1
|
Basta LP, Joyce BW, Posfai E, Devenport D. Epithelial polarization by the planar cell polarity complex is exclusively non-cell autonomous. Science 2025; 387:eads5704. [PMID: 40112050 DOI: 10.1126/science.ads5704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/18/2024] [Indexed: 03/22/2025]
Abstract
For cells to polarize collectively along a tissue plane, asymmetrically localized planar cell polarity (PCP) complexes must form intercellular contacts between neighboring cells. Yet, it is unknown whether asymmetric segregation of PCP complexes requires cell-cell contact, or if cell autonomous, antagonistic interactions are sufficient for polarization. To test this, we generated mouse chimeras consisting of dual PCP-reporter cells mixed with unlabeled cells that cannot form PCP bridges. In the absence of intercellular interactions, PCP proteins failed to polarize cell autonomously. Rather, PCP-mediated contacts along single cell-cell interfaces were sufficient to sort PCP components to opposite sides of the junction, independent of junction orientation. Thus, intercellular binding of PCP complexes is the critical step that initiates sorting of opposing PCP complexes to generate asymmetry.
Collapse
Affiliation(s)
- Lena P Basta
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Bradley W Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
2
|
Depret N, Gleizes M, Moreau MM, Poirault-Chassac S, Quiedeville A, Carvalho SDS, Venugopal V, Abed ASA, Ezan J, Barthet G, Mulle C, Desmedt A, Marighetto A, Racca C, Montcouquiol M, Sans N. The correct connectivity of the DG-CA3 circuits involved in declarative memory processes depends on Vangl2-dependent planar cell polarity signaling. Prog Neurobiol 2025; 246:102728. [PMID: 39956311 DOI: 10.1016/j.pneurobio.2025.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
In the hippocampus, dentate gyrus granule cells connect to CA3 pyramidal cells via their axons, the mossy fibers (Mf). The synaptic terminals of Mfs (Mf boutons, MfBs) form large and complex synapses with thorny excrescences (TE) on the proximal dendrites of CA3 pyramidal cells (PCs). MfB/TE synapses have distinctive "detonator" properties due to low initial release probability and large presynaptic facilitation. The molecular mechanisms shaping the morpho-functional properties of MfB/TE synapses are still poorly understood, though alterations in their morphology are associated with Down syndrome, intellectual disabilities, and Alzheimer's disease. Here, we identify the core PCP gene Vangl2 as essential to the morphogenesis and function of MfB/TE synapses. Vangl2 colocalises with the presynaptic heparan sulfate proteoglycan glypican 4 (GPC4) to stabilise the postsynaptic orphan receptor GPR158. Embryonic loss of Vangl2 disrupts the morphology of MfBs and TEs, impairs ultrastructural and molecular organisation, resulting in defective synaptic transmission and plasticity. In adult, the early loss of Vangl2 results in a number of hippocampus-dependent memory deficits including characteristic flexibility of declarative memory, organisation and retention of working / everyday-like memory. These deficits also lead to abnormal generalisation of memories to salient cues and diminished ability to form detailed contextual memories. Together, these results establish Vangl2 as a key regulator of DG-CA3 connectivity and functions.
Collapse
Affiliation(s)
- Noémie Depret
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Marie Gleizes
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Maïté Marie Moreau
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | | | - Anne Quiedeville
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | | | - Vasika Venugopal
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Alice Shaam Al Abed
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Jérôme Ezan
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Gael Barthet
- Univ. Bordeaux, CNRS, IINS, UMR 5297, Bordeaux F-33000, France
| | | | - Aline Desmedt
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Aline Marighetto
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Claudia Racca
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Nathalie Sans
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France.
| |
Collapse
|
3
|
Anjum S, Vijayraghavan D, Fernandez-Gonzalez R, Sutherland A, Davidson L. Inferring active and passive mechanical drivers of epithelial convergent extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635314. [PMID: 39975291 PMCID: PMC11838355 DOI: 10.1101/2025.01.28.635314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
What can we learn about the mechanical processes that shape tissues by simply watching? Several schemes suggest that static cell morphology or junctional connectivity can reveal where chains of cells transmit force or where force asymmetries drive cellular rearrangements. We hypothesize that dynamic cell shape changes from time lapse sequences can be used to distinguish specific mechanisms of tissue morphogenesis. Convergent extension (CE) is a crucial developmental motif wherein a planar tissue narrows in one direction and lengthens in the other. It is tempting to assume that forces driving CE reside within cells of the deforming tissue, as CE may reflect a variety of active processes or passive responses to forces generated by adjacent tissues. In this work, we first construct a simple model of epithelial cells capable of passive CE in response to external forces. We adapt this framework to simulate CE from active anisotropic processes in three different modes: crawling, contraction, and capture. We develop an image analysis pipeline for analysis of morphogenetic changes in both live cells and simulated cells using a panel of mechanical and statistical approaches. Our results allow us to identify how each simulated mechanism uniquely contributes to tissue morphology and provide insight into how force transmission is coordinated. We construct a MEchanism Index (MEI) to quantify how similar live cells are to simulated passive and active cells undergoing CE. Applying these analyses to live cell data of Xenopus neural CE reveals features of both passive motion and active forces. Furthermore, we find spatial variation across the neural plate. We compare the inferred mechanisms in the frog midline to tissues undergoing CE in both the mouse and fly. We find that distinct active modes may have different prevalences depending on the model system. Our modeling framework allows us to gain insight from tissue timelapse images and assess the relative contribution of specific cellular mechanisms to observed tissue phenotypes. This approach can be used to guide further experimental inquiry into how mechanics influences the shaping of tissues and organs during development.
Collapse
Affiliation(s)
- Sommer Anjum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Computational Modeling and Simulation Graduate Program, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Lance Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Ahmad S, Christova T, Pye M, Narimatsu M, Song S, Wrana JL, Attisano L. Small Extracellular Vesicles Promote Axon Outgrowth by Engaging the Wnt-Planar Cell Polarity Pathway. Cells 2025; 14:56. [PMID: 39791757 PMCID: PMC11720052 DOI: 10.3390/cells14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear. Here, we show that fibroblast-derived sEVs promote axon outgrowth and a polarized neuronal morphology in mouse primary embryonic cortical neurons. Mechanistically, we demonstrate that the sEV-induced increase in axon outgrowth requires endogenous Wnts and core PCP components including Prickle, Vangl, Frizzled, and Dishevelled. We demonstrate that sEVs are internalized by neurons, colocalize with Wnt7b, and induce relocalization of Vangl2 to the distal axon during axon outgrowth. In contrast, sEVs derived from neurons or astrocytes do not promote axon outgrowth, while sEVs from activated astrocytes inhibit elongation. Thus, our data reveal that fibroblast-derived sEVs promote axon elongation through the Wnt-PCP pathway in a manner that is dependent on endogenous Wnts.
Collapse
Affiliation(s)
- Samar Ahmad
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; (S.A.); (T.C.); (S.S.)
| | - Tania Christova
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; (S.A.); (T.C.); (S.S.)
| | - Melanie Pye
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; (M.P.); (M.N.); (J.L.W.)
| | - Masahiro Narimatsu
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; (M.P.); (M.N.); (J.L.W.)
| | - Siyuan Song
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; (S.A.); (T.C.); (S.S.)
| | - Jeffrey L. Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; (M.P.); (M.N.); (J.L.W.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Liliana Attisano
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; (S.A.); (T.C.); (S.S.)
| |
Collapse
|
5
|
Rísová V, Saade R, Jakuš V, Gajdošová L, Varga I, Záhumenský J. Preconceptional and Periconceptional Folic Acid Supplementation in the Visegrad Group Countries for the Prevention of Neural Tube Defects. Nutrients 2024; 17:126. [PMID: 39796560 PMCID: PMC11723246 DOI: 10.3390/nu17010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Neural tube defects (NTDs) are malformations of the central nervous system that represent the second most common cause of congenital morbidity and mortality, following cardiovascular abnormalities. Maternal nutrition, particularly folic acid, a B vitamin, is crucial in the etiology of NTDs. FA plays a key role in DNA methylation, synthesis, and repair, acting as a cofactor in one-carbon transfer reactions essential for neural tube development. Randomized trials have shown that FA supplementation during preconceptional and periconceptional periods reduces the incidence of NTDs by nearly 80%. Consequently, it is recommended that all women of reproductive age take 400 µg of FA daily. Many countries have introduced FA fortification of staple foods to prevent NTDs, addressing the high rate of unplanned pregnancies. These policies have increased FA intake and decreased NTD incidence. Although the precise mechanisms by which FA protects against NTDs remain unclear, compelling evidence supports its efficacy in preventing most NTDs, leading to national recommendations for FA supplementation in women. This review focuses on preconceptional and periconceptional FA supplementation in the female population of the Visegrad Group countries (Slovakia, Czech Republic, Poland, and Hungary). Our findings emphasize the need for a comprehensive approach to NTDs, including FA supplementation programs, tailored counseling, and effective national-level policies.
Collapse
Affiliation(s)
- Vanda Rísová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.R.); (I.V.)
| | - Rami Saade
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.R.); (I.V.)
- 2nd Department of Gynecology and Obstetrics, University Hospital Bratislava and Comenius University, 821 01 Bratislava, Slovakia;
| | - Vladimír Jakuš
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.J.); (L.G.)
| | - Lívia Gajdošová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.J.); (L.G.)
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.R.); (I.V.)
| | - Jozef Záhumenský
- 2nd Department of Gynecology and Obstetrics, University Hospital Bratislava and Comenius University, 821 01 Bratislava, Slovakia;
| |
Collapse
|
6
|
Berkhout JH, Glazier JA, Piersma AH, Belmonte JM, Legler J, Spencer RM, Knudsen TB, Heusinkveld HJ. A computational dynamic systems model for in silico prediction of neural tube closure defects. Curr Res Toxicol 2024; 8:100210. [PMID: 40034255 PMCID: PMC11875186 DOI: 10.1016/j.crtox.2024.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 03/05/2025] Open
Abstract
Neural tube closure is a critical morphogenetic event during early vertebrate development. This complex process is susceptible to perturbation by genetic errors and chemical disruption, which can induce severe neural tube defects (NTDs) such as spina bifida. We built a computational agent-based model (ABM) of neural tube development based on the known biology of morphogenetic signals and cellular biomechanics underlying neural fold elevation, bending and fusion. The computer model functionalizes cell signals and responses to render a dynamic representation of neural tube closure. Perturbations in the control network can then be introduced synthetically or from biological data to yield quantitative simulation and probabilistic prediction of NTDs by incidence and degree of defect. Translational applications of the model include mechanistic understanding of how singular or combinatorial alterations in gene-environmental interactions and animal-free assessment of developmental toxicity for an important human birth defect (spina bifida) and potentially other neurological problems linked to development of the brain and spinal cord.
Collapse
Affiliation(s)
- Job H. Berkhout
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Aldert H. Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Juliette Legler
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Thomas B. Knudsen
- Biocomplexity Institute, Indiana University, Bloomington, USA
- U.S. EPA/ORD, Research Triangle Park, NC, USA
| | - Harm J. Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
7
|
Wang M, Zhao S, Shi C, Guyot MC, Liao M, Tauer JT, Willie BM, Cobetto N, Aubin CÉ, Küster-Schöck E, Drapeau P, Zhang J, Wu N, Kibar Z. Planar cell polarity zebrafish models of congenital scoliosis reveal underlying defects in notochord morphogenesis. Development 2024; 151:dev202829. [PMID: 39417583 PMCID: PMC11698040 DOI: 10.1242/dev.202829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Congenital scoliosis (CS) is a type of vertebral malformation for which the etiology remains elusive. The notochord is pivotal for vertebrae development, but its role in CS is still understudied. Here, we generated a zebrafish knockout of ptk7a, a planar cell polarity (PCP) gene that is essential for convergence and extension (C&E) of the notochord, and detected congenital scoliosis-like vertebral malformations (CVMs). Maternal zygotic ptk7a mutants displayed severe C&E defects of the notochord. Excessive apoptosis occurred in the malformed notochord, causing a significantly reduced number of vacuolated cells, and compromising the mechanical properties of the notochord. The latter manifested as a less-stiff extracellular matrix along with a significant reduction in the number of the caveolae and severely loosened intercellular junctions in the vacuolated region. These defects led to focal kinks, abnormal mineralization, and CVMs exclusively at the anterior spine. Loss of function of another PCP gene, vangl2, also revealed excessive apoptosis in the notochord associated with CVMs. This study suggests a new model for CS pathogenesis that is associated with defects in notochord C&E and highlights an essential role of PCP signaling in vertebrae development.
Collapse
Affiliation(s)
- Mingqin Wang
- Azrieli Research Center of CHU Sainte Justine, University of Montreal, Montreal H3T 1C5, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal H3C 3J7, QC, Canada
| | - Sen Zhao
- The Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chenjun Shi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Marie-Claude Guyot
- Azrieli Research Center of CHU Sainte Justine, University of Montreal, Montreal H3T 1C5, QC, Canada
| | - Meijiang Liao
- The CHUM Research Center, University of Montréal, Montréal H2X 0A9, Canada
| | - Josephine T. Tauer
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Shriners Hospital for Children-Canada, Montreal H4A 0A9, QC, Canada
| | - Bettina M. Willie
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Shriners Hospital for Children-Canada, Montreal H4A 0A9, QC, Canada
| | - Nikita Cobetto
- Department Mechanical Engineering, Polytechnique Montreal, Montreal H3T 1J4, QC, Canada
| | - Carl-Éric Aubin
- Azrieli Research Center of CHU Sainte Justine, University of Montreal, Montreal H3T 1C5, QC, Canada
- Department Mechanical Engineering, Polytechnique Montreal, Montreal H3T 1J4, QC, Canada
| | - Elke Küster-Schöck
- Azrieli Research Center of CHU Sainte Justine, University of Montreal, Montreal H3T 1C5, QC, Canada
| | - Pierre Drapeau
- Department of Neurosciences, University of Montreal, Montreal H3C 3J7, QC, Canada
- The CHUM Research Center, University of Montréal, Montréal H2X 0A9, Canada
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Nan Wu
- The Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zoha Kibar
- Azrieli Research Center of CHU Sainte Justine, University of Montreal, Montreal H3T 1C5, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal H3C 3J7, QC, Canada
| |
Collapse
|
8
|
Choi J, Gang S, Ramalingam M, Hwang J, Jeong H, Yoo J, Cho HH, Kim BC, Jang G, Jeong HS, Jang S. BML-281 promotes neuronal differentiation by modulating Wnt/Ca 2+ and Wnt/PCP signaling pathway. Mol Cell Biochem 2024; 479:2391-2403. [PMID: 37768498 DOI: 10.1007/s11010-023-04857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Histone deacetylase (HDAC) inhibitors promote differentiation through post-translational modifications of histones. BML-281, an HDAC6 inhibitor, has been known to prevent tumors, acute dextran sodium sulfate-associated colitis, and lung injury. However, the neurogenic differentiation effect of BML-281 is poorly understood. In this study, we investigated the effect of BML-281 on neuroblastoma SH-SY5Y cell differentiation into mature neurons by immunocytochemistry (ICC), reverse transcriptase PCR (RT-PCR), quantitative PCR (qPCR), and western blotting analysis. We found that the cells treated with BML-281 showed neurite outgrowth and morphological changes into mature neurons under a microscope. It was confirmed that the gene expression of neuronal markers (NEFL, MAP2, Tuj1, NEFH, and NEFM) was increased with certain concentrations of BML-281. Similarly, the protein expression of neuronal markers (NeuN, Synaptophysin, Tuj1, and NFH) was upregulated with BML-281 compared to untreated cells. Following treatment with BML-281, the expression of Wnt5α increased, and downstream pathways were activated. Interestingly, both Wnt/Ca2+ and Wnt/PCP pathways activated and regulated PKC, Cdc42, RhoA, Rac1/2/3, and p-JNK. Therefore, BML-281 induces the differentiation of SH-SY5Y cells into mature neurons by activating the non-canonical Wnt signaling pathway. From these results, we concluded that BML-281 might be a novel drug to differentiation into neuronal cells through the regulation of Wnt signaling pathway to reduce the neuronal cell death.
Collapse
Affiliation(s)
- Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Seoyeon Gang
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
- Department of Pre-Medical Science, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Haewon Jeong
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Jin Yoo
- Department of Physiological Education, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea.
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea.
| |
Collapse
|
9
|
Tamilselvan E, Sotomayor M. CELSR1, a core planar cell polarity protein, features a weakly adhesive and flexible cadherin ectodomain. Structure 2024; 32:476-491.e5. [PMID: 38307021 DOI: 10.1016/j.str.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/30/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Planar cell polarity (PCP), essential to multicellular developmental processes, arises when cells polarize and align across tissues. Central to PCP is CELSR1, an atypical cadherin featuring a long ectodomain with nine extracellular cadherin (EC) repeats, a membrane adjacent domain (MAD10), and several characteristic adhesion GPCR domains. Cell-based aggregation assays have demonstrated CELSR1's homophilic adhesive nature, but mechanistic details are missing. Here, we investigate the possible adhesive properties and structures of CELSR1 EC repeats. Our bead aggregation assays do not support strong adhesion by EC repeats alone. Consistently, EC1-4 only dimerizes at high concentration in solution. Crystal structures of human CELSR1 EC1-4 and EC4-7 reveal typical folds and a non-canonical linker between EC5 and EC6. Simulations and experiments using EC4-7 indicate flexibility at EC5-6, and solution experiments show EC7-MAD10-mediated dimerization. Our results suggest weak homophilic adhesion by CELSR1 cadherin repeats and provide mechanistic insights into the structural determinants of CELSR1 function.
Collapse
Affiliation(s)
- Elakkiya Tamilselvan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
Garone C, De Giorgio F, Carli S. Mitochondrial metabolism in neural stem cells and implications for neurodevelopmental and neurodegenerative diseases. J Transl Med 2024; 22:238. [PMID: 38438847 PMCID: PMC10910780 DOI: 10.1186/s12967-024-05041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/25/2024] [Indexed: 03/06/2024] Open
Abstract
Mitochondria are cytoplasmic organelles having a fundamental role in the regulation of neural stem cell (NSC) fate during neural development and maintenance.During embryonic and adult neurogenesis, NSCs undergo a metabolic switch from glycolytic to oxidative phosphorylation with a rise in mitochondrial DNA (mtDNA) content, changes in mitochondria shape and size, and a physiological augmentation of mitochondrial reactive oxygen species which together drive NSCs to proliferate and differentiate. Genetic and epigenetic modifications of proteins involved in cellular differentiation (Mechanistic Target of Rapamycin), proliferation (Wingless-type), and hypoxia (Mitogen-activated protein kinase)-and all connected by the common key regulatory factor Hypoxia Inducible Factor-1A-are deemed to be responsible for the metabolic shift and, consequently, NSC fate in physiological and pathological conditions.Both primary mitochondrial dysfunction due to mutations in nuclear DNA or mtDNA or secondary mitochondrial dysfunction in oxidative phosphorylation (OXPHOS) metabolism, mitochondrial dynamics, and organelle interplay pathways can contribute to the development of neurodevelopmental or progressive neurodegenerative disorders.This review analyses the physiology and pathology of neural development starting from the available in vitro and in vivo models and highlights the current knowledge concerning key mitochondrial pathways involved in this process.
Collapse
Affiliation(s)
- C Garone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UO Neuropsichiatria Dell'età Pediatrica, Bologna, Italy.
| | - F De Giorgio
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - S Carli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Nguyen TN, Koga Y, Wakasugi T, Kitamura T, Suzuki H. Nasal polyps show decreased mucociliary transport despite vigorous ciliary beating. Braz J Otorhinolaryngol 2024; 90:101377. [PMID: 38232516 PMCID: PMC10827508 DOI: 10.1016/j.bjorl.2023.101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVE Mucociliary transport function in the airway mucosa is essential for maintaining a clean mucosal surface. This function is impaired in upper and lower airway diseases. Nasal polyps are a noticeable pathological feature that develop in some of the patients with chronic rhinosinusitis. Like ordinary nasal mucosae, nasal polyps have a ciliated pseudostratified epithelium with vigorous ciliary beating. We measured ex vivo Mucociliary Transport Velocity (MCTV) and Ciliary Beat Frequency (CBF) and explored the expressions of Planar Cell Polarity (PCP) proteins in nasal polyps in comparison with turbinate mucosae. METHODS Inferior turbinates and nasal polyps were surgically collected from patients with chronic rhinosinusitis. Ex vivo MCTV and CBF were measured using a high-speed digital imaging system. Expressions of PCP proteins were explored by fluorescence immunohistochemistry and quantitative RT-PCR. RESULTS The MCTV of nasal polyps was significantly lower than that of the turbinates (7.43 ± 2.01 vs. 14.56 ± 2.09 μm/s; p = 0.0361), whereas CBF did not differ between the two tissues. The MCTV vector was pointed to the posteroinferior direction in all turbinates with an average inclination angle of 41.0 degrees. Immunohistochemical expressions of Dishevelled-1, Dishevelled-3, Frizzled3, Frizzled6, Prickle2 and Vangl2 were lower in the nasal polyps than in the turbinates. Confocal laser scanning microscopy showed that Frizzled3 was localized along the cell junction on the apical surface. The expression levels of mRNAs for Dishevelled-1, Dishevelled-3 and Frizzled3 in the nasal polyps were also decreased in comparison with the turbinates. CONCLUSION These results indicate that muco ciliary transport in nasal polyps is impaired although vigorous ciliary beating is maintained, and that the impairment may be caused by a decrease in Dishevelled/Frizzled proteins and resultant PCP disarrangement. LEVEL OF EVIDENCE Level 3.
Collapse
Affiliation(s)
- Thi Nga Nguyen
- University of Occupational and Environmental Health, School of Medicine, Department of Otorhinolaryngology-Head and Neck Surgery, Kitakyushu, Japan; Vinh Medical University, Faculty of Public Health, Vinh City, Vietnam
| | - Yuma Koga
- University of Occupational and Environmental Health, School of Medicine, Department of Otorhinolaryngology-Head and Neck Surgery, Kitakyushu, Japan
| | - Tetsuro Wakasugi
- University of Occupational and Environmental Health, School of Medicine, Department of Otorhinolaryngology-Head and Neck Surgery, Kitakyushu, Japan
| | - Takuro Kitamura
- University of Occupational and Environmental Health, School of Medicine, Department of Otorhinolaryngology-Head and Neck Surgery, Kitakyushu, Japan
| | - Hideaki Suzuki
- University of Occupational and Environmental Health, School of Medicine, Department of Otorhinolaryngology-Head and Neck Surgery, Kitakyushu, Japan.
| |
Collapse
|
12
|
Han X, Cao X, Cabrera RM, Ramirez PAP, Lin YL, Wlodarczyk BJ, Zhang C, Finnell RH, Lei Y. Folate regulation of planar cell polarity pathway and F-actin through folate receptor alpha. FASEB J 2024; 38:e23346. [PMID: 38095297 PMCID: PMC10754249 DOI: 10.1096/fj.202300202r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Folate deficiency contribute to neural tube defects (NTDs) which could be rescued by folate supplementation. However, the underlying mechanisms are still not fully understood. Besides, there is considerable controversy concerning the forms of folate used for supplementation. To address this controversy, we prepared culture medium with different forms of folate, folic acid (FA), and 5-methyltetrahydrofolate (5mTHF), at concentrations of 5 μM, 500 nM, 50 nM, and folate free, respectively. Mouse embryonic fibroblasts (MEFs) were treated with different folates continuously for three passages, and cell proliferation and F-actin were monitored. We determined that compared to 5mTHF, FA showed stronger effects on promoting cell proliferation and F-actin formation. We also found that FOLR1 protein level was positively regulated by folate concentration and the non-canonical Wnt/planar cell polarity (PCP) pathway signaling was significantly enriched among different folate conditions in RNA-sequencing analyses. We demonstrated for the first time that FOLR1 could promote the transcription of Vangl2, one of PCP core genes. The transcription of Vangl2 was down-regulated under folate-deficient condition, which resulted in a decrease in PCP activity and F-actin formation. In summary, we identified a distinct advantage of FA in cell proliferation and F-actin formation over 5mTHF, as well as demonstrating that FOLR1 could promote transcription of Vangl2 and provide a new mechanism by which folate deficiency can contribute to the etiology of NTDs.
Collapse
Affiliation(s)
- Xiao Han
- Department of Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuanye Cao
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert M. Cabrera
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paula Andrea Pimienta Ramirez
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying Linda Lin
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cuilian Zhang
- Department of Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Shi C, Handler C, Florn H, Zhang J. Monitoring the Mechanical Evolution of Tissue During Neural Tube Closure of Chick Embryo. J Vis Exp 2023:10.3791/66117. [PMID: 38009716 PMCID: PMC11456995 DOI: 10.3791/66117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Neural tube closure (NTC) is a critical process during embryonic development. Failure in this process can lead to neural tube defects, causing congenital malformations or even mortality. NTC involves a series of mechanisms on genetic, molecular, and mechanical levels. While mechanical regulation has become an increasingly attractive topic in recent years, it remains largely unexplored due to the lack of suitable technology for conducting mechanical testing of 3D embryonic tissue in situ. In response, we have developed a protocol for quantifying the mechanical properties of chicken embryonic tissue in a non-contact and non-invasive manner. This is achieved by integrating a confocal Brillouin microscope with an on-stage incubation system. To probe tissue mechanics, a pre-cultured embryo is collected and transferred to an on-stage incubator for ex ovo culture. Simultaneously, the mechanical images of the neural plate tissue are acquired by the Brillouin microscope at different time points during development. This protocol includes detailed descriptions of sample preparation, the implementation of Brillouin microscopy experiments, and data post-processing and analysis. By following this protocol, researchers can study the mechanical evolution of embryonic tissue during development longitudinally.
Collapse
Affiliation(s)
- Chenjun Shi
- Department of Biomedical Engineering, College of Engineering, Wayne State University
| | | | - Haden Florn
- Department of Biomedical Engineering, College of Engineering, Wayne State University
| | - Jitao Zhang
- Department of Biomedical Engineering, College of Engineering, Wayne State University;
| |
Collapse
|
14
|
Lapehn S, Colacino JA, Harris C. Spatiotemporal protein dynamics during early organogenesis in mouse conceptuses treated with valproic acid. Neurotoxicol Teratol 2023; 99:107286. [PMID: 37442398 PMCID: PMC10697214 DOI: 10.1016/j.ntt.2023.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Valproic acid (VPA) is an anti-epileptic medication that increases the risk of neural tube defect (NTD) outcomes in infants exposed during gestation. Previous studies into VPA's mechanism of action have focused on alterations in gene expression and metabolism but have failed to consider how exposure changes the abundance of critical developmental proteins over time. This study evaluates the effects of VPA on protein abundance in the developmentally distinct tissues of the mouse visceral yolk sac (VYS) and embryo proper (EMB) using mouse whole embryo culture. Embryos were exposed to 600 μM VPA at 2 h intervals over 10 h during early organogenesis with the aim of identifying protein pathways relevant to VPA's mechanism of action in failed NTC. Protein abundance was measured through tandem mass tag (TMT) labeling followed by liquid chromatography and mass spectrometry. Overall, there were over 1500 proteins with altered abundance after VPA exposure in the EMB or VYS with 428 of these proteins showing previous gene expression associations with VPA exposure. Limited overlap of significant proteins between tissues supported the conclusion of independent roles for the VYS and EMB in response to VPA. Pathway analysis of proteins with increased or decreased abundance identified multiple pathways with mechanistic relevance to NTC and embryonic development including convergent extension, Wnt Signaling/planar cell polarity, cellular migration, cellular proliferation, cell death, and cytoskeletal organization processes as targets of VPA. Clustering of co-regulated proteins to identify shared patterns of protein abundance over time highlighted 4 h and 6/10 h as periods of divergent protein abundance between control and VPA-treated samples in the VYS and EMB, respectively. Overall, this study demonstrated that VPA temporally alters protein content in critical developmental pathways in the VYS and the EMB during early organogenesis in mice.
Collapse
Affiliation(s)
- Samantha Lapehn
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States.
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Zeng H, Liu A. TMEM132A regulates mouse hindgut morphogenesis and caudal development. Development 2023; 150:dev201630. [PMID: 37390294 PMCID: PMC10357036 DOI: 10.1242/dev.201630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Caudal developmental defects, including caudal regression, caudal dysgenesis and sirenomelia, are devastating conditions affecting the skeletal, nervous, digestive, reproductive and excretory systems. Defects in mesodermal migration and blood supply to the caudal region have been identified as possible causes of caudal developmental defects, but neither satisfactorily explains the structural malformations in all three germ layers. Here, we describe caudal developmental defects in transmembrane protein 132a (Tmem132a) mutant mice, including skeletal, posterior neural tube closure, genitourinary tract and hindgut defects. We show that, in Tmem132a mutant embryos, visceral endoderm fails to be excluded from the medial region of early hindgut, leading directly to the loss or malformation of cloaca-derived genitourinary and gastrointestinal structures, and indirectly to the neural tube and kidney/ureter defects. We find that TMEM132A mediates intercellular interaction, and physically interacts with planar cell polarity (PCP) regulators CELSR1 and FZD6. Genetically, Tmem132a regulates neural tube closure synergistically with another PCP regulator Vangl2. In summary, we have identified Tmem132a as a new regulator of PCP, and hindgut malformation as the underlying cause of developmental defects in multiple caudal structures.
Collapse
Affiliation(s)
- Huiqing Zeng
- Department of Biology, Eberly College of Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Aimin Liu
- Department of Biology, Eberly College of Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
16
|
Humphries AC, Molina-Pelayo C, Sil P, Hazelett CC, Devenport D, Mlodzik M. A Van Gogh/Vangl tyrosine phosphorylation switch regulates its interaction with core Planar Cell Polarity factors Prickle and Dishevelled. PLoS Genet 2023; 19:e1010849. [PMID: 37463168 PMCID: PMC10381084 DOI: 10.1371/journal.pgen.1010849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 07/28/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Epithelial tissues can be polarized along two axes: in addition to apical-basal polarity they are often also polarized within the plane of the epithelium, known as planar cell polarity (PCP). PCP depends upon the conserved Wnt/Frizzled (Fz) signaling factors, including Fz itself and Van Gogh (Vang/Vangl in mammals). Here, taking advantage of the complementary features of Drosophila wing and mouse skin PCP establishment, we dissect how Vang/Vangl phosphorylation on a specific conserved tyrosine residue affects its interaction with two cytoplasmic core PCP factors, Dishevelled (Dsh/Dvl1-3 in mammals) and Prickle (Pk/Pk1-3). We demonstrate that Pk and Dsh/Dvl bind to Vang/Vangl in an overlapping region centered around this tyrosine. Strikingly, Vang/Vangl phosphorylation promotes its binding to Prickle, a key effector of the Vang/Vangl complex, and inhibits its interaction with Dishevelled. Thus phosphorylation of this tyrosine appears to promote the formation of the mature Vang/Vangl-Pk complex during PCP establishment and conversely it inhibits the Vang interaction with the antagonistic effector Dishevelled. Intriguingly, the phosphorylation state of this tyrosine might thus serve as a switch between transient interactions with Dishevelled and stable formation of Vang-Pk complexes during PCP establishment.
Collapse
Affiliation(s)
- Ashley C. Humphries
- Dept. of Cell, Developmental, & Regenerative Biology,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Claudia Molina-Pelayo
- Dept. of Cell, Developmental, & Regenerative Biology,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Parijat Sil
- Dept. of Molecular Biology Princeton University, Princeton, New Jersey, United States of America
| | - C. Clayton Hazelett
- Dept. of Molecular Biology Princeton University, Princeton, New Jersey, United States of America
| | - Danelle Devenport
- Dept. of Molecular Biology Princeton University, Princeton, New Jersey, United States of America
| | - Marek Mlodzik
- Dept. of Cell, Developmental, & Regenerative Biology,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
17
|
Yan L, Yin H, Mi Y, Wu Y, Zheng Y. Deficiency of Wdr60 and Wdr34 cause distinct neural tube malformation phenotypes in early embryos. Front Cell Dev Biol 2023; 11:1084245. [PMID: 37228654 PMCID: PMC10203710 DOI: 10.3389/fcell.2023.1084245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Cilia are specialized organelles that extend from plasma membrane, functioning as antennas for signal transduction and are involved in embryonic morphogenesis. Dysfunction of cilia lead to many developmental defects, including neural tube defects (NTDs). Heterodimer WDR60-WDR34 (WD repeat domain 60 and 34) are intermediate chains of motor protein dynein-2, which play important roles in ciliary retrograde transport. It has been reported that disruption of Wdr34 in mouse model results in NTDs and defects of Sonic Hedgehog (SHH) signaling. However, no Wdr60 deficiency mouse model has been reported yet. In this study, piggyBac (PB) transposon is used to interfere Wdr60 and Wdr34 expression respectively to establish Wdr60 PB/PB and Wdr34 PB/PB mouse models. We found that the expression of Wdr60 or Wdr34 is significantly decreased in the homozygote mice. Wdr60 homozygote mice die around E13.5 to E14.5, while Wdr34 homozygote mice die around E10.5 to E11.5. WDR60 is highly expressed in the head region at E10.5 and Wdr60 PB/PB embryos have head malformation. RNAseq and qRT-PCR experiments revealed that Sonic Hedgehog signaling is also downregulated in Wdr60 PB/PB head tissue, demonstrating that WDR60 is also required for promoting SHH signaling. Further experiments on mouse embryos also revealed that the expression levels of planar cell polarity (PCP) components such as CELSR1 and downstream signal molecule c-Jun were downregulated in WDR34 homozygotes compared to wildtype littermates. Coincidently, we observed much higher ratio of open cranial and caudal neural tube in Wdr34 PB/PB mice. CO-IP experiment showed that WDR60 and WDR34 both interact with IFT88, but only WDR34 interacts with IFT140. Taken together, WDR60 and WDR34 play overlapped and distinct functions in modulating neural tube development.
Collapse
Affiliation(s)
- Lu Yan
- Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hailing Yin
- Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Obstetrics Department of the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwei Mi
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Wu
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Functional interaction between Vangl2 and N-cadherin regulates planar cell polarization of the developing neural tube and cochlear sensory epithelium. Sci Rep 2023; 13:3905. [PMID: 36890135 PMCID: PMC9995352 DOI: 10.1038/s41598-023-30213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Although the core constituents of the Wnt/planar cell polarity (PCP) signaling have been extensively studied, their downstream molecules and protein-protein interactions have not yet been fully elucidated. Here, we show genetic and molecular evidence that the PCP factor, Vangl2, functionally interacts with the cell-cell adhesion molecule, N-cadherin (also known as Cdh2), for typical PCP-dependent neural development. Vangl2 and N-cadherin physically interact in the neural plates undergoing convergent extension. Unlike monogenic heterozygotes, digenic heterozygous mice with Vangl2 and Cdh2 mutants exhibited defects in neural tube closure and cochlear hair cell orientation. Despite this genetic interaction, neuroepithelial cells derived from the digenic heterozygotes did not show additive changes from the monogenic heterozygotes of Vangl2 in the RhoA-ROCK-Mypt1 and c-Jun N-terminal kinase (JNK)-Jun pathways of Wnt/PCP signaling. Thus, cooperation between Vangl2 and N-cadherin is at least partly via direct molecular interaction; it is essential for the planar polarized development of neural tissues but not significantly associated with RhoA or JNK pathways.
Collapse
|
19
|
Wang F, Cheng H, Zhang Q, Guo J. Genetic mutations in ribosomal biogenesis gene TCOF1 identified in human neural tube defects. Mol Genet Genomic Med 2023; 11:e2150. [PMID: 36808708 PMCID: PMC10178795 DOI: 10.1002/mgg3.2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Rare mutations in multiple genes have been associated with human neural tube defects (NTDs), but their causative roles in NTDs disease are poorly understood. Insufficiency of the ribosomal biogenesis gene treacle ribosome biogenesis factor 1(Tcof1) results in cranial NTDs and craniofacial malformations in mice. Here, we aimed to identify genetic association of TCOF1 with human NTDs. METHODS High-throughput sequencing targeted on TCOF1 was performed on samples from 355 human cases affected by NTDs and 225 controls from a Han Chinese population. RESULTS Four novel missense variants were found in the NTD cohort. Cell-based assays indicated that the p.(A491G) variant carried by an individual, who shows anencephaly and single-nostril abnormality, attenuates production of total proteins, suggesting a loss-of-function mutation in ribosomal biogenesis. Importantly, this variant promotes nucleolar disruption and stabilizes p53 protein, highlighting an unbalancing effect on cell apoptosis. CONCLUSIONS This study explored the functional impact of a missense variant in TCOF1, implicating a set of novel causative biological factors involved in the pathogenicity of human NTDs, particularly whom combined with craniofacial abnormality.
Collapse
Affiliation(s)
- Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Haiqin Cheng
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China.,Department of Biochemistry and Molecular Biology, Ministry of Education Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, China
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
20
|
Shi DL. Planar cell polarity regulators in asymmetric organogenesis during development and disease. J Genet Genomics 2023; 50:63-76. [PMID: 35809777 DOI: 10.1016/j.jgg.2022.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
The phenomenon of planar cell polarity is critically required for a myriad of morphogenetic processes in metazoan and is accurately controlled by several conserved modules. Six "core" proteins, including Frizzled, Flamingo (Celsr), Van Gogh (Vangl), Dishevelled, Prickle, and Diego (Ankrd6), are major components of the Wnt/planar cell polarity pathway. The Fat/Dchs protocadherins and the Scrib polarity complex also function to instruct cellular polarization. In vertebrates, all these pathways are essential for tissue and organ morphogenesis, such as neural tube closure, left-right symmetry breaking, heart and gut morphogenesis, lung and kidney branching, stereociliary bundle orientation, and proximal-distal limb elongation. Mutations in planar polarity genes are closely linked to various congenital diseases. Striking advances have been made in deciphering their contribution to the establishment of spatially oriented pattern in developing organs and the maintenance of tissue homeostasis. The challenge remains to clarify the complex interplay of different polarity pathways in organogenesis and the link of cell polarity to cell fate specification. Interdisciplinary approaches are also important to understand the roles of mechanical forces in coupling cellular polarization and differentiation. This review outlines current advances on planar polarity regulators in asymmetric organ formation, with the aim to identify questions that deserve further investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
| |
Collapse
|
21
|
Geng S, Paul F, Kowalczyk I, Raimundo S, Sporbert A, Mamo TM, Hammes A. Balancing WNT signalling in early forebrain development: The role of LRP4 as a modulator of LRP6 function. Front Cell Dev Biol 2023; 11:1173688. [PMID: 37091972 PMCID: PMC10119419 DOI: 10.3389/fcell.2023.1173688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
The specification of the forebrain relies on the precise regulation of WNT/ß-catenin signalling to support neuronal progenitor cell expansion, patterning, and morphogenesis. Imbalances in WNT signalling activity in the early neuroepithelium lead to congenital disorders, such as neural tube defects (NTDs). LDL receptor-related protein (LRP) family members, including the well-studied receptors LRP5 and LRP6, play critical roles in modulating WNT signalling capacity through tightly regulated interactions with their co-receptor Frizzled, WNT ligands, inhibitors and intracellular WNT pathway components. However, little is known about the function of LRP4 as a potential modulator of WNT signalling in the central nervous system. In this study, we investigated the role of LRP4 in the regulation of WNT signalling during early mouse forebrain development. Our results demonstrate that LRP4 can modulate LRP5- and LRP6-mediated WNT signalling in the developing forebrain prior to the onset of neurogenesis at embryonic stage 9.5 and is therefore essential for accurate neural tube morphogenesis. Specifically, LRP4 functions as a genetic modifier for impaired mitotic activity and forebrain hypoplasia, but not for NTDs in LRP6-deficient mutants. In vivo and in vitro data provide evidence that LRP4 is a key player in fine-tuning WNT signalling capacity and mitotic activity of mouse neuronal progenitors and of human retinal pigment epithelial (hTERT RPE-1) cells. Our data demonstrate the crucial roles of LRP4 and LRP6 in regulating WNT signalling and forebrain development and highlight the need to consider the interaction between different signalling pathways to understand the underlying mechanisms of disease. The findings have significant implications for our mechanistic understanding of how LRPs participate in controlling WNT signalling.
Collapse
Affiliation(s)
- Shuang Geng
- Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Biology, Free University of Berlin, Berlin, Germany
| | - Fabian Paul
- Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Biology, Free University of Berlin, Berlin, Germany
| | - Izabela Kowalczyk
- Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Biology, Free University of Berlin, Berlin, Germany
| | - Sandra Raimundo
- Advanced Light Microscopy Technology Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anje Sporbert
- Advanced Light Microscopy Technology Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Tamrat Meshka Mamo
- Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- *Correspondence: Tamrat Meshka Mamo, ; Annette Hammes,
| | - Annette Hammes
- Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- *Correspondence: Tamrat Meshka Mamo, ; Annette Hammes,
| |
Collapse
|
22
|
Liu Y, Dong L, Zhi X, Liu Y, Zhao L, Xu X, Wang L, Zheng J, Pu L, Gu C, Shu J, Cai C. Single nucleotide polymorphisms of PCP pathway related genes participate in the occurrence and development of neural tube defect. Mol Genet Genomic Med 2022; 11:e2094. [PMID: 36378568 PMCID: PMC9834144 DOI: 10.1002/mgg3.2094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/08/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND To screen the single nucleotide polymorphisms (SNPs) in the coding regions of VANGL and FZD family members related to the plane cell polarity (PCP) signaling pathway in neural tube defects (NTDs) patients, so as to provide theoretical and experimental basis for the prevention and treatment of NTDs by intervening PCP signal transduction. METHODS 112 NTDs patients were collected as the case group and 112 craniocerebral trauma patients as control. Afterwards, blood genomic DNA was extracted and sequenced. The distribution of SNP alleles and genotypes between case and control groups was analyzed. Finally, the NTD rat model was constructed, and the effect of SNPs on the expression level of VANGL and FZD genes was verified by qRT-PCR. RESULTS GC genotype was newly found at VANGL1 c.346G>A, as well as AT genotype in FZD6 c.97A>G. The distribution of VANGL1 c.346g>A allele and genotype was statistically different between the case and control groups (p < 0.05). The newly found genotype GC increased the risk of NTDs (OR = 9.918, 95% CI: 1.234%-79.709%). The results of qRT-PCR showed that the expression level of FZD6 in E11 NTD fetuses were significantly increased (p < 0.05), but there was no obvious difference in the expression of VANGL1. CONCLUSION We found a new variant of VANGL1 c.346G>A, whose GC genotype might play an important role in the pathogenesis of NTDs. The SNPs of VANGL1 had no significant effect on its expression level, indicating that it may induce NTDs through other ways. FZD6 was significantly overexpressed in NTDs fetuses.
Collapse
Affiliation(s)
- Yan Liu
- Department of NephrologyTianjin Children's Hospital (Children's Hospital of Tianjin University)TianjinChina,Graduate SchoolTianjin Medical UniversityTianjinChina
| | - Liang Dong
- Department of Pediatric General SurgeryTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina
| | - Xiufang Zhi
- Graduate SchoolTianjin Medical UniversityTianjinChina
| | - Yang Liu
- Department of NeonatologyTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina
| | - Linsheng Zhao
- Department of PathologyTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina
| | - Xiaowei Xu
- Institute of PediatricsTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina
| | - Lu Wang
- Institute of PediatricsTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina
| | - Jie Zheng
- Graduate SchoolTianjin Medical UniversityTianjinChina
| | - Linjie Pu
- Department of NeonatologyTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina
| | - Chunyu Gu
- Department of NeonatologyTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina
| | - Jianbo Shu
- Institute of PediatricsTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina,Tianjin Key Laboratory of Birth Defects for Prevention and TreatmentTianjinChina
| | - Chunquan Cai
- Institute of PediatricsTianjin Children's Hospital (Children’s Hospital of Tianjin University)TianjinChina,Tianjin Key Laboratory of Birth Defects for Prevention and TreatmentTianjinChina
| |
Collapse
|
23
|
Shi DL. Wnt/planar cell polarity signaling controls morphogenetic movements of gastrulation and neural tube closure. Cell Mol Life Sci 2022; 79:586. [PMID: 36369349 PMCID: PMC11803072 DOI: 10.1007/s00018-022-04620-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Gastrulation and neurulation are successive morphogenetic processes that play key roles in shaping the basic embryonic body plan. Importantly, they operate through common cellular and molecular mechanisms to set up the three spatially organized germ layers and to close the neural tube. During gastrulation and neurulation, convergent extension movements driven by cell intercalation and oriented cell division generate major forces to narrow the germ layers along the mediolateral axis and elongate the embryo in the anteroposterior direction. Apical constriction also makes an important contribution to promote the formation of the blastopore and the bending of the neural plate. Planar cell polarity proteins are major regulators of asymmetric cell behaviors and critically involved in a wide variety of developmental processes, from gastrulation and neurulation to organogenesis. Mutations of planar cell polarity genes can lead to general defects in the morphogenesis of different organs and the co-existence of distinct congenital diseases, such as spina bifida, hearing deficits, kidney diseases, and limb elongation defects. This review outlines our current understanding of non-canonical Wnt signaling, commonly known as Wnt/planar cell polarity signaling, in regulating morphogenetic movements of gastrulation and neural tube closure during development and disease. It also attempts to identify unanswered questions that deserve further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Institute of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France.
| |
Collapse
|
24
|
He Q, Hao X, Bao S, Wu X, Xu L, Hou Y, Huang Y, Peng L, Huang H, Ding Y, Zhao H. A392V and R945X mutations cause orofacial clefts via impairing PTCH1 function. Genomics 2022; 114:110507. [PMID: 36265746 DOI: 10.1016/j.ygeno.2022.110507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 01/15/2023]
Abstract
The Hedgehog (HH) signaling plays key roles in embryogenesis and organogenesis, and its dysfunction causes a variety of human birth defects. Orofacial cleft (OFC) is one of the most common congenital craniofacial defects, and its etiology is closely related to mutations in multiple components in the HH pathway, including the PTCH1 receptor. A quantity of PTCH1 variants have been associated with OFC, but the pathogenicity and underlying mechanism of these variants have not been functionally validated. In our previous studies, we identified two PTCH1 variants (A392V and R945X) in two families with hereditary OFC. Here we explore the functional consequences of these two variants. In zebrafish embryos, microinjection of wild type PTCH1 mRNA causes curved body axis and craniofacial anomalies. In contrast, microinjection of A392V and R945X PTCH1 mRNAs results in much milder phenotypes, suggesting these two variants are loss-of-function mutations. In mammalian cells, A392V and R945X mutations reverse the inhibitory effect of PTCH1 on HH signaling. Biochemically, the two mutants PTCH1 show lower expression levels and shortened half-life, indicting these mutations decrease the stability of PTCH1. A392V and R945X mutations also appear to cause PTCH1 to localize away from vesicles. Taken together, our findings indicate that A392V and R945X variants are loss-of-function mutations that disrupt the function of PTCH1 and thus cause dysregulation of HH signaling, leading to the pathogenesis of OFC.
Collapse
Affiliation(s)
- Qing He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xingke Hao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Shanying Bao
- Department of Stomatology, Affiliated Hospital of Qinghai University, Xining, Qinghai, PR China
| | - Xiantao Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Linping Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yuxia Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yingjia Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Leiyuan Peng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Huimei Huang
- Department of Nephrology, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, PR China.
| | - Yi Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
25
|
Behera JK, Bhattacharya M, Mishra P, Mishra A, Dash AA, Kar NB, Behera B, Patra BC. Regulatory role of miRNAs in Wnt signaling pathway linked with cardiovascular diseases. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100133. [PMID: 36568258 PMCID: PMC9780067 DOI: 10.1016/j.crphar.2022.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are discovered in science about 23 years ago. These are short, a series of non-coding, single-stranded and evolutionary conserved RNA molecules found in eukaryotic cells. It involved post-transcriptional fine-tune protein expression and repressing the target of mRNA in different biological processes. These miRNAs binds with the 3'-UTR region of specific mRNAs to phosphorylate the mRNA degradation and inhibit the translation process in various tissues. Therefore, aberrant expression in miRNAs induces numerous cardiovascular diseases and developmental defects. Subsequently, the miRNAs and Wnt singling pathway are regulating a cellular process in cardiac development and regeneration, maintain the homeostasis and associated heart diseases. In Wnt signaling pathway majority of the signaling components are expressed and regulated by miRNAs, whereas the inhibition or dysfunction of the Wnt signaling pathway induces cardiovascular diseases. Moreover, inadequate studies about the important role of miRNAs in heart development and diseases through Wnt signaling pathway has been exist still now. For this reason in present review we summarize and update the involvement of miRNAs and the role of Wnt signaling in cardiovascular diseases. We have discussed the mechanism of miRNA functions which regulates the Wnt components in cellular signaling pathway. The fundamental understanding of Wnt signaling regulation and mechanisms of miRNAs is quite essential for study of heart development and related diseases. This approach definitely enlighten the future research to provide a new strategy for formulation of novel therapeutic approaches against cardiovascular diseases.
Collapse
Affiliation(s)
- Jiban Kumar Behera
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Pabitra Mishra
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Akansha Mishra
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Adya Anindita Dash
- Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Niladri Bhusan Kar
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Bhaskar Behera
- Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Bidhan Chandra Patra
- Department of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| |
Collapse
|
26
|
Huang W, Yuan Z, Gu H. Exploring epigenomic mechanisms of neural tube defects using multi-omics methods and data. Ann N Y Acad Sci 2022; 1515:50-60. [PMID: 35666948 DOI: 10.1111/nyas.14802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neural tube defects (NTDs) are a heterogeneous set of malformations attributed to disruption in normal neural tube closure during early embryogenesis. An in-depth understanding of NTD etiology and mechanisms remains elusive, however. Among the proposed mechanisms, epigenetic changes are thought to play an important role in the formation of NTDs. Epigenomics covers a wide spectrum of genomic DNA sequence modifications that can be investigated via high-throughput techniques. Recent advances in epigenomic technologies have enabled epigenetic studies of congenital malformations and facilitated the integration of big data into the understanding of NTDs. Herein, we review clinical epigenomic data that focuses on DNA methylation, histone modification, and miRNA alterations in human neural tissues, placental tissues, and leukocytes to explore potential mechanisms by which candidate genes affect human NTD pathogenesis. We discuss the links between epigenomics and gene regulatory mechanisms, and the effects of epigenetic alterations in human tissues on neural tube closure.
Collapse
Affiliation(s)
- Wanqi Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
27
|
Zhao T, McMahon M, Reynolds K, Saha SK, Stokes A, Zhou CJ. The role of Lrp6-mediated Wnt/β-catenin signaling in the development and intervention of spinal neural tube defects in mice. Dis Model Mech 2022; 15:275313. [PMID: 35514236 PMCID: PMC9194482 DOI: 10.1242/dmm.049517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
Neural tube defects (NTDs) are among the common and severe birth defects with poorly understood etiology. Mutations in the Wnt co-receptor LRP6 are associated with NTDs in humans. Either gain-of-function (GOF) or loss-of-function (LOF) mutations of Lrp6 can cause NTDs in mice. NTDs in Lrp6-GOF mutants may be attributed to altered β-catenin-independent noncanonical Wnt signaling. However, the mechanisms underlying NTDs in Lrp6-LOF mutants and the role of Lrp6-mediated canonical Wnt/β-catenin signaling in neural tube closure remain unresolved. We previously demonstrated that β-catenin signaling is required for posterior neuropore (PNP) closure. In the current study, conditional ablation of Lrp6 in dorsal PNP caused spinal NTDs with diminished activities of Wnt/β-catenin signaling and its downstream target gene Pax3, which is required for PNP closure. β-catenin-GOF rescued NTDs in Lrp6-LOF mutants. Moreover, maternal supplementation of a Wnt/β-catenin signaling agonist reduced the frequency and severity of spinal NTDs in Lrp6-LOF mutants by restoring Pax3 expression. Together, these results demonstrate the essential role of Lrp6-mediated Wnt/β-catenin signaling in PNP closure, which could also provide a therapeutic target for NTD intervention through manipulation of canonical Wnt/β-catenin signaling activities. Summary: Conditional ablation of Lrp6 in dorsal neural folds causes spinal neural tube defects that can be rescued by genetic activation of β-catenin or maternal supplementation of Wnt signaling agonists.
Collapse
Affiliation(s)
- Tianyu Zhao
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children-Northern California, Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | - Moira McMahon
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children-Northern California, Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | - Kurt Reynolds
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children-Northern California, Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | - Subbroto Kumar Saha
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children-Northern California, Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | - Arjun Stokes
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children-Northern California, Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children-Northern California, Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
28
|
Corgiat EB, List SM, Rounds JC, Yu D, Chen P, Corbett AH, Moberg KH. The Nab2 RNA-binding protein patterns dendritic and axonal projections through a planar cell polarity-sensitive mechanism. G3 (BETHESDA, MD.) 2022; 12:jkac100. [PMID: 35471546 PMCID: PMC9157165 DOI: 10.1093/g3journal/jkac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022]
Abstract
RNA-binding proteins support neurodevelopment by modulating numerous steps in post-transcriptional regulation, including splicing, export, translation, and turnover of mRNAs that can traffic into axons and dendrites. One such RNA-binding protein is ZC3H14, which is lost in an inherited intellectual disability. The Drosophila melanogaster ZC3H14 ortholog, Nab2, localizes to neuronal nuclei and cytoplasmic ribonucleoprotein granules and is required for olfactory memory and proper axon projection into brain mushroom bodies. Nab2 can act as a translational repressor in conjunction with the Fragile-X mental retardation protein homolog Fmr1 and shares target RNAs with the Fmr1-interacting RNA-binding protein Ataxin-2. However, neuronal signaling pathways regulated by Nab2 and their potential roles outside of mushroom body axons remain undefined. Here, we present an analysis of a brain proteomic dataset that indicates that multiple planar cell polarity proteins are affected by Nab2 loss, and couple this with genetic data that demonstrate that Nab2 has a previously unappreciated role in restricting the growth and branching of dendrites that elaborate from larval body-wall sensory neurons. Further analysis confirms that Nab2 loss sensitizes sensory dendrites to the genetic dose of planar cell polarity components and that Nab2-planar cell polarity genetic interactions are also observed during Nab2-dependent control of axon projection in the central nervous system mushroom bodies. Collectively, these data identify the conserved Nab2 RNA-binding protein as a likely component of post-transcriptional mechanisms that limit dendrite growth and branching in Drosophila sensory neurons and genetically link this role to the planar cell polarity pathway. Given that mammalian ZC3H14 localizes to dendritic spines and controls spine density in hippocampal neurons, these Nab2-planar cell polarity genetic data may highlight a conserved path through which Nab2/ZC3H14 loss affects morphogenesis of both axons and dendrites in diverse species.
Collapse
Affiliation(s)
- Edwin B Corgiat
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Sara M List
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - J Christopher Rounds
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Dehong Yu
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ping Chen
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
29
|
Eph and Ephrin Variants in Malaysian Neural Tube Defect Families. Genes (Basel) 2022; 13:genes13060952. [PMID: 35741713 PMCID: PMC9222557 DOI: 10.3390/genes13060952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Neural tube defects (NTDs) are common birth defects with a complex genetic etiology. Mouse genetic models have indicated a number of candidate genes, of which functional mutations in some have been found in human NTDs, usually in a heterozygous state. This study focuses on Ephs-ephrins as candidate genes of interest owing to growing evidence of the role of this gene family during neural tube closure in mouse models. Eph-ephrin genes were analyzed in 31 Malaysian individuals comprising seven individuals with sporadic spina bifida, 13 parents, one twin-sibling and 10 unrelated controls. Whole exome sequencing analysis and bioinformatic analysis were performed to identify variants in 22 known Eph-ephrin genes. We reported that three out of seven spina bifida probands and three out of thirteen family members carried a variant in either EPHA2 (rs147977279), EPHB6 (rs780569137) or EFNB1 (rs772228172). Analysis of public databases shows that these variants are rare. In exome datasets of the probands and parents of the probands with Eph-ephrin variants, the genotypes of spina bifida-related genes were compared to investigate the probability of the gene–gene interaction in relation to environmental risk factors. We report the presence of Eph-ephrin gene variants that are prevalent in a small cohort of spina bifida patients in Malaysian families.
Collapse
|
30
|
Yang Y, Zhao S, Sun G, Chen F, Zhang T, Song J, Yang W, Wang L, Zhan N, Yang X, Zhu X, Rao B, Yin Z, Zhou J, Yan H, Huang Y, Ye J, Huang H, Cheng C, Zhu S, Guo J, Xu X, Chen X. Genomic architecture of fetal central nervous system anomalies using whole-genome sequencing. NPJ Genom Med 2022; 7:31. [PMID: 35562572 PMCID: PMC9106651 DOI: 10.1038/s41525-022-00301-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
Structural anomalies of the central nervous system (CNS) are one of the most common fetal anomalies found during prenatal imaging. However, the genomic architecture of prenatal imaging phenotypes has not yet been systematically studied in a large cohort. Patients diagnosed with fetal CNS anomalies were identified from medical records and images. Fetal samples were subjected to low-pass and deep whole-genome sequencing (WGS) for aneuploid, copy number variation (CNV), single-nucleotide variant (SNV, including insertions/deletions (indels)), and small CNV identification. The clinical significance of variants was interpreted based on a candidate gene list constructed from ultrasound phenotypes. In total, 162 fetuses with 11 common CNS anomalies were enrolled in this study. Primary diagnosis was achieved in 62 cases, with an overall diagnostic rate of 38.3%. Causative variants included 18 aneuploids, 17 CNVs, three small CNVs, and 24 SNVs. Among the 24 SNVs, 15 were novel mutations not reported previously. Furthermore, 29 key genes of diagnostic variants and critical genes of pathogenic CNVs were identified, including five recurrent genes: i.e., TUBA1A, KAT6B, CC2D2A, PDHA1, and NF1. Diagnostic variants were present in 34 (70.8%) out of 48 fetuses with both CNS and non-CNS malformations, and in 28 (24.6%) out of 114 fetuses with CNS anomalies only. Hypoplasia of the cerebellum (including the cerebellar vermis) and holoprosencephaly had the highest primary diagnosis yields (>70%), while only four (11.8%) out of 34 neural tube defects achieved genetic diagnosis. Compared with the control group, rare singleton loss-of-function variants (SLoFVs) were significantly accumulated in the patient cohort.
Collapse
Affiliation(s)
- Ying Yang
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Sheng Zhao
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China
| | - Guoqiang Sun
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Jieping Song
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China
| | - Wenzhong Yang
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China
| | - Lin Wang
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Xiaohong Yang
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China
| | - Xia Zhu
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China
| | - Bin Rao
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Jing Zhou
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Jingyu Ye
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Hui Huang
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China
| | - Chen Cheng
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China
| | - Shida Zhu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jian Guo
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xinlin Chen
- Maternal and Child Health Hospital of Hubei Province, Hubei, 430070, China.
| |
Collapse
|
31
|
Moreau MM, Pietropaolo S, Ezan J, Robert BJA, Miraux S, Maître M, Cho Y, Crusio WE, Montcouquiol M, Sans N. Scribble Controls Social Motivation Behavior through the Regulation of the ERK/Mnk1 Pathway. Cells 2022; 11:cells11101601. [PMID: 35626639 PMCID: PMC9139383 DOI: 10.3390/cells11101601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Social behavior is a basic domain affected by several neurodevelopmental disorders, including ASD and a heterogeneous set of neuropsychiatric disorders. The SCRIB gene that codes for the polarity protein SCRIBBLE has been identified as a risk gene for spina bifida, the most common type of neural tube defect, found at high frequencies in autistic patients, as well as other congenital anomalies. The deletions and mutations of the 8q24.3 region encompassing SCRIB are also associated with multisyndromic and rare disorders. Nonetheless, the potential link between SCRIB and relevant social phenotypes has not been fully investigated. Hence, we show that Scribcrc/+ mice, carrying a mutated version of Scrib, displayed reduced social motivation behavior and social habituation, while other behavioral domains were unaltered. Social deficits were associated with the upregulation of ERK phosphorylation, together with increased c-Fos activity. Importantly, the social alterations were rescued by both direct and indirect pERK inhibition. These results support a link between polarity genes, social behaviors and hippocampal functionality and suggest a role for SCRIB in the etiopathology of neurodevelopmental disorders. Furthermore, our data demonstrate the crucial role of the MAPK/ERK signaling pathway in underlying social motivation behavior, thus supporting its relevance as a therapeutic target.
Collapse
Affiliation(s)
- Maïté M. Moreau
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
- Correspondence: (M.M.M.); (N.S.)
| | - Susanna Pietropaolo
- Univ. Bordeaux, CNRS, Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR5287, 33405 Bordeaux, France; (S.P.); (Y.C.); (W.E.C.)
| | - Jérôme Ezan
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
| | - Benjamin J. A. Robert
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
| | - Sylvain Miraux
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques UMR5536, 33077 Bordeaux, France;
| | - Marlène Maître
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
| | - Yoon Cho
- Univ. Bordeaux, CNRS, Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR5287, 33405 Bordeaux, France; (S.P.); (Y.C.); (W.E.C.)
| | - Wim E. Crusio
- Univ. Bordeaux, CNRS, Aquitaine Institute for Cognitive and Integrative Neurosciences, UMR5287, 33405 Bordeaux, France; (S.P.); (Y.C.); (W.E.C.)
| | - Mireille Montcouquiol
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
| | - Nathalie Sans
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077 Bordeaux, France; (J.E.); (B.J.A.R.); (M.M.); (M.M.)
- Correspondence: (M.M.M.); (N.S.)
| |
Collapse
|
32
|
Wang C, Seltzsam S, Zheng B, Wu CHW, Nicolas-Frank C, Yousef K, Au KS, Mann N, Pantel D, Schneider S, Schierbaum L, Kitzler TM, Connaughton DM, Mao Y, Dai R, Nakayama M, Kari JA, Desoky SE, Shalaby M, Eid LA, Awad HS, Tasic V, Mane SM, Lifton RP, Baum MA, Shril S, Estrada CR, Hildebrandt F. Whole exome sequencing identifies potential candidate genes for spina bifida derived from mouse models. Am J Med Genet A 2022; 188:1355-1367. [PMID: 35040250 PMCID: PMC8995376 DOI: 10.1002/ajmg.a.62644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 11/11/2022]
Abstract
Spina bifida (SB) is the second most common nonlethal congenital malformation. The existence of monogenic SB mouse models and human monogenic syndromes with SB features indicate that human SB may be caused by monogenic genes. We hypothesized that whole exome sequencing (WES) allows identification of potential candidate genes by (i) generating a list of 136 candidate genes for SB, and (ii) by unbiased exome-wide analysis. We generated a list of 136 potential candidate genes from three categories and evaluated WES data of 50 unrelated SB cases for likely deleterious variants in 136 potential candidate genes, and for potential SB candidate genes exome-wide. We identified 6 likely deleterious variants in 6 of the 136 potential SB candidate genes in 6 of the 50 SB cases, whereof 4 genes were derived from mouse models, 1 gene was derived from human nonsyndromic SB, and 1 gene was derived from candidate genes known to cause human syndromic SB. In addition, by unbiased exome-wide analysis, we identified 12 genes as potential candidates for SB. Identification of these 18 potential candidate genes in larger SB cohorts will help decide which ones can be considered as novel monogenic causes of human SB.
Collapse
Affiliation(s)
- Chunyan Wang
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Nephrology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Steve Seltzsam
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bixia Zheng
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Han Wilfred Wu
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Departments of Urology and Genetics, Case Western Reserve University and University Hospitals, Cleveland, OH, USA
| | - Camille Nicolas-Frank
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kirollos Yousef
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kit Sing Au
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nina Mann
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dalia Pantel
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Sophia Schneider
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca Schierbaum
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas M Kitzler
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dervla M. Connaughton
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Youying Mao
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rufeng Dai
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Makiko Nakayama
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jameela A. Kari
- Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
- Pediatric Nephrology Center of Excellence, s, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Sherif El Desoky
- Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
- Pediatric Nephrology Center of Excellence, s, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed Shalaby
- Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
- Pediatric Nephrology Center of Excellence, s, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Loai A. Eid
- Pediatric Nephrology Department, Dubai Hospital, Dubai, United Arab Emirates
| | - Hazem S. Awad
- Pediatric Nephrology Department, Dubai Hospital, Dubai, United Arab Emirates
| | - Velibor Tasic
- Medical Faculty Skopje, University Children’s Hospital, Skopje, North Macedonia
| | - Shrikant M. Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Richard P. Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York, USA
| | - Michelle A. Baum
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos R. Estrada
- Department of Urology, Boston Children’s Hospital; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Pandurangam G, Nagajyothi D, Saritha S, Anjum A. Case series of cranial and spinal dysraphism. NATIONAL JOURNAL OF CLINICAL ANATOMY 2022. [DOI: 10.4103/njca.njca_120_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
34
|
Alcantara MC, Suzuki K, Acebedo AR, Sakamoto Y, Nishita M, Minami Y, Kikuchi A, Yamada G. Stage-dependent function of Wnt5a during male external genitalia development. Congenit Anom (Kyoto) 2021; 61:212-219. [PMID: 34255394 DOI: 10.1111/cga.12438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022]
Abstract
External genitalia development in mice involves multiple developmental processes under the regulation of various signaling pathways. Wnt5a, one of the major Wnt ligands, is a crucial developmental regulator of outgrowing organs such as the limb, the mandible, and the external genitalia. Defects in Wnt5a signaling have been linked to Robinow syndrome, a genetic disorder in which male patients manifest a micropenis and defective urethral tube formation. Whereas Wnt5a is required for cell proliferation during embryonic external genitalia outgrowth, its role for urethral tube formation has yet to be understood. Here, we show that Wnt5a contributes to urethral tube formation as well as external genitalia outgrowth. Wnt5a is expressed in the embryonic external genitalia mesenchyme, and mesenchymal-specific conditional Wnt5a knockout mice resulted in hypospadias-like urethral defects. Early deletion of Wnt5a at E10.5 showed severe defects in both external genitalia outgrowth and urethral tube formation, along with reduced cell proliferation. The severe urethral tube defect persisted during later timing deletion of Wnt5a (E13.5). Further analyses revealed that loss of Wnt5a disrupted cell polarity and led to a reduction of the phosphorylated myosin light chain and the focal adhesion protein, vinculin. Altogether, these results suggest that Wnt5a coordinates cell proliferation and directed cell migration in a stage-dependent manner during male external genitalia development. Furthermore, Wnt5a may regulate cell polarity, focal adhesion formation, and cell contractility, leading to directed cell migration during male-type urethral formation in a manner that has not been reported in other organ fusion events.
Collapse
Affiliation(s)
- Mellissa C Alcantara
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Alvin R Acebedo
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuki Sakamoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Michiru Nishita
- Department of Biochemistry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuhiro Minami
- Faculty of Medical Sciences, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
35
|
Wolujewicz P, Steele JW, Kaltschmidt JA, Finnell RH, Ross ME. Unraveling the complex genetics of neural tube defects: From biological models to human genomics and back. Genesis 2021; 59:e23459. [PMID: 34713546 DOI: 10.1002/dvg.23459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
Neural tube defects (NTDs) are a classic example of preventable birth defects for which there is a proven-effective intervention, folic acid (FA); however, further methods of prevention remain unrealized. In the decades following implementation of FA nutritional fortification programs throughout at least 87 nations, it has become apparent that not all NTDs can be prevented by FA. In the United States, FA fortification only reduced NTD rates by 28-35% (Williams et al., 2015). As such, it is imperative that further work is performed to understand the risk factors associated with NTDs and their underlying mechanisms so that alternative prevention strategies can be developed. However, this is complicated by the sheer number of genes associated with neural tube development, the heterogeneity of observable phenotypes in human cases, the rareness of the disease, and the myriad of environmental factors associated with NTD risk. Given the complex genetic architecture underlying NTD pathology and the way in which that architecture interacts dynamically with environmental factors, further prevention initiatives will undoubtedly require precision medicine strategies that utilize the power of human genomics and modern tools for assessing genetic risk factors. Herein, we review recent advances in genomic strategies for discovering genetic variants associated with these defects, and new ways in which biological models, such as mice and cell culture-derived organoids, are leveraged to assess mechanistic functionality, the way these variants interact with other genetic or environmental factors, and their ultimate contribution to human NTD risk.
Collapse
Affiliation(s)
- Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - John W Steele
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Richard H Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Margaret Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
36
|
Basta LP, Hill-Oliva M, Paramore SV, Sharan R, Goh A, Biswas A, Cortez M, Little KA, Posfai E, Devenport D. New mouse models for high resolution and live imaging of planar cell polarity proteins in vivo. Development 2021; 148:271988. [PMID: 34463728 DOI: 10.1242/dev.199695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/24/2021] [Indexed: 01/10/2023]
Abstract
The collective polarization of cellular structures and behaviors across a tissue plane is a near universal feature of epithelia known as planar cell polarity (PCP). This property is controlled by the core PCP pathway, which consists of highly conserved membrane-associated protein complexes that localize asymmetrically at cell junctions. Here, we introduce three new mouse models for investigating the localization and dynamics of transmembrane PCP proteins: Celsr1, Fz6 and Vangl2. Using the skin epidermis as a model, we characterize and verify the expression, localization and function of endogenously tagged Celsr1-3xGFP, Fz6-3xGFP and tdTomato-Vangl2 fusion proteins. Live imaging of Fz6-3xGFP in basal epidermal progenitors reveals that the polarity of the tissue is not fixed through time. Rather, asymmetry dynamically shifts during cell rearrangements and divisions, while global, average polarity of the tissue is preserved. We show using super-resolution STED imaging that Fz6-3xGFP and tdTomato-Vangl2 can be resolved, enabling us to observe their complex localization along junctions. We further explore PCP fusion protein localization in the trachea and neural tube, and discover new patterns of PCP expression and localization throughout the mouse embryo.
Collapse
Affiliation(s)
- Lena P Basta
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Michael Hill-Oliva
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA.,Department of Medicine, Columbia University, New York, NY 10032USA
| | - Sarah V Paramore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Rishabh Sharan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Audrey Goh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA.,Research Computing, Office of Information Technology, Princeton University, Princeton, NJ 08544, USA
| | - Marvin Cortez
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Katherine A Little
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544USA
| |
Collapse
|
37
|
Dickkopf Proteins and Their Role in Cancer: A Family of Wnt Antagonists with a Dual Role. Pharmaceuticals (Basel) 2021; 14:ph14080810. [PMID: 34451907 PMCID: PMC8400703 DOI: 10.3390/ph14080810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022] Open
Abstract
The Wnt signaling pathway regulates crucial aspects such as cell fate determination, cell polarity and organogenesis during embryonic development. Wnt pathway deregulation is a hallmark of several cancers such as lung, gastric and liver cancer, and has been reported to be altered in others. Despite the general agreement reached by the scientific community on the oncogenic potential of the central components of the pathway, the role of the antagonist proteins remains less clear. Deregulation of the pathway may be caused by overexpression or downregulation of a wide range of antagonist proteins. Although there is growing information related to function and regulation of Dickkopf (DKK) proteins, their pharmacological potential as cancer therapeutics still has not been fully developed. This review provides an update on the role of DKK proteins in cancer and possible potential as therapeutic targets for the treatment of cancer; available compounds in pre-clinical or clinical trials are also reviewed.
Collapse
|
38
|
Gao FJ, Klinedinst D, Fernandez FX, Cheng B, Savonenko A, Devenney B, Li Y, Wu D, Pomper MG, Reeves RH. Forebrain Shh overexpression improves cognitive function and locomotor hyperactivity in an aneuploid mouse model of Down syndrome and its euploid littermates. Acta Neuropathol Commun 2021; 9:137. [PMID: 34399854 PMCID: PMC8365939 DOI: 10.1186/s40478-021-01237-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/01/2021] [Indexed: 11/10/2022] Open
Abstract
Down syndrome (DS) is the leading genetic cause of intellectual disability and causes early-onset dementia and cerebellar hypoplasia. The prevalence of attention deficit hyperactivity disorder is elevated in children with DS. The aneuploid DS mouse model "Ts65Dn" shows prominent brain phenotypes, including learning and memory deficits, cerebellar hypoplasia, and locomotor hyperactivity. Previous studies indicate that impaired Sonic hedgehog (Shh) signaling contributes to neurological phenotypes associated with DS and neurodegenerative diseases. However, because of a lack of working inducible Shh knock-in mice, brain region-specific Shh overexpression and its effects on cognitive function have not been studied in vivo. Here, with Gli1-LacZ reporter mice, we demonstrated that Ts65Dn had reduced levels of Gli1, a sensitive readout of Shh signaling, in both hippocampus and cerebellum at postnatal day 6. Through site-specific transgenesis, we generated an inducible human Shh knock-in mouse, TRE-bi-hShh-Zsgreen1 (TRE-hShh), simultaneously expressing dually-lipidated Shh-Np and Zsgreen1 marker in the presence of transactivator (tTA). Double transgenic mice "Camk2a-tTA;TRE-hShh" and "Pcp2-tTA;TRE-hShh" induced Shh overexpression and activated Shh signaling in a forebrain and cerebellum, respectively, specific manner from the perinatal period. Camk2a-tTA;TRE-hShh normalized locomotor hyperactivity and improved learning and memory in 3-month-old Ts65Dn, mitigated early-onset severe cognitive impairment in 7-month-old Ts65Dn, and enhanced spatial cognition in euploid mice. Camk2a-tTA;TRE-hShh cohort maintained until 600days old showed that chronic overexpression of Shh in forebrain from the perinatal period had no effect on longevity of euploid or Ts65Dn. Pcp2-tTA;TRE-hShh did not affect cognition but mitigated the phenotype of cerebellar hypoplasia in Ts65Dn. Our study provides the first in vivo evidence that Shh overexpression from the perinatal period protects DS brain integrity and enhances learning and memory in normal mice, indicating the broad therapeutic potential of Shh ligand for other neurological conditions. Moreover, the first inducible hShh site-specific knock-in mouse could be widely used for spatiotemporal Shh signaling regulation.
Collapse
Affiliation(s)
- Feng J Gao
- Department of Physiology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Genetic Medicine, John Hopkins University, Baltimore, MD, 21205, USA.
| | - Donna Klinedinst
- Department of Physiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
- BIO5 and McKnight Brain Research Institutes, Tucson, AZ, USA
| | - Bei Cheng
- Department of Radiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alena Savonenko
- Department of Pathology and Neurology, John Hopkins University, Baltimore, MD, 21205, USA
| | - Benjamin Devenney
- Department of Physiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yicong Li
- Department of Physiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Dan Wu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Martin G Pomper
- Department of Radiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Genetic Medicine, John Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
39
|
Tang NLS, Dobbs MB, Gurnett CA, Qiu Y, Lam TP, Cheng JCY, Hadley-Miller N. A Decade in Review after Idiopathic Scoliosis Was First Called a Complex Trait-A Tribute to the Late Dr. Yves Cotrel for His Support in Studies of Etiology of Scoliosis. Genes (Basel) 2021; 12:1033. [PMID: 34356049 PMCID: PMC8306836 DOI: 10.3390/genes12071033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 01/16/2023] Open
Abstract
Adolescent Idiopathic Scoliosis (AIS) is a prevalent and important spine disorder in the pediatric age group. An increased family tendency was observed for a long time, but the underlying genetic mechanism was uncertain. In 1999, Dr. Yves Cotrel founded the Cotrel Foundation in the Institut de France, which supported collaboration of international researchers to work together to better understand the etiology of AIS. This new concept of AIS as a complex trait evolved in this setting among researchers who joined the annual Cotrel meetings. It is now over a decade since the first proposal of the complex trait genetic model for AIS. Here, we review in detail the vast information about the genetic and environmental factors in AIS pathogenesis gathered to date. More importantly, new insights into AIS etiology were brought to us through new research data under the perspective of a complex trait. Hopefully, future research directions may lead to better management of AIS, which has a tremendous impact on affected adolescents in terms of both physical growth and psychological development.
Collapse
Affiliation(s)
- Nelson L. S. Tang
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Functional Genomics and Biostatistical Computing Laboratory, CUHK Shenzhen Research Institute, Shenzhen 518000, China
| | - Matthew B. Dobbs
- Dobbs Clubfoot Center, Paley Orthopedic and Spine Institute, West Palm Beach, FL 33401, USA;
| | - Christina A. Gurnett
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA;
| | - Yong Qiu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China;
| | - T. P. Lam
- Department of Orthopaedics & Traumatology and SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.P.L.); (J.C.Y.C.)
| | - Jack C. Y. Cheng
- Department of Orthopaedics & Traumatology and SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.P.L.); (J.C.Y.C.)
| | - Nancy Hadley-Miller
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80012, USA;
| |
Collapse
|
40
|
Torban E, Sokol SY. Planar cell polarity pathway in kidney development, function and disease. Nat Rev Nephrol 2021; 17:369-385. [PMID: 33547419 PMCID: PMC8967065 DOI: 10.1038/s41581-021-00395-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.
Collapse
Affiliation(s)
- Elena Torban
- McGill University and McGill University Health Center Research Institute, 1001 Boulevard Decarie, Block E, Montreal, Quebec, Canada, H4A3J1.,Corresponding authors: Elena Torban (); Sergei Sokol ()
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, USA,Corresponding authors: Elena Torban (); Sergei Sokol ()
| |
Collapse
|
41
|
Molecular mechanisms mediating asymmetric subcellular localisation of the core planar polarity pathway proteins. Biochem Soc Trans 2021; 48:1297-1308. [PMID: 32820799 PMCID: PMC7458395 DOI: 10.1042/bst20190404] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Abstract
Planar polarity refers to cellular polarity in an orthogonal plane to apicobasal polarity, and is seen across scales from molecular distributions of proteins to tissue patterning. In many contexts it is regulated by the evolutionarily conserved ‘core' planar polarity pathway that is essential for normal organismal development. Core planar polarity pathway components form asymmetric intercellular complexes that communicate polarity between neighbouring cells and direct polarised cell behaviours and the formation of polarised structures. The core planar polarity pathway consists of six structurally different proteins. In the fruitfly Drosophila melanogaster, where the pathway is best characterised, an intercellular homodimer of the seven-pass transmembrane protein Flamingo interacts on one side of the cell junction with the seven-pass transmembrane protein Frizzled, and on the other side with the four-pass transmembrane protein Strabismus. The cytoplasmic proteins Diego and Dishevelled are co-localised with Frizzled, and Prickle co-localises with Strabismus. Between these six components there are myriad possible molecular interactions, which could stabilise or destabilise the intercellular complexes and lead to their sorting into polarised distributions within cells. Post-translational modifications are key regulators of molecular interactions between proteins. Several post-translational modifications of core proteins have been reported to be of functional significance, in particular phosphorylation and ubiquitination. In this review, we discuss the molecular control of planar polarity and the molecular ecology of the core planar polarity intercellular complexes. Furthermore, we highlight the importance of understanding the spatial control of post-translational modifications in the establishment of planar polarity.
Collapse
|
42
|
Yue H, Li S, Qin J, Gao T, Lyu J, Liu Y, Wang X, Guan Z, Zhu Z, Niu B, Zhong R, Guo J, Wang J. Down-Regulation of Inpp5e Associated With Abnormal Ciliogenesis During Embryonic Neurodevelopment Under Inositol Deficiency. Front Neurol 2021; 12:579998. [PMID: 34093381 PMCID: PMC8170399 DOI: 10.3389/fneur.2021.579998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The inositol polyphosphate-5-phosphatase E (Inpp5e) gene is located on chromosome 9q34.3. The enzyme it encodes mainly hydrolyzes the 5-phosphate groups of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns (3,4,5) P3) and phosphatidylinositol (4,5)-bisphosphate (PtdIns (4,5)P2), which are closely related to ciliogenesis and embryonic neurodevelopment, through mechanisms that are largely unknown. Here we studied the role of Inpp5e gene in ciliogenesis during embryonic neurodevelopment using inositol-deficiency neural tube defects (NTDs) mouse and cell models. Confocal microscopy and scanning electron microscope were used to examine the number and the length of primary cilia. The dynamic changes of Inpp5e expression in embryonic murine brain tissues were observed during Embryonic Day 10.5-13.5 (E 10.5-13.5). Immunohistochemistry, western blot, polymerase chain reaction (PCR) arrays were applied to detect the expression of Inpp5e and cilia-related genes of the embryonic brain tissues in inositol deficiency NTDs mouse. Real-time quantitative PCR (RT-qPCR) was used to validate the candidate genes in cell models. The levels of inositol and PtdIns(3,4) P2 were measured using gas chromatography-mass spectrometry (GC-MS) and enzyme linked immunosorbent assay (ELISA), respectively. Our results showed that the expression levels of Inpp5e gradually decreased in the forebrain tissues of the control embryos, but no stable trend was observed in the inositol deficiency NTDs embryos. Inpp5e expression in inositol deficiency NTDs embryos was significantly decreased compared with the control tissues. The expression levels of Inpp5e gene and the PtdIns (3,4) P2 levels were also significantly decreased in the inositol deficient cell model. A reduced number and length of primary cilia were observed in NIH3T3 cells when inositol deficient. Three important cilia-related genes (Ift80, Mkks, Smo) were down-regulated significantly in the inositol-deficient NTDs mouse and cell models, and Smo was highly involved in NTDs. In summary, these findings suggested that down-regulation of Inpp5e might be associated with abnormal ciliogenesis during embryonic neurodevelopment, under conditions of inositol deficiency.
Collapse
Affiliation(s)
- Huixuan Yue
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Shen Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Jiaxing Qin
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Tingting Gao
- Beijing Key Laboratory of Environment and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jianjun Lyu
- Department of Pathology, InnoStar Bio-Tech Nantong Co., Ltd., Nantong, China
| | - Yu Liu
- Beijing Key Laboratory of Environment and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environment and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Zhao L, Liu D, Ma W, Gu H, Wei X, Luo W, Yuan Z. Bhlhe40/Sirt1 Axis-Regulated Mitophagy Is Implicated in All- Trans Retinoic Acid-Induced Spina Bifida Aperta. Front Cell Dev Biol 2021; 9:644346. [PMID: 33987177 PMCID: PMC8111003 DOI: 10.3389/fcell.2021.644346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Neural tube defects (NTDs) are the most severe congenital malformations that result from failure of neural tube closure during early embryonic development, and the underlying molecular mechanisms remain elusive. Mitophagy is the best-known way of mitochondrial quality control. However, the role and regulation of mitophagy in NTDs have not yet been elucidated. In this study, we used an all-trans retinoic acid (ATRA)-induced rat model to investigate mitophagy and its underlying mechanism in spina bifida aperta (SBA). The results of western blot, immunofluorescence and RT-qPCR analyses indicated that mitophagy was impaired and Sirt1 was downregulated in SBA. Administration of resveratrol-a strong specific Sirt1 activator-activated Sirt1, thus attenuating autophagy suppression and ameliorating SBA. RNA-sequencing and bioinformatics analysis results indicated that transcriptional regulation played an important role in NTDs. A luciferase reporter assay was performed to demonstrate that the transcription factor Bhlhe40 directly bound to and negatively regulated Sirt1 expression. Further, we discovered that the Bhlhe40/Sirt1 axis regulated mitophagy in neural stem cells. Collectively, our results for the first time demonstrate that Bhlhe40/Sirt1 axis regulated mitophagy is implicated in ATRA-induced SBA. Our findings provide new insights into pathogenesis of NTDs and a basis for potential therapeutic targets for NTDs.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
44
|
Ezan J, Moreau MM, Mamo TM, Shimbo M, Decroo M, Richter M, Peyroutou R, Rachel R, Tissir F, de Anda FC, Sans N, Montcouquiol M. Early loss of Scribble affects cortical development, interhemispheric connectivity and psychomotor activity. Sci Rep 2021; 11:9106. [PMID: 33907211 PMCID: PMC8079449 DOI: 10.1038/s41598-021-88147-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/01/2021] [Indexed: 12/03/2022] Open
Abstract
Neurodevelopmental disorders arise from combined defects in processes including cell proliferation, differentiation, migration and commissure formation. The evolutionarily conserved tumor-suppressor protein Scribble (Scrib) serves as a nexus to transduce signals for the establishment of apicobasal and planar cell polarity during these processes. Human SCRIB gene mutations are associated with neural tube defects and this gene is located in the minimal critical region deleted in the rare Verheij syndrome. In this study, we generated brain-specific conditional cKO mouse mutants and assessed the impact of the Scrib deletion on brain morphogenesis and behavior. We showed that embryonic deletion of Scrib in the telencephalon leads to cortical thickness reduction (microcephaly) and partial corpus callosum and hippocampal commissure agenesis. We correlated these phenotypes with a disruption in various developmental mechanisms of corticogenesis including neurogenesis, neuronal migration and axonal connectivity. Finally, we show that Scrib cKO mice have psychomotor deficits such as locomotor activity impairment and memory alterations. Altogether, our results show that Scrib is essential for early brain development due to its role in several developmental cellular mechanisms that could underlie some of the deficits observed in complex neurodevelopmental pathologies.
Collapse
Affiliation(s)
- Jerome Ezan
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France.
| | - Maité M Moreau
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Tamrat M Mamo
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Miki Shimbo
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Maureen Decroo
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Melanie Richter
- Germany Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronan Peyroutou
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Rivka Rachel
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Fadel Tissir
- Developmental Neurobiology Group, Institute of Neuroscience, University of Louvain, Avenue Mounier 73, Box B1.73.16, 1200, Brussels, Belgium
| | - Froylan Calderon de Anda
- Germany Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Sans
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Mireille Montcouquiol
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France.
| |
Collapse
|
45
|
Deng Z, Cangkrama M, Butt T, Jane SM, Carpinelli MR. Grainyhead-like transcription factors: guardians of the skin barrier. Vet Dermatol 2021; 32:553-e152. [PMID: 33843098 DOI: 10.1111/vde.12956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023]
Abstract
There has been selective pressure to maintain a skin barrier since terrestrial animals evolved 360 million years ago. These animals acquired an unique integumentary system with a keratinized, stratified, squamous epithelium surface barrier. The barrier protects against dehydration and entry of microbes and toxins. The skin barrier centres on the stratum corneum layer of the epidermis and consists of cornified envelopes cemented by the intercorneocyte lipid matrix. Multiple components of the barrier undergo cross-linking by transglutaminase (TGM) enzymes, while keratins provide additional mechanical strength. Cellular tight junctions also are crucial for barrier integrity. The grainyhead-like (GRHL) transcription factors regulate the formation and maintenance of the integument in diverse species. GRHL3 is essential for formation of the skin barrier during embryonic development, whereas GRHL1 maintains the skin barrier postnatally. This is achieved by transactivation of Tgm1 and Tgm5, respectively. In addition to its barrier function, GRHL3 plays key roles in wound repair and as an epidermal tumour suppressor. In its former role, GRHL3 activates the planar cell polarity signalling pathway to mediate wound healing by providing directional migration cues. In squamous epithelium, GRHL3 regulates the balance between proliferation and differentiation, and its loss induces squamous cell carcinoma (SCC). In the skin, this is mediated through increased expression of MIR21, which reduces the expression levels of GRHL3 and its direct target, PTEN, leading to activation of the PI3K-AKT signalling pathway. These data position the GRHL family as master regulators of epidermal homeostasis across a vast gulf of evolutionary history.
Collapse
Affiliation(s)
- Zihao Deng
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Michael Cangkrama
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Tariq Butt
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Stephen M Jane
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Marina R Carpinelli
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
46
|
Au KS, Hebert L, Hillman P, Baker C, Brown MR, Kim DK, Soldano K, Garrett M, Ashley-Koch A, Lee S, Gleeson J, Hixson JE, Morrison AC, Northrup H. Human myelomeningocele risk and ultra-rare deleterious variants in genes associated with cilium, WNT-signaling, ECM, cytoskeleton and cell migration. Sci Rep 2021; 11:3639. [PMID: 33574475 PMCID: PMC7878900 DOI: 10.1038/s41598-021-83058-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
Myelomeningocele (MMC) affects one in 1000 newborns annually worldwide and each surviving child faces tremendous lifetime medical and caregiving burdens. Both genetic and environmental factors contribute to disease risk but the mechanism is unclear. This study examined 506 MMC subjects for ultra-rare deleterious variants (URDVs, absent in gnomAD v2.1.1 controls that have Combined Annotation Dependent Depletion score ≥ 20) in candidate genes either known to cause abnormal neural tube closure in animals or previously associated with human MMC in the current study cohort. Approximately 70% of the study subjects carried one to nine URDVs among 302 candidate genes. Half of the study subjects carried heterozygous URDVs in multiple genes involved in the structure and/or function of cilium, cytoskeleton, extracellular matrix, WNT signaling, and/or cell migration. Another 20% of the study subjects carried heterozygous URDVs in candidate genes associated with gene transcription regulation, folate metabolism, or glucose metabolism. Presence of URDVs in the candidate genes involving these biological function groups may elevate the risk of developing myelomeningocele in the study cohort.
Collapse
Affiliation(s)
- K S Au
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - L Hebert
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - P Hillman
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - C Baker
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - M R Brown
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - D-K Kim
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - K Soldano
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - M Garrett
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - A Ashley-Koch
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - S Lee
- Department of Neurosciences and Pediatrics, University of California-San Diego, La Jolla, CA, 92093, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, 92025, USA
| | - J Gleeson
- Department of Neurosciences and Pediatrics, University of California-San Diego, La Jolla, CA, 92093, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, 92025, USA
| | - J E Hixson
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - A C Morrison
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - H Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
47
|
Stahley SN, Basta LP, Sharan R, Devenport D. Celsr1 adhesive interactions mediate the asymmetric organization of planar polarity complexes. eLife 2021; 10:e62097. [PMID: 33529151 PMCID: PMC7857726 DOI: 10.7554/elife.62097] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/23/2021] [Indexed: 12/31/2022] Open
Abstract
To orchestrate collective polarization across tissues, planar cell polarity (PCP) proteins localize asymmetrically to cell junctions, a conserved feature of PCP that requires the atypical cadherin Celsr1. We report that mouse Celsr1 engages in both trans- and cis-interactions, and organizes into dense and highly stable punctate assemblies. We provide evidence suggesting that PCP-mutant variant of Celsr1, Celsr1Crsh, selectively impairs lateral cis-interactions. Although Celsr1Crsh mediates cell adhesion in trans, it displays increased mobility, diminishes junctional enrichment, and fails to engage in homophilic adhesion with the wild-type protein, phenotypes that can be rescued by ectopic cis-dimerization. Using biochemical and super-resolution microscopy approaches, we show that although Celsr1Crsh physically interacts with PCP proteins Frizzled6 and Vangl2, it fails to organize these proteins into asymmetric junctional complexes. Our results suggest mammalian Celsr1 functions not only as a trans-adhesive homodimeric bridge, but also as an organizer of intercellular Frizzled6 and Vangl2 asymmetry through lateral, cis-interactions.
Collapse
Affiliation(s)
- Sara N Stahley
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Lena P Basta
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Rishabh Sharan
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Danelle Devenport
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
48
|
Jin SC, Dong W, Kundishora AJ, Panchagnula S, Moreno-De-Luca A, Furey CG, Allocco AA, Walker RL, Nelson-Williams C, Smith H, Dunbar A, Conine S, Lu Q, Zeng X, Sierant MC, Knight JR, Sullivan W, Duy PQ, DeSpenza T, Reeves BC, Karimy JK, Marlier A, Castaldi C, Tikhonova IR, Li B, Peña HP, Broach JR, Kabachelor EM, Ssenyonga P, Hehnly C, Ge L, Keren B, Timberlake AT, Goto J, Mangano FT, Johnston JM, Butler WE, Warf BC, Smith ER, Schiff SJ, Limbrick DD, Heuer G, Jackson EM, Iskandar BJ, Mane S, Haider S, Guclu B, Bayri Y, Sahin Y, Duncan CC, Apuzzo MLJ, DiLuna ML, Hoffman EJ, Sestan N, Ment LR, Alper SL, Bilguvar K, Geschwind DH, Günel M, Lifton RP, Kahle KT. Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nat Med 2020; 26:1754-1765. [PMID: 33077954 PMCID: PMC7871900 DOI: 10.1038/s41591-020-1090-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023]
Abstract
Congenital hydrocephalus (CH), characterized by enlarged brain ventricles, is considered a disease of excessive cerebrospinal fluid (CSF) accumulation and thereby treated with neurosurgical CSF diversion with high morbidity and failure rates. The poor neurodevelopmental outcomes and persistence of ventriculomegaly in some post-surgical patients highlight our limited knowledge of disease mechanisms. Through whole-exome sequencing of 381 patients (232 trios) with sporadic, neurosurgically treated CH, we found that damaging de novo mutations account for >17% of cases, with five different genes exhibiting a significant de novo mutation burden. In all, rare, damaging mutations with large effect contributed to ~22% of sporadic CH cases. Multiple CH genes are key regulators of neural stem cell biology and converge in human transcriptional networks and cell types pertinent for fetal neuro-gliogenesis. These data implicate genetic disruption of early brain development, not impaired CSF dynamics, as the primary pathomechanism of a significant number of patients with sporadic CH.
Collapse
Affiliation(s)
- Sheng Chih Jin
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Weilai Dong
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Shreyas Panchagnula
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andres Moreno-De-Luca
- Autism & Developmental Medicine Institute, Genomic Medicine Institute, Department of Radiology, Geisinger, Danville, PA, USA
| | - Charuta G Furey
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - August A Allocco
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Rebecca L Walker
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Hannah Smith
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Ashley Dunbar
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Sierra Conine
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Xue Zeng
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Michael C Sierant
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - James R Knight
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - William Sullivan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Jason K Karimy
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Arnaud Marlier
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | | | - Irina R Tikhonova
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Helena Perez Peña
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, UK
| | - James R Broach
- Institute for Personalized Medicine, The Penn State College of Medicine, Hershey, PA, USA
| | | | | | - Christine Hehnly
- Departments of Neurosurgery, Engineering Science & Mechanics, and Physics; Center for Neural Engineering and Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Li Ge
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Boris Keren
- Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme", Paris, France
| | - Andrew T Timberlake
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY, USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward R Smith
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven J Schiff
- Departments of Neurosurgery, Engineering Science & Mechanics, and Physics; Center for Neural Engineering and Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - David D Limbrick
- Department of Neurological Surgery and Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory Heuer
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bermans J Iskandar
- Department of Neurological Surgery, University of Wisconsin Medical School, Madison, WI, USA
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, UK
| | - Bulent Guclu
- Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Yasar Bayri
- Department of Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey
| | - Yener Sahin
- Department of Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey
| | - Charles C Duncan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Michael L J Apuzzo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Michael L DiLuna
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Ellen J Hoffman
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Laura R Ment
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Murat Günel
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
49
|
Detecting New Allies: Modifier Screen Identifies a Genetic Interaction Between Imaginal disc growth factor 3 and combover, a Rho-kinase Substrate, During Dorsal Appendage Tube Formation in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:3585-3599. [PMID: 32855169 PMCID: PMC7534437 DOI: 10.1534/g3.120.401476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biological tube formation underlies organ development and, when disrupted, can cause severe birth defects. To investigate the genetic basis of tubulogenesis, we study the formation of Drosophila melanogaster eggshell structures, called dorsal appendages, which are produced by epithelial tubes. Previously we found that precise levels of Drosophila Chitinase-Like Proteins (CLPs), encoded by the Imaginal disc growth factor (Idgf) gene family, are needed to regulate dorsal-appendage tube closure and tube migration. To identify factors that act in the Idgf pathway, we developed a genetic modifier screen based on the finding that overexpressing Idgf3 causes dorsal appendage defects with ∼50% frequency. Using a library of partially overlapping heterozygous deficiencies, we scanned chromosome 3L and found regions that enhanced or suppressed the Idgf3-overexpression phenotype. Using smaller deletions, RNAi, and mutant alleles, we further mapped five regions and refined the interactions to 58 candidate genes. Importantly, mutant alleles identified combover (cmb), a substrate of Rho-kinase (Rok) and a component of the Planar Cell Polarity (PCP) pathway, as an Idgf3-interacting gene: loss of function enhanced while gain of function suppressed the dorsal appendage defects. Since PCP drives cell intercalation in other systems, we asked if cmb/+ affected cell intercalation in our model, but we found no evidence of its involvement in this step. Instead, we found that loss of cmb dominantly enhanced tube defects associated with Idgf3 overexpression by expanding the apical area of dorsal appendage cells. Apical surface area determines tube volume and shape; in this way, Idgf3 and cmb regulate tube morphology.
Collapse
|
50
|
Hebert L, Hillman P, Baker C, Brown M, Ashley-Koch A, Hixson JE, Morrison AC, Northrup H, Au KS. Burden of rare deleterious variants in WNT signaling genes among 511 myelomeningocele patients. PLoS One 2020; 15:e0239083. [PMID: 32970752 PMCID: PMC7514064 DOI: 10.1371/journal.pone.0239083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022] Open
Abstract
Genes in the noncanonical WNT signaling pathway controlling planar cell polarity have been linked to the neural tube defect myelomeningocele. We hypothesized that some genes in the WNT signaling network have a higher mutational burden in myelomeningocele subjects than in reference subjects in gnomAD. Exome sequencing data from 511 myelomeningocele subjects was obtained in-house and data from 29,940 ethnically matched subjects was provided by version 2 of the publicly available Genome Aggregation Database. To compare mutational burden, we collapsed rare deleterious variants across each of 523 human WNT signaling genes in case and reference populations. Ten WNT signaling genes were disrupted with a higher mutational burden among Mexican American myelomeningocele subjects compared to reference subjects (Fishers exact test, P ≤ 0.05) and seven different genes were disrupted among individuals of European ancestry compared to reference subjects. Gene ontology enrichment analyses indicate that genes disrupted only in the Mexican American population play a role in planar cell polarity whereas genes identified in both populations are important for the regulation of canonical WNT signaling. In summary, evidence for WNT signaling genes that may contribute to myelomeningocele in humans is presented and discussed.
Collapse
Affiliation(s)
- Luke Hebert
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Paul Hillman
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Craig Baker
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Michael Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Allison Ashley-Koch
- Department of Medicine and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States of America
| | - James E. Hixson
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Hope Northrup
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Kit Sing Au
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
- * E-mail:
| |
Collapse
|