glucose metabolism induced by the HCHF diet. Meanwhile, the highest dose of melatonin (30 mg/kg) reduced the liver steatosis index in HCHF rats but caused mild liver damage in healthy rats. In conclusion, using melatonin demonstrated positive outcomes in treating NAFLD induced by the HCHF diet in rats, with no noteworthy effects observed in healthy rats. A moderate dosage of 10 mg/kg of melatonin proved to be a safer and more efficient method for reducing HCHF diet-induced NAFLD in rats. Higher melatonin doses should be cautiously administered due to potential disruptions in lipid metabolism and the risk of liver complications.
Collapse
Affiliation(s)
- Davood Dorranipour
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Pourjafari
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Malekpour-Afshar
- Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehran Hosseini
- Department of Anatomical Sciences, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
4
|
Li Y, Sun X, Wang M, Jiang Y, Ge QQ, Li T, Hou Z, Shi P, Yao K, Yin J. Meta-analysis and machine learning reveal the antiobesity effects of melatonin on obese rodents. Obes Rev 2024; 25:e13701. [PMID: 38311366 DOI: 10.1111/obr.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Melatonin appears to be a promising supplement for obesity treatment. The antiobesity effects of melatonin on obese rodents are influenced by various factors, including the species, sex, the dosage of melatonin, treatment duration, administration via, daily treatment time, and initial body weight (IBW). Therefore, we conducted a meta-analysis and machine learning study to evaluate the antiobesity effect of melatonin on obese mice or rats from 31 publications. The results showed that melatonin significantly reduced body weight, serum glucose (GLU), triglycerides (TGs), low-density lipoprotein (LDL), and cholesterol (TC) levels in obese mice or rats but increased high-density lipoprotein (HDL) levels. Melatonin showed a slight positive effect on clock-related genes, although the number of studies was limited. Meta-regression analysis and machine learning indicated that the dosage of melatonin was the primary factor influencing body weight, with higher melatonin dosages leading to a stronger weight reduction effect. Together, male obese C57BL/6 mice and Sprague-Dawley rats with an IBW of 100-200 g showed better body weight reduction when supplemented with a dose of 10-30 mg/kg melatonin administered at night via injection for 5-8 weeks.
Collapse
Affiliation(s)
- Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xihang Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Mansheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yayun Jiang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qian Qian Ge
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Tiejun Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
| | - Zhenping Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Kang Yao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
5
|
Bianco V, Kratky D. Glycoprotein Non-Metastatic Protein B (GPNMB): The Missing Link Between Lysosomes and Obesity. Exp Clin Endocrinol Diabetes 2023; 131:639-645. [PMID: 37956971 PMCID: PMC10700020 DOI: 10.1055/a-2192-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/06/2023] [Indexed: 11/21/2023]
Abstract
As a result of an unhealthy diet and limited physical activity, obesity has become a widespread pandemic worldwide and is an important predictor for the development of cardiovascular disease. Obesity is often characterized by a pro-inflammatory environment in white adipose tissue (WAT), mainly due to increased macrophage infiltration. These immune cells boost their lipid concentrations by accumulating the content of dying adipocytes. As the lysosome is highly involved in lipid handling, the progressive lipid accumulation may result in lysosomal stress and a metabolic shift. Recent studies have identified glycoprotein non-metastatic melanoma protein B (GPNMB) as a novel marker of inflammatory diseases. GPNMB is a type I transmembrane protein on the cell surface of various cell types, such as macrophages, dendritic cells, osteoblasts, and microglia, from which it can be proteolytically cleaved into a soluble molecule. It is induced by lysosomal stress via microphthalmia-associated transcription factor and thus has been found to be upregulated in many lysosomal storage disorders. In addition, a clear connection between GPNMB and obesity was recently established. GPNMB was shown to have protective and anti-inflammatory effects in most cases, preventing the progression of obesity-related metabolic disorders. In contrast, soluble GPNMB likely has the opposite effect and promotes lipogenesis in WAT. This review aims to summarize and clarify the role of GPNMB in the progression of obesity and to highlight its potential use as a biomarker for lipid-associated disorders.
Collapse
Affiliation(s)
- Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry,
Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry,
Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
6
|
Hsu LW, Chien YW. Effects of Melatonin Supplementation on Lipid Metabolism and Body Fat Accumulation in Ovariectomized Rats. Nutrients 2023; 15:2800. [PMID: 37375706 DOI: 10.3390/nu15122800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Postmenopausal obesity is a rising problem. Melatonin (Mel) is a hormone secreted by the pineal gland that regulates the circadian rhythms and improves obesity. In this experiment, ovariectomized (OVX) rats were used as a menopause model to explore the effects of Mel supplementation on lipid metabolism, body fat accumulation, and obesity. Nine-week-old female rats underwent an OVX surgery and were assigned to the following groups: control group (C), low-dose group (L, 10 mg/kg body weight (BW) Mel), medium-dose group (M, 20 mg/kg BW Mel), and high-dose group (H, 50 mg/kg BW Mel), administered by gavage for 8 weeks. The results showed that the OVX rats supplemented with low, medium, and high doses of Mel for 8 weeks exhibited reduced BW gain, perirenal fat mass, and gonads fat mass, and an increased serum irisin level. Low and high doses of Mel induced brite/beige adipocytes in the white adipose tissues. In addition, the messenger RNA levels of the fatty acid synthesis enzymes were significantly reduced after the high-dose Mel supplementation. Thus, Mel can reduce the hepatic fatty acid synthesis and promote the browning of white adipose tissues through irisin; thereby, improving obesity and body fat accumulation in OVX rats.
Collapse
Affiliation(s)
- Ling-Wen Hsu
- Department of Nutrition and Health Science, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Wen Chien
- Department of Nutrition and Health Science, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
7
|
Gómez-Ambrosi J. Adipose Tissue Inflammation. Cells 2023; 12:1484. [PMID: 37296605 PMCID: PMC10252369 DOI: 10.3390/cells12111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
In recent decades, obesity has become one of the most common metabolic diseases [...].
Collapse
Affiliation(s)
- Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
8
|
Maity J, Dey T, Banerjee A, Chattopadhyay A, Das AR, Bandyopadhyay D. Melatonin ameliorates myocardial infarction in obese diabetic individuals: The possible involvement of macrophage apoptotic factors. J Pineal Res 2023; 74:e12847. [PMID: 36456538 DOI: 10.1111/jpi.12847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
In recent days, the hike in obesity-mediated epidemics across the globe and the prevalence of obesity-induced cardiovascular disease has become one of the chief grounds for morbidity and mortality. This epidemic-driven detrimental events in the cardiac tissues start with the altered distribution and metabolism pattern of high-density lipoprotein and low-density lipoprotein (LDL) leading to cholesterol (oxidized LDL) deposition on the arterial wall and atherosclerotic plaque generation, followed by vascular spasms and infarction. Subsequently, obesity-triggered metabolic malfunctions induce free radical generation which may further trigger pro-inflammatory signaling and nuclear factor kappa-light-chain-enhancer of activated B cells transcriptional factor, thus inducing interferon-gamma, tumor necrosis factor-alpha, and inducible nitric oxide synthase. This terrifying cardiomyopathy can be further aggravated in type 2 diabetes mellitus, thereby making obese diabetic patients prone toward the development of myocardial infarction (MI) or stroke in comparison to their nondiabetic counterparts. The accelerated oxidative stress and pro-inflammatory response induced cardiomyocyte hypertrophy, followed by apoptosis in obese diabetic individuals, causing progression of athero-thrombotic vascular disease. Being an efficient antioxidative and anti-inflammatory indolamine, melatonin effectively inhibits lipid peroxidation, pro-inflammatory reactions, thereby resolving free radical-induced myocardial damages along with maintaining antioxidant reservoir to preserve cardiovascular integrity. Prolonged melatonin treatment maintains balanced body weight and serum total cholesterol concentration by inhibiting cholesterol synthesis and promoting cholesterol catabolism. Additionally, melatonin promotes macrophage polarization toward the anti-inflammatory state, providing a proper shield during the recovery period. Therefore, the protective role of melatonin in maintaining the lipid metabolism homeostasis and blocking the atherosclerotic plaque rupture could be targeted as the possible therapeutic strategy for the management of obesity-induced acute MI. This review aimed at orchestrating the efficacy of melatonin in ameliorating irrevocable oxidative cardiovascular damage induced by the obesity-diabetes correlation.
Collapse
Affiliation(s)
- Juin Maity
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | - Tiyasa Dey
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | - Adrita Banerjee
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | | | - Asish R Das
- Department of Chemistry, University of Calcutta, Kolkata, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| |
Collapse
|
9
|
Melatonin decreases IRF-3 protein expression in the gastrocnemius muscle, reduces IL-1β and LPS plasma concentrations, and improves the lipid profile in rats with apical periodontitis fed on a high-fat diet. Odontology 2022:10.1007/s10266-022-00782-w. [PMID: 36567367 DOI: 10.1007/s10266-022-00782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/14/2022] [Indexed: 12/26/2022]
Abstract
To evaluate the effects of melatonin (MEL) on the expression of toll-like receptor-4 (TLR4); myeloid differentiation primary response protein-88 (MyD88); TIR-domain-containing adapter-inducing interferon-β (TRIF); IFN regulatory-factor-3 (IRF-3); nuclear factor kappa-B (NF-κB); plasma concentrations of interleukin-1β (IL-1β) and lipopolysaccharide (LPS); and lipid profile of rats with apical periodontitis (AP) fed on a high-fat diet (HFD). Eighty 60-day-old rats were divided into eight groups: control, AP, HFD, HFDAP, CNMEL, APMEL, HFDMEL and HFDAPMEL. HFD groups were fed on a HFD for 107 days. On day 7, experimental AP was induced in the AP groups, and after 70 days, MEL (5 mg/kg) was administered to the MEL groups for 30 days. Plasma concentrations of LPS and IL-1β were analyzed using enzyme-linked immunosorbent assay, and the lipid profile was analyzed using biochemical tests. The expression of proteins involved in the TLR4 pathway (TLR4, MyD88, TRIF, IRF-3 and NF-κB) in the gastrocnemius muscle (GM) was evaluated using western blotting and qRT-PCR. Treatment with MEL decreased IRF-3 protein expression in GM and IL-1β plasma concentration in the APMEL and HFDMEL groups. Reduction in LPS plasma concentration was reported only in the HFDMEL group. Additionally, a decrease in LDL and an increase in HDL were observed in the HFDMEL and HFDAPMEL groups. Treatment with MEL exhibited anti-inflammatory and anti-hyperlipidemic effects attributed to HFD and AP by reducing the plasma concentrations of IL-1β and LPS in addition to reducing IRF-3 protein expression in the GM, which is associated with the production of inflammatory cytokines.
Collapse
|
10
|
Maleksabet H, Rezaee E, Tabatabai SA. Host-Cell Surface Binding Targets in SARS-CoV-2 for Drug Design. Curr Pharm Des 2022; 28:3583-3591. [PMID: 36420875 DOI: 10.2174/1381612829666221123111849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/20/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a major public health threat to all countries worldwide. SARS-CoV-2 interactions with its receptor are the first step in the invasion of the host cell. The coronavirus spike protein (S) is crucial in binding to receptors on host cells. Additionally, targeting the SARS-CoV-2 viral receptors is considered a therapeutic option in this regard. In this review of literature, we summarized five potential host cell receptors, as host-cell surface bindings, including angiotensin-converting enzyme 2 (ACE2), neuropilin 1 (NRP-1), dipeptidyl peptidase 4 (DPP4), glucose regulated protein-78 (GRP78), and cluster of differentiation 147 (CD147) related to the SARS-CoV-2 infection. Among these targets, ACE2 was recognized as the main SARS-CoV-2 receptor, expressed at a low/moderate level in the human respiratory system, which is also involved in SARS-CoV-2 entrance, so the virus may utilize other secondary receptors. Besides ACE2, CD147 was discovered as a novel SARS-CoV-2 receptor, CD147 appears to be an alternate receptor for SARSCoV- 2 infection. NRP-1, as a single-transmembrane glycoprotein, has been recently found to operate as an entrance factor and enhance SARS Coronavirus 2 (SARS-CoV-2) infection under in-vitro. DPP4, which was discovered as the first gene clustered with ACE2, may serve as a potential SARS-CoV-2 spike protein binding target. GRP78 could be recognized as a secondary receptor for SARS-CoV-2 because it is widely expressed at substantially greater levels, rather than ACE2, in bronchial epithelial cells and the respiratory mucosa. This review highlights recent literature on this topic.
Collapse
Affiliation(s)
- Hanieh Maleksabet
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
The melatonergic agonist agomelatine ameliorates high fat diet-induced obesity in mice through the modulation of the gut microbiome. Biomed Pharmacother 2022; 153:113445. [PMID: 36076560 DOI: 10.1016/j.biopha.2022.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
|
12
|
Zhang N, Kong F, Jing X, Zhou J, Zhao L, Soliman MM, Zhang L, Zhou F. Hongqu Rice Wines Ameliorate High-Fat/High-Fructose Diet-Induced Metabolic Syndrome in Rats. Alcohol Alcohol 2022; 57:776-787. [PMID: 35922962 DOI: 10.1093/alcalc/agac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/12/2022] Open
Abstract
AIM This study evaluated the possible protective impact of different vintages of Hongqu rice wines on metabolic syndrome (MetS) in rats induced by high-fat/high-fructose diet (HFFD). METHODS Rats were randomly divided into six groups and treated with (a) basal diet (13.9 kJ/g); (b) HFFD (20.0% w/w lard and 18.0% fructose, 18.9 kJ/g) and (c-f) HFFD with 3-, 5-, 8- and 15-year-aged Hongqu rice wines (9.96 ml/kg body weight), respectively, at an oral route for 20 weeks. RESULTS Hongqu rice wines could alleviate HFFD-induced augment of body weight gain and fat accumulation, and the release of pro-inflammatory cytokines. Glycolipid metabolic abnormalities caused by HFFD were ameliorated after Hongqu rice wines consumption by lowering levels of fasting insulin, GSP, HOMA-IR, AUC of OGTT and ITT, and lipid deposition (reduced contents of TG, TC, FFA and LDL-C, and elevated HDL-C level) in the serum and liver, probably via regulating expressions of genes involving in IRS1/PI3K/AKT pathway, LDL-C uptake, fatty acid β-oxidation, and lipolysis, export and synthesis of TG. In addition, concentrations of MDA and blood pressure markers (ANG-II and ET-1) declined, and activities of antioxidant enzymes (SOD and CAT) were improved in conditions of Hongqu rice wines compared to those in the HFFD group. Eight-year-aged Hongqu rice wine produced a more effective effect on alleviating HFFD-caused MetS among different vintages of Hongqu rice wines. CONCLUSION To sum up, Hongqu rice wines exhibited ameliorative effects on HFFD-induced MetS in rats based on antiobesity, antihyperlipidemic, antihyperglycemic, antioxidant, anti-inflammatory and potential antihypertensive properties.
Collapse
Affiliation(s)
- Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fang Kong
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoxuan Jing
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
13
|
Saha M, Manna K, Das Saha K. Melatonin Suppresses NLRP3 Inflammasome Activation via TLR4/NF-κB and P2X7R Signaling in High-Fat Diet-Induced Murine NASH Model. J Inflamm Res 2022; 15:3235-3258. [PMID: 35668917 PMCID: PMC9166960 DOI: 10.2147/jir.s343236] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
Background NLRP3 inflammasome activation plays a critical role in mediating inflammation and NASH (non-alcoholic steatohepatitis) progression that ultimately leads to cirrhosis and hepatocellular carcinoma. Melatonin (MLT) controls high-fat diet-induced NASH in the murine model by modulating NLRP3 mediated inflammation. P2X7R-mediated inflammasome activation is reported in several inflammatory models including NASH. Objective The role of MLT in P2X7R-mediated inflammation in the NASH model has not yet been explored. The present study investigated the role of MLT in amending high-fat diet-induced nonalcoholic steatohepatitis in the murine liver. Methods To evaluate the hepatological changes, mice were divided into four groups to investigate the improvement potential of this MLT (10 and 20 mg/kg) and to assess the experimental findings. Histology, biochemical assays, ELISA, FACS analysis, Western blotting, and IF were performed to assess the physical and molecular changes upon melatonin treatment. Results The result demonstrated that MLT administration reduced HFD (high-fat diet)-induced non-alcoholic steatohepatitic indices, which successively restored the hepatic morphological architecture and other pathophysiological features too. Moreover, the application of MLT suppressed HFD-induced activation of the inflammasome and through TLR4/NF-κB signaling. Herein, we report that MLT significantly suppresses P2X7R expression and calcium influx along with inflammasome in both in vitro and in vivo. The docking study revealed a strong binding affinity of MLT with P2X7R. Moreover, the results also showed that the Nrf2 level was boosted which may normalize the expression of antioxidant proteins that safeguard against oxidative damage triggered by inflammation. Furthermore, some matrix metalloproteinases like MMP 2 and MMP 9 were repressed and TIMP-1 level was increased, which also signifies that MLT could improve liver fibrosis in this model. Conclusion Based on our findings, this study may conclude that MLT could be used as a therapeutic agent in the high-fat diet-induced NASH model as it has persuasive anti-inflammatory potential.
Collapse
Affiliation(s)
- Moumita Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Krishnendu Manna
- Department of Food and Nutrition, University of Kalyani, Kalyani, West Bengal, India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
14
|
Haskologlu IC, Erdag E, Sayiner S, Abacioglu N, Sehirli AO. Melatonin and REGN-CoV2 combination as a vaccine adjuvant for Omicron variant of SARS-CoV-2. Mol Biol Rep 2022; 49:4061-4068. [PMID: 35389130 PMCID: PMC8986966 DOI: 10.1007/s11033-022-07419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
Abstract
The omicron variant (B.529) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged in late 2021, caused panic worldwide due to its contagiousness and multiple mutations in the spike protein compared to the Delta variant (B.617.2). There is currently no specific antiviral available to treat Coronavirus disease 2019 (COVID-19). However, studies on neutralizing monoclonal antibodies (mAb) developed to fight COVID-19 are growing and gaining traction. REGN-COV2 (Regeneron or imdevimab-casirivimab combination), which has been shown in recent studies to be less affected by Omicron's RBD (receptor binding domain) mutations among other mAb cocktails, plays an important role in adjuvant therapy against COVID-19. On the other hand, it is known that melatonin, which has antioxidant and immunomodulatory effects, can prevent a possible cytokine storm, and other severe symptoms that may develop in the event of viral invasion. Along with all these findings, we believe it is crucial to evaluate the use of melatonin with REGN-COV2, a cocktail of mAbs, as an adjuvant in the treatment and prevention of COVID-19, particularly in immunocompromised and elderly patients.
Collapse
Affiliation(s)
| | - Emine Erdag
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Near East University, Nicosia, Cyprus
| | - Serkan Sayiner
- Faculty of Veterinary Medicine, Department of Biochemistry, Near East University, Nicosia, Cyprus
- Diagnostic Laboratory, Animal Hospital, Near East University, Nicosia, Cyprus
| | - Nurettin Abacioglu
- Faculty of Pharmacy, Department of Pharmacology, Near East University, Nicosia, Cyprus
| | - Ahmet Ozer Sehirli
- Faculty of Dentistry, Department of Pharmacology, Near East University, Nicosia, Cyprus
| |
Collapse
|
15
|
Behl T, Kaur I, Aleya L, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Bungau S. CD147-spike protein interaction in COVID-19: Get the ball rolling with a novel receptor and therapeutic target. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152072. [PMID: 34863742 PMCID: PMC8634688 DOI: 10.1016/j.scitotenv.2021.152072] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 05/03/2023]
Abstract
The combat against the Corona virus disease of 2019 (COVID-19), has created a chaos among the healthcare institutions and researchers, in turn accelerating the dire need to curtail the infection spread. The already established entry mechanism, via ACE2 has not yet successfully aided in the development of a suitable and reliable therapy. Taking in account the constant progression and deterioration of the cases worldwide, a different perspective and mechanistic approach is required, which has thrown light onto the cluster of differentiation 147 (CD147) transmembrane protein, as a novel route for SARS-CoV-2 entry. Despite lesser affinity towards COVID-19 virus, as compared to ACE2, this receptor provides a suitable justification behind elevated blood glucose levels in infected patients, retarded COVID-19 risk in women, enhanced susceptibility in geriatrics, greater infection susceptibility of T cells, infection prevalence in non-susceptible human cardiac pericytes and so on. The manuscript invokes the title role and distribution of CD147 in COVID-19 as an entry receptor and mediator of endocytosis-promoted entry of the virus, along with the "catch and clump" hypothesis, thereby presenting its Fundamental significance as a therapeutic target for potential candidates, such as Azithromycin, melatonin, statins, beta adrenergic blockers, ivermectin, Meplazumab etc. Thus, the authors provide a comprehensive review of a different perspective in COVID-19 infection, aiming to aid the researchers and virologists in considering all aspects of viral entry, in order to develop a sustainable and potential cure for the 2019 COVID-19 disease.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, France
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Romania.
| |
Collapse
|
16
|
Suriagandhi V, Nachiappan V. Protective Effects of Melatonin against Obesity-Induced by Leptin Resistance. Behav Brain Res 2022; 417:113598. [PMID: 34563600 DOI: 10.1016/j.bbr.2021.113598] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
Consumption of an exceedingly high-fat diet with irregular eating and sleeping habits is typical in the current sedentary lifestyle, leading to chronic diseases like obesity and diabetes mellitus. Leptin is a primary appetite-regulating hormone that binds to its receptors in the hypothalamic cell membrane and regulates downstream appetite-regulating neurons NPY/AgRp and POMC in the hypothalamus. Based on the fat content of the adipose tissue, leptin is secreted, and excess accumulation of fat in adipose tissue stimulates the abnormal secretion of leptin. The secreted leptin circulating in the bloodstream uses its transporters to cross the blood-brain barrier (BBB) and reach the CSF. There is a saturation limit for leptin bound to its transporters to cross the BBB, and increased leptin secretion in adipose tissue has a defect in its transport across the BBB. Leptin resistance is due to excess leptin, a saturation of its transporters, and deficiency in either the receptor level or signalling in the hypothalamus. Leptin resistance leads to obesity due to excess food intake and less energy expenditure. Normal leptin secretion follows a rhythm, and alteration in the lifestyle leads to hormonal imbalances and increases ROS generation leading to oxidative stress. The sleep disturbance causes obesity with increased lipid accumulation in adipose tissue. Melatonin is the master regulator of the sleep-wake cycle secreted by the pineal gland during the night. It is a potent antioxidant with anti-inflammatory properties. Melatonin is secreted in a pattern called the circadian rhythm in humans as well. Research indicates that melatonin plays a vital role in hormonal regulation and energy metabolism, including leptin signalling and secretion. Studying the role of melatonin in leptin regulation will help us combat the pathologies of obesity caused by leptin resistance.
Collapse
Affiliation(s)
- Vennila Suriagandhi
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India.
| |
Collapse
|
17
|
Shchetinin E, Baturin V, Arushanyan E, Bolatchiev A, Bobryshev D. Potential and Possible Therapeutic Effects of Melatonin on SARS-CoV-2 Infection. Antioxidants (Basel) 2022; 11:140. [PMID: 35052644 PMCID: PMC8772978 DOI: 10.3390/antiox11010140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
The absence of effective drugs for COVID-19 prevention and treatment requires the search for new candidates among approved medicines. Fundamental studies and clinical observations allow us to approach an understanding of the mechanisms of damage and protection from exposure to SARS-CoV-2, to identify possible points of application for pharmacological interventions. In this review we presented studies on the anti-inflammatory, antioxidant, and immunotropic properties of melatonin. We have attempted to present scientifically proven mechanisms of action for the potential therapeutic use of melatonin during SARS-CoV-2 infection. A wide range of pharmacological properties allows its inclusion as an effective addition to the methods of prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Evgeny Shchetinin
- Department of Pathophysiology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Vladimir Baturin
- Department of Clinical Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Eduard Arushanyan
- Department of Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Albert Bolatchiev
- Department of Clinical Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Dmitriy Bobryshev
- Center of Personalized Medicine, Stavropol State Medical University, 355000 Stavropol, Russia
| |
Collapse
|
18
|
Shen S, Liao Q, Wong YK, Chen X, Yang C, Xu C, Sun J, Wang J. The role of melatonin in the treatment of type 2 diabetes mellitus and Alzheimer's disease. Int J Biol Sci 2022; 18:983-994. [PMID: 35173531 PMCID: PMC8771831 DOI: 10.7150/ijbs.66871] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022] Open
Abstract
In type 2 diabetes mellitus (T2DM) and its related disorders like obesity, the abnormal protein processing, oxidative stress and proinflammatory cytokines will drive the activation of inflammatory pathways, leading to low-grade chronic inflammation and insulin resistance (IR) in the periphery and impaired neuronal insulin signaling in the brain. Studies have shown that such inflammation and impaired insulin signaling contribute to the development of Alzheimer's disease (AD). Therefore, new therapeutic strategies are needed for the treatment of T2DM and T2DM-linked AD. Melatonin is primarily known for its circadian role which conveys message of darkness and induces night-state physiological functions. Besides rhythm-related effects, melatonin has anti-inflammatory and antioxidant properties. Melatonin levels are downregulated in metabolic disorders with IR, and activation of melatonin signaling delays disease progression. The aim of this Review is to highlight the therapeutic potentials of melatonin in preventing the acceleration of AD in T2DM individuals through its therapeutic mechanisms, including antioxidative effects, anti-inflammatory effects, restoring mitochondrial function and insulin sensitivity.
Collapse
Affiliation(s)
- Shengnan Shen
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medcal Sciences, University of Macau, Taipa, Macau, China
| | - Qiwen Liao
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yin Kwan Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Chengchao Xu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jichao Sun
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Shenzhen Mental Health Centre, Shenzhen Kangning Hospital, Shenzhen, China
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| |
Collapse
|
19
|
Suriagandhi V, Nachiappan V. Therapeutic Target Analysis and Molecular Mechanism of Melatonin - Treated Leptin Resistance Induced Obesity: A Systematic Study of Network Pharmacology. Front Endocrinol (Lausanne) 2022; 13:927576. [PMID: 35937803 PMCID: PMC9352999 DOI: 10.3389/fendo.2022.927576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Obesity is a medical problem with an increased risk for other metabolic disorders like diabetes, heart problem, arthritis, etc. Leptin is an adipose tissue-derived hormone responsible for food intake, energy expenditure, etc., and leptin resistance is one of the significant causes of obesity. Excess leptin secretion by poor diet habits and impaired hypothalamic leptin signaling leads to LR. Melatonin a sleep hormone; also possess antioxidant and anti-inflammatory properties. The melatonin can attenuate the complications of obesity by regulating its targets towards LR induced obesity. AIM The aim of this study includes molecular pathway and network analysis by using a systems pharmacology approach to identify a potential therapeutic mechanism of melatonin on leptin resistance-induced obesity. METHODS The bioinformatic methods are used to find therapeutic targets of melatonin in the treatment of leptin resistance-induced obesity. It includes target gene identification using public databases, Gene ontology, and KEGG pathway enrichment by 'ClusterProfiler' using the R language, network analysis by Cytoscape, and molecular Docking by Autodock. RESULTS We obtained the common top 33 potential therapeutic targets of melatonin and LR-induced obesity from the total melatonin targets 254 and common LR obesity targets 212 using the data screening method. They are involved in biological processes related to sleep and obesity, including the cellular response to external stimulus, chemical stress, and autophagy. From a total of 180 enriched pathways, we took the top ten pathways for further analysis, including lipid and atherosclerosis, endocrine, and AGE-RAGE signaling pathway in diabetic complications. The top 10 pathways interacted with the common 33 genes and created two functional modules. Using Cytoscape network analysis, the top ten hub genes (TP53, AKT1, MAPK3, PTGS2, TNF, IL6, MAPK1, ERBB2, IL1B, MTOR) were identified by the MCC algorithm of the CytoHubba plugin. From a wide range of pathway classes, melatonin can reduce LR-induced obesity risks by regulating the major six classes. It includes signal transduction, endocrine system, endocrine and metabolic disease, environmental adaptation, drug resistance antineoplastic, and cardiovascular disease. CONCLUSION The pharmacological mechanism of action in this study shows the ten therapeutic targets of melatonin in LR-induced obesity.
Collapse
|
20
|
Mechanisms of Melatonin in Obesity: A Review. Int J Mol Sci 2021; 23:ijms23010218. [PMID: 35008644 PMCID: PMC8745381 DOI: 10.3390/ijms23010218] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity and its complications have become a prominent global public health problem that severely threatens human health. Melatonin, originally known as an effective antioxidant, is an endogenous hormone found throughout the body that serves various physiological functions. In recent decades, increasing attention has been paid to its unique function in regulating energy metabolism, especially in glucose and lipid metabolism. Accumulating evidence has established the relationship between melatonin and obesity; nevertheless, not all preclinical and clinical evidence indicates the anti-obesity effect of melatonin, which makes it remain to conclude the clinical effect of melatonin in the fight against obesity. In this review, we have summarized the current knowledge of melatonin in regulating obesity-related symptoms, with emphasis on its underlying mechanisms. The role of melatonin in regulating the lipid profile, adipose tissue, oxidative stress, and inflammation, as well as the interactions of melatonin with the circadian rhythm, gut microbiota, sleep disorder, as well as the α7nAChR, the opioidergic system, and exosomes, make melatonin a promising agent to open new avenues in the intervention of obesity.
Collapse
|
21
|
Paula VG, Sinzato YK, Moraes Souza RQ, Soares TS, Souza FQG, Karki B, Andrade Paes AM, Corrente JE, Damasceno DC, Volpato GT. Metabolic changes in female rats exposed to intrauterine Hyperglycemia and post-weaning consumption of high-fat diet. Biol Reprod 2021; 106:200-212. [PMID: 34668971 DOI: 10.1093/biolre/ioab195] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/01/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
We evaluated the influence of the hyperglycemic intrauterine environment and post-weaning consumption of a high-fat diet on the glycemia, insulin, lipid and immunological profile of rat offspring in adulthood. Female rats received citrate buffer (Control - C) or Streptozotocin (a beta cell-cytotoxic drug to induce diabetes - D) on post-natal day 5. In adulthood, these rats were mated to obtain female offspring, who were fed a standard diet (SD) or high-fat diet (HFD) from weaning to adulthood (n = 10 rats/group). OC/SD and OC/HFD represent female offspring of control mothers and received SD or HFD, respectively; OD/SD and OD/HFD represent female offspring of diabetic mothers and received SD or HFD, respectively. At adulthood, the Oral Glucose Tolerance Test (OGTT) was performed and, next, the rats were anesthetized and euthanized. Pancreas was collected and analyzed, and adipose tissue was weighted. Blood samples were collected to determine biochemical and immunological profiles. The food intake was lower in HFD-fed rats and visceral fat weight was increased in the OD/HFD group. OC/HFD, OD/SD, and OD/HFD groups presented glucose intolerance and lower insulin secretion during OGTT. An impaired pancreatic beta-cell function was shown in the adult offspring of diabetic rats, regardless of diet. Interleukin (IL)-6 and IL-10 concentrations were lower in the OD/HFD group and associated to a low-grade inflammatory condition. The fetal programming was responsible for impaired beta cell function in experimental animals. The association of maternal diabetes and post-weaning high-fat diet is responsible for greater glucose intolerance, impaired insulin secretion and immunological change.
Collapse
Affiliation(s)
- Verônyca Gonçalves Paula
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil.,Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Rafaianne Queiroz Moraes Souza
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil.,Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Thaigra Souza Soares
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil.,Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Franciane Quintanilha Gallego Souza
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Barshana Karki
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Antonio Marcus Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão - UFMA -Maranhão State, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo State, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Tocogynecology Postgraduate Course, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| |
Collapse
|
22
|
Delpino FM, Figueiredo LM. Melatonin supplementation and anthropometric indicators of obesity: A systematic review and meta-analysis. Nutrition 2021; 91-92:111399. [PMID: 34626955 DOI: 10.1016/j.nut.2021.111399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE According to in vivo and in vitro studies, melatonin appears to be a potential supplement for obesity reduction. The aim of this study was to review the literature on randomized clinical trials that evaluated the effects of melatonin supplementation on anthropometric indicators of obesity in humans. METHODS We conducted a systematic review with meta-analysis in the following databases: Pubmed, LILACS, Scielo, Scopus, Web of Science, Cochrane, and Embase. We included studies that evaluated melatonin supplementation's effects, compared with placebo, on anthropometric measures, including body weight, body mass index (BMI), and waist circumference, in people ≥18 y of age. This systematic review and meta-analysis were registered on PROSPERO: CRD42021241079. RESULTS Of the 23 studies included, 11 showed significant results from melatonin supplementation on weight loss, BMI, or waist circumference, compared with placebo. In the meta-analysis, melatonin supplementation significantly reduced body weight (standardized mean difference, -0.48; 95% confidence interval, -0.94 to -0.02; P = <0.01; I2 = 92%). Results for BMI and waist circumference were null. The I2 tests were significant for the analyses with significant results. CONCLUSION The results demonstrated that melatonin supplementation was responsible for significantly reducing body weight. More studies are needed before melatonin can be recommended for weight loss.
Collapse
Affiliation(s)
- Felipe Mendes Delpino
- Postgraduate Program in Nursing, Federal University of Pelotas, Rio Grande do Sul, Brazil; Faculty of Nursing, Federal University of Pelotas, Rio Grande do Sul, Brazil.
| | | |
Collapse
|
23
|
Nogueira LFR, Marqueze EC. Effects of melatonin supplementation on eating habits and appetite-regulating hormones: a systematic review of randomized controlled clinical and preclinical trials. Chronobiol Int 2021; 38:1089-1102. [PMID: 33934676 DOI: 10.1080/07420528.2021.1918143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Melatonin is a hormone involved in appetite regulation and food intake. Circadian chronorrupture caused by its absence has been associated with excessive food consumption, and there is evidence that exogenous melatonin supplementation can restore homeostasis. Therefore, the aim of this systematic review was to synthesize evidence from randomized controlled clinical and preclinical trials that evaluated the effects of exogenous melatonin supplementation on eating habits and appetite-regulating hormones. The protocol was registered in PROSPERO (number 42020175809). Medline, Scopus, Web of Science and Cochrane Library were systematically searched from January 2020 to February 2021. Of 3.695 articles identified, 2 clinical and 13 preclinical trials (n = 15) met the inclusion criteria. The outcomes were total food intake, calories, macronutrients, cholesterol intake, leptin and ghrelin levels. Interventions ranged from 28 to 336 days and dose of melatonin varied between 0.2 µg/mL of drinking water and 10 mg/day. Clinical trials were conducted with healthy adults, and preclinical trials with rodents and dogs. Of the 15 articles, five assessed food intake and leptin, four assessed food intake only, five assessed leptin only, and one assessed leptin and ghrelin serum levels. The majority of the articles were judged as having low risk of bias. Although findings are heterogeneous and do not allow a robust conclusion, this review adds to the growing body of evidence suggesting that exogenous melatonin may be a potential therapeutic agent against endocrine-metabolic disorders. This reversal is not necessarily associated with changes in food consumption, signaling that melatonin's metabolic effects may occur independently of energy intake. Further studies, especially with humans, are needed provide more evidences for melatonin supplementation in clinical practice, as well as to understand its role on eating habits and appetite-regulating hormones.
Collapse
Affiliation(s)
- Luciana F R Nogueira
- Department of Epidemiology, Public Health Graduate Program, Catholic University of Santos, SP, Brazil
| | - Elaine C Marqueze
- Department of Epidemiology, Public Health Graduate Program, Catholic University of Santos, SP, Brazil
| |
Collapse
|
24
|
Zhao L, Ouyang H, Zhang N, Wang C, Ji B, Zhou F. Effects of Huangjiu, Baijiu and Red Wine Combined With High-Fat Diet on Glucose and Lipid Metabolism: Aggravate or Alleviate? Alcohol Alcohol 2021; 56:334-347. [PMID: 33103190 DOI: 10.1093/alcalc/agaa097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/30/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
AIM To compare effects on certain health indices in rodents of different doses of alcoholic beverages, huangjiu (Chinese yellow wine), red wine and baijiu (Chinese liquor) combined with high-fat diet (HFD) and the pure HFD. METHODS A total of 80 rats were randomly divided into eight groups and treated with (a) basal diet (3.5 kcal/g); (b) HFD (19.5% w/w lard, 4.5 kcal/g) and (c) HFD with low or high doses of separate alcoholic beverages (2.5 and 5 g/kg ethanol, respectively) for 28 weeks. RESULTS Chronic drinking when combined with HFD was associated with reduced body weight, fat accumulation and serum TNF-α level, serum TG, TC and LDL-C levels, and improved glucose tolerance (OGTT) and insulin sensitivity (ITT), hepatic enzymes; elevated levels or activities of the antioxidant enzymes like superoxide dismutase, catalase and glutathione reductase, reduced the content of lipid peroxidation productions such as malondialdehyde, in comparison with the pure HFD intake. In addition, compared with HFD, drinking plus HFD improved microbiota dysbiosis, down-regulated the ratio of Firmicutes/Bacteroidetes and promoted the growth of some probiotics including Prevotellaceae_UCG-001 and norank_f__Bacteroidales_S24-7_group. CONCLUSION Overall, the three beverages showed different impacts on indicators but red wine showed the most 'beneficial' effects. Of course, higher ethanol dosages can be expected to cause overall negative health effects, and harms of high fat intake can be prevented by healthier diet.
Collapse
Affiliation(s)
- Liang Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hanying Ouyang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
25
|
Ramirez AVG, Filho DR, de Sá LBPC. Melatonin and its Relationships with Diabetes and Obesity: A Literature Review. Curr Diabetes Rev 2021; 17:e072620184137. [PMID: 32718296 DOI: 10.2174/1573399816666200727102357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity is an important clinical entity, causing many public health issues. Around two billion people in the world are overweight and obese. Almost 40% of American adults are obese and Brazil has about 18 million obese people. Nowadays, 415 million people have diabetes, around 1 in every 11 adults. These numbers will rise to 650 million people within 20 years. Melatonin shows a positive profile on the regulation of the metabolism of the human body. OBJECTIVE This study aimed to carry out a broad narrative review of the metabolic profile and associations between melatonin, diabetes and obesity. METHODS Article reviews, systematic reviews, prospective studies, retrospective studies, randomized, double-blind, and placebo-controlled trials in humans recently published were selected and analyzed. A total of 368 articles were collated and submitted to the eligibility analysis. Subsequently, 215 studies were selected to compose the content part of the paper, and 153 studies composed the narrative review. RESULTS Studies suggest a possible role of melatonin in metabolic diseases such as obesity, T2DM and metabolic syndrome. Intervention studies using this hormone in metabolic diseases are still unclear regarding the possible benefit of it. There is so far no consensus about the possible role of melatonin as an adjuvant in the treatment of metabolic diseases. More studies are necessary to define possible risks and benefits of melatonin as a therapeutic agent.
Collapse
Affiliation(s)
- Ana V G Ramirez
- Clinic Ana Valeria (CAV)- Clinic of Nutrition and Health Science, Street Antônio José Martins Filho, 300, Sao Jose do Rio Preto SP, 15092-230, Brazil
| | - Durval R Filho
- Associacao Brasileira de Nutrologia (ABRAN)/Brazilian Association of Nutrology, Catanduva/SP, Rua Belo Horizonte, 909 - Centro, Catanduva SP, Brazil
| | | |
Collapse
|
26
|
Yawoot N, Govitrapong P, Tocharus C, Tocharus J. Ischemic stroke, obesity, and the anti-inflammatory role of melatonin. Biofactors 2021; 47:41-58. [PMID: 33135223 DOI: 10.1002/biof.1690] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Obesity is a predominant risk factor in ischemic stroke and is commonly comorbid with it. Pathologies following these conditions are associated with systemic and local inflammation. Moreover, there is increasing evidence that the susceptibility for ischemic brain damage increases substantially in experimental models of ischemic stroke with concomitant obesity. Herein, we explore the proinflammatory events that occur during ischemic stroke and obesity, and we discuss the influence of obesity on the inflammatory response and cerebral damage outcomes in experimental models of brain ischemia. In addition, because melatonin is a neurohormone widely reported to exhibit protective effects in various diseases, this study also demonstrates the anti-inflammatory role and possible mechanistic actions of melatonin in both epidemic diseases. A summary of research findings suggests that melatonin administration has great potential to exert an anti-inflammatory role and provide protection against obesity and ischemic stroke conditions. However, the efficacy of this hormonal treatment on ischemic stroke with concomitant obesity, when more serious inflammation is generated, is still lacking.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Jiraporn Tocharus
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand
- Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
27
|
Liu D, Zhang T, Wang Y, Xia L. The Centrality of Obesity in the Course of Severe COVID-19. Front Endocrinol (Lausanne) 2021; 12:620566. [PMID: 33776917 PMCID: PMC7992974 DOI: 10.3389/fendo.2021.620566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global public health challenge. Most patients do not experience severe complications, but approximately 25% of patients progress to acute respiratory distress syndrome (ARDS), and the mortality rate is approximately 5-7%. Clinical findings have determined several risk factors for severe complications and mortality in COVID-19 patients, such as advanced age, smoking, obesity, and chronic diseases. Obesity is a common and serious health problem worldwide that initiates a cascade of disorders, including hypertension, cardiovascular disease (CVD), diabetes mellitus, and chronic kidney disease (CKD). The presence of these disorders is linked to a more severe course of COVID-19. Given the "epidemic" of obesity worldwide and the importance of obesity in the progression of COVID-19, we investigated the mechanisms through which obesity increases the susceptibility to and severity of COVID-19 to support the selection of more appropriate therapies for individuals with obesity.
Collapse
|
28
|
Tchio C, Baba K, Piccione G, Tosini G. Removal of melatonin receptor type 1 signalling induces dyslipidaemia and hormonal changes in mice subjected to environmental circadian disruption. Endocrinol Diabetes Metab 2021; 4:e00171. [PMID: 33532613 PMCID: PMC7831213 DOI: 10.1002/edm2.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 11/26/2022] Open
Abstract
Background Melatonin is a hormone secreted by the pineal gland in a circadian rhythmic manner with peak synthesis at night. Melatonin signalling was suggested to play a critical role in metabolism during the circadian disruption. Methods Melatonin-proficient (C3H-f+/+ or WT) and melatonin receptor type 1 knockout (MT1 KO) male and female mice were phase-advanced (6 hours) once a week for 6 weeks. Every week, we measured weight, food intake and basal glucose levels. At the end of the experiment, we sacrificed the animals and measured the blood's plasma for lipids profile (total lipids, phospholipids, triglycerides and total cholesterol), metabolic hormones profiles (ghrelin, leptin, insulin, glucagon, glucagon-like-peptide and resistin) and the body composition. Results Environmental circadian disruption (ECD) did not produce any significant effects in C3H-f+/+, while it increased lipids profile in MT1 KO with the significant increase observed in total lipids and triglycerides. For metabolic hormones profile, ECD decreased plasma ghrelin and increased plasma insulin in MT1 KO females. Under control condition, MT1 KO females have significantly different body weight, fat mass, total lipids and total cholesterol than the control C3H-f+/+ females. Conclusion Our data show that melatonin-proficient mice are not affected by ECD. When the MT1 receptors are removed, ECD induced dyslipidaemia in males and females with females experiencing the most adverse effect. Overall, our data demonstrate that MT1 signalling is an essential modulator of lipid and metabolic homeostasis during ECD.
Collapse
Affiliation(s)
- Cynthia Tchio
- Circadian Rhythms and Sleep Disorders ProgramNeuroscience InstituteAtlantaGAUSA
- Department of Pharmacology and ToxicologyMorehouse School of MedicineNeuroscience InstituteAtlantaGAUSA
| | - Kenkichi Baba
- Circadian Rhythms and Sleep Disorders ProgramNeuroscience InstituteAtlantaGAUSA
- Department of Pharmacology and ToxicologyMorehouse School of MedicineNeuroscience InstituteAtlantaGAUSA
| | - Giuseppe Piccione
- Dipartimento di Medicine VeterinariaUniversita di MessinaMessinaItaly
| | - Gianluca Tosini
- Circadian Rhythms and Sleep Disorders ProgramNeuroscience InstituteAtlantaGAUSA
- Department of Pharmacology and ToxicologyMorehouse School of MedicineNeuroscience InstituteAtlantaGAUSA
| |
Collapse
|
29
|
Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol 2020; 320:C375-C391. [PMID: 33356944 DOI: 10.1152/ajpcell.00379.2020] [Citation(s) in RCA: 876] [Impact Index Per Article: 175.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Several lines of preclinical and clinical research have confirmed that chronic low-grade inflammation of adipose tissue is mechanistically linked to metabolic disease and organ tissue complications in the overweight and obese organism. Despite this widely confirmed paradigm, numerous open questions and knowledge gaps remain to be investigated. This is mainly due to the intricately intertwined cross-talk of various pro- and anti-inflammatory signaling cascades involved in the immune response of expanding adipose depots, particularly the visceral adipose tissue. Adipose tissue inflammation is initiated and sustained over time by dysfunctional adipocytes that secrete inflammatory adipokines and by infiltration of bone marrow-derived immune cells that signal via production of cytokines and chemokines. Despite its low-grade nature, adipose tissue inflammation negatively impacts remote organ function, a phenomenon that is considered causative of the complications of obesity. The aim of this review is to broadly present an overview of adipose tissue inflammation by highlighting the most recent reports in the scientific literature and summarizing our overall understanding of the field. We also discuss key endogenous anti-inflammatory mediators and analyze their mechanistic role(s) in the pathogenesis and treatment of adipose tissue inflammation. In doing so, we hope to stimulate studies to uncover novel physiological, cellular, and molecular targets for the treatment of obesity.
Collapse
Affiliation(s)
- Tatsuo Kawai
- The Cardiovascular Research Center and The Limole Center for Integrated Lymphatic Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Michael V Autieri
- The Cardiovascular Research Center and The Limole Center for Integrated Lymphatic Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Rosario Scalia
- The Cardiovascular Research Center and The Limole Center for Integrated Lymphatic Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Sehirli AO, Sayiner S, Serakinci N. Role of melatonin in the treatment of COVID-19; as an adjuvant through cluster differentiation 147 (CD147). Mol Biol Rep 2020; 47:8229-8233. [PMID: 32920757 PMCID: PMC7486968 DOI: 10.1007/s11033-020-05830-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
COVID-19 caused by the SARS-CoV-2 outbreak quickly has turned into a pandemic. However, no specific antiviral agent is yet available. In this communication, we aimed to evaluate the significance of CD147 protein and the potential protective effect of melatonin that is mediated by this protein in COVID-19. CD147 is a glycoprotein that is responsible for the cytokine storm in the lungs through the mediation of viral invasion. Melatonin use previously was shown to reduce cardiac damage by blocking the CD147 activity. Hence, melatonin, a safe drug, may prevent severe symptoms, reduce symptom severity and the adverse effects of the other antiviral drugs in COVID-19 patients. In conclusion, the use of melatonin, which is reduced in the elderly and immune-compromised patients, should be considered as an adjuvant through its CD147 suppressor and immunomodulatory effect.
Collapse
Affiliation(s)
- Ahmet Ozer Sehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, Nicosia, Cyprus.
| | - Serkan Sayiner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, Near East Boulevard, 99138, Nicosia, Cyprus.
| | - Nedime Serakinci
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus.
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Near East University, Near East Boulevard, 99138, Nicosia, Cyprus.
| |
Collapse
|
31
|
El-Missiry MA, El-Missiry ZMA, Othman AI. Melatonin is a potential adjuvant to improve clinical outcomes in individuals with obesity and diabetes with coexistence of Covid-19. Eur J Pharmacol 2020; 882:173329. [PMID: 32615182 PMCID: PMC7324339 DOI: 10.1016/j.ejphar.2020.173329] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a newly discovered highly pathogenic virus that was declared pandemic in March 2020 by the World Health Organization. The virus affects the respiratory system, produces an inflammatory storm that causes lung damage and respiratory dysfunction. It infects humans of all ages. The Covid-19 takes a more severe course in individuals with chronic metabolic diseases such as obesity, diabetes mellitus, and hypertension. This category of persons exhibits weak immune activity and decreased levels of endogenous antioxidants. Melatonin is a multifunctional signaling hormone synthesized and secreted primarily by the pineal gland. It is a potent antioxidant with immunomodulatory action and has remarkable anti-inflammatory effects under a variety of circumstances. Regarding Covid-19 and metabolic syndrome, adequate information about the relationship between these two comorbidities is required for better management of these patients. Since Covid-19 infection and complications involve severe inflammation and oxidative stress in people with obesity and diabetes, we anticipated the inclusion of melatonin, as powerful antioxidant, within proposed treatment protocols. In this context, melatonin is a potential and promising agent to help overcome Covid-19 infection and boost the immune system in healthy persons and obese and diabetic patients. This review summarizes some evidence from recently published reports on the utility of melatonin as a potential adjuvant in Covid-19-infected individuals with diabetes and obesity.
Collapse
Affiliation(s)
| | - Ziad M A El-Missiry
- Department of Oro-maxillofacial Surgery, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Azza I Othman
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
32
|
Kim JH, Lyu YS, Kim SY. Impact of Social Jetlag on Weight Change in Adults: Korean National Health and Nutrition Examination Survey 2016-2017. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124383. [PMID: 32570840 PMCID: PMC7344837 DOI: 10.3390/ijerph17124383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/20/2022]
Abstract
Social jetlag, the circadian misalignment reflecting the discrepancy between the circadian clock and social clock, has been implicated in weight-related issues. The objective of the present study was to determine whether there was an association between social jetlag and body weight change among adults in a large, nationally representative general population. This study was based on data from the Korean National Health and Nutrition Examination Survey, conducted during 2016–2017 by the Korean Ministry of Health and Welfare. Of the 16,277 participants, data from 8295 adults were included in the analysis. Men with social jetlag > 2 h had a significantly higher risk of weight gain (odd ratios (OR): 1.787; 95% confident interval (CI): 1.192–2.679) than those with social jetlag < 1 h, after adjustment for age, sociodemographic factors, lifestyle behaviors, chronic disease, obesity and average sleep duration. Women with weight gain had a higher social jetlag (>2 h), and women with social jetlag > 2 h had a higher proportion of weight gain. However, we did not find a significant association of social jetlag with weight gain after adjusting for confounding factors in women. There was no significant association between social jetlag and weight loss in men and women. Higher social jetlag was independently associated with an increased risk of weight gain in men. We propose that social jetlag may contribute to the obesogenic tendency in men, and that there is a potential for body weight to be managed with a circadian approach.
Collapse
|
33
|
Melatonin Orchestrates Lipid Homeostasis through the Hepatointestinal Circadian Clock and Microbiota during Constant Light Exposure. Cells 2020; 9:cells9020489. [PMID: 32093272 PMCID: PMC7072737 DOI: 10.3390/cells9020489] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Misalignment between natural light rhythm and modern life activities induces disruption of the circadian rhythm. It is mainly evident that light at night (LAN) interferes with the human endocrine system and contributes to the increasing rates of obesity and lipid metabolic disease. Maintaining hepatointestinal circadian homeostasis is vital for improving lipid homeostasis. Melatonin is a chronobiotic substance that plays a main role in stabilizing bodily rhythm and has shown beneficial effects in protecting against obesity. Based on the dual effect of circadian rhythm regulation and antiobesity, we tested the effect of melatonin in mice under constant light exposure. Exposure to 24-h constant light (LL) increased weight and insulin resistance compared with those of the control group (12-h light–12-h dark cycle, LD), and simultaneous supplementation in the melatonin group (LLM) ameliorated this phenotype. Constant light exposure disturbed the expression pattern of a series of transcripts, including lipid metabolism, circadian regulation and nuclear receptors in the liver. Melatonin also showed beneficial effects in improving lipid metabolism and circadian rhythm homeostasis. Furthermore, the LL group had increased absorption and digestion of lipids in the intestine as evidenced by the elevated influx of lipids in the duodenum and decrease in the efflux of lipids in the jejunum. More interestingly, melatonin ameliorated the gut microbiota dysbiosis and improved lipid efflux from the intestine. Thus, these findings offer a novel clue regarding the obesity-promoting effect attributed to LAN and suggest a possibility for obesity therapy by melatonin in which melatonin could ameliorate rhythm disorder and intestinal dysbiosis.
Collapse
|