1
|
Saulle I, Vitalyos AV, D’Agate D, Clerici M, Biasin M. Unveiling the impact of ERAP1 and ERAP2 on migration, angiogenesis and ER stress response. Front Cell Dev Biol 2025; 13:1564649. [PMID: 40226591 PMCID: PMC11985534 DOI: 10.3389/fcell.2025.1564649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Recent studies have investigated the key roles exerted by ERAP1 and ERAP2 in maintaining cellular homeostasis, emphasizing their functions beyond traditional antigen processing and presentation. In particular, genetic variants of these IFNγ-inducible aminopeptidases significantly impact critical cellular pathways, including migration, angiogenesis, and autophagy, which are essential in immune responses and disease processes. ERAP1's influence on endothelial cell migration and VEGF-driven angiogenesis, along with ERAP2's role in managing stress-induced autophagy via the UPR, highlights their importance in cellular adaptation to stress and disease outcomes, including autoimmune diseases, cancer progression, and infections. By presenting recent insights into ERAP1 and ERAP2 functions, this review underscores their potential as therapeutic targets in immune regulation and cellular stress-response pathways.
Collapse
Affiliation(s)
- Irma Saulle
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
- Università degli Studi di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milano, Italy
| | | | - Daniel D’Agate
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
| | - Mario Clerici
- Università degli Studi di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milano, Italy
- IRCCS, Fondazione Don Carlo Gnocchi, Milano, Italy
| | - Mara Biasin
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
| |
Collapse
|
2
|
Haapaniemi H, Strausz S, Tervi A, Jones SE, Kanerva M, Abner E, Fors Connolly AM, Ollila HM. Genetic analysis implicates ERAP1 and HLA as risk factors for severe Puumala virus infection. Hum Mol Genet 2025; 34:77-84. [PMID: 39533856 PMCID: PMC11756300 DOI: 10.1093/hmg/ddae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Puumala virus (PUUV) infections can cause severe illnesses such as Hemorrhagic Fever with Renal Syndrome in humans. However, human genetic risk factors contributing to disease severity are still poorly understood. Our goal was to elucidate genetic factors contributing to PUUV infections and understand the biological mechanisms underlying individual vulnerability to PUUV infections. Leveraging data from the FinnGen study, we conducted a genome-wide association study on severe Hemorrhagic Fever with Renal Syndrome caused by PUUV with 2227 cases. We identified associations at the Human Leukocyte Antigen (HLA) locus and ERAP1 with severe PUUV infection. HLA molecules are canonical mediators for immune recognition and response. ERAP1 facilitates immune system recognition and activation by cleaving viral proteins into smaller peptides which are presented to the immune system via HLA class I molecules. Notably, we identified that the lead variant (rs26653, OR = 0.84, P = 2.9 × 10-8) in the ERAP1 gene was a missense variant changing amino acid arginine to proline. From the HLA region, we showed independent and significant associations with both HLA class I and II genes. Furthermore, we showed independent associations with four HLA alleles with severe PUUV infection using conditional HLA fine mapping. The strongest association was found with the HLA-C*07:01 allele (OR = 1.54, P = 4.0 × 10-24) followed by signals at HLA-B*13:02, HLA-DRB1*01:01, and HLA-DRB1*11:01 alleles (P < 5 × 10-8). Our findings suggest an association of viral peptide processing with ERAP1 and antigen presentation through HLA alleles that may contribute to the development of severe PUUV disease.
Collapse
Affiliation(s)
- Hele Haapaniemi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Satu Strausz
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 1, 00290 Helsinki, Finland
- Department of Plastic Surgery, Cleft Palate and Craniofacial Center, Helsinki University Hospital and University of Helsinki, Stenbäckinkatu 11, 00290 Helsinki, Finland
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
| | - Anniina Tervi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Samuel E Jones
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Mari Kanerva
- Department of Hospital Hygiene and Infection Control, TYKS Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
| | | | - Erik Abner
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Riia tn 23b, 51010 Tartu, Estonia
| | | | - Hanna M Ollila
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, GRB 444 Boston, MA, United States
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, United States
| |
Collapse
|
3
|
Saulle I, Limanaqi F, Garziano M, Murno ML, Artusa V, Strizzi S, Giovarelli M, Schulte C, Aiello J, Clerici M, Vanetti C, Biasin M. Impact of endoplasmic reticulum aminopeptidases 1 (ERAP1) and 2 (ERAP2) on neutrophil cellular functions. Front Cell Dev Biol 2025; 12:1506216. [PMID: 39839670 PMCID: PMC11747162 DOI: 10.3389/fcell.2024.1506216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Endoplasmic reticulum aminopeptidases 1 (ERAP1) and 2 (ERAP2) modulate a plethora of physiological processes for the maintenance of homeostasis in different cellular subsets at both intra and extracellular level. Materials and methods In this frame, the extracellular supplementation of recombinant human (rh) ERAP1 and ERAP2 (300 ng/ml) was used to mimic the effect of stressor-induced secretion of ERAPs on neutrophils isolated from 5 healthy subjects. In these cells following 3 h or 24 h rhERAP stimulation by Western Blot, RT-qPCR, Elisa, Confocal microscopy, transwell migration assay, Oxygraphy and Flow Cytometry we assessed: i) rhERAP internalization; ii) activation; iii) migration; iv) oxygen consumption rate; v) reactive oxygen species (ROS) accumulation; granule release; vi) phagocytosis; and vii) autophagy. Results We observed that following stimulation rhERAPs: i) were internalized by neutrophils; ii) triggered their activation as witnessed by increased percentage of MAC-1+CD66b+ expressing neutrophils, cytokine expression/release (IL-1β, IL-8, CCL2, TNFα, IFNγ, MIP-1β) and granule enzyme secretion (myeloperoxidase, Elastase); iii) increased neutrophil migration capacity; iv) increased autophagy and phagocytosis activity; v) reduced ROS accumulation and did not influence oxygen consumption rate. Conclusion Our study provides novel insights into the biological role of ERAPs, and indicates that extracellular ERAPs, contribute to shaping neutrophil homeostasis by promoting survival and tolerance in response to stress-related inflammation. This information could contribute to a better understanding of the biological bases governing immune responses, and to designing ERAP-based therapeutic protocols to control neutrophil-associated human diseases.
Collapse
Affiliation(s)
- Irma Saulle
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
| | - Fiona Limanaqi
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Micaela Garziano
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
| | - Maria Luisa Murno
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Valentina Artusa
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
| | - Sergio Strizzi
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Matteo Giovarelli
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Carsten Schulte
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Jacopo Aiello
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Mario Clerici
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, Milano, Italy
| | - Claudia Vanetti
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Mara Biasin
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
4
|
Fougiaxis V, He B, Khan T, Vatinel R, Koutroumpa NM, Afantitis A, Lesire L, Sierocki P, Deprez B, Deprez-Poulain R. ERAP Inhibitors in Autoimmunity and Immuno-Oncology: Medicinal Chemistry Insights. J Med Chem 2024; 67:11597-11621. [PMID: 39011823 DOI: 10.1021/acs.jmedchem.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Endoplasmic reticulum aminopeptidases ERAP1 and 2 are intracellular aminopeptidases that trim antigenic precursors and generate antigens presented by major histocompatibility complex class I (MHC-I) molecules. They thus modulate the antigenic repertoire and drive the adaptive immune response. ERAPs are considered as emerging targets for precision immuno-oncology or for the treatment of autoimmune diseases, in particular MHC-I-opathies. This perspective covers the structural and biological characterization of ERAP, their relevance to these diseases and the ongoing research on small-molecule inhibitors. We describe the chemical and pharmacological space explored by medicinal chemists to exploit the potential of these targets given their localization, biological functions, and family depth. Specific emphasis is put on the binding mode, potency, selectivity, and physchem properties of inhibitors featuring diverse scaffolds. The discussion provides valuable insights for the future development of ERAP inhibitors and analysis of persisting challenges for the translation for clinical applications.
Collapse
Affiliation(s)
- Vasileios Fougiaxis
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ben He
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - Tuhina Khan
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Rodolphe Vatinel
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | | | | | - Laetitia Lesire
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Pierre Sierocki
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Benoit Deprez
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| | - Rebecca Deprez-Poulain
- U1177 - Drugs and Molecules for Living Systems, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
- European Genomic Institute for Diabetes, EGID, University of Lille, F-59000 Lille, France
| |
Collapse
|
5
|
Al-kaabi M, Deshpande P, Firth M, Pavlos R, Chopra A, Basiri H, Currenti J, Alves E, Kalams S, Fellay J, Phillips E, Mallal S, John M, Gaudieri S. Epistatic interaction between ERAP2 and HLA modulates HIV-1 adaptation and disease outcome in an Australian population. PLoS Pathog 2024; 20:e1012359. [PMID: 38980912 PMCID: PMC11259285 DOI: 10.1371/journal.ppat.1012359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/19/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
A strong genetic predictor of outcome following untreated HIV-1 infection is the carriage of specific alleles of human leukocyte antigens (HLAs) that present viral epitopes to T cells. Residual variation in outcome measures may be attributed, in part, to viral adaptation to HLA-restricted T cell responses. Variants of the endoplasmic reticulum aminopeptidases (ERAPs) influence the repertoire of T cell epitopes presented by HLA alleles as they trim pathogen-derived peptide precursors to optimal lengths for antigen presentation, along with other functions unrelated to antigen presentation. We investigated whether ERAP variants influence HLA-associated HIV-1 adaptation with demonstrable effects on overall HIV-1 disease outcome. Utilizing host and viral data of 249 West Australian individuals with HIV-1 subtype B infection, we identified a novel association between two linked ERAP2 single nucleotide polymorphisms (SNPs; rs2248374 and rs2549782) with plasma HIV RNA concentration (viral load) (P adjusted = 0.0024 for both SNPs). Greater HLA-associated HIV-1 adaptation in the HIV-1 Gag gene correlated significantly with higher viral load, lower CD4+ T cell count and proportion; P = 0.0103, P = 0.0061, P = 0.0061, respectively). When considered together, there was a significant interaction between the two ERAP2 SNPs and HLA-associated HIV-1 adaptation on viral load (P = 0.0111). In a comprehensive multivariate model, addition of ERAP2 haplotypes and HLA associated adaptation as an interaction term to known HLA and CCR5 determinants and demographic factors, increased the explanatory variance of population viral load from 17.67% to 45.1% in this dataset. These effects were not replicated in publicly available datasets with comparably sized cohorts, suggesting that any true global epistasis may be dependent on specific HLA-ERAP allelic combinations. Our data raises the possibility that ERAP2 variants may shape peptide repertoires presented to HLA class I-restricted T cells to modulate the degree of viral adaptation within individuals, in turn contributing to disease variability at the population level. Analyses of other populations and experimental studies, ideally with locally derived ERAP genotyping and HLA-specific viral adaptations are needed to elucidate this further.
Collapse
Affiliation(s)
- Marwah Al-kaabi
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Pooja Deshpande
- School of Human Sciences, University of Western Australia, Crawley, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Martin Firth
- School of Physics, Mathematics and Computing, Department of Mathematics and Statistics, University of Western Australia, Crawley, Australia
| | - Rebecca Pavlos
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Hamed Basiri
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Jennifer Currenti
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Eric Alves
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Spyros Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss HIV Cohort Study, Zurich, Switzerland
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mina John
- School of Human Sciences, University of Western Australia, Crawley, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Australia
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
6
|
Sasaki T, Razia S, Kimura-Kataoka K, Araki T, Kusaka A, Takeshita H, Fujihara J. Association of a single nucleotide polymorphism (rs27434) in the ERAP1 gene with plural tissue weight. Leg Med (Tokyo) 2024; 68:102419. [PMID: 38342012 DOI: 10.1016/j.legalmed.2024.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/09/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Our study was designed to examine the correlation between single nucleotide polymorphism (SNP) in the endoplasmic reticulum aminopeptidase 1 (ERAP1) gene, specifically focusing on rs27434, and plural tissue weight. We conducted this investigation using autopsy samples from the Japanese population. Blood samples were collected from 178 Japanese subjects who had undergone autopsies in Shimane Prefecture. Genomic DNA was subsequently extracted from these samples. SNP (rs27434, G>A substitution) was analyzed by polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) analysis. In the present study, rs27434 exhibited a statistically significant association with brain weight (g) in both female and male individuals. Among males, rs27434 displayed significant relationships with liver weight (g), and body surface area (m2). In females, rs27434 was significantly related to the length of the appendix. Across both genders, individuals with GA and AA genotypes tended to exhibit higher levels in these respective measurements compared to those with the GG genotype. These results suggest that genetic variant of ERAP1 gene may influence the weight of the organs. To the best of our knowledge, this is the first study investigating the interaction between the association of rs27434 in the ERAP1 gene and data routinely measured at autopsy, such as tissue weight. However, conducting further investigations with larger population samples could provide more comprehensive insights to clarify this issue.
Collapse
Affiliation(s)
- Takamitsu Sasaki
- Department of Legal Medicine, Shimane University Faculty of Medicine, Izumo, Japan
| | - Sultana Razia
- Department of Legal Medicine, Shimane University Faculty of Medicine, Izumo, Japan
| | - Kaori Kimura-Kataoka
- Department of Legal Medicine, Shimane University Faculty of Medicine, Izumo, Japan
| | - Takeshi Araki
- Department of Legal Medicine, Shimane University Faculty of Medicine, Izumo, Japan
| | - Akari Kusaka
- Department of Legal Medicine, Shimane University Faculty of Medicine, Izumo, Japan
| | - Haruo Takeshita
- Department of Legal Medicine, Shimane University Faculty of Medicine, Izumo, Japan; Autopsy Imaging Center, Shimane University Faculty of Medicine, Izumo, Japan.
| | - Junko Fujihara
- Department of Legal Medicine, Shimane University Faculty of Medicine, Izumo, Japan
| |
Collapse
|
7
|
Lee DH, Imran M, Choi JH, Park YJ, Kim YH, Min S, Park TJ, Choi YW. CDK4/6 inhibitors induce breast cancer senescence with enhanced anti-tumor immunogenic properties compared with DNA-damaging agents. Mol Oncol 2024; 18:216-232. [PMID: 37854019 PMCID: PMC10766199 DOI: 10.1002/1878-0261.13541] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023] Open
Abstract
Since therapy-induced senescence (TIS) can either support or inhibit cancer progression, identifying which types of chemotherapeutic agents can produce the strongest anti-tumor TIS is an important issue. Here, cyclin-dependent kinase4/6 inhibitors (CDK4/6i)-induced senescence was compared to the TIS induced by conventional DNA-damaging agents. Despite both types of agents eliciting a similar degree of senescence, we observed increased expression of the senescence-associated secretory phenotype (SASP) and ligands related to pro-tumor immunity (IL6, CXCL8, TGFβ, CD274, and CEACAM1) and angiogenesis (VEGFA) mainly in TIS induced by DNA-damaging agents rather than by CDK4/6i. Additionally, although all agents increased the expression of anti-tumor immunomodulatory proteins related to antigen presentation (MHC-I, B2M) and T cell chemokines (CXCL9, 10, 11), CDK4/6i-induced senescent cells still maintained this expression at a similar or even higher intensity than cells treated with DNA-damaging agents, despite the absence of nuclear factor-kappa-B (NF-κB) and p53 activation. These data suggest that in contrast with DNA-damaging agents, which augment the pro-tumorigenic microenvironment via pro-inflammatory SASP, CDK4/6i can generate TIS only with antitumor immunomodulatory proteins.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwonKorea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwonKorea
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwonKorea
| | - Muhammad Imran
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwonKorea
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwonKorea
| | - Jae Ho Choi
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwonKorea
- Department of Hematology‐OncologyAjou University School of MedicineSuwonKorea
| | - Yoo Jung Park
- Department of Hematology‐OncologyAjou University School of MedicineSuwonKorea
| | - Young Hwa Kim
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwonKorea
| | - Sunwoo Min
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea
| | - Tae Jun Park
- Department of Biochemistry and Molecular BiologyAjou University School of MedicineSuwonKorea
- Department of Biomedical SciencesAjou University Graduate School of MedicineSuwonKorea
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwonKorea
| | - Yong Won Choi
- Inflamm‐Aging Translational Research CenterAjou University Medical CenterSuwonKorea
- Department of Hematology‐OncologyAjou University School of MedicineSuwonKorea
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To commemorate the 50th anniversary of the groundbreaking discovery of a remarkably strong association between HLA-B*27 and ankylosing spondylitis (AS). RECENT FINDINGS In addition to HLA-B*27, more than 116 other recognized genetic risk variants have been identified, while epigenetic factors largely remain unexplored in this context. Among patients with AS who carry the HLA-B*27 gene, clonally expanded CD8 + T cells can be found in their bloodstream and within inflamed tissues. Moreover, the α and β chain motifs of these T-cell receptors demonstrate a distinct affinity for certain self- and microbial-derived peptides, leading to an autoimmune response that ultimately results in the onset of the disease. These distinctive peptide-binding and presentation characteristics are a hallmark of the disease-associated HLA-B*27:05 subtype but are absent in HLA-B*27:09, a subtype not associated with the disease, differing by only a single amino acid. This discovery represents a significant advancement in unraveling the 50-year-old puzzle of how HLA-B*27 contributes to the development of AS. These findings will significantly accelerate the process of identifying peptides, both self- and microbial-derived, that instigate autoimmunity. This, in return, will pave the way for the development of more accurate and effective targeted treatments. Moreover, the discovery of improved biomarkers, in conjunction with the emerging technology of electric field molecular fingerprinting, has the potential to greatly bolster early diagnosis capabilities. A very recently published groundbreak paper underscores the remarkable effectiveness of targeting and eliminating disease-causing T cells in a HLA-B*27 patients with AS. This pivotal advancement not only signifies a paradigm shift but also bolsters the potential for preventing the disease in individuals carrying high-risk genetic variants.
Collapse
Affiliation(s)
- Muhammad A Khan
- Case Western Reserve School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
9
|
Mota GD, Marques CL, Ribeiro SL, Albuquerque C, Castro G, Fernandino D, Omura F, Ranzolin A, Resende G, Silva N, Souza M, Studart S, Xavier R, Yazbek M, Pinheiro MM. HLA-B27 did not protect against COVID-19 in patients with axial spondyloarthritis - data from the ReumaCov-Brasil Registry. Adv Rheumatol 2023; 63:56. [PMID: 38031143 DOI: 10.1186/s42358-023-00340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Some studies have suggested the HLA-B27 gene may protect against some infections, as well as it could play a benefit role on the viral clearance, including hepatitis C and HIV. However, there is lack of SARS-CoV-2 pandemic data in spondyloarthritis (SpA) patients. AIM To evaluate the impact of HLA-B27 gene positivity on the susceptibility and severity of COVID-19 and disease activity in axial SpA patients. METHODS The ReumaCoV-Brasil is a multicenter, observational, prospective cohort designed to monitor immune-mediated rheumatic diseases patients during SARS-CoV-2 pandemic in Brazil. Axial SpA patients, according to the ASAS classification criteria (2009), and only those with known HLA-B27 status, were included in this ReumaCov-Brasil's subanalysis. After pairing them to sex and age, they were divided in two groups: with (cases) and without (control group) COVID-19 diagnosis. Other immunodeficiency diseases, past organ or bone marrow transplantation, neoplasms and current chemotherapy were excluded. Demographic data, managing of COVID-19 (diagnosis, treatment, and outcomes, including hospitalization, mechanical ventilation, and death), comorbidities, clinical details (disease activity and concomitant medication) were collected using the Research Electronic Data Capture (REDCap) database. Data are presented as descriptive analysis and multiple regression models, using SPSS program, version 20. P level was set as 5%. RESULTS From May 24th, 2020 to Jan 24th, 2021, a total of 153 axial SpA patients were included, of whom 85 (55.5%) with COVID-19 and 68 (44.4%) without COVID-19. Most of them were men (N = 92; 60.1%) with mean age of 44.0 ± 11.1 years and long-term disease (11.7 ± 9.9 years). Regarding the HLA-B27 status, 112 (73.2%) patients tested positive. There were no significant statistical differences concerning social distancing, smoking, BMI (body mass index), waist circumference and comorbidities. Regarding biological DMARDs, 110 (71.8%) were on TNF inhibitors and 14 (9.15%) on IL-17 antagonists. Comparing those patients with and without COVID-19, the HLA-B27 positivity was not different between groups (n = 64, 75.3% vs. n = 48, 48%, respectively; p = 0.514). In addition, disease activity was similar before and after the infection. Interestingly, no new episodes of arthritis, enthesitis or extra-musculoskeletal manifestations were reported after the COVID-19. The mean time from the first symptoms to hospitalization was 7.1 ± 3.4 days, and although the number of hospitalization days was numerically higher in the B27 positive group, no statistically significant difference was observed (5.7 ± 4.11 for B27 negative patients and 13.5 ± 14.8 for B27 positive patients; p = 0.594). Only one HLA-B27 negative patient died. No significant difference was found regarding concomitant medications, including conventional or biologic DMARDs between the groups. CONCLUSIONS No significant difference of COVID-19 frequency rate was observed in patients with axial SpA regarding the HLA-B27 positivity, suggesting a lack of protective effect with SARS-CoV-2 infection. In addition, the disease activity was similar before and after the infection. TRIAL REGISTRATION This study was approved by the Brazilian Committee of Ethics in Human Research (CONEP), CAAE 30186820.2.1001.8807, and was registered at the Brazilian Registry of Clinical Trials - REBEC, RBR-33YTQC. All patients read and signed the informed consent form before inclusion.
Collapse
Affiliation(s)
- G D Mota
- UNIFESP, Rua Borges Lagoa, 913/ 51-53 - Vila Clementino, São Paulo, CEP: 04038-034, SP, Brazil
| | | | | | | | | | | | - F Omura
- Clinica Omura, S?o Paulo, Brazil
| | | | | | | | - M Souza
- SCBH, Belo Horizonte, Brazil
| | | | | | | | - Marcelo M Pinheiro
- UNIFESP, Rua Borges Lagoa, 913/ 51-53 - Vila Clementino, São Paulo, CEP: 04038-034, SP, Brazil.
| |
Collapse
|
10
|
Saad MA, Abdul-Sattar AB, Abdelal IT, Baraka A. Shedding Light on the Role of ERAP1 in Axial Spondyloarthritis. Cureus 2023; 15:e48806. [PMID: 38024089 PMCID: PMC10645460 DOI: 10.7759/cureus.48806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
Spondyloarthritis (SpA) is a multifactorial chronic inflammatory disease affecting the axial skeleton (axSpA) and/or peripheral joints (p-SpA) and entheses. The disease's pathogenesis depends on genetic, immunological, mechanical, and environmental factors. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme that shapes the peptide repertoire presented by major histocompatibility complex (MHC) class I molecules. Genome-wide association studies (GWAS) have identified different single nucleotide polymorphisms (SNPs) in ERAP1 that are associated with several autoimmune diseases, including axSpA. Therefore, a deeper understanding of the ERAP1 role in axSpA could make it a potential therapeutic target for this disease and offer greater insight into its impact on the immune system. Here, we review the biological functions and structure of ERAP1, discuss ERAP1 polymorphisms and their association with axSpA, highlight the interaction between ERAP1 and human leukocyte antigen (HLA)-B27, and review the association between ERAP1 SNPs and axSpA clinical parameters.
Collapse
Affiliation(s)
- Mohamed A Saad
- Rheumatology and Rehabilitation, Physical Medicine and Rehabilitation (PMR) Hospital, Kuwait, KWT
| | - Amal B Abdul-Sattar
- Rheumatology and Rehabilitation, Faculty of Medicine, Zagazig University, Zagazig, EGY
| | - Ibrahim T Abdelal
- Rheumatology and Rehabilitation, Faculty of Medicine, Zagazig University, Zagazig, EGY
| | - Ahmed Baraka
- Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, EGY
| |
Collapse
|
11
|
Barhoumi T, Todryk S. Role of monocytes/macrophages in renin-angiotensin system-induced hypertension and end organ damage. Front Physiol 2023; 14:1199934. [PMID: 37854465 PMCID: PMC10579565 DOI: 10.3389/fphys.2023.1199934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
The renin-angiotensin system (RAS) is a central modulator of cardiovascular physiology. Pathophysiology of hypertension is commonly accompanied by hyper-activation of RAS. Angiotensin II receptor blockers (ARBs) and Angiotensin-converting enzyme (ACE) inhibitors are the gold standard treatment for hypertension. Recently, several studies highlighted the crucial role of immune system in hypertension. Angiotensin-II-induced hypertension is associated with low grade inflammation characterized by innate and adaptive immune system dysfunction. Throughout the progression of hypertension, monocyte/macrophage cells appear to have a crucial role in vascular inflammation and interaction with the arterial wall. Since myelomonocytic cells potentially play a key role in angiotensin-II-induced hypertension and organ damage, pharmacological targeting of RAS components in monocyte/macrophages may possibly present an innovative strategy for treatment of hypertension and related pathology.
Collapse
Affiliation(s)
- Tlili Barhoumi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Stephen Todryk
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
12
|
Evnouchidou I, Koumantou D, Nugue M, Saveanu L. M1-aminopeptidase family - beyond antigen-trimming activities. Curr Opin Immunol 2023; 83:102337. [PMID: 37216842 DOI: 10.1016/j.coi.2023.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Antigen (Ag)-trimming aminopeptidases belong to the oxytocinase subfamily of M1 metallopeptidases. In humans, this subfamily contains the endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and 2) and the insulin-responsive aminopeptidase (IRAP, synonym oxytocinase), an endosomal enzyme. The ability of these enzymes to trim antigenic precursors and to generate major histocompatibility class-I ligands has been demonstrated extensively for ERAP1, less for ERAP2, which is absent in rodents, and exclusively in the context of cross-presentation for IRAP. During 20 years of research on these aminopeptidases, their enzymatic function has been very well characterized and their genetic association with autoimmune diseases, cancers, and infections is well established. The mechanisms by which these proteins are associated to human diseases are not always clear. This review discusses the Ag-trimming-independent functions of the oxytocinase subfamily of M1 aminopeptidases and the new questions raised by recent publications on IRAP and ERAP2.
Collapse
Affiliation(s)
- Irini Evnouchidou
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France; CNRS ERL8252, Paris, France; Université de Paris, Site Xavier Bichat, Paris, France; Inflamex Laboratory of Excellence, Paris, France; Inovarion, Paris, France
| | - Despoina Koumantou
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France; CNRS ERL8252, Paris, France; Université de Paris, Site Xavier Bichat, Paris, France; Inflamex Laboratory of Excellence, Paris, France
| | - Mathilde Nugue
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France; CNRS ERL8252, Paris, France; Université de Paris, Site Xavier Bichat, Paris, France; Inflamex Laboratory of Excellence, Paris, France
| | - Loredana Saveanu
- INSERM U1149, CRI, Centre de Recherche sur l'Inflammation, Paris, France; CNRS ERL8252, Paris, France; Université de Paris, Site Xavier Bichat, Paris, France; Inflamex Laboratory of Excellence, Paris, France.
| |
Collapse
|
13
|
Limanaqi F, Vicentini C, Saulle I, Clerici M, Biasin M. The role of endoplasmic reticulum aminopeptidases in type 1 diabetes mellitus. Life Sci 2023; 323:121701. [PMID: 37059356 DOI: 10.1016/j.lfs.2023.121701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Type-I diabetes mellitus (T1DM) is generally considered as a chronic, T-cell mediated autoimmune disease. This notwithstanding, both the endogenous characteristics of β-cells, and their response to environmental factors and exogenous inflammatory stimuli are key events in disease progression and exacerbation. As such, T1DM is now recognized as a multifactorial condition, with its onset being influenced by both genetic predisposition and environmental factors, among which, viral infections represent major triggers. In this frame, endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2) hold center stage. ERAPs represent the main hydrolytic enzymes specialized in trimming of N-terminal antigen peptides to be bound by MHC class I molecules and presented to CD8+ T cells. Thus, abnormalities in ERAPs expression alter the peptide-MHC-I repertoire both quantitatively and qualitatively, fostering both autoimmune and infectious diseases. Although only a few studies succeeded in determining direct associations between ERAPs variants and T1DM susceptibility/outbreak, alterations of ERAPs do impinge on a plethora of biological events which might indeed contribute to the disease development/exacerbation. Beyond abnormal self-antigen peptide trimming, these include preproinsulin processing, nitric oxide (NO) production, ER stress, cytokine responsiveness, and immune cell recruitment/activity. The present review brings together direct and indirect evidence focused on the immunobiological role of ERAPs in T1DM onset and progression, covering both genetic and environmental aspects.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy; Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy.
| |
Collapse
|
14
|
Hamilton F, Mentzer AJ, Parks T, Baillie JK, Smith GD, Ghazal P, Timpson NJ. Variation in ERAP2 has opposing effects on severe respiratory infection and autoimmune disease. Am J Hum Genet 2023; 110:691-702. [PMID: 36889308 PMCID: PMC10119032 DOI: 10.1016/j.ajhg.2023.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023] Open
Abstract
ERAP2 is an aminopeptidase involved in immunological antigen presentation. Genotype data in human samples from before and after the Black Death, an epidemic due to Yersinia pestis, have marked changes in allele frequency of the single-nucleotide polymorphism (SNP) rs2549794, with the T allele suggested to be deleterious during this period, while ERAP2 is also implicated in autoimmune diseases. This study explored the association between variation at ERAP2 and (1) infection, (2) autoimmune disease, and (3) parental longevity. Genome-wide association studies (GWASs) of these outcomes were identified in contemporary cohorts (UK Biobank, FinnGen, and GenOMICC). Effect estimates were extracted for rs2549794 and rs2248374, a haplotype tagging SNP. Additionally, cis expression and protein quantitative trait loci (QTLs) for ERAP2 were used in Mendelian randomization (MR) analyses. Consistent with decreased survival in the Black Death, the T allele of rs2549794 showed evidence of association with respiratory infection (odds ratio; OR for pneumonia 1.03; 95% CI 1.01-1.05). Effect estimates were larger for more severe phenotypes (OR for critical care admission with pneumonia 1.08; 95% CI 1.02-1.14). In contrast, opposing effects were identified for Crohn disease (OR 0.86; 95% CI 0.82-0.90). This allele was shown to associate with decreased ERAP2 expression and protein levels, independent of haplotype. MR analyses suggest that ERAP2 expression may be mediating disease associations. Decreased ERAP2 expression is associated with severe respiratory infection with an opposing association with autoimmune diseases. These data support the hypothesis of balancing selection at this locus driven by autoimmune and infectious disease.
Collapse
Affiliation(s)
- Fergus Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Infection Science, North Bristol NHS Trust, Bristol, UK.
| | | | - Tom Parks
- Wellcome Centre For Human Genetics, University of Oxford, Oxford, UK; Department of Infectious Disease, Imperial College London, London, UK
| | - J Kenneth Baillie
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK; Roslin Institute, University of Edinburgh, Edinburgh, UK; Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | | | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
15
|
Demeure CE, Poinar H, Barreiro L, Pizarro-Cerdá J. [The Black Death, natural selection and susceptibility to auto-immune disorders]. Med Sci (Paris) 2023; 39:331-333. [PMID: 37094265 DOI: 10.1051/medsci/2023050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Affiliation(s)
- Christian E Demeure
- Unité de recherche Yersinia, Institut Pasteur, université Paris Cité, CNRS UMR6047, Paris, France
| | - Hendrik Poinar
- McMaster Ancient DNA Centre, Departments of anthropology, biology and biochemistry, université McMaster, Hamilton, Ontario, Canada - Michael G. DeGroote Institute of infectious disease research, université McMaster, Hamilton, Ontario, Canada
| | - Luis Barreiro
- Section of genetic medicine, Department of medicine, université de Chicago, Chicago, États-Unis - Department of human genetics, université de Chicago, Chicago, États-Unis
| | - Javier Pizarro-Cerdá
- Unité de recherche Yersinia, Institut Pasteur, université Paris Cité, CNRS UMR6047, Paris, France
| |
Collapse
|
16
|
Quan Y, Zhang KX, Zhang HY. The gut microbiota links disease to human genome evolution. Trends Genet 2023; 39:451-461. [PMID: 36872184 DOI: 10.1016/j.tig.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023]
Abstract
A large number of studies have established a causal relationship between the gut microbiota and human disease. In addition, the composition of the microbiota is substantially influenced by the human genome. Modern medical research has confirmed that the pathogenesis of various diseases is closely related to evolutionary events in the human genome. Specific regions of the human genome known as human accelerated regions (HARs) have evolved rapidly over several million years since humans diverged from a common ancestor with chimpanzees, and HARs have been found to be involved in some human-specific diseases. Furthermore, the HAR-regulated gut microbiota has undergone rapid changes during human evolution. We propose that the gut microbiota may serve as an important mediator linking diseases to human genome evolution.
Collapse
Affiliation(s)
- Yuan Quan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ke-Xin Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hong-Yu Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
17
|
Abd El-Baky N, Amara AA, Redwan EM. HLA-I and HLA-II Peptidomes of SARS-CoV-2: A Review. Vaccines (Basel) 2023; 11:548. [PMID: 36992131 PMCID: PMC10058130 DOI: 10.3390/vaccines11030548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The adaptive (T-cell-mediated) immune response is a key player in determining the clinical outcome, in addition to neutralizing antibodies, after SARS-CoV-2 infection, as well as supporting the efficacy of vaccines. T cells recognize viral-derived peptides bound to major histocompatibility complexes (MHCs) so that they initiate cell-mediated immunity against SARS-CoV-2 infection or can support developing a high-affinity antibody response. SARS-CoV-2-derived peptides bound to MHCs are characterized via bioinformatics or mass spectrometry on the whole proteome scale, named immunopeptidomics. They can identify potential vaccine targets or therapeutic approaches for SARS-CoV-2 or else may reveal the heterogeneity of clinical outcomes. SARS-CoV-2 epitopes that are naturally processed and presented on the human leukocyte antigen class I (HLA-I) and class II (HLA-II) were identified for immunopeptidomics. Most of the identified SARS-CoV-2 epitopes were canonical and out-of-frame peptides derived from spike and nucleocapsid proteins, followed by membrane proteins, whereby many of which are not caught by existing vaccines and could elicit effective responses of T cells in vivo. This review addresses the detection of SARS-CoV-2 viral epitopes on HLA-I and HLA-II using bioinformatics prediction and mass spectrometry (HLA peptidomics). Profiling the HLA-I and HLA-II peptidomes of SARS-CoV-2 is also detailed.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Amro A. Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Elrashdy M. Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah P.O. Box 80203, Saudi Arabia
| |
Collapse
|
18
|
Schott BH, Wang L, Zhu X, Harding AT, Ko ER, Bourgeois JS, Washington EJ, Burke TW, Anderson J, Bergstrom E, Gardener Z, Paterson S, Brennan RG, Chiu C, McClain MT, Woods CW, Gregory SG, Heaton NS, Ko DC. Single-cell genome-wide association reveals that a nonsynonymous variant in ERAP1 confers increased susceptibility to influenza virus. CELL GENOMICS 2022; 2:100207. [PMID: 36465279 PMCID: PMC9718543 DOI: 10.1016/j.xgen.2022.100207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/26/2022] [Accepted: 10/07/2022] [Indexed: 06/17/2023]
Abstract
During pandemics, individuals exhibit differences in risk and clinical outcomes. Here, we developed single-cell high-throughput human in vitro susceptibility testing (scHi-HOST), a method for rapidly identifying genetic variants that confer resistance and susceptibility. We applied this method to influenza A virus (IAV), the cause of four pandemics since the start of the 20th century. scHi-HOST leverages single-cell RNA sequencing (scRNA-seq) to simultaneously assign genetic identity to cells in mixed infections of cell lines of European, African, and Asian origin, reveal associated genetic variants for viral burden, and identify expression quantitative trait loci. Integration of scHi-HOST with human challenge and experimental validation demonstrated that a missense variant in endoplasmic reticulum aminopeptidase 1 (ERAP1; rs27895) increased IAV burden in cells and human volunteers. rs27895 exhibits population differentiation, likely contributing to greater permissivity of cells from African populations to IAV. scHi-HOST is a broadly applicable method and resource for decoding infectious-disease genetics.
Collapse
Affiliation(s)
- Benjamin H Schott
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0048B CARL Building Box 3053, 213 Research Drive, Durham, NC 27710, USA
- Duke University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
- These authors contributed equally
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0048B CARL Building Box 3053, 213 Research Drive, Durham, NC 27710, USA
- These authors contributed equally
| | - Xinyu Zhu
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0048B CARL Building Box 3053, 213 Research Drive, Durham, NC 27710, USA
| | - Alfred T Harding
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0048B CARL Building Box 3053, 213 Research Drive, Durham, NC 27710, USA
| | - Emily R Ko
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Hospital Medicine, Division of General Internal Medicine, Department of Medicine, Duke Regional Hospital, Durham, NC 27705, USA
| | - Jeffrey S Bourgeois
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0048B CARL Building Box 3053, 213 Research Drive, Durham, NC 27710, USA
- Duke University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Erica J Washington
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Thomas W Burke
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Jack Anderson
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Emma Bergstrom
- Section of Infectious Diseases and Immunity, Imperial College London, London, W12 0NN, UK
| | - Zoe Gardener
- Section of Infectious Diseases and Immunity, Imperial College London, London, W12 0NN, UK
| | - Suzanna Paterson
- Section of Infectious Diseases and Immunity, Imperial College London, London, W12 0NN, UK
| | - Richard G Brennan
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Christopher Chiu
- Section of Infectious Diseases and Immunity, Imperial College London, London, W12 0NN, UK
| | - Micah T McClain
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Christopher W Woods
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0048B CARL Building Box 3053, 213 Research Drive, Durham, NC 27710, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0048B CARL Building Box 3053, 213 Research Drive, Durham, NC 27710, USA
- Duke University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
- Lead contact
| |
Collapse
|
19
|
Klunk J, Vilgalys TP, Demeure CE, Cheng X, Shiratori M, Madej J, Beau R, Elli D, Patino MI, Redfern R, DeWitte SN, Gamble JA, Boldsen JL, Carmichael A, Varlik N, Eaton K, Grenier JC, Golding GB, Devault A, Rouillard JM, Yotova V, Sindeaux R, Ye CJ, Bikaran M, Dumaine A, Brinkworth JF, Missiakas D, Rouleau GA, Steinrücken M, Pizarro-Cerdá J, Poinar HN, Barreiro LB. Evolution of immune genes is associated with the Black Death. Nature 2022; 611:312-319. [PMID: 36261521 PMCID: PMC9580435 DOI: 10.1038/s41586-022-05349-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/14/2022] [Indexed: 01/10/2023]
Abstract
Infectious diseases are among the strongest selective pressures driving human evolution1,2. This includes the single greatest mortality event in recorded history, the first outbreak of the second pandemic of plague, commonly called the Black Death, which was caused by the bacterium Yersinia pestis3. This pandemic devastated Afro-Eurasia, killing up to 30-50% of the population4. To identify loci that may have been under selection during the Black Death, we characterized genetic variation around immune-related genes from 206 ancient DNA extracts, stemming from two different European populations before, during and after the Black Death. Immune loci are strongly enriched for highly differentiated sites relative to a set of non-immune loci, suggesting positive selection. We identify 245 variants that are highly differentiated within the London dataset, four of which were replicated in an independent cohort from Denmark, and represent the strongest candidates for positive selection. The selected allele for one of these variants, rs2549794, is associated with the production of a full-length (versus truncated) ERAP2 transcript, variation in cytokine response to Y. pestis and increased ability to control intracellular Y. pestis in macrophages. Finally, we show that protective variants overlap with alleles that are today associated with increased susceptibility to autoimmune diseases, providing empirical evidence for the role played by past pandemics in shaping present-day susceptibility to disease.
Collapse
Affiliation(s)
- Jennifer Klunk
- McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, Ontario, Canada
- Daicel Arbor Biosciences, Ann Arbor, MI, USA
| | - Tauras P Vilgalys
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Xiaoheng Cheng
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Mari Shiratori
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Julien Madej
- Yersinia Research Unit, Institut Pasteur, Paris, France
| | - Rémi Beau
- Yersinia Research Unit, Institut Pasteur, Paris, France
| | - Derek Elli
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Maria I Patino
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Rebecca Redfern
- Centre for Human Bioarchaeology, Museum of London, London, UK
| | - Sharon N DeWitte
- Department of Anthropology, University of South Carolina, Columbia, SC, USA
| | - Julia A Gamble
- Department of Anthropology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jesper L Boldsen
- Department of Forensic Medicine, Unit of Anthropology (ADBOU), University of Southern Denmark, Odense S, Denmark
| | - Ann Carmichael
- History Department, Indiana University, Bloomington, IN, USA
| | - Nükhet Varlik
- Department of History, Rutgers University, Newark, NJ, USA
| | - Katherine Eaton
- McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | - Jean-Christophe Grenier
- Montreal Heart Institute, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - G Brian Golding
- McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | - Jean-Marie Rouillard
- Daicel Arbor Biosciences, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan - Ann Arbor, Ann Arbor, MI, USA
| | - Vania Yotova
- Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
| | - Renata Sindeaux
- Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Matin Bikaran
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Anne Dumaine
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jessica F Brinkworth
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dominique Missiakas
- Department of Microbiology, Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Guy A Rouleau
- Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Matthias Steinrücken
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | | | - Hendrik N Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology, Biology and Biochemistry, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| | - Luis B Barreiro
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Huang M, Xu H. Genetic susceptibility to autoimmunity-Current status and challenges. Adv Immunol 2022; 156:25-54. [PMID: 36410874 DOI: 10.1016/bs.ai.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Autoimmune diseases (ADs) often arise from a combination of genetic and environmental triggers that disrupt the immune system's capability to properly tolerate body self-antigens. Familial studies provided the earliest insights into the risk loci of such diseases, while genome-wide association studies (GWAS) significantly broadened the horizons. A drug targeting a prominent pathological pathway can be applied to multiple indications sharing overlapping mechanisms. Advances in genomic technologies used in genetic studies provide critical insights into future research on gene-environment interactions in autoimmunity. This Review summarizes the history and recent advances in the understanding of genetic susceptibility to ADs and related immune disorders, including coronavirus disease 2019 (COVID-19), and their indications for the development of diagnostic or prognostic markers for translational applications.
Collapse
Affiliation(s)
| | - Huji Xu
- School of Medicine, Tsinghua University, Beijing, China; Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Navel Medical University, Shanghai, China; Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
21
|
ERAP/HLA-C and KIR Genetic Profile in Couples with Recurrent Implantation Failure. Int J Mol Sci 2022; 23:ijms232012518. [PMID: 36293373 PMCID: PMC9603896 DOI: 10.3390/ijms232012518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Proper embryo implantation depends on the tolerance of the maternal immune system to the fetus and its foreign paternal antigens. During implantation and early pregnancy, the dominant leukocytes in the uterus are uterine NK cells, expressing killer immunoglobulin-like receptors (KIR). KIRs recognize human leukocyte antigens (HLA-C) on the human trophoblast inherited from the father and mother. The antigenic peptides presented by the HLA are formed via their cleavage by endoplasmic reticulum aminopeptidases ERAP1 and ERAP2. The aim of this study was to assess the association of combined KIR genes and their HLA-C ligands, as well as ERAP1 and ERAP2 polymorphisms with recurrent implantation failure after in vitro fertilization (RIF). We tested 491 couples who underwent in vitro fertilization (IVF) and 322 fertile couples. Genotype CC rs27044 ERAP1 in female with a male’s HLA-C1C1 or HLA-C1C2 protected from RIF (p/pcorr. = 0.005/0.044, OR = 0.343; p/pcorr. = 0.003/0.027, OR = 0.442, respectively). Genotype TT rs30187 ERAP1 in female with a male’s HLA-C1C2 genotype increased the risk of RIF. Summarizing, in the combination of female ERAP1 and an HLA-C partner, the rs30187 C>T and rs27044 C>G polymorphisms play an important role in implantation failure.
Collapse
|
22
|
Zhou YH, Gallins PJ, Etheridge AS, Jima D, Scholl E, Wright FA, Innocenti F. A resource for integrated genomic analysis of the human liver. Sci Rep 2022; 12:15151. [PMID: 36071064 PMCID: PMC9452507 DOI: 10.1038/s41598-022-18506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, we generated whole-transcriptome RNA-Seq from n = 192 genotyped liver samples and used these data with existing data from the GTEx Project (RNA-Seq) and previous liver eQTL (microarray) studies to create an enhanced transcriptomic sequence resource in the human liver. Analyses of genotype-expression associations show pronounced enrichment of associations with genes of drug response. The associations are primarily consistent across the two RNA-Seq datasets, with some modest variation, indicating the importance of obtaining multiple datasets to produce a robust resource. We further used an empirical Bayesian model to compare eQTL patterns in liver and an additional 20 GTEx tissues, finding that MHC genes, and especially class II genes, are enriched for liver-specific eQTL patterns. To illustrate the utility of the resource to augment GWAS analysis with small sample sizes, we developed a novel meta-analysis technique to combine several liver eQTL data sources. We also illustrate its application using a transcriptome-enhanced re-analysis of a study of neutropenia in pancreatic cancer patients. The associations of genotype with liver expression, including splice variation and its genetic associations, are made available in a searchable genome browser.
Collapse
Affiliation(s)
- Yi-Hui Zhou
- Department of Biological Sciences, North Carolina State University, Raleigh NC State University, Raleigh, NC, 27695, USA.
- Bioinformatics Research Center, North Carolina State University, Raleigh NC State University, Raleigh, NC, 27695, USA.
| | - Paul J Gallins
- Bioinformatics Research Center, North Carolina State University, Raleigh NC State University, Raleigh, NC, 27695, USA
| | - Amy S Etheridge
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Dereje Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh NC State University, Raleigh, NC, 27695, USA
| | - Elizabeth Scholl
- Bioinformatics Research Center, North Carolina State University, Raleigh NC State University, Raleigh, NC, 27695, USA
| | - Fred A Wright
- Department of Biological Sciences, North Carolina State University, Raleigh NC State University, Raleigh, NC, 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh NC State University, Raleigh, NC, 27695, USA
- Department of Statistics, North Carolina State University, Raleigh NC State University, Raleigh, NC, 27695, USA
| | - Federico Innocenti
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
23
|
Bugaj B, Wielińska J, Bogunia-Kubik K, Świerkot J. Searching for New Genetic Biomarkers of Axial Spondyloarthritis. J Clin Med 2022; 11:jcm11102912. [PMID: 35629038 PMCID: PMC9148009 DOI: 10.3390/jcm11102912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Axial spondyloarthritis (axSpA) is a chronic inflammatory condition of the spine. In addition to musculoskeletal symptoms, there are also extra-articular manifestations. The aim of this study was to search for new biomarkers associated with the clinical presentation and treatment response in axSpA patients. Methods: In this study, 106 axSpA patients and 110 healthy controls were enrolled. Six single-nucleotide polymorphisms (SNPs) were selected for genotyping: ERAP1 rs2287987, ERAP2 rs2549782, TNF rs1800629, TNFRSF1A rs767455, TNFRSF1B rs1061622, and FCGR2A rs1801274. Participants were examined at baseline and after 12 and 24 weeks of anti-TNF therapy. Results: SNPs associated with high axSpA initial activity were TNFRSF1A rs767455 and TNFRSF1B rs1061622 (p < 0.008). The ERAP1 rs2287987 AA genotype was more frequently observed in patients with enthesitis (AA vs. G+, p = 0.049), while the TNFRSF1B rs1061622 GG genotype was more common in participants with uveitis (GG vs. TT, p = 0.042). Potential in predicting anti-TNF treatment response was demonstrated by ERAP1 rs2287987, ERAP2 rs2549782, TNFRSF1B rs1061622, and FCGR2A rs1801274. Conclusions: SNPs can be used to identify patients at risk of severe disease to initiate treatment earlier. Genetic testing will allow clinicians to choose the right drug for the patient.
Collapse
Affiliation(s)
- Bartosz Bugaj
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Correspondence:
| | - Joanna Wielińska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (J.W.); (K.B.-K.)
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (J.W.); (K.B.-K.)
| | - Jerzy Świerkot
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
24
|
Abstract
SARS-CoV-2 virus has become a global health problem that has caused millions of deaths worldwide. The infection can present with multiple clinical features ranging from asymptomatic or mildly symptomatic patients to patients with severe or critical illness that can even lead to death. Although the immune system plays an important role in pathogen control, SARS-CoV-2 can drive dysregulation of this response and trigger severe immunopathology. Exploring the mechanisms of the immune response involved in host defense against SARS-CoV-2 allows us to understand its immunopathogenesis and possibly detect features that can be used as potential therapies to eliminate the virus. The main objective of this review on SARS-CoV-2 is to highlight the interaction between the virus and the immune response. We explore the function and action of the immune system, the expression of molecules at the site of infection that cause hyperinflammation and hypercoagulation disorders, the factors leading to the development of pneumonia and subsequent severe acute respiratory distress syndrome which is the leading cause of death in patients with COVID-19.
Collapse
Affiliation(s)
- Dennis Jiménez
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador.,Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
25
|
Mpakali A, Georgiadis D, Stratikos E, Giastas P. Inhibitor-Dependent Usage of the S1' Specificity Pocket of ER Aminopeptidase 2. ACS Med Chem Lett 2022; 13:218-224. [PMID: 35178178 PMCID: PMC8842112 DOI: 10.1021/acsmedchemlett.1c00582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/10/2022] [Indexed: 01/16/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 2 (ERAP2) is an intracellular enzyme involved in the processing of antigenic peptides intended for presentation by major histocompatibility complex class I (MHCI) molecules. Because of its role in regulating immune responses, ERAP2 is an emerging pharmacological target. Phosphinic pseudopeptides are potent transition-state analogue inhibitors of ERAP2. Previous structure-activity studies have revealed a complex but ambiguous relationship between the occupation of putative specificity pockets and the inhibitor efficacy. To address these problems, we solved crystal structures of ERAP2 in complex with two phosphinic pseudotripeptide inhibitors. Both compounds are found in the catalytic site in a canonical orientation for transition-state analogues and utilize the S1 and S2' pockets in a similar fashion. Strikingly, their P1' side chains exhibit different orientations and make interactions with distinct shallow pockets near the ERAP2 active site. These structures suggest that S1' pocket usage in ERAP2 may be inhibitor-dependent and constitute useful starting templates for the further optimization of this class of compounds.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National
Centre for Scientific Research Demokritos, Agia Paraskevi, Athens 15341, Greece,
| | - Dimitris Georgiadis
- Laboratory
of Organic Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Efstratios Stratikos
- National
Centre for Scientific Research Demokritos, Agia Paraskevi, Athens 15341, Greece,Laboratory
of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771 Greece
| | - Petros Giastas
- Department
of Neurobiology, Hellenic Pasteur Institute, Athens 11521, Greece,Department
of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens 11855, Greece,
| |
Collapse
|
26
|
Mierzejewski K, Stryiński R, Łopieńska-Biernat E, Mateos J, Bogacka I, Carrera M. A Complex Proteomic Response of the Parasitic Nematode Anisakis simplex s.s. to Escherichia coliLipopolysaccharide. Mol Cell Proteomics 2021; 20:100166. [PMID: 34673282 PMCID: PMC8605257 DOI: 10.1016/j.mcpro.2021.100166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/06/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Helminths are masters at manipulating host's immune response. Especially, parasitic nematodes have evolved strategies that allow them to evade, suppress, or modulate host's immune response to persist and spread in the host's organism. While the immunomodulatory effects of nematodes on their hosts are studied with a great commitment, very little is known about nematodes' own immune system, immune response to their pathogens, and interactions between parasites and bacteria in the host's organism. To illustrate the response of the parasitic nematode Anisakis simplex s.s. during simulated interaction with Escherichia coli, different concentrations of lipopolysaccharide (LPS) were used, and the proteomic analysis with isobaric mass tags for relative and absolute quantification (tandem mass tag-based LC-MS/MS) was performed. In addition, gene expression and biochemical analyses of selected markers of oxidative stress were determined. The results revealed 1148 proteins in a group of which 115 were identified as differentially regulated proteins, for example, peroxiredoxin, thioredoxin, and macrophage migration inhibitory factor. Gene Ontology annotation and Reactome pathway analysis indicated that metabolic pathways related to catalytic activity, oxidation-reduction processes, antioxidant activity, response to stress, and innate immune system were the most common, in which differentially regulated proteins were involved. Further biochemical analyses let us confirm that the LPS induced the oxidative stress response, which plays a key role in the innate immunity of parasitic nematodes. Our findings, to our knowledge, indicate for the first time, the complexity of the interaction of parasitic nematode, A. simplex s.s. with bacterial LPS, which mimics the coexistence of helminth and gut bacteria in the host. The simulation of this crosstalk led us to conclude that the obtained results could be hugely valuable in the integrated systems biology approach to describe a relationship between parasite, host, and its commensal bacteria.
Collapse
Affiliation(s)
- Karol Mierzejewski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), Vigo, Spain.
| |
Collapse
|
27
|
Deprez B, Bosc D, Charton J, Couturier C, Deprez-Poulain R, Flipo M, Leroux F, Villemagne B, Willand N. Molecular Design in Practice: A Review of Selected Projects in a French Research Institute That Illustrates the Link between Chemical Biology and Medicinal Chemistry. Molecules 2021; 26:6083. [PMID: 34641626 PMCID: PMC8512331 DOI: 10.3390/molecules26196083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/19/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Chemical biology and drug discovery are two scientific activities that pursue different goals but complement each other. The former is an interventional science that aims at understanding living systems through the modulation of its molecular components with compounds designed for this purpose. The latter is the art of designing drug candidates, i.e., molecules that act on selected molecular components of human beings and display, as a candidate treatment, the best reachable risk benefit ratio. In chemical biology, the compound is the means to understand biology, whereas in drug discovery, the compound is the goal. The toolbox they share includes biological and chemical analytic technologies, cell and whole-body imaging, and exploring the chemical space through state-of-the-art design and synthesis tools. In this article, we examine several tools shared by drug discovery and chemical biology through selected examples taken from research projects conducted in our institute in the last decade. These examples illustrate the design of chemical probes and tools to identify and validate new targets, to quantify target engagement in vitro and in vivo, to discover hits and to optimize pharmacokinetic properties with the control of compound concentration both spatially and temporally in the various biophases of a biological system.
Collapse
Affiliation(s)
- Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, F-59000 Lille, France
| | - Damien Bosc
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| | - Julie Charton
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| | - Cyril Couturier
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, F-59000 Lille, France
| | - Rebecca Deprez-Poulain
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| | - Marion Flipo
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, F-59000 Lille, France
| | - Baptiste Villemagne
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France; (D.B.); (J.C.); (C.C.); (R.D.-P.); (M.F.); (F.L.); (B.V.)
| |
Collapse
|
28
|
Ronit A, Jørgensen SE, Roed C, Eriksson R, Iepsen UW, Plovsing RR, Storgaard M, Gustafsson F, Hansen ABE, Mogensen TH. Host Genetics and Antiviral Immune Responses in Adult Patients With Multisystem Inflammatory Syndrome. Front Immunol 2021; 12:718744. [PMID: 34531865 PMCID: PMC8439578 DOI: 10.3389/fimmu.2021.718744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/12/2021] [Indexed: 01/31/2023] Open
Abstract
COVID-19 associated multisystem inflammatory syndrome (MIS) is a rare condition mostly affecting children but also adults (MIS-A). Although severe systemic inflammation and multiorgan dysfunction are hallmarks of the syndrome, the underlying pathogenesis is unclear. We aimed to provide novel immunological and genetic descriptions of MIS-A patients. Cytokine responses (IL-6, IL-1β, TNFα, CXCL10, type I, II and III interferons) following SARS-CoV-2 infection of peripheral blood mononuclear cells in vitro were analyzed as well as antibodies against IFNα and IFNω (by ELISA) in patients and healthy controls. We also performed whole exome sequencing (WES) of patient DNA. A total of five patients (ages 19, 23, 33, 38, 50 years) were included. The patients shared characteristic features, although organ involvement and the time course of disease varied slightly. SARS-CoV-2 in vitro infection of patient PBMCs revealed impaired type I and III interferon responses and reduced CXCL10 expression, whereas production of proinflammatory cytokines were less affected, compared to healthy controls. Presence of interferon autoantibodies was not detected. Whole exome sequencing analysis of patient DNA revealed 12 rare potentially disease-causing variants in genes related to autophagy, classical Kawasaki disease, restriction factors and immune responses. In conclusion, we observed an impaired production of type I and III interferons in response to SARS-CoV-2 infection and detected several rare potentially disease-causing gene variants potentially contributing to MIS-A.
Collapse
Affiliation(s)
- Andreas Ronit
- Department of Infectious Diseases 144, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Sofie E Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Casper Roed
- Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Robert Eriksson
- Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik W Iepsen
- Department of Anaesthesiology and Intensive Care, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Ronni R Plovsing
- Department of Anaesthesiology and Intensive Care, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Merete Storgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Finn Gustafsson
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology and Clinical Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Brit E Hansen
- Department of Infectious Diseases 144, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
29
|
Saulle I, Vicentini C, Clerici M, Biasin M. Antigen presentation in SARS-CoV-2 infection: the role of class I HLA and ERAP polymorphisms. Hum Immunol 2021; 82:551-560. [PMID: 34116863 PMCID: PMC8108382 DOI: 10.1016/j.humimm.2021.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
Given the highly polymorphic nature of Human Leukocyte Antigen (HLA) molecules, it is not surprising that they function as key regulators of the host immune response to almost all invading pathogens, including SARS-CoV-2, the etiological agent responsible for the recent COVID-19 pandemic. Several correlations have already been established between the expression of a specific HLA allele/haplotype and susceptibility/progression of SARS-CoV-2 infection and new ones are continuously emerging. Protective and harmful HLA variants have been described in both mild and severe forms of the disease, but considering the huge amount of existing variants, the data gathered in such a brief span of time are to some extent confusing and contradictory. The aim of this mini-review is to provide a snap-shot of the main findings so far collected on the HLA-SARS-CoV-2 interaction, so as to partially untangle this intricate yarn. As key factors in the generation of antigenic peptides to be presented by HLA molecules, ERAP1 and ERAP2 role in SARS-CoV-2 infection will be revised as well.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences- L. Sacco, University of Milan, Italy; Department of Pathophysiology and Transplantation, Milan, Italy.
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences- L. Sacco, University of Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, Milan, Italy; SM Nascente Scientific Institute, IRCCS, Don C Gnocchi Foundation, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences- L. Sacco, University of Milan, Italy
| |
Collapse
|
30
|
Wiśniewski A, Sobczyński M, Pawełczyk K, Porębska I, Jasek M, Wagner M, Niepiekło-Miniewska W, Kowal A, Dubis J, Jędruchniewicz N, Kuśnierczyk P. Polymorphisms of Antigen-Presenting Machinery Genes in Non-Small Cell Lung Cancer: Different Impact on Disease Risk and Clinical Parameters in Smokers and Never-Smokers. Front Immunol 2021; 12:664474. [PMID: 34149699 PMCID: PMC8212834 DOI: 10.3389/fimmu.2021.664474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is strongly associated with cigarette smoking; nevertheless some never-smokers develop cancer. Immune eradication of cancer cells is dependent on polymorphisms of HLA class I molecules and antigen-processing machinery (APM) components. We have already published highly significant associations of single nucleotide polymorphisms (SNPs) of the ERAP1 gene with non-small cell lung cancer (NSCLC) in Chinese, but not in Polish populations. However, the smoking status of participants was not known in the previous study. Here, we compared the distribution of APM polymorphic variants in larger cohorts of Polish patients with NSCLC and controls, stratified according to their smoking status. We found significant but opposite associations in never-smokers and in smokers of all tested SNPs (rs26653, rs2287987, rs30187, and rs27044) but one (rs26618) in ERAP1. No significant associations were seen in other genes. Haplotype analysis indicated that the distribution of many ERAP1/2 haplotypes is opposite, depending on smoking status. Additionally, haplotypic combination of low activity ERAP1 and the lack of an active form of ERAP2 seems to favor the disease in never-smokers. We also revealed interesting associations of some APM polymorphisms with: age at diagnosis (ERAP1 rs26653), disease stage (ERAP1 rs27044, PSMB9 rs17587), overall survival (ERAP1 rs30187), and response to chemotherapy (ERAP1 rs27044). The results presented here may suggest the important role for ERAP1 in the anti-cancer response, which is different in smokers versus never-smokers, depending to some extent on the presence of ERAP2, and affecting NSCLC clinical course.
Collapse
Affiliation(s)
- Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Maciej Sobczyński
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Konrad Pawełczyk
- Department and Clinic of Thoracic Surgery, Wrocław Medical University, Wrocław, Poland
| | - Irena Porębska
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Wrocław, Poland
| | - Monika Jasek
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marta Wagner
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aneta Kowal
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Wrocław, Poland
| | - Joanna Dubis
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Natalia Jędruchniewicz
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
31
|
Saulle I, Marventano I, Saresella M, Vanetti C, Garziano M, Fenizia C, Trabattoni D, Clerici M, Biasin M. ERAPs Reduce In Vitro HIV Infection by Activating Innate Immune Response. THE JOURNAL OF IMMUNOLOGY 2021; 206:1609-1617. [PMID: 33619214 DOI: 10.4049/jimmunol.2000991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022]
Abstract
Recombinant human (rh) ERAP2-treated PBMCs are less susceptible to in vitro HIV-1 infection even when CD8+ T cells are depleted. We therefore investigated whether ERAP2 can trigger other immunocompetent cells, boosting their antiviral potential. To this end, human monocyte-derived macrophages (MDMs) differentiated from PBMCs of 15 healthy donors were in vitro HIV-1 infected in the presence/absence of 100 ng/ml of rhERAP2, rhERAP1, or rhERAP1+rhERAP2. Notably, rhERAP2 treatment resulted in a 7-fold reduction of HIV-1 replication in MDMs (p < 0.05). This antiviral activity was associated with an increased mRNA expression of CD80, IL-1β, IL-18, and TNF-α (p < 0.01 for cytokine) in in vitro ERAP2-treated HIV-1-infected MDMs and a greater release of IL-1β, TNF-α, IL-6, and IL-8 (p < 0.01 for each cytokine). The rhERAPs addition also induced the functional inflammasome activation by ASC speck formation in monocytes (p < 0.01) and in THP1-derived macrophages (p < 0.01) as well as a rise in the percentage of activated classical (CD14+CD16-HLA-DRII+CCR7+) and intermediate (CD14++CD16+HLA-DRII+CCR7+) monocytes (p < 0.02). Finally, THP-1-derived macrophages showed an increased phagocytosis following all ERAPs treatments. The discovery that ERAPs are able to trigger several antiviral mechanisms in monocyte/macrophages suggests that their anti-HIV potential is not limited to their canonical role in Ag presentation and CD8+ T cell activation. These findings pose the premise to further investigate the role of ERAPs in both innate and adaptive immunostimulatory pathways and suggest their potential use in novel preventive and therapeutic approaches against HIV-1 infection.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and
| | | | | | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and.,Fondazione IRCCS Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy;
| |
Collapse
|
32
|
ERAP1 and ERAP2 Enzymes: A Protective Shield for RAS against COVID-19? Int J Mol Sci 2021; 22:ijms22041705. [PMID: 33567739 PMCID: PMC7914632 DOI: 10.3390/ijms22041705] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with coronavirus disease 2019 (COVID-19) have a wide variety of clinical outcomes ranging from asymptomatic to severe respiratory syndrome that can progress to life-threatening lung lesions. The identification of prognostic factors can help to improve the risk stratification of patients by promptly defining for each the most effective therapy to resolve the disease. The etiological agent causing COVID-19 is a new coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that enters cells via the ACE2 receptor. SARS-CoV-2 infection causes a reduction in ACE2 levels, leading to an imbalance in the renin-angiotensin system (RAS), and consequently, in blood pressure and systemic vascular resistance. ERAP1 and ERAP2 are two RAS regulators and key components of MHC class I antigen processing. Their polymorphisms have been associated with autoimmune and inflammatory conditions, hypertension, and cancer. Based on their involvement in the RAS, we believe that the dysfunctional status of ERAP1 and ERAP2 enzymes may exacerbate the effect of SARS-CoV-2 infection, aggravating the symptomatology and clinical outcome of the disease. In this review, we discuss this hypothesis.
Collapse
|
33
|
Niepiekło-Miniewska W, Matusiak Ł, Narbutt J, Lesiak A, Kuna P, Wiśniewski A, Piekarska K, Nowak I, Kuśnierczyk P. Synergy of endoplasmic reticulum aminopeptidase 1 and 2 (ERAP1 and ERAP2) polymorphisms in atopic dermatitis: Effects on disease prevalence. Hum Immunol 2020; 82:121-123. [PMID: 33309189 DOI: 10.1016/j.humimm.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/18/2023]
Abstract
Endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 trim peptides to a length of 8-10 amino acids optimal for binding by HLA class I molecules. Although these two enzymes may work separately, but they may also form a heterodimer of enhanced trimming efficiency. We have earlier described a role for ERAP1 single nucleotide polymorphism rs26618 and HLA-C*05:01 as risk factors for atopic dermatitis (AD). Here, we examined whether ERAP2 single nucleotide polymorphism rs2248374, determining the presence or absence of the functional form of enzyme, would influence the rs26618 effect. Out of nine rs2248374 - rs26618 genotypic combinations, only one, rs2248374*A/A - rs26618*C/C, was associated with a risk of AD. Interestingly, the odds ratio increased from 1.10 (CI95%: 0.72; 1.69; p = 0.657) for ERAP2 rs2248374*A/A and 1.88 (CI95%: 1.07; 3.28; p = 0.025) for ERAP1 rs26618*C/C to 3.36 (CI95%: 1.41; 8.01; p = 0.004) for their combination, therefore revealing a synergistic effect.
Collapse
Affiliation(s)
- Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Łukasz Matusiak
- Department of Dermatology, Venereology and Allergology, Medical University of Wroclaw, Wrocław, Poland
| | - Joanna Narbutt
- 1st Department of Dermatology and Venereology, Medical University of Łódź, Łódź, Poland
| | - Aleksandra Lesiak
- 1st Department of Dermatology and Venereology, Medical University of Łódź, Łódź, Poland
| | - Piotr Kuna
- 2nd Chair of Internal Diseases, Medical University of Łódź, Poland; N. Barlicki Medical University Hospital, Łódź, Poland
| | - Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Karolina Piekarska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Izabela Nowak
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| |
Collapse
|
34
|
Saulle I, Vanetti C, Goglia S, Vicentini C, Tombetti E, Garziano M, Clerici M, Biasin M. A New ERAP2/Iso3 Isoform Expression Is Triggered by Different Microbial Stimuli in Human Cells. Could It Play a Role in the Modulation of SARS-CoV-2 Infection? Cells 2020; 9:E1951. [PMID: 32847031 PMCID: PMC7563522 DOI: 10.3390/cells9091951] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Following influenza infection, rs2248374-G ERAP2 expressing cells may transcribe an alternative spliced isoform: ERAP2/Iso3. This variant, unlike ERAP2-wt, is unable to trim peptides to be loaded on MHC class I molecules, but it can still dimerize with both ERAP2-wt and ERAP1-wt, thus contributing to profiling an alternative cellular immune-peptidome. In order to verify if the expression of ERAP2/Iso3 may be induced by other pathogens, PBMCs and MDMs isolated from 20 healthy subjects were stimulated with flu, LPS, CMV, HIV-AT-2, SARS-CoV-2 antigens to analyze its mRNA and protein expression. In parallel, Calu3 cell lines and PBMCs were in vitro infected with growing doses of SARS-CoV-2 (0.5, 5, 1000 MOI) and HIV-1BAL (0.1, 1, and 10 ng p24 HIV-1Bal/1 × 106 PBMCs) viruses, respectively. Results showed that: (1) ERAP2/Iso3 mRNA expression can be prompted by many pathogens and it is coupled with the modulation of several determinants (cytokines, interferon-stimulated genes, activation/inhibition markers, antigen-presentation elements) orchestrating the anti-microbial immune response (Quantigene); (2) ERAP2/Iso3 mRNA is translated into a protein (western blot); (3) ERAP2/Iso3 mRNA expression is sensitive to SARS-CoV-2 and HIV-1 concentration. Considering the key role played by ERAPs in antigen processing and presentation, it is conceivable that these enzymes may be potential targets and modulators of the pathogenicity of infectious diseases and further analyses are needed to define the role played by the different isoforms.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Sara Goglia
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| | - Enrico Tombetti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| |
Collapse
|
35
|
Impact of Natural Occurring ERAP1 Single Nucleotide Polymorphisms within miRNA-Binding Sites on HCMV Infection. Int J Mol Sci 2020; 21:ijms21165861. [PMID: 32824160 PMCID: PMC7461596 DOI: 10.3390/ijms21165861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that causes serious problems in people with a compromised immune system, whereas it coexists asymptomatically within the host with a healthy immune system. Like other viruses, HCMV has adopted multiples strategies to manipulate the host’s immune responses. Among them, expression of viral microRNAs (miRNAs) is one of the most intriguing. HCMV miR-UL112-5p and miR-US4-1 have been found to contribute to immune evasion by targeting the endoplasmic reticulum aminopeptidase 1 (ERAP1), a highly polymorphic key component of antigen processing. The current incomplete picture on the interplay between viral miRNAs and host immunity implies the need to better characterize the host genetic determinants. Naturally occurring single nucleotide polymorphisms (SNPs) within the miRNA binding sites of target genes may affect miRNA–target interactions. In this review, we focus on the relevance of 3′ untranslated region (3′UTR) ERAP1 SNPs within miRNA binding sites in modulating miRNA–mRNA interactions and the possible consequent individual susceptibility to HCMV infection. Moreover, we performed an in silico analysis using different bioinformatic algorithms to predict ERAP1 variants with a putative powerful biological function. This evidence provides a basis to deepen the knowledge on how 3′UTR ERAP1 variants may alter the mechanism of action of HCMV miRNAs, in order to develop targeted antiviral therapies.
Collapse
|