1
|
Chatterjee S, Maity A, Bahadur RP. Allostery and inter-domain dynamics in NXF1: An insight into viral CTE-RNA binding. Int J Biol Macromol 2025; 306:141374. [PMID: 39988168 DOI: 10.1016/j.ijbiomac.2025.141374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Nucleocytoplasmic export of mRNA is a fundamental process in eukaryotic cells, facilitating the transportation of mRNA transcripts from nucleus to cytoplasm. Central to this pathway is Nuclear Export Factor 1 (NXF1), a key RNA binding protein (RBP) mediating mRNA export through the Nuclear Pore Complex (NPC). The significance of NXF1 in the export pathway extends to viral infections and neurodegenerative diseases where aberrations in nucleocytoplasmic transport have been identified as critical factors in disease progression. This study focuses on the structural dynamics and binding interactions of NXF1 with Constitutive Transport Element (CTE) RNA. Through molecular dynamics simulation, we explore the conformational shift and stability of NXF1 upon RNA binding and assess the impact of point mutations on the binding affinity. Moreover, our study highlights allosteric communication between RNA Recognition Motif (RRM) and Leucine-Rich Repeat (LRR) domains of NXF1 upon RNA binding. Using network analysis, we identify potential allosteric sites and assess the impact of point mutations, showing their dual roles in RNA binding and allosteric regulation. This study advances the understanding of RNA recognition by NXF1 and lays the foundation for future therapeutic strategies targeting impaired NXF1-RNA interactions in diseases associated with nucleocytoplasmic transport defects.
Collapse
Affiliation(s)
- Sonali Chatterjee
- Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Atanu Maity
- Bioinformatics Centre, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Bioinformatics Centre, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
2
|
Pashkov EA, Shikvin DA, Pashkov GA, Nagieva FG, Bogdanova EA, Bykov AS, Pashkov EP, Svitich OA, Zverev VV. Assessment of the preventive effect of knockdown of cellular genes NXF1, PRPS1 PRPS1 and NAA10 in influenza infection in an in vitro model. Vopr Virusol 2025; 70:66-77. [PMID: 40233338 DOI: 10.36233/0507-4088-289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Indexed: 04/17/2025]
Abstract
INTRODUCTION Influenza is an acute respiratory viral infectious disease caused by the influenza viruses. Current preventive and therapeutic approaches are of great anti-epidemic importance, but there are a number of problems, such as the rapid emergence of resistant strains, the lack of cross-immunity and the effectiveness of vaccines. One of the approaches to the development of anti-influenza agents is the use of RNA interference and small interfering RNAs complementary to the mRNA target of viral and cellular genes. Aim ‒ to evaluate the prophylactic anti-influenza effect of siRNAs directed to the cellular genes NXF1, PRPS1 and NAA10 in an in vitro model. MATERIALS AND METHODS Antigenic variants of influenza A virus: A/California/7/09 (H1N1), A/WSN/33 (H1N1) and A/Brisbane/59/07 (H1N1); cell cultures A549 and MDCK. The study was performed using molecular genetic (transfection, NC isolation, RT-PCR-RV) and virological (cell culture infection, titration by visual CPE, viral titer assessment using the Ramakrishnan method) methods. RESULTS It was shown that siRNAs targeting the cellular genes NXF1, PRPS1 and NAA10, when used prophylactically in cell culture at a concentration of 0.25 μg per well, during infection with influenza virus strains A/California/7/09 (H1N1), A/WSN/33 (H1N1) and A/Brisbane/59/07 (H1N1) at a multiplicity of infection of 0.01, reduced viral replication to a level of 220 TCID50 per 1 ml of cell medium, whereas in control untreated cells the viral yield was ~106 TCID50 per 1 ml of medium. CONCLUSIONS Reproduction of influenza A viruses directly depends on the protein products of the NXF1, PRPS1, and NAA10 genes. Reduced expression of these genes disrupts the life cycle and activity of influenza viruses. Such an approach can potentially be studied and used for closely and distantly related representatives of other virus families.
Collapse
Affiliation(s)
- E A Pashkov
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - D A Shikvin
- Moscow State University of Fine Chemical Technologies
| | - G A Pashkov
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - F G Nagieva
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
| | - E A Bogdanova
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - A S Bykov
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - E P Pashkov
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - O A Svitich
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - V V Zverev
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| |
Collapse
|
3
|
Zhang X, Lim K, Qiu Y, Hazawa M, Wong RW. Strategies for the Viral Exploitation of Nuclear Pore Transport Pathways. Viruses 2025; 17:151. [PMID: 40006906 PMCID: PMC11860923 DOI: 10.3390/v17020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Viruses frequently exploit the host's nucleocytoplasmic trafficking machinery to facilitate their replication and evade immune defenses. By encoding specialized proteins and other components, they strategically target host nuclear transport receptors (NTRs) and nucleoporins within the spiderweb-like inner channel of the nuclear pore complex (NPC), enabling efficient access to the host nucleus. This review explores the intricate mechanisms governing the nuclear import and export of viral components, with a focus on the interplay between viral factors and host determinants that are essential for these processes. Given the pivotal role of nucleocytoplasmic shuttling in the viral life cycle, we also examine therapeutic strategies aimed at disrupting the host's nuclear transport pathways. This includes evaluating the efficacy of pharmacological inhibitors in impairing viral replication and assessing their potential as antiviral treatments. Furthermore, we emphasize the need for continued research to develop targeted therapies that leverage vulnerabilities in nucleocytoplasmic trafficking. Emerging high-resolution techniques, such as advanced imaging and computational modeling, are transforming our understanding of the dynamic interactions between viruses and the NPC. These cutting-edge tools are driving progress in identifying novel therapeutic opportunities and uncovering deeper insights into viral pathogenesis. This review highlights the importance of these advancements in paving the way for innovative antiviral strategies.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Yujia Qiu
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Masaharu Hazawa
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
4
|
Qi C, Zhao D, Wang X, Hu L, Wang Y, Wu H, Li F, Zhou J, Zhang T, Qi A, Huo Y, Tu Q, Zhong S, Yuan H, Lv D, Yan S, Ouyang H, Pang D, Xie Z. Identification of porcine PARP11 as a restricted factor for pseudorabies virus. Front Cell Infect Microbiol 2024; 14:1414827. [PMID: 39445214 PMCID: PMC11496260 DOI: 10.3389/fcimb.2024.1414827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction PRV infection in swine can cause devastating disease and pose a potential threat to humans. Advancing the interplay between PRV and host is essential to elucidate the pathogenic mechanism of PRV and identify novel anti-PRV targets. Methods PARP11-KO PK-15 cells were firstly constructed by CRISPR/Cas9 technology. Next, the effect of PARP11-KO on PRV infection was determined by RT-qPCR, TCID50 assay, RNA-seq, and western blot. Results and discussion In this study, we identified PARP11 as a host factor that can significantly affect PRV infection. Inhibition of PARP11 and knockout of PARP11 can significantly promoted PRV infection. Subsequently, we further found that PARP11 knockout upregulated the transcription of NXF1 and CRM1, resulting in enhanced transcription of viral genes. Furthermore, we also found that PARP11 knockout could activate the autophagy pathway and suppress the mTOR pathway during PRV infection. These findings could provide insight into the mechanism in which PARP11 participated during PRV infection and offer a potential target to develop anti-PRV therapies.
Collapse
Affiliation(s)
- Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Dehua Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Lanxin Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yao Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Heyong Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Tianyi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Aosi Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yuran Huo
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Qiuse Tu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Shuyu Zhong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Dongmei Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Shouqing Yan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
- Laboratory of Biotechnology and Biomedical Research, Shenzhen Kingsino Technology Co., Ltd., Shenzhen, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| |
Collapse
|
5
|
Guillen JV, Glaunsinger BA. SARS-CoV-2 Nsp1 traps RNA in the nucleus to escape immune detection. Proc Natl Acad Sci U S A 2024; 121:e2408794121. [PMID: 38843251 PMCID: PMC11194585 DOI: 10.1073/pnas.2408794121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Affiliation(s)
- Jaresley V. Guillen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA94720
| | - Britt A. Glaunsinger
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA94720
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA94720
- HHMI, Berkeley, CA94720
| |
Collapse
|
6
|
Bodmer BS, Hoenen T. Reverse Genetics Systems for Filoviruses. Methods Mol Biol 2024; 2733:1-14. [PMID: 38064023 DOI: 10.1007/978-1-0716-3533-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Filoviruses are causative agents of severe hemorrhagic fevers with high case fatality rates in humans. For studies of virus biology and the subsequent development of countermeasures, reverse genetic systems, and especially those facilitating the generation of recombinant filoviruses, are indispensable. Here, we describe the generation of recombinant filoviruses from cDNA.
Collapse
Affiliation(s)
- Bianca S Bodmer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany.
| |
Collapse
|
7
|
Almeida-Pinto F, Pinto R, Rocha J. Navigating the Complex Landscape of Ebola Infection Treatment: A Review of Emerging Pharmacological Approaches. Infect Dis Ther 2024; 13:21-55. [PMID: 38240994 PMCID: PMC10828234 DOI: 10.1007/s40121-023-00913-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
In 1976 Ebola revealed itself to the world, marking the beginning of a series of localized outbreaks. However, it was the Ebola outbreak that began in 2013 that incited fear and anxiety around the globe. Since then, our comprehension of the virus has been steadily expanding. Ebola virus (EBOV), belonging to the Orthoebolavirus genus of the Filoviridae family, possesses a non-segmented, negative single-stranded RNA genome comprising seven genes that encode multiple proteins. These proteins collectively orchestrate the intricate process of infecting host cells. It is not possible to view each protein as monofunctional. Instead, they synergistically contribute to the pathogenicity of the virus. Understanding this multifaceted replication cycle is crucial for the development of effective antiviral strategies. Currently, two antibody-based therapeutics have received approval for treating Ebola virus disease (EVD). In 2022, the first evidence-based clinical practice guideline dedicated to specific therapies for EVD was published. Although notable progress has been made in recent years, deaths still occur. Consequently, there is an urgent need to enhance the therapeutic options available to improve the outcomes of the disease. Emerging therapeutics can target viral proteins as direct-acting antivirals or host factors as host-directed antivirals. They both have advantages and disadvantages. One way to bypass some disadvantages is to repurpose already approved drugs for non-EVD indications to treat EVD. This review offers detailed insight into the role of each viral protein in the replication cycle of the virus, as understanding how the virus interacts with host cells is critical to understanding how emerging therapeutics exert their activity. Using this knowledge, this review delves into the intricate mechanisms of action of current and emerging therapeutics.
Collapse
Affiliation(s)
| | - Rui Pinto
- Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMED.ULisboa), 1649-003, Lisbon, Portugal
- Dr. Joaquim Chaves, Medicine Laboratory, Joaquim Chaves Saúde (JCS), Carnaxide, Portugal
| | - João Rocha
- Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMED.ULisboa), 1649-003, Lisbon, Portugal
| |
Collapse
|
8
|
Bodmer BS, Vallbracht M, Ushakov DS, Wendt L, Chlanda P, Hoenen T. Ebola virus inclusion bodies are liquid organelles whose formation is facilitated by nucleoprotein oligomerization. Emerg Microbes Infect 2023; 12:2223727. [PMID: 37306660 PMCID: PMC10288931 DOI: 10.1080/22221751.2023.2223727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Viral RNA synthesis of several non-segmented, negative-sense RNA viruses (NNSVs) takes place in inclusion bodies (IBs) that show properties of liquid organelles, which are formed by liquid-liquid phase separation of scaffold proteins. It is believed that this is driven by intrinsically disordered regions (IDRs) and/or multiple copies of interaction domains, which for NNSVs are usually located in their nucleo - and phosphoproteins. In contrast to other NNSVs, the Ebola virus (EBOV) nucleoprotein NP alone is sufficient to form IBs without the need for a phosphoprotein, and to facilitate the recruitment of other viral proteins into these structures. While it has been proposed that also EBOV IBs are liquid organelles, this has so far not been formally demonstrated. Here we used a combination of live cell microscopy, fluorescence recovery after photobleaching assays, and mutagenesis approaches together with reverse genetics-based generation of recombinant viruses to study the formation of EBOV IBs. Our results demonstrate that EBOV IBs are indeed liquid organelles, and that oligomerization but not IDRs of the EBOV nucleoprotein plays a key role in their formation. Additionally, VP35 (often considered the phosphoprotein-equivalent of EBOV) is not essential for IB formation, but alters their liquid behaviour. These findings define the molecular mechanism for the formation of EBOV IBs, which play a central role in the life cycle of this deadly virus.
Collapse
Affiliation(s)
- Bianca S. Bodmer
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Melina Vallbracht
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dmitry S. Ushakov
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Lisa Wendt
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Petr Chlanda
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Hoenen
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
9
|
Vucetic A, Lafleur A, Côté M, Kobasa D, Chan M, Alvarez F, Piccirillo C, Dong G, Olivier M. Extracellular vesicle storm during the course of Ebola virus infection in primates. Front Cell Infect Microbiol 2023; 13:1275277. [PMID: 38035334 PMCID: PMC10684970 DOI: 10.3389/fcimb.2023.1275277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Ebola virus (EBOV) is an RNA virus of the Filoviridae family that is responsible for outbreaks of hemorrhagic fevers in primates with a lethality rate as high as 90%. EBOV primarily targets host macrophages leading to cell activation and systemic cytokine storm, and fatal infection is associated with an inhibited interferon response, and lymphopenia. The EBOV surface glycoprotein (GP) has been shown to directly induce T cell depletion and can be secreted outside the virion via extracellular vesicles (EVs), though most studies are limited to epithelial cells and underlying mechanisms remain poorly elucidated. Methods To assess the role of GP on EBOV-induced dysregulation of host immunity, we first utilized EBOV virus-like particles (VLPs) expressing VP40 and NP either alone (Bald-VLP) or in conjunction with GP (VLP-GP) to investigate early inflammatory responses in THP-1 macrophages and in a murine model. We then sought to decipher the role of non-classical inflammatory mediators such as EVs over the course of EBOV infection in two EBOV-infected rhesus macaques by isolating and characterizing circulatory EVs throughout disease progression using size exclusion chromatography, nanoparticle tracking-analysis, and LC-MS/MS. Results While all VLPs could induce inflammatory mediators and recruit small peritoneal macrophages, pro-inflammatory cytokine and chemokine gene expression was exacerbated by the presence of GP. Further, quantification of EVs isolated from infected rhesus macaques revealed that the concentration of vesicles peaked in circulation at the terminal stage, at which time EBOV GP could be detected in host-derived exosomes. Moreover, comparative proteomics conducted across EV populations isolated from serum at various time points before and after infection revealed differences in host-derived protein content that were most significantly pronounced at the endpoint of infection, including significant expression of mediators of TLR4 signaling. Discussion These results suggest a dynamic role for EVs in the modification of disease states in the context of EBOV. Overall, our work highlights the importance of viral factors, such as the GP, and host derived EVs in the inflammatory cascade and pathogenesis of EBOV, which can be collectively further exploited for novel antiviral development.
Collapse
Affiliation(s)
- Andrea Vucetic
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Andrea Lafleur
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Darwyn Kobasa
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Mable Chan
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Ciriaco Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - George Dong
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
10
|
Yang S, Shen W, Hu J, Cai S, Zhang C, Jin S, Guan X, Wu J, Wu Y, Cui J. Molecular mechanisms and cellular functions of liquid-liquid phase separation during antiviral immune responses. Front Immunol 2023; 14:1162211. [PMID: 37251408 PMCID: PMC10210139 DOI: 10.3389/fimmu.2023.1162211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.
Collapse
Affiliation(s)
- Shuai Yang
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weishan Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sihui Cai
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chenqiu Zhang
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Becker N, Maisner A. Nipah Virus Impairs Autocrine IFN Signaling by Sequestering STAT1 and STAT2 into Inclusion Bodies. Viruses 2023; 15:554. [PMID: 36851768 PMCID: PMC9967463 DOI: 10.3390/v15020554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes fatal infections in humans. As with most disease-causing viruses, the pathogenic potential of NiV is linked to its ability to block antiviral responses, e.g., by antagonizing IFN signaling through blocking STAT proteins. One of the STAT1/2-binding proteins of NiV is the phosphoprotein (P), but its functional role in IFN antagonism in a full viral context is not well defined. As NiV P is required for genome replication and specifically accumulates in cytosolic inclusion bodies (IBs) of infected cells, we hypothesized that this compartmentalization might play a role in P-mediated IFN antagonism. Supporting this notion, we show here that NiV can inhibit IFN-dependent antiviral signaling via a NiV P-dependent sequestration of STAT1 and STAT2 into viral IBs. Consequently, the phosphorylation/activation and nuclear translocation of STAT proteins in response to IFN is limited, as indicated by the lack of nuclear pSTAT in NiV-infected cells. Blocking autocrine IFN signaling by sequestering STAT proteins in IBs is a not yet described mechanism by which NiV could block antiviral gene expression and provides the first evidence that cytosolic NiV IBs may play a functional role in IFN antagonism.
Collapse
Affiliation(s)
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| |
Collapse
|
12
|
Bohn P, Waßmann I, Wendt L, Leske A, Hoenen T, Tews BA, Groseth A. A dsRNA-binding mutant reveals only a minor role of exonuclease activity in interferon antagonism by the arenavirus nucleoprotein. PLoS Pathog 2023; 19:e1011049. [PMID: 36603036 PMCID: PMC9815661 DOI: 10.1371/journal.ppat.1011049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
The arenavirus nucleoprotein (NP) plays an important role in the virus' ability to block interferon (IFN) production, and its exonuclease function appears to contribute to this activity. However, efforts to analyze this contribution are complicated by the functional overlap between the exonuclease active site and a neighboring region involved in IKKε-binding and subsequent inhibition of IRF3 activation, which also plays an important role in IFN production. To circumvent this issue, we mutated a residue located away from the active site that is involved in binding of the dsRNA substrate being targeted for exonuclease digestion, i.e. H426A. We found that expression of Tacaribe virus (TCRV) NP containing this RNA-binding H426A mutation was still able to efficiently block IFN-β promoter activity in response to Sendai virus infection, despite being strongly impaired in its exonuclease activity. This was in contrast to a conventional exonuclease active site mutant (E388A), which was impaired with respect to both exonuclease activity and IFN antagonism. Importantly, growth of a recombinant virus encoding the RNA-binding mutation (rTCRV-H426A) was similar to wild-type in IFN-deficient cells, unlike the active site mutant (rTCRV-E388A), which was already markedly impaired in these cells. Further, in IFN-competent cells, the TCRV-H426A RNA-binding mutant showed more robust growth and delayed IFN-β mRNA upregulation compared to the TCRV-E388A active site mutant. Taken together, this novel mutational approach, which allows us to now dissect the different contributions of the NP exonuclease activity and IKKε-binding/IRF3 inhibition to IFN antagonism, clearly suggests that conventional exonuclease mutants targeting the active site overestimate the contribution of the exonuclease function, and that rather other IFN antagonistic functions of NP play the dominant role in IFN-antagonism.
Collapse
Affiliation(s)
- Patrick Bohn
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Irke Waßmann
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Anne Leske
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Birke A. Tews
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald–Insel Riems, Germany
| | - Allison Groseth
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- * E-mail:
| |
Collapse
|
13
|
Evidence for Viral mRNA Export from Ebola Virus Inclusion Bodies by the Nuclear RNA Export Factor NXF1. J Virol 2022; 96:e0090022. [PMID: 36040180 PMCID: PMC9517727 DOI: 10.1128/jvi.00900-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many negative-sense RNA viruses, including the highly pathogenic Ebola virus (EBOV), use cytoplasmic inclusion bodies (IBs) for viral RNA synthesis. However, it remains unclear how viral mRNAs are exported from these IBs for subsequent translation. We recently demonstrated that the nuclear RNA export factor 1 (NXF1) is involved in a late step in viral protein expression, i.e., downstream of viral mRNA transcription, and proposed it to be involved in this mRNA export process. We now provide further evidence for this function by showing that NXF1 is not required for translation of viral mRNAs, thus pinpointing its function to a step between mRNA transcription and translation. We further show that RNA binding of both NXF1 and EBOV NP is necessary for export of NXF1 from IBs, supporting a model in which NP hands viral mRNA over to NXF1 for export. Mapping of NP-NXF1 interactions allowed refinement of this model, revealing two separate interaction sites, one of them directly involving the RNA binding cleft of NP, even though these interactions are RNA-independent. Immunofluorescence analyses demonstrated that individual NXF1 domains are sufficient for its recruitment into IBs, and complementation assays helped to define NXF1 domains important for its function in the EBOV life cycle. Finally, we show that NXF1 is also required for protein expression of other viruses that replicate in cytoplasmic IBs, including Lloviu and Junín virus. These data suggest a role for NXF1 in viral mRNA export from IBs for various viruses, making it a potential target for broadly active antivirals. IMPORTANCE Filoviruses such as the Ebola virus (EBOV) cause severe hemorrhagic fevers with high case fatality rates and limited treatment options. The identification of virus-host cell interactions shared among several viruses would represent promising targets for the development of broadly active antivirals. In this study, we reveal the mechanistic details of how EBOV usurps the nuclear RNA export factor 1 (NXF1) to export viral mRNAs from viral inclusion bodies (IBs). We further show that NXF1 is not only required for the EBOV life cycle but also necessary for other viruses known to replicate in cytoplasmic IBs, including the filovirus Lloviu virus and the highly pathogenic arenavirus Junín virus. This suggests NXF1 as a promising target for the development of broadly active antivirals.
Collapse
|
14
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
15
|
Assessment of Life Cycle Modeling Systems as Prediction Tools for a Possible Attenuation of Recombinant Ebola Viruses. Viruses 2022; 14:v14051044. [PMID: 35632785 PMCID: PMC9147524 DOI: 10.3390/v14051044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Ebola virus (EBOV) causes hemorrhagic fever in humans with high case fatality rates. In the past, a number of recombinant EBOVs expressing different reporters from additional transcription units or as fusion proteins have been rescued. These viruses are important tools for the study of EBOV, and their uses include high throughput screening approaches, the analysis of intercellular localization of viral proteins and of tissue distribution of viruses, and the study of pathogenesis in vivo. However, they all show, at least in vivo, attenuation compared to wild type virus, and the basis of this attenuation is only poorly understood. Unfortunately, rescue of these viruses is a lengthy and not always successful process, and working with them is restricted to biosafety level (BSL)-4 laboratories, so that the search for non-attenuated reporter-expressing EBOVs remains challenging. However, several life cycle modeling systems have been developed to mimic different aspects of the filovirus life cycle under BSL-1 or -2 conditions, but it remains unclear whether these systems can be used to predict the viability and possible attenuation of recombinant EBOVs. To address this question, we systematically fused N- or C-terminally either a flag-HA tag or a green fluorescent protein (GFP) to different EBOV proteins, and analyzed the impact of these additions with respect to protein function in life cycle modeling systems. Based on these results, selected recombinant EBOVs encoding these tags/proteins were then rescued and characterized for a possible attenuation in vitro, and results compared with data from the life cycle modeling systems. While the results for the small molecular tags showed mostly good concordance, GFP-expressing viruses were more attenuated than expected based on the results from the life cycle modeling system, demonstrating a limitation of these systems and emphasizing the importance of work with infectious virus. Nevertheless, life cycle modeling system remain useful tools to exclude non-viable tagging strategies.
Collapse
|
16
|
Structural and Functional Aspects of Ebola Virus Proteins. Pathogens 2021; 10:pathogens10101330. [PMID: 34684279 PMCID: PMC8538763 DOI: 10.3390/pathogens10101330] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
Ebola virus (EBOV), member of genus Ebolavirus, family Filoviridae, have a non-segmented, single-stranded RNA that contains seven genes: (a) nucleoprotein (NP), (b) viral protein 35 (VP35), (c) VP40, (d) glycoprotein (GP), (e) VP30, (f) VP24, and (g) RNA polymerase (L). All genes encode for one protein each except GP, producing three pre-proteins due to the transcriptional editing. These pre-proteins are translated into four products, namely: (a) soluble secreted glycoprotein (sGP), (b) Δ-peptide, (c) full-length transmembrane spike glycoprotein (GP), and (d) soluble small secreted glycoprotein (ssGP). Further, shed GP is released from infected cells due to cleavage of GP by tumor necrosis factor α-converting enzyme (TACE). This review presents a detailed discussion on various functional aspects of all EBOV proteins and their residues. An introduction to ebolaviruses and their life cycle is also provided for clarity of the available analysis. We believe that this review will help understand the roles played by different EBOV proteins in the pathogenesis of the disease. It will help in targeting significant protein residues for therapeutic and multi-protein/peptide vaccine development.
Collapse
|
17
|
Drug repurposing for COVID-19 using computational screening: Is Fostamatinib/R406 a potential candidate? Methods 2021; 203:564-574. [PMID: 34455072 PMCID: PMC8390099 DOI: 10.1016/j.ymeth.2021.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
With the gradual increase in the COVID-19 mortality rate, there is an urgent need for an effective drug/vaccine. Several drugs like Remdesivir, Azithromycin, Favirapir, Ritonavir, Darunavir, etc., are put under evaluation in more than 300 clinical trials to treat COVID-19. On the other hand, several vaccines like Pfizer-BioNTech, Moderna, Johnson & Johnson's Janssen, Sputnik V, Covishield, Covaxin, etc., also evolved from the research study. While few of them already gets approved, others show encouraging results and are still under assessment. In parallel, there are also significant developments in new drug development. But, since the approval of new molecules takes substantial time, drug repurposing studies have also gained considerable momentum. The primary agent of the disease progression of COVID-19 is SARS-CoV2/nCoV, which is believed to have ~89% genetic resemblance with SARS-CoV, a coronavirus responsible for the massive outbreak in 2003. With this hypothesis, Human-SARS-CoV protein interactions are used to develop an in-silico Human-nCoV network by identifying potential COVID-19 human spreader proteins by applying the SIS model and fuzzy thresholding by a possible COVID-19 FDA drugs target-based validation. At first, the complete list of FDA drugs is identified for the level-1 and level-2 spreader proteins in this network, followed by applying a drug consensus scoring strategy. The same consensus strategy is involved in the second analysis but on a curated overlapping set of key genes/proteins identified from COVID-19 symptoms. Validation using subsequent docking study has also been performed on COVID-19 potential drugs with the available major COVID-19 crystal structures whose PDB IDs are: 6LU7, 6M2Q, 6W9C, 6M0J, 6M71 and 6VXX. Our computational study and docking results suggest that Fostamatinib (R406 as its active promoiety) may also be considered as one of the potential candidates for further clinical trials in pursuit to counter the spread of COVID-19.
Collapse
|
18
|
Remdesivir inhibits the polymerases of the novel filoviruses Lloviu and Bombali virus. Antiviral Res 2021; 192:105120. [PMID: 34126139 DOI: 10.1016/j.antiviral.2021.105120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023]
Abstract
In recent years, a number of novel filoviruses (e.g. Lloviu virus (LLOV) and Bombali virus (BOMV)) have been discovered. While antibody-based therapeutics have recently been approved for treatment of infections with the filovirus Ebola virus (EBOV), no treatment options for novel filoviruses currently exist. Further, the development of antivirals against them is complicated by the fact that only sequence information, but no actual virus isolates, are available. To address this issue, we developed a reverse genetics-based minigenome system for BOMV, which allows us to assess the activity of the BOMV polymerase. Together with similar systems that we have developed for other filoviruses in the past (i.e. LLOV and Reston virus (RESTV)), we then assessed the efficiency of remdesivir, a known inhibitor of the EBOV polymerase that has recently been tested in a clinical trial for efficacy against Ebola disease. We show that remdesivir is indeed also active against the polymerases of BOMV, LLOV, and RESTV, with comparable IC50 values to its activity against EBOV. This suggests that treatment with remdesivir might represent a viable option in case of infections with novel filoviruses.
Collapse
|
19
|
Dolnik O, Gerresheim GK, Biedenkopf N. New Perspectives on the Biogenesis of Viral Inclusion Bodies in Negative-Sense RNA Virus Infections. Cells 2021; 10:cells10061460. [PMID: 34200781 PMCID: PMC8230417 DOI: 10.3390/cells10061460] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Infections by negative strand RNA viruses (NSVs) induce the formation of viral inclusion bodies (IBs) in the host cell that segregate viral as well as cellular proteins to enable efficient viral replication. The induction of those membrane-less viral compartments leads inevitably to structural remodeling of the cellular architecture. Recent studies suggested that viral IBs have properties of biomolecular condensates (or liquid organelles), as have previously been shown for other membrane-less cellular compartments like stress granules or P-bodies. Biomolecular condensates are highly dynamic structures formed by liquid-liquid phase separation (LLPS). Key drivers for LLPS in cells are multivalent protein:protein and protein:RNA interactions leading to specialized areas in the cell that recruit molecules with similar properties, while other non-similar molecules are excluded. These typical features of cellular biomolecular condensates are also a common characteristic in the biogenesis of viral inclusion bodies. Viral IBs are predominantly induced by the expression of the viral nucleoprotein (N, NP) and phosphoprotein (P); both are characterized by a special protein architecture containing multiple disordered regions and RNA-binding domains that contribute to different protein functions. P keeps N soluble after expression to allow a concerted binding of N to the viral RNA. This results in the encapsidation of the viral genome by N, while P acts additionally as a cofactor for the viral polymerase, enabling viral transcription and replication. Here, we will review the formation and function of those viral inclusion bodies upon infection with NSVs with respect to their nature as biomolecular condensates.
Collapse
|
20
|
Sajidah ES, Lim K, Wong RW. How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells 2021; 10:1424. [PMID: 34200500 PMCID: PMC8230057 DOI: 10.3390/cells10061424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The host nucleocytoplasmic trafficking system is often hijacked by viruses to accomplish their replication and to suppress the host immune response. Viruses encode many factors that interact with the host nuclear transport receptors (NTRs) and the nucleoporins of the nuclear pore complex (NPC) to access the host nucleus. In this review, we discuss the viral factors and the host factors involved in the nuclear import and export of viral components. As nucleocytoplasmic shuttling is vital for the replication of many viruses, we also review several drugs that target the host nuclear transport machinery and discuss their feasibility for use in antiviral treatment.
Collapse
Affiliation(s)
- Elma Sakinatus Sajidah
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
21
|
Campos-Melo D, Hawley ZCE, Droppelmann CA, Strong MJ. The Integral Role of RNA in Stress Granule Formation and Function. Front Cell Dev Biol 2021; 9:621779. [PMID: 34095105 PMCID: PMC8173143 DOI: 10.3389/fcell.2021.621779] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are phase-separated, membraneless, cytoplasmic ribonucleoprotein (RNP) assemblies whose primary function is to promote cell survival by condensing translationally stalled mRNAs, ribosomal components, translation initiation factors, and RNA-binding proteins (RBPs). While the protein composition and the function of proteins in the compartmentalization and the dynamics of assembly and disassembly of SGs has been a matter of study for several years, the role of RNA in these structures had remained largely unknown. RNA species are, however, not passive members of RNA granules in that RNA by itself can form homo and heterotypic interactions with other RNA molecules leading to phase separation and nucleation of RNA granules. RNA can also function as molecular scaffolds recruiting multivalent RBPs and their interactors to form higher-order structures. With the development of SG purification techniques coupled to RNA-seq, the transcriptomic landscape of SGs is becoming increasingly understood, revealing the enormous potential of RNA to guide the assembly and disassembly of these transient organelles. SGs are not only formed under acute stress conditions but also in response to different diseases such as viral infections, cancer, and neurodegeneration. Importantly, these granules are increasingly being recognized as potential precursors of pathological aggregates in neurodegenerative diseases. In this review, we examine the current evidence in support of RNA playing a significant role in the formation of SGs and explore the concept of SGs as therapeutic targets.
Collapse
Affiliation(s)
- Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
22
|
Koriem KMM. Lipidome is lipids regulator in gastrointestinal tract and it is a life collar in COVID-19: A review. World J Gastroenterol 2021; 27:37-54. [PMID: 33505149 PMCID: PMC7789067 DOI: 10.3748/wjg.v27.i1.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
The term lipidome is mentioned to the total amount of the lipids inside the biological cells. The lipid enters the human gastrointestinal tract through external source and internal source. The absorption pathway of lipids in the gastrointestinal tract has many ways; the 1st way, the lipid molecules are digested in the lumen before go through the enterocytes, digested products are re-esterified into complex lipid molecules. The 2nd way, the intracellular lipids are accumulated into lipoproteins (chylomicrons) which transport lipids throughout the whole body. The lipids are re-synthesis again inside the human body where the gastrointestinal lipids are: (1) Transferred into the endoplasmic reticulum; (2) Collected as lipoproteins such as chylomicrons; or (3) Stored as lipid droplets in the cytosol. The lipids play an important role in many stages of the viral replication cycle. The specific lipid change occurs during viral infection in advanced viral replication cycle. There are 47 lipids within 11 lipid classes were significantly disturbed after viral infection. The virus connects with blood-borne lipoproteins and apolipoprotein E to change viral infectivity. The viral interest is cholesterol- and lipid raft-dependent molecules. In conclusion, lipidome is important in gastrointestinal fat absorption and coronavirus disease 2019 (COVID-19) infection so lipidome is basic in gut metabolism and in COVID-19 infection success.
Collapse
|
23
|
Nevers Q, Albertini AA, Lagaudrière-Gesbert C, Gaudin Y. Negri bodies and other virus membrane-less replication compartments. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118831. [PMID: 32835749 PMCID: PMC7442162 DOI: 10.1016/j.bbamcr.2020.118831] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Viruses reshape the organization of the cell interior to achieve different steps of their cellular cycle. Particularly, viral replication and assembly often take place in viral factories where specific viral and cellular proteins as well as nucleic acids concentrate. Viral factories can be either membrane-delimited or devoid of any cellular membranes. In the latter case, they are referred as membrane-less replication compartments. The most emblematic ones are the Negri bodies, which are inclusion bodies that constitute the hallmark of rabies virus infection. Interestingly, Negri bodies and several other viral replication compartments have been shown to arise from a liquid-liquid phase separation process and, thus, constitute a new class of liquid organelles. This is a paradigm shift in the field of virus replication. Here, we review the different aspects of membrane-less virus replication compartments with a focus on the Mononegavirales order and discuss their interactions with the host cell machineries and the cytoskeleton. We particularly examine the interplay between viral factories and the cellular innate immune response, of which several components also form membrane-less condensates in infected cells.
Collapse
Affiliation(s)
- Quentin Nevers
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélie A Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
24
|
Guha S, Bhaumik SR. Viral regulation of mRNA export with potentials for targeted therapy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194655. [PMID: 33246183 DOI: 10.1016/j.bbagrm.2020.194655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic gene expression begins with transcription in the nucleus to synthesize mRNA (messenger RNA), which is subsequently exported to the cytoplasm for translation to protein. Like transcription and translation, mRNA export is an important regulatory step of eukaryotic gene expression. Various factors are involved in regulating mRNA export, and thus gene expression. Intriguingly, some of these factors interact with viral proteins, and such interactions interfere with mRNA export of the host cell, favoring viral RNA export. Hence, viruses hijack host mRNA export machinery for export of their own RNAs from nucleus to cytoplasm for translation to proteins for viral life cycle, suppressing host mRNA export (and thus host gene expression and immune/antiviral response). Therefore, the molecules that can impair the interactions of these mRNA export factors with viral proteins could emerge as antiviral therapeutic agents to suppress viral RNA transport and enhance host mRNA export, thereby promoting host gene expression and immune response. Thus, there has been a number of studies to understand how virus hijacks mRNA export machinery in suppressing host gene expression and promoting its own RNA export to the cytoplasm for translation to proteins required for viral replication/assembly/life cycle towards developing targeted antiviral therapies, as concisely described here.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
25
|
Lozach PY. Cell Biology of Viral Infections. Cells 2020; 9:cells9112431. [PMID: 33171736 PMCID: PMC7694952 DOI: 10.3390/cells9112431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
Viruses exhibit an elegant simplicity, as they are so basic, but so frightening. Although only a few are life threatening, they have substantial implications for human health and the economy, as exemplified by the ongoing coronavirus pandemic. Viruses are rather small infectious agents found in all types of life forms, from animals and plants to prokaryotes and archaebacteria. They are obligate intracellular parasites, and as such, subvert many molecular and cellular processes of the host cell to ensure their own replication, amplification, and subsequent spread. This special issue addresses the cell biology of viral infections based on a collection of original research articles, communications, opinions, and reviews on various aspects of virus-host cell interactions. Together, these articles not only provide a glance into the latest research on the cell biology of viral infections, but also include novel technological developments.
Collapse
Affiliation(s)
- Pierre-Yves Lozach
- CellNetworks-Cluster of Excellence and Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
26
|
Miyake T, Farley CM, Neubauer BE, Beddow TP, Hoenen T, Engel DA. Ebola Virus Inclusion Body Formation and RNA Synthesis Are Controlled by a Novel Domain of Nucleoprotein Interacting with VP35. J Virol 2020; 94:e02100-19. [PMID: 32493824 PMCID: PMC7394894 DOI: 10.1128/jvi.02100-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/24/2020] [Indexed: 12/15/2022] Open
Abstract
Ebola virus (EBOV) inclusion bodies (IBs) are cytoplasmic sites of nucleocapsid formation and RNA replication, housing key steps in the virus life cycle that warrant further investigation. During infection, IBs display dynamic properties regarding their size and location. The contents of IBs also must transition prior to further viral maturation, assembly, and release, implying additional steps in IB function. Interestingly, the expression of the viral nucleoprotein (NP) alone is sufficient for the generation of IBs, indicating that it plays an important role in IB formation during infection. In addition to NP, other components of the nucleocapsid localize to IBs, including VP35, VP24, VP30, and the RNA polymerase L. We previously defined and solved the crystal structure of the C-terminal domain of NP (NP-Ct), but its role in virus replication remained unclear. Here, we show that NP-Ct is necessary for IB formation when NP is expressed alone. Interestingly, we find that NP-Ct is also required for the production of infectious virus-like particles (VLPs), and that defective VLPs with NP-Ct deletions are significantly reduced in viral RNA content. Furthermore, coexpression of the nucleocapsid component VP35 overcomes deletion of NP-Ct in triggering IB formation, demonstrating a functional interaction between the two proteins. Of all the EBOV proteins, only VP35 is able to overcome the defect in IB formation caused by the deletion of NP-Ct. This effect is mediated by a novel protein-protein interaction between VP35 and NP that controls both regulation of IB formation and RNA replication itself and that is mediated by a newly identified functional domain of NP, the central domain.IMPORTANCE Inclusion bodies (IBs) are cytoplasmic sites of RNA synthesis for a variety of negative-sense RNA viruses, including Ebola virus. In addition to housing important steps in the viral life cycle, IBs protect new viral RNA from innate immune attack and contain specific host proteins whose function is under study. A key viral factor in Ebola virus IB formation is the nucleoprotein, NP, which also is important in RNA encapsidation and synthesis. In this study, we have identified two domains of NP that control inclusion body formation. One of these, the central domain (CD), interacts with viral protein VP35 to control both inclusion body formation and RNA synthesis. The other is the NP C-terminal domain (NP-Ct), whose function has not previously been reported. These findings contribute to a model in which NP and its interactions with VP35 link the establishment of IBs to the synthesis of viral RNA.
Collapse
Affiliation(s)
- Tsuyoshi Miyake
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Charlotte M Farley
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Benjamin E Neubauer
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Thomas P Beddow
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Daniel A Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
27
|
The Cellular Protein CAD is Recruited into Ebola Virus Inclusion Bodies by the Nucleoprotein NP to Facilitate Genome Replication and Transcription. Cells 2020; 9:cells9051126. [PMID: 32370067 PMCID: PMC7290923 DOI: 10.3390/cells9051126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Ebola virus (EBOV) is a zoonotic pathogen causing severe hemorrhagic fevers in humans and non-human primates with high case fatality rates. In recent years, the number and extent of outbreaks has increased, highlighting the importance of better understanding the molecular aspects of EBOV infection and host cell interactions to control this virus more efficiently. Many viruses, including EBOV, have been shown to recruit host proteins for different viral processes. Based on a genome-wide siRNA screen, we recently identified the cellular host factor carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) as being involved in EBOV RNA synthesis. However, mechanistic details of how this host factor plays a role in the EBOV life cycle remain elusive. In this study, we analyzed the functional and molecular interactions between EBOV and CAD. To this end, we used siRNA knockdowns in combination with various reverse genetics-based life cycle modelling systems and additionally performed co-immunoprecipitation and co-immunofluorescence assays to investigate the influence of CAD on individual aspects of the EBOV life cycle and to characterize the interactions of CAD with viral proteins. Following this approach, we could demonstrate that CAD directly interacts with the EBOV nucleoprotein NP, and that NP is sufficient to recruit CAD into inclusion bodies dependent on the glutaminase (GLN) domain of CAD. Further, siRNA knockdown experiments indicated that CAD is important for both viral genome replication and transcription, while substrate rescue experiments showed that the function of CAD in pyrimidine synthesis is indeed required for those processes. Together, this suggests that NP recruits CAD into inclusion bodies via its GLN domain in order to provide pyrimidines for EBOV genome replication and transcription. These results define a novel mechanism by which EBOV hijacks host cell pathways in order to facilitate genome replication and transcription and provide a further basis for the development of host-directed broad-spectrum antivirals.
Collapse
|