1
|
Liu Z, Chang S, Chen S, Gu R, Guo S. A novel prognostic signature based on m5C‑related LncRNAs and its immunological characteristics in colon adenocarcinoma. Discov Oncol 2025; 16:332. [PMID: 40095128 PMCID: PMC11914420 DOI: 10.1007/s12672-025-02081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Colon adenocarcinoma (COAD) has high mortality rates due to frequent resistance to treatment. 5-methylcytosine (m5C) is a crucial epigenetic modification of RNA, closely associated with tumorigenesis in various cancers. This study focuses on developing an m5C-related long non-coding RNA (lncRNA) signature to predict prognosis and explore potential therapeutic targets. METHODS Using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO), we analyzed 18 m5C regulatory genes and their associated lncRNAs in COAD samples. Prognostic lncRNAs were identified through univariate Cox regression, and a risk model was constructed through LASSO regression analyses. Kaplan-Meier survival and receiver operating characteristic analyses were employed to validate the prognostic ability of the signature. Additionally, functional enrichment and immune infiltration analyses were conducted to investigate underlying biological pathways and immune characteristics of the risk groups. Tumor mutation burden and drug sensitivity analyses were also performed. Functional validation of NR2F2-AS1 was conducted through in vitro experiments. RESULTS We established a risk score signature comprising six lncRNAs associated with m5C regulators. Patients were classified into high- and low-risk groups based on the median risk score. This prognostic signature demonstrated significant accuracy and was independent of other clinical features. Immune cell infiltration analysis revealed correlations between the risk signature and various immune cell subtypes. Drug sensitivity analysis indicated the potential therapeutic value of our prognostic signature. Functional experiments confirmed that NR2F2-AS1 acts as a risk factor in the proliferation of colon cancer cells. CONCLUSIONS The m5C-related lncRNA signature serves as a reliable prognostic indicator for colon adenocarcinoma and provides new insights into the tumor immune microenvironment.
Collapse
Affiliation(s)
- Zihe Liu
- Department of Gastroenterology, Jiangsu Funing People's Hospital, Funing, China
| | - Sheng Chang
- Department of Gastroenterology, Jiangsu Funing People's Hospital, Funing, China
| | - Shouguo Chen
- Department of Gastroenterology, Jiangsu Funing People's Hospital, Funing, China
| | - Rong Gu
- Department of Gastroenterology, Jiangsu Funing People's Hospital, Funing, China
| | - Shaoyong Guo
- Department of Gastroenterology, Jiangsu Funing People's Hospital, Funing, China.
| |
Collapse
|
2
|
Huang C, Murgulet I, Liu L, Zhang M, Garcia K, Martin L, Xu W. The effects of perfluorooctanoic acid on breast cancer metastasis depend on the phenotypes of the cancer cells: An in vivo study with zebrafish xenograft model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124975. [PMID: 39293659 DOI: 10.1016/j.envpol.2024.124975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Per- and polyfluorinated substances (PFAS) have been associated with numerous human diseases. Recent in vitro studies have implicated the association of PFAS with an increased risk of breast cancer in humans. This study aimed to assess the toxic effects of PFAS during the development of human breast cancer using a zebrafish xenograft model. Perfluorooctanoic acid (PFOA) was used as a PFAS chemical of interest for this study. Two common breast cancer cell lines, MCF-7 and MDA-MB-231, were used to represent the diversity of breast cancer phenotypes. Human preadipocytes were co-implanted with the breast cancer cells into the zebrafish embryos to optimize the microenvironment for tumor cells in vivo. With this modified model, we evaluated the potential effects of the PFOA on the metastatic potential of the two types of breast cancer cells. The presence of human preadipocytes resulted in an enhancement to the metastasis progress of the two types of cells, including the promotion of cell in vivo migration and proliferation, and the increased expression levels of metastatic biomarkers. The enhancement of MCF-7 proliferation by preadipocytes was observed after 2 days post injection (dpi) while the increase of MDA-MB-231 proliferation was seen after 6 dpi. The breast cancer metastatic biomarkers, cadherin 1 (cdh1), and small breast epithelial mucin (sbem) genes demonstrated significant down- and upregulations respectively, by the co-injection of preadipocytes. In the optimized xenograft model, the PFOA consistently promoted cell proliferation and migration and altered the metastatic biomarker expression in MCF-7, which suggested a metastatic effect of PFOA on MCF-7. However, those effects were not consistently observed in MDA-MB-231. The presence of the preadipocytes in the xenograft model may provide a necessary microenvironment for the progress of tumor cells in zebrafish embryos. The finding suggested that the impacts of PFOA exposure on different phenotypes of breast cancers may differ.
Collapse
Affiliation(s)
- Chi Huang
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Ioana Murgulet
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States; Department of BioSciences, Rice University, 6100 Main St., Houston, TX, 77005, United States
| | - Linda Liu
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Mona Zhang
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Kaitlin Garcia
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Leisha Martin
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Wei Xu
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, 78412, United States.
| |
Collapse
|
3
|
Abbasi-Malati Z, Khanicheragh P, Narmi MT, Mardi N, Khosrowshahi ND, Hiradfar A, Rezabakhsh A, Sadeghsoltani F, Rashidi S, Chegeni SA, Roozbahani G, Rahbarghazi R. Tumoroids, a valid preclinical screening platform for monitoring cancer angiogenesis. Stem Cell Res Ther 2024; 15:267. [PMID: 39183337 PMCID: PMC11346257 DOI: 10.1186/s13287-024-03880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
In recent years, biologists and clinicians have witnessed prominent advances in in vitro 3D culture techniques related to biomimetic human/animal tissue analogs. Numerous data have confirmed that unicellular and multicellular (tumoroids) tumor spheroids with dense native cells in certain matrices are sensitive and valid analytical tools for drug screening, cancer cell dynamic growth, behavior, etc. in laboratory settings. Angiogenesis/vascularization is a very critical biological phenomenon to support oxygen and nutrients to tumor cells within the deep layer of solid masses. It has been shown that endothelial cell (EC)-incorporated or -free spheroid/tumoroid systems provide a relatively reliable biological platform for monitoring the formation of nascent blood vessels in micron/micrometer scales. Besides, the paracrine angiogenic activity of cells within the spheroid/tumoroid systems can be monitored after being treated with different therapeutic approaches. Here, we aimed to collect recent advances and findings related to the monitoring of cancer angiogenesis using unicellular and multicellular tumor spheroids. Vascularized spheroids/tumoroids can help us in the elucidation of mechanisms related to cancer formation, development, and metastasis by monitoring the main influencing factors.
Collapse
Affiliation(s)
- Zahra Abbasi-Malati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Khanicheragh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nafiseh Didar Khosrowshahi
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Amirataollah Hiradfar
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Somayyeh Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Golbarg Roozbahani
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Verma M, Rhodes M, Shinton S, Wiest DL. A Simple, Rapid, and Effective Method for Tumor Xenotransplantation Analysis in Transparent Zebrafish Embryos. J Vis Exp 2024:10.3791/66164. [PMID: 39072643 PMCID: PMC11370749 DOI: 10.3791/66164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
In vivo studies of tumor behavior are a staple of cancer research; however, the use of mice presents significant challenges in cost and time. Here, we present larval zebrafish as a transplant model that has numerous advantages over murine models, including ease of handling, low expense, and short experimental duration. Moreover, the absence of an adaptive immune system during larval stages obviates the need to generate and use immunodeficient strains. While established protocols for xenotransplantation in zebrafish embryos exist, we present here an improved method involving embryo staging for faster transfer, survival analysis, and the use of flow cytometry to assess disease burden. Embryos are staged to facilitate rapid cell injection into the yolk of the larvae and cell marking to monitor the consistency of the injected cell bolus. After injection, embryo survival analysis is assessed up to 7 days post injection (dpi). Finally, disease burden is also assessed by marking transferred cells with a fluorescent protein and analysis by flow cytometry. Flow cytometry is enabled by a standardized method of preparing cell suspensions from zebrafish embryos, which could also be used in establishing the primary culture of zebrafish cells. In summary, the procedure described here allows a more rapid assessment of the behavior of tumor cells in vivo with larger numbers of animals per study arm and in a more cost-effective manner.
Collapse
Affiliation(s)
- Monika Verma
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center;
| | - Michele Rhodes
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center
| | - Susan Shinton
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center
| | - David L Wiest
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center;
| |
Collapse
|
5
|
Michael C, Mendonça-Gomes JM, DePaolo CW, Di Cristofano A, de Oliveira S. A zebrafish xenotransplant model of anaplastic thyroid cancer to study tumor microenvironment and innate immune cell interactions in vivo. Endocr Relat Cancer 2024; 31:e230195. [PMID: 38657656 PMCID: PMC11160356 DOI: 10.1530/erc-23-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Anaplastic thyroid cancer (ATC) is of the most aggressive thyroid cancer. While ATC is rare, it accounts for a disproportionately high number of thyroid cancer-related deaths. Here, we developed an ATC xenotransplant model in zebrafish larvae, where we can study tumorigenesis and therapeutic response in vivo. Using both mouse (T4888M) and human (C643)-derived fluorescently labeled ATC cell lines, we show these cell lines display different engraftment rates, mass volume, proliferation, cell death, angiogenic potential, and neutrophil and macrophage recruitment and infiltration. Next, using a PIP-FUCCI reporter to track proliferation in vivo, we observed cells in each phase of the cell cycle. Additionally, we performed long-term non-invasive intravital microscopy over 48 h to understand cellular dynamics in the tumor microenvironment at the single-cell level. Lastly, we tested two drug treatments, AZD2014 and a combination therapy of dabrafenib and trametinib, to show our model could be used as an effective screening platform for new therapeutic compounds for ATC. Altogether, we show that zebrafish xenotransplants make a great model to study thyroid carcinogenesis and the tumor microenvironment, while also being a suitable model to test new therapeutics in vivo.
Collapse
Affiliation(s)
- Cassia Michael
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Clinton Walton DePaolo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
- Montefiore-Einstein Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
6
|
Fieuws C, Bek JW, Parton B, De Neef E, De Wever O, Hoorne M, Estrada MF, Van Dorpe J, Denys H, Van de Vijver K, Claes KBM. Zebrafish Avatars: Toward Functional Precision Medicine in Low-Grade Serous Ovarian Cancer. Cancers (Basel) 2024; 16:1812. [PMID: 38791891 PMCID: PMC11120355 DOI: 10.3390/cancers16101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Ovarian cancer (OC) is an umbrella term for cancerous malignancies affecting the ovaries, yet treatment options for all subtypes are predominantly derived from high-grade serous ovarian cancer, the largest subgroup. The concept of "functional precision medicine" involves gaining personalized insights on therapy choice, based on direct exposure of patient tissues to drugs. This especially holds promise for rare subtypes like low-grade serous ovarian cancer (LGSOC). This study aims to establish an in vivo model for LGSOC using zebrafish embryos, comparing treatment responses previously observed in mouse PDX models, cell lines and 3D tumor models. To address this goal, a well-characterized patient-derived LGSOC cell line with the KRAS mutation c.35 G>T (p.(Gly12Val)) was used. Fluorescently labeled tumor cells were injected into the perivitelline space of 2 days' post-fertilization zebrafish embryos. At 1 day post-injection, xenografts were assessed for tumor size, followed by random allocation into treatment groups with trametinib, luminespib and trametinib + luminespib. Subsequently, xenografts were euthanized and analyzed for apoptosis and proliferation by confocal microscopy. Tumor cells formed compact tumor masses (n = 84) in vivo, with clear Ki67 staining, indicating proliferation. Zebrafish xenografts exhibited sensitivity to trametinib and luminespib, individually or combined, within a two-week period, establishing them as a rapid and complementary tool to existing in vitro and in vivo models for evaluating targeted therapies in LGSOC.
Collapse
Affiliation(s)
- Charlotte Fieuws
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (C.F.); (J.W.B.); (B.P.)
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (C.F.); (J.W.B.); (B.P.)
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
| | - Bram Parton
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (C.F.); (J.W.B.); (B.P.)
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
| | - Elyne De Neef
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (C.F.); (J.W.B.); (B.P.)
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
| | - Olivier De Wever
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
| | - Milena Hoorne
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
- Department of Medical Oncology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marta F. Estrada
- Champalimaud Centre of the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
| | - Jo Van Dorpe
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Hannelore Denys
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
- Department of Medical Oncology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Koen Van de Vijver
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Kathleen B. M. Claes
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (C.F.); (J.W.B.); (B.P.)
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
| |
Collapse
|
7
|
Larsson P, Pettersson D, Olsson M, Sarathchandra S, Abramsson A, Zetterberg H, Ittner E, Forssell-Aronsson E, Kovács A, Karlsson P, Helou K, Parris TZ. Repurposing proteasome inhibitors for improved treatment of triple-negative breast cancer. Cell Death Discov 2024; 10:57. [PMID: 38286854 PMCID: PMC10825133 DOI: 10.1038/s41420-024-01819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with poor prognosis and limited treatment options due to the lack of important receptors (estrogen receptor [ER], progesterone receptor [PR], and human epidermal growth factor receptor 2 [HER2]) used for targeted therapy. However, high-throughput in vitro drug screening of cell lines is a powerful tool for identifying effective drugs for a disease. Here, we determine the intrinsic chemosensitivity of TNBC cell lines to proteasome inhibitors (PIs), thereby identifying potentially potent 2-drug combinations for TNBC. Eight TNBC cell lines (BT-549, CAL-148, HCC1806, HCC38, HCC70, MDA-MB-436, MDA-MB-453, and MDA-MB-468) and two controls (MCF-10A and MCF-7) were first exposed to 18 drugs (11 PIs and 7 clinically relevant chemotherapeutic agents) as monotherapy, followed by prediction of potent 2-drug combinations using the IDACombo pipeline. The synergistic effects of the 2-drug combinations were evaluated with SynergyFinder in four TNBC cell lines (CAL-148, HCC1806, HCC38, and MDA-MB-468) and three controls (BT-474, MCF-7, and T47D) in vitro, followed by further evaluation of tumor regression in zebrafish tumor models established using HCC1806 and MCF-7 cells. Monotherapy identified nine effective drugs (bortezomib, carfilzomib, cisplatin, delanzomib, docetaxel, epoxomicin, MLN-2238, MLN-9708, and nedaplatin) across all cell lines. PIs (e.g., bortezomib, delanzomib, and epoxomicin) were highly potent drugs in TNBC cells, of which bortezomib and delanzomib inhibited the chymotrypsin-like activity of the 20 S proteasome by 100% at 10 µM. Moreover, several potent 2-drug combinations (e.g., bortezomib+nedaplatin and epoxomicin+epirubicin) that killed virtually 100% of cells were also identified. Although HCC1806- and MCF-7-derived xenografts treated with bortezomib+nedaplatin and carboplatin+paclitaxel were smaller, HCC1806 cells frequently metastasized to the trunk region. Taken together, we show that PIs used in combination with platinum agents or topoisomerase inhibitors exhibit increased efficiency with almost 100% inhibition in TNBC cell lines, indicating that PIs are therefore promising compounds to use as combination therapy for TNBC.
Collapse
Affiliation(s)
- Peter Larsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniella Pettersson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maxim Olsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Alexandra Abramsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Dementia Research Institute, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ella Ittner
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
8
|
Fontana CM, Van Doan H. Zebrafish xenograft as a tool for the study of colorectal cancer: a review. Cell Death Dis 2024; 15:23. [PMID: 38195619 PMCID: PMC10776567 DOI: 10.1038/s41419-023-06291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 01/11/2024]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death, mostly due to metastatic disease and the fact that many patients already show signs of metastasis at the time of first diagnosis. Current CRC therapies negatively impact patients' quality of life and have little to no effect on combating the tumor once the dissemination has started. Danio rerio (zebrafish) is a popular animal model utilized in cancer research. One of its main advantages is the ease of xenograft transplantation due to the fact that zebrafish larvae lack the adaptative immune system, guaranteeing the impossibility of rejection. In this review, we have presented the many works that choose zebrafish xenograft as a tool for the study of CRC, highlighting the methods used as well as the promising new therapeutic molecules that have been identified due to this animal model.
Collapse
Affiliation(s)
- Camilla Maria Fontana
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
9
|
Charbonneau M, Harper K, Brochu-Gaudreau K, Perreault A, Roy LO, Lucien F, Tian S, Fortin D, Dubois CM. The development of a rapid patient-derived xenograft model to predict chemotherapeutic drug sensitivity/resistance in malignant glial tumors. Neuro Oncol 2023; 25:1605-1616. [PMID: 36821432 PMCID: PMC10479744 DOI: 10.1093/neuonc/noad047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND High-grade gliomas (HGG) are aggressive brain tumors associated with short median patient survival and limited response to therapies, driving the need to develop tools to improve patient outcomes. Patient-derived xenograft (PDX) models, such as mouse PDX, have emerged as potential Avatar platforms for personalized oncology approaches, but the difficulty for some human grafts to grow successfully and the long time required for mice to develop tumors preclude their use for HGG. METHODS We used a rapid and efficient ex-ovo chicken embryo chorioallantoic membrane (CAM) culture system to evaluate the efficacy of oncologic drug options for HGG patients. RESULTS Implantation of fresh glioma tissue fragments from 59 of 60 patients, that include difficult-to-grow IDH-mutated samples, successfully established CAM tumor xenografts within 7 days, with a tumor take rate of 98.3%. These xenografts faithfully recapitulate the histological and molecular characteristics of the primary tumor, and the ability of individual fragments to form tumors was predictive of poor patient prognosis. Treatment of drug-sensitive or drug-resistant xenografts indicates that the CAM-glioma assay enables testing tumor sensitivity to temozolomide and carboplatin at doses consistent with those administered to patients. In a proof-of-concept study involving 14 HGG patients, we observed a correlation of 100% between the CAM xenograft response to temozolomide or carboplatin and the clinical response of patients. CONCLUSION The CAM-glioma model is a fast and reliable assay that has the potential to serve as a complementary model to drug discovery and a real-time Avatar platform to predict the best treatment for HGG patients.
Collapse
Affiliation(s)
- Martine Charbonneau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Kelly Harper
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Karine Brochu-Gaudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Alexis Perreault
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Laurent-Olivier Roy
- Department of Surgery, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | | | - Shulan Tian
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - David Fortin
- Department of Surgery, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Claire M Dubois
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| |
Collapse
|
10
|
Aida A, Yuswan K, Kawai Y, Hasegawa K, Nakajima YI, Kuranaga E. Drosophila innate immunity suppresses the survival of xenografted mammalian tumor cells. Sci Rep 2023; 13:12334. [PMID: 37518191 PMCID: PMC10387472 DOI: 10.1038/s41598-023-38489-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/09/2023] [Indexed: 08/01/2023] Open
Abstract
Patient-derived xenograft (PDX) is an emerging tool established in immunodeficient vertebrate models to assess individualized treatments for cancer patients. Current xenograft models are deficient in adaptive immune systems. However, the precise role of the innate immunity in the xenograft models is unknown. With conserved signaling pathways and established genetic tools, Drosophila has contributed to the understanding of the mechanism of tumor growth as well as tumor-host interactions for decades, making it a promising candidate model for studying whether or not the hosts' innate immunity can accommodate transplanted human tumor cells. Here we show initial observations that assess the behavior and impact of several human tumor cell lines when transplanted into Drosophila. We found that some injected cell lines persisted for a longer duration and reduced hosts' lifespan. In particular, the human lung cancer cell line A549 were observed adjacent to the fly host tissues. We examined two factors that affect the survivability of cancer cells: (1) the optimal temperature of each cell line and (2) the innate immunity of Drosophila hosts. Especially, transplanted human tumor cells survived longer in immunodeficient flies, suggesting that the host innate immune system impedes the growth of xenografted cells. Our attempts for xenografting fly models thus provide necessary steps to overcome for establishing PDX cancer models using invertebrates.
Collapse
Affiliation(s)
- Ayaka Aida
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kevin Yuswan
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yoichi Kawai
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Keita Hasegawa
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yu-Ichiro Nakajima
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8578, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
- Laboratory for Histogenetic Dynamics, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8304, Japan.
| |
Collapse
|
11
|
Yin J, Zhao G, Kalirai H, Coupland SE, Jochemsen AG, Forn-Cuní G, Wierenga APA, Jager MJ, Snaar-Jagalska BE, Groenewoud A. Zebrafish Patient-Derived Xenograft Model as a Preclinical Platform for Uveal Melanoma Drug Discovery. Pharmaceuticals (Basel) 2023; 16:598. [PMID: 37111355 PMCID: PMC10141637 DOI: 10.3390/ph16040598] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Uveal melanoma (UM) is a rare malignant cancer of the eye, with up to 50% of patients dying from metastasis, for which no effective treatment is available. Due to the rarity of the disease, there is a great need to harness the limited material available from primary tumors and metastases for advanced research and preclinical drug screening. We established a platform to isolate, preserve, and transiently recover viable tissues, followed by the generation of spheroid cultures derived from primary UM. All assessed tumor-derived samples formed spheroids in culture within 24 h and stained positive for melanocyte-specific markers, indicating the retention of their melanocytic origin. These short-lived spheroids were only maintained for the duration of the experiment (7 days) or re-established from frozen tumor tissue acquired from the same patient. Intravenous injection of fluorescently labeled UM cells derived from these spheroids into zebrafish yielded a reproducible metastatic phenotype and recapitulated molecular features of the disseminating UM. This approach allowed for the experimental replications required for reliable drug screening (at least 2 individual biological experiments, with n > 20). Drug treatments with navitoclax and everolimus validated the zebrafish patient-derived model as a versatile preclinical tool for screening anti-UM drugs and as a preclinical platform to predict personalized drug responses.
Collapse
Affiliation(s)
- Jie Yin
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (J.Y.)
| | - Gangyin Zhao
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (J.Y.)
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gabriel Forn-Cuní
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (J.Y.)
| | - Annemijn P. A. Wierenga
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Arwin Groenewoud
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (J.Y.)
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
12
|
Chakraborty K, Biswas A, Mishra S, Mallick AM, Tripathi A, Jan S, Sinha Roy R. Harnessing Peptide-Functionalized Multivalent Gold Nanorods for Promoting Enhanced Gene Silencing and Managing Breast Cancer Metastasis. ACS APPLIED BIO MATERIALS 2023; 6:458-472. [PMID: 36651932 DOI: 10.1021/acsabm.2c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Small interfering RNA (siRNA) has become the cornerstone against undruggable targets and for managing metastatic breast cancer. However, an effective gene silencing approach is faced with a major challenge due to the delivery problem. In our present study, we have demonstrated efficient siRNA delivery, superior gene silencing, and inhibition of metastasis in triple-negative breast cancer cells (MDA-MB-231) using rod-shaped (aspect ratio: 4) multivalent peptide-functionalized gold nanoparticles and compared them to monovalent free peptide doses. Multivalency is a new concept in biology, and tuning the physical parameters of multivalent nanoparticles can enhance gene silencing and antitumor efficacy. We explored the effect of the multivalency of shape- and size-dependent peptide-functionalized gold nanoparticles in siRNA delivery. Our study demonstrates that peptide functionalization leads to reduced toxicity of the nanoparticles. Such designed peptide-functionalized nanorods also demonstrate antimetastatic efficacy in Notch1-silenced cells by preventing EMT progression in vitro. We have shown siRNA delivery in the hard-to-transfect primary cell line HUVEC and also demonstrated that the Notch1-silenced MDA-MB-231 cell line has failed to form nanobridge-mediated foci with the HUVEC in the co-culture of HUVEC and MDA-MB-231, which promote metastasis. This antimetastatic effect is further checked in a xenotransplant in vivo zebrafish model. In vivo studies also suggest that our designed nanoparticles mediated inhibition of micrometastasis due to silencing of the Notch1 gene. The outcome of our study highlights that the structure-activity relationship of multifunctional nanoparticles can be harnessed to modulate their biological activity.
Collapse
Affiliation(s)
- Kasturee Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Abhijit Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Sukumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Argha Mario Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Archana Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Somnath Jan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.,Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
13
|
Lores S, Gámez-Chiachio M, Cascallar M, Ramos-Nebot C, Hurtado P, Alijas S, López López R, Piñeiro R, Moreno-Bueno G, de la Fuente M. Effectiveness of a novel gene nanotherapy based on putrescine for cancer treatment. Biomater Sci 2023. [PMID: 36790445 DOI: 10.1039/d2bm01456d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Gene therapy has long been proposed for cancer treatment. However, the use of therapeutic nucleic acids presents several limitations such as enzymatic degradation, rapid clearance, and poor cellular uptake and efficiency. In this work we propose the use of putrescine, a precursor for higher polyamine biosynthesis for the preparation of cationic nanosystems for cancer gene therapy. We have formulated and characterized putrescine-sphingomyelin nanosystems (PSN) and studied their endocytic pathway and intracellular trafficking in cancer cells. After loading a plasmid DNA (pDNA) encoding the apoptotic Fas Ligand (FasL), we proved their therapeutic activity by measuring the cell death rate after treatment of MDA-MB-231 cells. We have also used xenografted zebrafish embryos as a first in vivo approach to demonstrate the efficacy of the proposed PSN-pDNA formulation in a more complex model. Finally, intratumoral and intraperitoneal administration to mice-bearing MDA-MB-231 xenografts resulted in a significant decrease in tumour cell growth, highlighting the potential of the developed gene therapy nanoformulation for the treatment of triple negative breast cancer.
Collapse
Affiliation(s)
- Saínza Lores
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain
| | - Manuel Gámez-Chiachio
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - María Cascallar
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - Carmen Ramos-Nebot
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - Pablo Hurtado
- Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Rafael López López
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Roberto Piñeiro
- Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Gema Moreno-Bueno
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,MD Anderson International Foundation, Gómez Hemans s/n, 28033 Madrid, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,DIVERSA Technologies SL, Edificio Emprendia, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
14
|
Morris EK, Daignault-Mill S, Stehbens SJ, Genovesi LA, Lagendijk AK. Addressing blood-brain-tumor-barrier heterogeneity in pediatric brain tumors with innovative preclinical models. Front Oncol 2023; 13:1101522. [PMID: 36776301 PMCID: PMC9909546 DOI: 10.3389/fonc.2023.1101522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Brain tumors represent the leading cause of disease-related mortality and morbidity in children, with effective treatments urgently required. One factor limiting the effectiveness of systemic therapy is the blood-brain-barrier (BBB), which limits the brain penetration of many anticancer drugs. BBB integrity is often compromised in tumors, referred to as the blood-brain-tumor-barrier (BBTB), and the impact of a compromised BBTB on the therapeutic sensitivity of brain tumors has been clearly shown for a few selected agents. However, the heterogeneity of barrier alteration observed within a single tumor and across distinct pediatric tumor types represents an additional challenge. Herein, we discuss what is known regarding the heterogeneity of tumor-associated vasculature in pediatric brain tumors. We discuss innovative and complementary preclinical model systems that will facilitate real-time functional analyses of BBTB for all pediatric brain tumor types. We believe a broader use of these preclinical models will enable us to develop a greater understanding of the processes underlying tumor-associated vasculature formation and ultimately more efficacious treatment options.
Collapse
Affiliation(s)
- Elysse K. Morris
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Sheena Daignault-Mill
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha J. Stehbens
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Laura A. Genovesi
- The University of Queensland Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia,*Correspondence: Laura A. Genovesi, ; Anne K. Lagendijk,
| | - Anne K. Lagendijk
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia,School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia,*Correspondence: Laura A. Genovesi, ; Anne K. Lagendijk,
| |
Collapse
|
15
|
Al-Hamaly MA, Turner LT, Rivera-Martinez A, Rodriguez A, Blackburn JS. Zebrafish Cancer Avatars: A Translational Platform for Analyzing Tumor Heterogeneity and Predicting Patient Outcomes. Int J Mol Sci 2023; 24:2288. [PMID: 36768609 PMCID: PMC9916713 DOI: 10.3390/ijms24032288] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The increasing number of available anti-cancer drugs presents a challenge for oncologists, who must choose the most effective treatment for the patient. Precision cancer medicine relies on matching a drug with a tumor's molecular profile to optimize the therapeutic benefit. However, current precision medicine approaches do not fully account for intra-tumoral heterogeneity. Different mutation profiles and cell behaviors within a single heterogeneous tumor can significantly impact therapy response and patient outcomes. Patient-derived avatar models recapitulate a patient's tumor in an animal or dish and provide the means to functionally assess heterogeneity's impact on drug response. Mouse xenograft and organoid avatars are well-established, but the time required to generate these models is not practical for clinical decision-making. Zebrafish are emerging as a time-efficient and cost-effective cancer avatar model. In this review, we highlight recent developments in zebrafish cancer avatar models and discuss the unique features of zebrafish that make them ideal for the interrogation of cancer heterogeneity and as part of precision cancer medicine pipelines.
Collapse
Affiliation(s)
- Majd A. Al-Hamaly
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40356, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Logan T. Turner
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, USA
| | | | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jessica S. Blackburn
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, USA
| |
Collapse
|
16
|
Bozzer S, De Maso L, Grimaldi MC, Capolla S, Dal Bo M, Toffoli G, Macor P. Zebrafish: A Useful Animal Model for the Characterization of Drug-Loaded Polymeric NPs. Biomedicines 2022; 10:biomedicines10092252. [PMID: 36140353 PMCID: PMC9496256 DOI: 10.3390/biomedicines10092252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
The use of zebrafish (ZF) embryos as an in vivo model is increasingly attractive thanks to different features that include easy handling, transparency, and the absence of adaptive immunity until 4–6 weeks. These factors allow the development of xenografts that can be easily analyzed through fluorescence techniques. In this work, ZF were exploited to characterize the efficiency of drug-loaded polymeric NPs as a therapeutical approach for B-cell malignancies. Fluorescent probes, fluorescent transgenic lines of ZF, or their combination allowed to deeply examine biodistribution, elimination, and therapeutic efficacy. In particular, the fluorescent signal of nanoparticles (NPs) was exploited to investigate the in vivo distribution, while the colocalization between the fluorescence in macrophages and NPs allows following the elimination pathway of these polymeric NPs. Xenotransplanted human B-cells (Nalm-6) developed a reproducible model useful for demonstrating drug delivery by polymeric NPs loaded with doxorubicin and, as a consequence, the arrest of tumor growth and the reduction in tumor burden. ZF proved to be a versatile model, able to rapidly provide answers in the development of animal models and in the characterization of the activity and the efficacy of drug delivery systems.
Collapse
Affiliation(s)
- Sara Bozzer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: (S.B.); (P.M.)
| | - Luca De Maso
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: (S.B.); (P.M.)
| |
Collapse
|
17
|
Tao J, Wei Z, Cheng Y, Xu M, Li Q, Lee SMY, Ge W, Luo KQ, Wang X, Zheng Y. Apoptosis-Sensing Xenograft Zebrafish Tumor Model for Anticancer Evaluation of Redox-Responsive Cross-Linked Pluronic Micelles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39775-39786. [PMID: 36006680 DOI: 10.1021/acsami.2c09005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A suitable animal model for preclinical screening and evaluation in vivo could vastly increase the efficiency and success rate of nanomedicine development. Compared with rodents, the transparency of the zebrafish model offers unique advantages of real-time and high-resolution imaging of the whole body and cellular levels in vivo. In this research, we established an apoptosis-sensing xenograft zebrafish tumor model to evaluate the anti-cancer effects of redox-responsive cross-linked Pluronic polymeric micelles (CPPMs) visually and accurately. First, doxorubicin (Dox)-loaded CPPMs were fabricated and characterized with glutathione (GSH)-responsive drug release. Then, the B16F10 xenograft zebrafish tumor model was established to mimic the tumor microenvironment with angiogenesis and high GSH generation for redox-responsive tumor-targeting evaluation in vivo. The high GSH generation was first verified in the xenograft zebrafish tumor model. Compared with ordinary Pluronic polymeric micelles, Dox CPPMs had a much higher accumulation in zebrafish tumor sites. Finally, the apoptosis-sensing B16F10-C3 xenograft zebrafish tumor model was established for visual, rapid, effective, and noninvasive assessment of anti-cancer effects at the cellular level in vivo. The Dox CPPMs significantly inhibited the proliferation of cancer cells and induced apoptosis in the B16F10-C3 xenograft zebrafish tumor model. Therefore, the redox-responsive cross-linked Pluronic micelles showed effective anti-cancer therapy in the xenograft zebrafish tumor model. This xenograft zebrafish tumor model is available for rapid screening and assessment of anti-cancer effects in preclinical studies.
Collapse
Affiliation(s)
- Jinsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, China
| | - Zhengjie Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yaxin Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Meng Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Qiuxia Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Wei Ge
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau 999078, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau 999078, China
| |
Collapse
|
18
|
Wang X, Li W, Jiang H, Ma C, Huang M, Wei X, Wang W, Jing L. Zebrafish Xenograft Model for Studying Pancreatic Cancer-Instructed Innate Immune Microenvironment. Int J Mol Sci 2022; 23:6442. [PMID: 35742884 PMCID: PMC9224329 DOI: 10.3390/ijms23126442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has up to half the tumor mass of tumor-associated myeloid cells. Myeloid innate immune cells play important roles in regulating cancer cell recognition and tumor growth. PDAC cells often mold myeloid cells into pro-tumoral state to fuel cancer growth and induce immune suppression. However, how tumor cells educate the innate immune responses remains largely unknown. In this study, we used four different human PDAC cell lines (PANC1, BxPC3, AsPC1, and CFPAC1) to establish the zebrafish xenograft model and investigated the interaction between pancreatic cancer and innate immune cells. The primary tumor-derived cancer cells PANC1 and BxPC3 activated innate immune anti-tumoral responses efficiently, while cancer cells from metastatic tissues AsPC1 and CFPAC1 induced an innate immune suppression and educated innate immune cells towards pro-tumoral state. Chemical conversion of innate immune cells to anti-tumoral state inhibited tumor growth for AsPC1 and CFPAC1. Moreover, genetic and pharmacological inhibition of macrophages also significantly reduced tumor growth, supporting the important roles of macrophages in innate immune suppression. REG4 expression is high in AsPC1 and CFPAC1. Knockdown of REG4 induced innate immune activation and reduced tumor growth in the xenografts, indicating that REG4 is a beneficial target for PDAC therapy. Our study provides a fast in-vivo model to study PDAC-innate immune interaction and their plasticity that could be used to study the related mechanism as well as identify new drugs to enhance immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lili Jing
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.); (W.L.); (H.J.); (C.M.); (M.H.); (X.W.); (W.W.)
| |
Collapse
|
19
|
Larsson S, Kettunen P, Carén H. Orthotopic Transplantation of Human Paediatric High-Grade Glioma in Zebrafish Larvae. Brain Sci 2022; 12:brainsci12050625. [PMID: 35625011 PMCID: PMC9139401 DOI: 10.3390/brainsci12050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Brain tumours are the most common cause of death among children with solid tumours, and high-grade gliomas (HGG) are among the most devastating forms with very poor outcomes. In the search for more effective treatments for paediatric HGG, there is a need for better experimental models. To date, there are no xenograft zebrafish models developed for human paediatric HGG; existing models rely on adult cells. The use of paediatric models is of great importance since it is well known that the genetic and epigenetic mechanisms behind adult and paediatric disease differ greatly. In this study, we present a clinically relevant in vivo model based on paediatric primary glioma stem cell (GSC) cultures, which after orthotopic injection into the zebrafish larvae, can be monitored using confocal imaging over time. We show that cells invade the brain tissue and can be followed up to 8 days post-injection while they establish in the fore/mid brain. This model offers an in vivo system where tumour invasion can be monitored and drug treatments quickly be evaluated. The possibility to monitor patient-specific cells has the potential to contribute to a better understanding of cellular behaviour and personalised treatments in the future.
Collapse
Affiliation(s)
- Susanna Larsson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden;
- Department of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
- Correspondence: ; Tel.: +46-31-786-3838
| |
Collapse
|
20
|
Cascallar M, Alijas S, Pensado-López A, Vázquez-Ríos AJ, Sánchez L, Piñeiro R, de la Fuente M. What Zebrafish and Nanotechnology Can Offer for Cancer Treatments in the Age of Personalized Medicine. Cancers (Basel) 2022; 14:cancers14092238. [PMID: 35565373 PMCID: PMC9099873 DOI: 10.3390/cancers14092238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer causes millions of deaths each year and thus urgently requires the development of new therapeutic strategies. Nanotechnology-based anticancer therapies are a promising approach, with several formulations already approved and in clinical use. The evaluation of these therapies requires efficient in vivo models to study their behavior and interaction with cancer cells, and to optimize their properties to ensure maximum efficacy and safety. In this way, zebrafish is an important candidate due to its high homology with the human genoma, its large offspring, and the ease in developing specific cancer models. The role of zebrafish as a model for anticancer therapy studies has been highly evidenced, allowing researchers not only to perform drug screenings but also to evaluate novel therapies such as immunotherapies and nanotherapies. Beyond that, zebrafish can be used as an “avatar” model for performing patient-derived xenografts for personalized medicine. These characteristics place zebrafish in an attractive position as a role model for evaluating novel therapies for cancer treatment, such as nanomedicine.
Collapse
Affiliation(s)
- María Cascallar
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abi Judit Vázquez-Ríos
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-981-955-704
| |
Collapse
|
21
|
Costa B, Estrada MF, Barroso MT, Fior R. Zebrafish Patient-Derived Avatars from Digestive Cancers for Anti-cancer Therapy Screening. Curr Protoc 2022; 2:e415. [PMID: 35436037 DOI: 10.1002/cpz1.415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Patient-derived xenografts (PDXs), also called "avatars," are generated by the implantation of human primary tumor cells or tissues into a host animal. Given the complexity and unique characteristics of each tumor, PDXs are models of choice in cancer research and precision medicine. In this context, the zebrafish PDX model (zPDX or zAvatar) has been recognized as a promising in vivo model to directly challenge patient cells with anti-cancer therapies in a personalized manner. The assay relies on the injection of tumor cells from patients into zebrafish embryos to then test and identify the best available drug combination for a particular patient. Compared to mouse PDXs, zAvatar assays take less time and do not require in vitro or in vivo cell expansion. The present article describes how to generate zAvatars from resected digestive cancer from surgeries and how to then use them for anti-cancer therapy screening. We describe the steps for tumor sample collection and cryopreservation, sample preparation and fluorescent labeling for microinjection into zebrafish embryos, drug administration, and analysis of tumor behavior by single-cell confocal imaging. We provide detailed protocols and helpful tips for performing this assay, and we address the technical challenges associated with the workflow. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Patient tumor sample collection and cryopreservation Basic Protocol 2: Generation of zAvatars and anti-cancer treatment Basic Protocol 3: Whole-mount immunofluorescence Basic Protocol 4: Confocal imaging and analysis.
Collapse
Affiliation(s)
- Bruna Costa
- Champalimaud Foundation, Champalimaud Research, Lisbon, Portugal
| | - Marta F Estrada
- Champalimaud Foundation, Champalimaud Research, Lisbon, Portugal
| | | | - Rita Fior
- Champalimaud Foundation, Champalimaud Research, Lisbon, Portugal
| |
Collapse
|
22
|
Functional Therapeutic Target Validation Using Pediatric Zebrafish Xenograft Models. Cancers (Basel) 2022; 14:cancers14030849. [PMID: 35159116 PMCID: PMC8834194 DOI: 10.3390/cancers14030849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Despite the major progress of precision and personalized oncology, a significant therapeutic benefit is only achieved in cases with directly druggable genetic alterations. This highlights the need for additional methods that reliably predict each individual patient’s response in a clinically meaningful time, e.g., through ex vivo functional drug screen profiling. Moreover, patient-derived xenograft (PDX) models are more predictive than cell culture studies, as they reconstruct cell–cell and cell–extracellular matrix (ECM) interactions and consider the tumor microenvironment, drug metabolism and toxicities. Zebrafish PDXs (zPDX) are nowadays emerging as a fast model allowing for multiple drugs to be tested at the same time in a clinically relevant time window. Here, we show that functional drug response profiling of zPDX from primary material obtained through the INdividualized Therapy FOr Relapsed Malignancies in Childhood (INFORM) pediatric precision oncology pipeline provides additional key information for personalized precision oncology. Abstract The survival rate among children with relapsed tumors remains poor, due to tumor heterogeneity, lack of directly actionable tumor drivers and multidrug resistance. Novel personalized medicine approaches tailored to each tumor are urgently needed to improve cancer treatment. Current pediatric precision oncology platforms, such as the INFORM (INdividualized Therapy FOr Relapsed Malignancies in Childhood) study, reveal that molecular profiling of tumor tissue identifies targets associated with clinical benefit in a subgroup of patients only and should be complemented with functional drug testing. In such an approach, patient-derived tumor cells are exposed to a library of approved oncological drugs in a physiological setting, e.g., in the form of animal avatars injected with patient tumor cells. We used molecularly fully characterized tumor samples from the INFORM study to compare drug screen results of individual patient-derived cell models in functional assays: (i) patient-derived spheroid cultures within a few days after tumor dissociation; (ii) tumor cells reisolated from the corresponding mouse PDX; (iii) corresponding long-term organoid-like cultures and (iv) drug evaluation with the corresponding zebrafish PDX (zPDX) model. Each model had its advantage and complemented the others for drug hit and drug combination selection. Our results provide evidence that in vivo zPDX drug screening is a promising add-on to current functional drug screening in precision medicine platforms.
Collapse
|
23
|
Li C, Ma J, Groenewoud A, Ren J, Liu S, Snaar-Jagalska BE, Ten Dijke P. Establishment of Embryonic Zebrafish Xenograft Assays to Investigate TGF-β Family Signaling in Human Breast Cancer Progression. Methods Mol Biol 2022; 2488:67-80. [PMID: 35347683 DOI: 10.1007/978-1-0716-2277-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transforming growth factor-β (TGF-β) family members have pivotal functions in controlling breast cancer progression, acting not only on cancer cells but also on other cells within the tumor microenvironment. Here we describe embryonic zebrafish xenograft assays to investigate how TGF-β family signaling controls breast cancer cell intravasation, extravasation and regulates tumor angiogenesis. Fluorescently mCherry-labeled breast cancer cells are injected in the perivitelline space or Duct of Cuvier of Tg (fli:EGFP) transgenic Casper zebrafish embryos, in which the zebrafish express enhanced green fluorescent protein in the entire vasculature. The dynamic responses of migratory and invasive human cancer cells, and the induction of new blood vessel formation by the cancer cells in zebrafish host, are visualized using a fluorescent microscope. These assays provide efficient, reliable, low-cost models to investigate the effect of (epi)genetic modulators and pharmacological compounds that perturb the activity of TGF-β family signaling components on breast cancer cell metastasis and angiogenesis.
Collapse
Affiliation(s)
- Chao Li
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Jin Ma
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Arwin Groenewoud
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Jiang Ren
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Sijia Liu
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
24
|
Lichtenegger A, Mukherjee P, Tamaoki J, Bian L, Zhu L, El-Sadek IA, Makita S, Leskovar K, Kobayashi M, Baumann B, Yasuno Y. Multicontrast investigation of in vivo wildtype zebrafish in three development stages using polarization-sensitive optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210313LR. [PMID: 35064657 PMCID: PMC8781523 DOI: 10.1117/1.jbo.27.1.016001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/29/2021] [Indexed: 05/03/2023]
Abstract
SIGNIFICANCE The scattering and polarization characteristics of various organs of in vivo wildtype zebrafish in three development stages were investigated using a non-destructive and label-free approach. The presented results showed a promising first step for the usability of Jones-matrix optical coherence tomography (JM-OCT) in zebrafish-based research. AIM We aim to visualize and quantify the scatter and polarization signatures of various zebrafish organs for larvae, juvenile, and young adult animals in vivo in a non-invasive and label-free way. APPROACH A custom-built polarization-sensitive JM-OCT setup in combination with a motorized translation stage was utilized to investigate live zebrafish. Depth-resolved scattering (intensity and attenuation coefficient) and polarization (birefringence and degree of polarization uniformity) properties were analyzed. OCT angiography (OCT-A) was utilized to investigate the vasculature label-free and non-destructively. RESULTS The scatter and polarization signatures of the zebrafish organs such as the eye, gills, and muscles were investigated. The attenuation coefficient and birefringence changes between 1- and 2-month-old animals were evaluated in selected organs. OCT-A revealed the vasculature of in vivo larvae and juvenile zebrafish in a label-free manner. CONCLUSIONS JM-OCT offers a rapid, label-free, non-invasive, tissue specific, and three-dimensional imaging tool to investigate in vivo processes in zebrafish in various development stages.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- University of Tsukuba, Computational Optics Group, Tsukuba, Japan
- Address all correspondence to Antonia Lichtenegger,
| | | | - Junya Tamaoki
- University of Tsukuba, Faculty of Medicine, Department of Molecular and Developmental Biology, Tsukuba, Japan
| | - Lixuan Bian
- University of Tsukuba, Faculty of Medicine, Department of Molecular and Developmental Biology, Tsukuba, Japan
| | - Lida Zhu
- University of Tsukuba, Computational Optics Group, Tsukuba, Japan
| | - Ibrahim Abd El-Sadek
- University of Tsukuba, Computational Optics Group, Tsukuba, Japan
- Damietta University, Faculty of Science, Department of Physics, Damietta, Egypt
| | - Shuichi Makita
- University of Tsukuba, Computational Optics Group, Tsukuba, Japan
| | - Konrad Leskovar
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Makoto Kobayashi
- University of Tsukuba, Faculty of Medicine, Department of Molecular and Developmental Biology, Tsukuba, Japan
| | - Bernhard Baumann
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Yoshiaki Yasuno
- University of Tsukuba, Computational Optics Group, Tsukuba, Japan
| |
Collapse
|
25
|
Miquel M, Zhang S, Pilarsky C. Pre-clinical Models of Metastasis in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:748631. [PMID: 34778259 PMCID: PMC8578999 DOI: 10.3389/fcell.2021.748631] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a hostile solid malignancy coupled with an extremely high mortality rate. Metastatic disease is already found in most patients at the time of diagnosis, resulting in a 5-year survival rate below 5%. Improved comprehension of the mechanisms leading to metastasis is pivotal for the development of new targeted therapies. A key field to be improved are modeling strategies applied in assessing cancer progression, since traditional platforms fail in recapitulating the complexity of PDAC. Consequently, there is a compelling demand for new preclinical models that mirror tumor progression incorporating the pressure of the immune system, tumor microenvironment, as well as molecular aspects of PDAC. We suggest the incorporation of 3D organoids derived from genetically engineered mouse models or patients as promising new tools capable to transform PDAC pre-clinical modeling and access new frontiers in personalized medicine.
Collapse
Affiliation(s)
- Maria Miquel
- Department of Surgery, University Hospital, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Shuman Zhang
- Department of Surgery, University Hospital, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, University Hospital, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
26
|
Lenis-Rojas OA, Roma-Rodrigues C, Fernandes AR, Carvalho A, Cordeiro S, Guerra-Varela J, Sánchez L, Vázquez-García D, López-Torres M, Fernández A, Fernández JJ. Evaluation of the In Vitro and In Vivo Efficacy of Ruthenium Polypyridyl Compounds against Breast Cancer. Int J Mol Sci 2021; 22:ijms22168916. [PMID: 34445620 PMCID: PMC8396206 DOI: 10.3390/ijms22168916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
The clinical success of cisplatin, carboplatin, and oxaliplatin has sparked the interest of medicinal inorganic chemistry to synthesize and study compounds with non-platinum metal centers. Despite Ru(II)-polypyridyl complexes being widely studied and well established for their antitumor properties, there are not enough in vivo studies to establish the potentiality of this type of compound. Therefore, we report to the best of our knowledge the first in vivo study of Ru(II)-polypyridyl complexes against breast cancer with promising results. In order to conduct our study, we used MCF7 zebrafish xenografts and ruthenium complexes [Ru(bipy)2(C12H8N6-N,N)][CF3SO3]2Ru1 and [{Ru(bipy)2}2(μ-C12H8N6-N,N)][CF3SO3]4Ru2, which were recently developed by our group. Ru1 and Ru2 reduced the tumor size by an average of 30% without causing significant signs of lethality when administered at low doses of 1.25 mg·L-1. Moreover, the in vitro selectivity results were confirmed in vivo against MCF7 breast cancer cells. Surprisingly, this work suggests that both the mono- and the dinuclear Ru(II)-polypyridyl compounds have in vivo potential against breast cancer, since there were no significant differences between both treatments, highlighting Ru1 and Ru2 as promising chemotherapy agents in breast cancer therapy.
Collapse
Affiliation(s)
- Oscar A. Lenis-Rojas
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB, Av. da República, EAN, 2780-157 Oeiras, Portugal;
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento Ciências da Vida, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (A.C.); (S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento Ciências da Vida, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (A.C.); (S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Correspondence: (A.R.F.); (J.J.F.)
| | - Andreia Carvalho
- UCIBIO, Departamento Ciências da Vida, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (A.C.); (S.C.)
| | - Sandra Cordeiro
- UCIBIO, Departamento Ciências da Vida, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (A.C.); (S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge Guerra-Varela
- Departamento de Zoología, Genética y Antropología Física. Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (J.G.-V.); (L.S.)
| | - Laura Sánchez
- Departamento de Zoología, Genética y Antropología Física. Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (J.G.-V.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Digna Vázquez-García
- Departamento de Química, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain; (D.V.-G.); (M.L.-T.); (A.F.)
| | - Margarita López-Torres
- Departamento de Química, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain; (D.V.-G.); (M.L.-T.); (A.F.)
| | - Alberto Fernández
- Departamento de Química, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain; (D.V.-G.); (M.L.-T.); (A.F.)
| | - Jesús J. Fernández
- Departamento de Química, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain; (D.V.-G.); (M.L.-T.); (A.F.)
- Correspondence: (A.R.F.); (J.J.F.)
| |
Collapse
|
27
|
Pensado-López A, Fernández-Rey J, Reimunde P, Crecente-Campo J, Sánchez L, Torres Andón F. Zebrafish Models for the Safety and Therapeutic Testing of Nanoparticles with a Focus on Macrophages. NANOMATERIALS 2021; 11:nano11071784. [PMID: 34361170 PMCID: PMC8308170 DOI: 10.3390/nano11071784] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
New nanoparticles and biomaterials are increasingly being used in biomedical research for drug delivery, diagnostic applications, or vaccines, and they are also present in numerous commercial products, in the environment and workplaces. Thus, the evaluation of the safety and possible therapeutic application of these nanomaterials has become of foremost importance for the proper progress of nanotechnology. Due to economical and ethical issues, in vitro and in vivo methods are encouraged for the testing of new compounds and/or nanoparticles, however in vivo models are still needed. In this scenario, zebrafish (Danio rerio) has demonstrated potential for toxicological and pharmacological screenings. Zebrafish presents an innate immune system, from early developmental stages, with conserved macrophage phenotypes and functions with respect to humans. This fact, combined with the transparency of zebrafish, the availability of models with fluorescently labelled macrophages, as well as a broad variety of disease models offers great possibilities for the testing of new nanoparticles. Thus, with a particular focus on macrophage-nanoparticle interaction in vivo, here, we review the studies using zebrafish for toxicological and biodistribution testing of nanoparticles, and also the possibilities for their preclinical evaluation in various diseases, including cancer and autoimmune, neuroinflammatory, and infectious diseases.
Collapse
Affiliation(s)
- Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Juan Fernández-Rey
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Pedro Reimunde
- Department of Physiotherapy, Medicine and Biomedical Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain;
- Department of Neurosurgery, Hospital Universitario Lucus Augusti, 27003 Lugo, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Correspondence: (L.S.); (F.T.A.)
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Correspondence: (L.S.); (F.T.A.)
| |
Collapse
|
28
|
Zampedri C, Martínez-Flores WA, Melendez-Zajgla J. The Use of Zebrafish Xenotransplant Assays to Analyze the Role of lncRNAs in Breast Cancer. Front Oncol 2021; 11:687594. [PMID: 34123857 PMCID: PMC8190406 DOI: 10.3389/fonc.2021.687594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Breast cancer represents a great challenge since it is the first cause of death by cancer in women worldwide. LncRNAs are a newly described class of non-coding RNAs that participate in cancer progression. Their use as cancer markers and possible therapeutic targets has recently gained strength. Animal xenotransplants allows for in vivo monitoring of disease development, molecular elucidation of pathogenesis and the design of new therapeutic strategies. Nevertheless, the cost and complexities of mice husbandry makes medium to high throughput assays difficult. Zebrafishes (Danio rerio) represent a novel model for these assays, given the ease with which xenotransplantation trials can be performed and the economic and experimental advantages it offers. In this review we propose the use of xenotransplants in zebrafish to study the role of breast cancer lncRNAs using low to medium high throughput assays.
Collapse
Affiliation(s)
- Cecilia Zampedri
- Functional Genomics Laboratories, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | | | - Jorge Melendez-Zajgla
- Functional Genomics Laboratories, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| |
Collapse
|
29
|
Corsinovi D, Usai A, Sarlo MD, Giannaccini M, Ori M. Zebrafish Avatar to Develop Precision Breast Cancer Therapies. Anticancer Agents Med Chem 2021; 22:748-759. [PMID: 33797388 DOI: 10.2174/1871520621666210402111634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Zebrafish (Danio rerio) is a vertebrate that has become a popular alternative model for the cellular and molecular study of human tumors and for drug testing and validating approaches. Notably, zebrafish embryos, thanks to their accessibility, allow rapid collection of in vivo results prodromal to validation in the murine models in respect to the 3R principles. The generation of tumor xenograft in zebrafish embryos and larvae, or zebrafish avatar, represents a unique opportunity to study tumor growth, angiogenesis, cell invasion and metastatic dissemination, interaction between tumor and host in vivo avoiding immunogenic rejection, representing a promising platform for the translational research and personalized therapies. OBJECTIVE In this mini-review we report recent advances in breast cancer research and drug testing that took advantage of the zebrafish xenograft model using both breast cancer cell lines and patient's biopsy. CONCLUSION Patient derived xenograft, together with the gene editing, the omics biotechnology, the in vivo time lapse imaging and the high-throughput screening that are already set up and largely used in zebrafish, could represent a step forward towards precision and personalized medicine in the breast cancer research field.
Collapse
Affiliation(s)
- Debora Corsinovi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa. Italy
| | - Alice Usai
- Department of Biology, University of Pisa, Pisa. Italy
| | | | | | - Michela Ori
- Department of Biology, University of Pisa, Pisa. Italy
| |
Collapse
|
30
|
Li S, Yeo KS, Levee TM, Howe CJ, Her ZP, Zhu S. Zebrafish as a Neuroblastoma Model: Progress Made, Promise for the Future. Cells 2021; 10:cells10030580. [PMID: 33800887 PMCID: PMC8001113 DOI: 10.3390/cells10030580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/24/2022] Open
Abstract
For nearly a decade, researchers in the field of pediatric oncology have been using zebrafish as a model for understanding the contributions of genetic alternations to the pathogenesis of neuroblastoma (NB), and exploring the molecular and cellular mechanisms that underlie neuroblastoma initiation and metastasis. In this review, we will enumerate and illustrate the key advantages of using the zebrafish model in NB research, which allows researchers to: monitor tumor development in real-time; robustly manipulate gene expression (either transiently or stably); rapidly evaluate the cooperative interactions of multiple genetic alterations to disease pathogenesis; and provide a highly efficient and low-cost methodology to screen for effective pharmaceutical interventions (both alone and in combination with one another). This review will then list some of the common challenges of using the zebrafish model and provide strategies for overcoming these difficulties. We have also included visual diagram and figures to illustrate the workflow of cancer model development in zebrafish and provide a summary comparison of commonly used animal models in cancer research, as well as key findings of cooperative contributions between MYCN and diverse singling pathways in NB pathogenesis.
Collapse
Affiliation(s)
- Shuai Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Kok Siong Yeo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Taylor M. Levee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Cassie J. Howe
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Zuag Paj Her
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA; (S.L.); (K.S.Y.); (T.M.L.); (C.J.H.); (Z.P.H.)
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
- Correspondence:
| |
Collapse
|
31
|
Koual M, Tomkiewicz C, Guerrera IC, Sherr D, Barouki R, Coumoul X. Aggressiveness and Metastatic Potential of Breast Cancer Cells Co-Cultured with Preadipocytes and Exposed to an Environmental Pollutant Dioxin: An in Vitro and in Vivo Zebrafish Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37002. [PMID: 33683140 PMCID: PMC7939125 DOI: 10.1289/ehp7102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Breast cancer (BC) is a major public health concern, and its prognosis is very poor once metastasis occurs. The tumor microenvironment and chemical pollution have been suggested recently to contribute, independently, to the development of metastatic cells. The BC microenvironment consists, in part, of adipocytes and preadipocytes in which persistent organic pollutants (POPs) can be stored. OBJECTIVES We aimed to test the hypothesis that these two factors (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an extensively studied, toxic POP and the microenvironment) may interact to increase tumor aggressiveness. METHODS We used a co-culture model using BC MCF-7 cells or MDA-MB-231 cells together with hMADS preadipocytes to investigate the contribution of the microenvironment and 2,3,7,8-tetrachlorodibenzo-p-dioxin TCDD on BC cells. Global differences were characterized using a high-throughput proteomic assay. Subsequently we measured the BC stem cell-like activity, analyzed the cell morphology, and used a zebrafish larvae model to study the metastatic potential of the BC cells. RESULTS We found that coexposure to TCDD and preadipocytes modified BC cell properties; moreover, it induced the expression of ALDH1A3, a cancer stem cell marker, and the appearance of giant cancer cells with cell-in-cell structures (CICs), which are associated with malignant metastatic progression, that we demonstrated in vivo. DISCUSSION The results of our study using BC cell lines co-cultured with preadipocytes and a POP and an in vivo zebrafish model of metastasis suggest that the interactions between BC cells and their microenvironment could affect their invasive or metastatic potential. https://doi.org/10.1289/EHP7102.
Collapse
Affiliation(s)
- Meriem Koual
- UMR-S1124, Institut national de la santé et de la recherché médicale (Inserm), T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, Paris, France
- Service de Chirurgie Cancérologique Gynécologique et du Sein, Hôpital Européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, France
- Université de Paris, Paris, France
| | - Céline Tomkiewicz
- UMR-S1124, Institut national de la santé et de la recherché médicale (Inserm), T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, Paris, France
| | - Ida Chiara Guerrera
- Plateforme protéomique 3P5-Necker, Structure Fédérative de Recherche Necker, Université de Paris, US24/CNRS UMS3633, Inserm, Paris, France
| | - David Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Robert Barouki
- UMR-S1124, Institut national de la santé et de la recherché médicale (Inserm), T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, Paris, France
- Université de Paris, Paris, France
| | - Xavier Coumoul
- UMR-S1124, Institut national de la santé et de la recherché médicale (Inserm), T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, Paris, France
- Université de Paris, Paris, France
| |
Collapse
|