1
|
Xiao H, Yao Z, Li T, Fang X, Xu X, Hu S, Yang Y, Jin C, Fei Y, Liu C, Du Q. SERPINH1 secretion by cancer-associated fibroblasts promotes hepatocellular carcinoma malignancy through SENP3-mediated SP1/SQLE pathway. Int Immunopharmacol 2025; 150:114259. [PMID: 39946769 DOI: 10.1016/j.intimp.2025.114259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/03/2025]
Abstract
Cancer-associated fibroblasts (CAFs) have garnered significant attention due to their ability to shape the tumor microenvironment, thereby facilitating tumor progression and metastasis. Serpin peptidase inhibitor clade H member 1 (SERPINH1) is known for its role in the proper folding and secretion of collagen. However, its biological significance in hepatocellular carcinoma (HCC) remains unclear. We observed higher levels of SERPINH1 in the conditioned medium (CM) of CAFs compared to normal fibroblasts (NFs) via ELISA assays. To investigate its impact on HCC, we knocked down SERPINH1 in CAFs by shRNA, which led to a notable reduction in HCC cell proliferation, migration, and invasion induced by CM of CAFs, measured by colony formation and Transwell assays. SERPINH1 also inhibited HCC cell apoptosis, decreased the percentage of cells arrested in the G0/G1 phase, and increased the proportion of cells in the S phase, which were detected by flow cytometry. We further performed co-injections of HepG2 cells liver orthotopic transplantation model with either shCtrl-CAFs or shSERPINH1-CAFs. Interestingly, the presence of shCtrl-CAFs significantly enhanced tumor-initiating capacity compared to HepG2 cells alone or when co-injected with shSERPINH1-CAFs. Mechanistically, CAFs-derived SERPINH1 activated the SENP3/SP1 signaling pathways, substantially promoting the growth of HCC cells. Notably, we found that the transcription factor SP1 directly binds to the SQLE promoter and activates its transcription via ChIP-qPCR assay. Inhibition of SP1 expression using the specific inhibitor plicamycin effectively reversed CAFs-derived SERPINH1-induced HCC growth in vivo. Collectively, our findings highlighted the pathological role CAFs-derived SERPINH1 played in driving malignant of HCC cells through the SENP3/SP1/SQLE signaling axis, which offered a explanation of how SERPINH1 promotes HCC progress. Besides, we also demonstrated that targeting SERPINH1 signaling shall be a promising direction to develop effective therapeutical strategies for anti-HCC clinical management.
Collapse
Affiliation(s)
- Hua Xiao
- Department of General Surgery Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu PR China
| | - Zhaoying Yao
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Tao Li
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Fang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuejiao Xu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Sheng Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, PR China
| | - Ya Yang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, PR China
| | - Chenchen Jin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuxiang Fei
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China.
| | - Chao Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China.
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
2
|
Karsdal M, Cox TR, Parker AL, Willumsen N, Sand JMB, Jenkins G, Hansen HH, Oldenburger A, Geillinger-Kaestle KE, Larsen AT, Black D, Genovese F, Eckersley A, Heinz A, Nyström A, Holm Nielsen S, Bennink L, Johannsson L, Bay-Jensen AC, Orange DE, Friedman S, Røpke M, Fiore V, Schuppan D, Rieder F, Simona B, Borthwick L, Skarsfeldt M, Wennbo H, Thakker P, Stoffel R, Clarke GW, Kalluri R, Ruane D, Zannad F, Mortensen JH, Sinkeviciute D, Sundberg F, Coseno M, Thudium C, Croft AP, Khanna D, Cooreman M, Broermann A, Leeming DJ, Mobasheri A, Ricard-Blum S. Advances in Extracellular Matrix-Associated Diagnostics and Therapeutics. J Clin Med 2025; 14:1856. [PMID: 40142664 PMCID: PMC11943371 DOI: 10.3390/jcm14061856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 03/28/2025] Open
Abstract
The extracellular matrix (ECM) is the common denominator of more than 50 chronic diseases. Some of these chronic pathologies lead to enhanced tissue formation and deposition, whereas others are associated with increased tissue degradation, and some exhibit a combination of both, leading to severe tissue alterations. To develop effective therapies for diseases affecting the lung, liver, kidney, skin, intestine, musculoskeletal system, heart, and solid tumors, we need to modulate the ECM's composition to restore its organization and function. Across diverse organ diseases, there are common denominators and distinguishing factors in this fibroinflammatory axis, which may be used to foster new insights into drug development across disease indications. The 2nd Extracellular Matrix Pharmacology Congress took place in Copenhagen, Denmark, from 17 to 19 June 2024 and was hosted by the International Society of Extracellular Matrix Pharmacology. The event was attended by 450 participants from 35 countries, among whom were prominent scientists who brought together state-of-the-art research on organ diseases and asked important questions to facilitate drug development. We highlight key aspects of the ECM in the liver, kidney, skin, intestine, musculoskeletal system, lungs, and solid tumors to advance our understanding of the ECM and its central targets in drug development. We also highlight key advances in the tools and technology that enable this drug development, thereby supporting the ECM.
Collapse
Affiliation(s)
- Morten Karsdal
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Thomas R. Cox
- Garvan Institute of Medical Research, Sydney 2010, Australia; (T.R.C.); (A.L.P.)
- School of Clinical Medicine, St Vincent’s Clinical Campus, UNSW Medicine & Health, UNSW, Sydney 2010, Australia
| | - Amelia L. Parker
- Garvan Institute of Medical Research, Sydney 2010, Australia; (T.R.C.); (A.L.P.)
- School of Clinical Medicine, St Vincent’s Clinical Campus, UNSW Medicine & Health, UNSW, Sydney 2010, Australia
| | - Nicholas Willumsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Jannie Marie Bülow Sand
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, NIHR Imperial Biomedical Research Centre, Imperial College London, London SW7 2AZ, UK;
| | | | | | - Kerstin E. Geillinger-Kaestle
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany;
| | - Anna Thorsø Larsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | | | - Federica Genovese
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Alexander Eckersley
- Wellcome Centre for Cell Matrix Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK;
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center—University of Freiburg, 79106 Breisgau, Germany;
| | - Signe Holm Nielsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | | | | | - Anne-Christine Bay-Jensen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Dana E. Orange
- Hospital for Special Surgery, The Rockefeller University, New York, NY 10065, USA;
| | - Scott Friedman
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA;
| | | | - Vincent Fiore
- Boehringer Ingelheim, 55218 Ingelheim am Rhein, Germany;
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | | | - Lee Borthwick
- FibroFind Ltd., FibroFind Laboratories, Medical School, Newcastle upon Tyne NE2 4HH, UK;
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Mark Skarsfeldt
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Haakan Wennbo
- Takeda, Translational Medicine Biomarkers Gastrointestinal & Global, Boston, MA 02110, USA; (H.W.); (P.T.)
| | - Paresh Thakker
- Takeda, Translational Medicine Biomarkers Gastrointestinal & Global, Boston, MA 02110, USA; (H.W.); (P.T.)
| | - Ruedi Stoffel
- Roche Diagnostics International Ltd., 6343 Rotkreuz, Switzerland;
| | - Graham W. Clarke
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden;
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College, London E1 9RT, UK
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Darren Ruane
- Janssen Immunology, Translational Sciences and Medicine, La Jolla, CA 92037, USA;
| | - Faiez Zannad
- Division of Heart Failure and Hypertension, and of the Inserm CIC, University of Lorraine, 54000 Metz, France;
| | - Joachim Høg Mortensen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Dovile Sinkeviciute
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Fred Sundberg
- Sengenics Corporation LLC, Wilmington, DE 19801, USA; (F.S.); (M.C.)
| | - Molly Coseno
- Sengenics Corporation LLC, Wilmington, DE 19801, USA; (F.S.); (M.C.)
| | - Christian Thudium
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Adam P. Croft
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham, Birmingham B15 2TT, UK;
- Institute of Inflammation and Ageing, Queen Elizabeth Hospital, University of Birmingham, Birmingham B15 2TT, UK
| | - Dinesh Khanna
- Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Andre Broermann
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany;
| | - Diana Julie Leeming
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Ali Mobasheri
- Faculty of Medicine, University of Oulu, 90570 Oulu, Finland;
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
- Faculté de Médecine, Université de Liège, 4000 Liège, Belgium
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Sylvie Ricard-Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, ICBMS, University Lyon 1, 69622 Villeurbanne Cedex, France;
| |
Collapse
|
3
|
Zhang Z, Tang Y, Luo D, Qiu J, Chen L. Advances in nanotechnology for targeting cancer-associated fibroblasts: A review of multi-strategy drug delivery and preclinical insights. APL Bioeng 2025; 9:011502. [PMID: 40094065 PMCID: PMC11910205 DOI: 10.1063/5.0244706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment by promoting tumor growth, immune evasion, and metastasis. Recently, drug delivery systems targeting CAFs have emerged as a promising long-term and effective approach to cancer treatment. Advances in nanotechnology, in particular, have led to the development of nanomedicine delivery systems designed specifically to target CAFs, offering new possibilities for precise and personalized cancer therapies. This article reviews recent progress in drug delivery using nanocarriers that target CAFs. Additionally, we explore the potential of combining multiple therapies, such as chemotherapy and immunotherapy, with nanocarriers to enhance efficacy and overcome drug resistance. Although many preclinical studies show promise, the clinical application of nanomedicine still faces considerable challenges, especially in terms of drug penetration and large-scale production. Therefore, this review aims to provide a fresh perspective on CAF-targeted drug delivery systems and highlight potential future research directions and clinical applications.
Collapse
|
4
|
Kaps L, Genc MA, Moehler M, Grabbe S, Schattenberg JM, Schuppan D, Pedersen RS, Karsdal MA, Mildenberger P, Maderer A, Willumsen N. Collagen turnover biomarkers to predict outcome of patients with biliary cancer. BMC Gastroenterol 2025; 25:53. [PMID: 39905306 PMCID: PMC11792424 DOI: 10.1186/s12876-025-03645-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND The collagen-rich tumor stroma plays a crucial role in biliary tract cancer (BTC). Collagen biomarkers of type I collagen (reC1M), type III collagen (PRO-C3), type IV collagen (C4G), type VIII collagen (PRO-C8), type XI collagen (PRO-C11), type XVII collagen (PRO-C17) and type VIII collagen (TUM) may be used as potential non-invasive biomarkers. METHODS We measured the seven biomarkers of collagen turnover in sera of 72 patients with BTC at baseline and after first and second chemotherapy cycle (CTX). Markers were also assessed in sera of 50 healthy controls and compared to levels of patients at baseline. The diagnostic and prognostic value of the markers was evaluated for overall survival (OS) and progression-free survival (PFS). RESULTS Patients had a median age of 65 years (IQR 57-70), while healthy controls were younger, with a median age of 46 years (IQR 38-54). The majority of patients (62%) were diagnosed with intrahepatic bile duct adenocarcinoma. Except C4G, all collagen turnover markers were significantly (p < 0.001) increased in serum from patients with BTC compared to healthy controls. PRO-C3 was the best marker to discriminate between patients with BTC and controls, reaching an area under a receiver operating characteristic (AUROC) of 0.98 (95% CI 0.95; 0.99) with a sensitivity (92%) and specificity (94%) balanced cutoff of 77.3 ng/ml. Patients with high levels (cohort separated by median split) of PRO-C8 (HR 2.85, 95% CI 1.42; 5.73) followed by C3M (HR 2.33, 95% CI 1.2; 4.5), PRO-C3 (HR 3.09, 95% CI 1.5; 6.36) and CA 19-9 (HR 2.52, 95% CI 1.37; 4.64) as reference biomarker had a shorter OS. Notably, only the novel marker PRO-C8 was also predictive of PFS (HR 3.26, 95% CI 1.53; 6.95). Associations with survival outcomes remained significant after adjusting for relevant risk factors (CA 19-9 and CEA at baseline, age, presence of metastases, weight, height and gender). CONCLUSION The collagen turnover markers PRO-C8, C3M, PRO-C3 and the established biomarker CA 19-9 were prognostic for OS in patients with BTC while only PRO-C8 was also predictive for PFS. PRO-C3 showed the best diagnostic performance to discriminate between patients with BTC and controls. TRIAL REGISTRATION Trial registration number and date of registration NCT00661830 (NCT number) 15 April 2008 Trial registry The complete registry can found under: https://clinicaltrials.gov/study/NCT00661830?tab=table#administrative-information (last accessed 01/2025) Principal investigator and study sponsor Markus Moehler, MD Johannes Gutenberg University Mainz.
Collapse
Affiliation(s)
- Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, 55128, Germany.
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, 66421, Germany.
| | - Muhammed A Genc
- First Department of Medicine, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Markus Moehler
- First Department of Medicine, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, 55128, Germany
| | - Jörn M Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, 66421, Germany
| | - Detlef Schuppan
- University Medical Center, Institute of Translational Immunology and Research Center for Immunotherapy, Johannes Gutenberg-University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medican Center, Harvard Medical School, Boston, Mam, USA
| | | | | | - Philipp Mildenberger
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Annett Maderer
- First Department of Medicine, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany.
| | | |
Collapse
|
5
|
Su X, Zhong H, Zeng Y, Zhang Y, Zhang B, Guo W, Huang Q, Ye Y. Dual-ligand-functionalized nanostructured lipid carriers as a novel dehydrocavidine delivery system for liver fibrosis therapy. Colloids Surf B Biointerfaces 2025; 246:114376. [PMID: 39551037 DOI: 10.1016/j.colsurfb.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/12/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Liver fibrosis is a common stage of various chronic liver diseases, often developing into liver cirrhosis, and even liver cancer. Activated hepatic stellate cells (aHSCs) have been shown to promote the development of liver fibrosis. Therefore, dual-targeted combination therapy for liver may be an effective strategy for the treatment of liver fibrosis. PURPOSE In this study, the novel nanostructured lipid carriers (GA&GalNH2-DC-NLCs) were prepared for Dehydrocavidine (DC), glycyrrhetinic acid (GA) and galactose-PEG2000-NH2 (GalNH2) were selected as targeted ligand-modified nanostructured lipid carriers (NLCs), which enables dual-targeting to the liver for the treatment of liver fibrosis. STUDY DESIGN To study the targeting effect of GA&GalNH2-DC-NLCs on liver and its therapeutic effect on liver fibrosis, we established aHSC-T6 cell model and rat model of liver fibrosis for study. RESULTS GA&GalNH2-DC-NLCs promoted drug liver targeting efficiency and apoptosis rate by upregulating the expression of Bax. It showed that compared with no and/or GA-modified NLCs and GalNH2-modified NLCs, GA&GalNH2-DC-NLCs exhibited less extracellular matrix (ECM) deposition, induced apoptosis of aHSCs, and stronger anti-fibrosis effects in vivo. This may be due the fact that GA or GalNH2-modifified NLCs simultaneously block HSCs activation and inhibit the IL-6/STAT3 pathway. CONCLUSION GA&GalNH2-DC-NLCs is thus a potential strategy for liver fibrosis treatment.
Collapse
Affiliation(s)
- Xiaodan Su
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Huashuai Zhong
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Yongzhu Zeng
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Yuyan Zhang
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin 541199, China
| | - Wei Guo
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Qiujie Huang
- Department of Pharmacy, Guangxi University of Traditional Chinese Medicine, Nanning 530001, China.
| | - Yong Ye
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning 530021, China; Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Nanning 530021, China.
| |
Collapse
|
6
|
Karatayli E, Sadiq SC, Schattenberg JM, Grabbe S, Biersack B, Kaps L. Curcumin and Its Derivatives in Hepatology: Therapeutic Potential and Advances in Nanoparticle Formulations. Cancers (Basel) 2025; 17:484. [PMID: 39941855 PMCID: PMC11816286 DOI: 10.3390/cancers17030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Curcumin, a plant-derived polyphenol, shows promise in hepatology for treating both malignant and non-malignant liver diseases and a subset of extrahepatic cancers. Curcumin has hepatoprotective, anti-inflammatory, antifibrotic, and antiproliferative properties, as is evident in preclinical and clinical studies. This highlights its potential as an adjunct to established cancer therapies, especially in the context of hepatocellular carcinoma and secondary liver malignancies. Curcumin also demonstrates potential in metabolic dysfunction-associated steatotic liver disease (MASLD), owing to its antifibrotic and lipid-lowering effects. However, its clinical use is limited, relating to its poor bioavailability and rapid metabolism. Nanotechnology, including liposomal and polymeric carriers, alongside synthetic curcumin derivatives, offers strategies to enhance the bioavailability and pharmacokinetic properties. We propose to revisit the use of curcumin in nanoparticle preparations in chronic liver disease and summarize current evidence in this review article.
Collapse
Affiliation(s)
- Ersin Karatayli
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (E.K.); (S.C.S.); (J.M.S.)
| | - Shifana C. Sadiq
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (E.K.); (S.C.S.); (J.M.S.)
| | - Jörn M. Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (E.K.); (S.C.S.); (J.M.S.)
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany;
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, 95440 Bayreuth, Germany
| | - Leonard Kaps
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (E.K.); (S.C.S.); (J.M.S.)
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany;
| |
Collapse
|
7
|
Tuergan T, Abulaiti A, Tulahong A, Zhang R, Yuan Z, Lin Y, Shao Y, Aji T. Seeing beyond words: nanotechnology in hepatocellular carcinoma - a bibliometric study. Front Oncol 2025; 14:1487198. [PMID: 39882441 PMCID: PMC11774701 DOI: 10.3389/fonc.2024.1487198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
Background Nanotechnology has increasingly been applied in the diagnosis and treatment of hepatocellular carcinoma (HCC) over the past two decades. This study aims to explore the utilization of nanotechnology in HCC through a bibliometric analysis, identifying key themes, trends, and contributions in this field. Methods The study utilized VOSviewer and CiteSpace software to perform a bibliometric analysis, evaluating scholarly contributions related to nanotechnology in HCC. The analysis focused on co-occurrence network relationships, publications, citations, and contributions from various entities and authors. Results The analysis revealed a total of 2,968 articles, with China and the USA being the most prominent contributors in terms of publications and citations. Notable contributions were made by the Chinese Academy of Sciences and authors Gao Jie and Li Yan. LLOVET JM emerged as the most co-cited author, indicating a leadership role in the field. The "International Journal of Nanomedicine" was identified as the leading publisher, while "Biomaterials" ranked highest in citations. The research mainly focused on drug delivery systems and apoptosis, highlighting significant advancements in utilizing nanotechnology for HCC treatment. Conclusion This bibliometric study underscores the critical role of nanotechnology in advancing the diagnosis and treatment of hepatocellular carcinoma, with a particular emphasis on drug delivery and apoptosis. The findings highlight the contributions of key countries, institutions, and authors, reflecting the global effort and collaboration in this rapidly evolving field.
Collapse
Affiliation(s)
- Talaiti Tuergan
- Hepatobiliary and Echinococcosis Surgery Department, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Management of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Aimitaji Abulaiti
- Hepatobiliary and Echinococcosis Surgery Department, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Alimu Tulahong
- Hepatobiliary and Echinococcosis Surgery Department, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Management of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Ruiqing Zhang
- Hepatobiliary and Echinococcosis Surgery Department, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Management of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Zhongdian Yuan
- Hepatobiliary and Echinococcosis Surgery Department, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Management of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Yanze Lin
- Hepatobiliary and Echinococcosis Surgery Department, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Management of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Yingmei Shao
- Hepatobiliary and Echinococcosis Surgery Department, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Management of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
- Xinjiang Clinical Research Center for Echinococcosis and Hepatobiliary Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tuerganaili Aji
- Hepatobiliary and Echinococcosis Surgery Department, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Management of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
8
|
Zhang Z, Wang R, Chen L. Drug Delivery System Targeting Cancer-Associated Fibroblast for Improving Immunotherapy. Int J Nanomedicine 2025; 20:483-503. [PMID: 39816375 PMCID: PMC11734509 DOI: 10.2147/ijn.s500591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of non-malignant cells that play a crucial role in the tumor microenvironment, increasingly recognized as key contributors to cancer progression, metastasis, and treatment resistance. So, targeting CAFs has always been considered an important part of cancer immunotherapy. However, targeting CAFs to improve the efficacy of tumor therapy is currently a major challenge. Nanomaterials show their unique advantages in the whole process. At present, nanomaterials have achieved significant accomplishments in medical applications, particularly in the field of cancer-targeted therapy, showing enormous potential. It has been confirmed that nanomaterials can not only directly target CAFs, but also interact with the tumor microenvironment (TME) and immune cells to affect tumorigenesis. As for the cancer treatment, nanomaterials could enhance the therapeutic effect in many ways. Therefore, in this review, we first summarized the current understanding of the complex interactions between CAFs and TME, immune cells, and tumor cells. Next, we discussed common nanomaterials in modern medicine and their respective impacts on the TME, CAFs, and interactions with tumors. Finally, we focus on the application of nano drug delivery system targeting CAFs in cancer therapy.
Collapse
Affiliation(s)
- Zhongsong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| | - Rong Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| | - Long Chen
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| |
Collapse
|
9
|
Feng QS, Shan XF, Yau V, Cai ZG, Xie S. Facilitation of Tumor Stroma-Targeted Therapy: Model Difficulty and Co-Culture Organoid Method. Pharmaceuticals (Basel) 2025; 18:62. [PMID: 39861125 PMCID: PMC11769033 DOI: 10.3390/ph18010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Tumors, as intricate ecosystems, comprise oncocytes and the highly dynamic tumor stroma. Tumor stroma, representing the non-cancerous and non-cellular composition of the tumor microenvironment (TME), plays a crucial role in oncogenesis and progression, through its interactions with biological, chemical, and mechanical signals. This review aims to analyze the challenges of stroma mimicry models, and highlight advanced personalized co-culture approaches for recapitulating tumor stroma using patient-derived tumor organoids (PDTOs). Methods: This review synthesizes findings from recent studies on tumor stroma composition, stromal remodeling, and the spatiotemporal heterogeneities of the TME. It explores popular stroma-related models, co-culture systems integrating PDTOs with stromal elements, and advanced techniques to improve stroma mimicry. Results: Stroma remodeling, driven by stromal cells, highlights the dynamism and heterogeneity of the TME. PDTOs, derived from tumor tissues or cancer-specific stem cells, accurately mimic the tissue-specific and genetic features of primary tumors, making them valuable for drug screening. Co-culture models combining PDTOs with stromal elements effectively recreate the dynamic TME, showing promise in personalized anti-cancer therapy. Advanced co-culture techniques and flexible combinations enhance the precision of tumor-stroma recapitulation. Conclusions: PDTO-based co-culture systems offer a promising platform for stroma mimicry and personalized anti-cancer therapy development. This review underscores the importance of refining these models to advance precision medicine and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Qiu-Shi Feng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| | - Xiao-Feng Shan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| | - Vicky Yau
- Division of Oral and Maxillofacial Surgery, Columbia Irving Medical Center, New York City, NY 10027, USA;
| | - Zhi-Gang Cai
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| |
Collapse
|
10
|
Benderski K, Schneider P, Kordeves P, Fichter M, Schunke J, De Lorenzi F, Durak F, Schrörs B, Akilli Ö, Kiessling F, Bros M, Diken M, Grabbe S, Schattenberg JM, Lammers T, Sofias AM, Kaps L. A hepatocellular carcinoma model with and without parenchymal liver damage that integrates technical and pathophysiological advantages for therapy testing. Pharmacol Res 2025; 211:107560. [PMID: 39730106 DOI: 10.1016/j.phrs.2024.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Hepatocellular Carcinoma (HCC) is the most common form of primary liver cancer, with cirrhosis being its strongest risk factor. Interestingly, an increasing number of HCC cases is also observed without cirrhosis. We developed an HCC model via intrasplenic injection of highly tumorigenic HCC cells, which, due to cellular tropism, invade the liver and allow for a controllable disease progression. Specifically, C57BL/6JRj mice were intrasplenically inoculated with Dt81Hepa1-6 HCC cells, with a subgroup pre-treated with CCl4 to induce cirrhosis (C-HCC). At four weeks post-inoculation, mice were sacrificed, and diseased livers were analyzed via histology, flow cytometry, and RT-qPCR to profile the extracellular matrix (ECM), angiogenesis, and immune cells. In addition, tumor-bearing mice were treated with the first-line therapy, AtezoBev, to assess therapeutic responsiveness of the model. Dt81Hepa1-6 cells displayed similar gene expression as human HCC. After intrasplenic injection, all mice developed multifocal disease. C-HCC mice had a significantly higher tumor load than non-cirrhotic HCC mice. Both HCC and C-HCC models displayed extensive ECM formation, increased levels of vascularization, and immune cell infiltration compared to healthy and non-cancerous cirrhotic livers. AtezoBev treatment produced robust antitumor efficacy, validating the model's suitability for therapy testing. In conclusion, we established a rapidly developing and high-yield HCC model through a simple intrasplenic injection, with or without cirrhotic damage. The model overexpressed key human HCC genes and showed high responsiveness to first-line treatment. Our model uniquely combines all the above-mentioned features, promoting its use towards HCC therapy testing.
Collapse
Affiliation(s)
- Karina Benderski
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Paul Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany
| | - Panayiotis Kordeves
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Michael Fichter
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany; Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jenny Schunke
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany; TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Feyza Durak
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Barbara Schrörs
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Özlem Akilli
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany
| | - Jörn M Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Strasse 100, Saarbrücken 66123, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany; Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Strasse 100, Saarbrücken 66123, Germany.
| |
Collapse
|
11
|
Strell C, Rodríguez-Tomàs E, Östman A. Functional and clinical roles of stromal PDGF receptors in tumor biology. Cancer Metastasis Rev 2024; 43:1593-1609. [PMID: 38980580 PMCID: PMC11554757 DOI: 10.1007/s10555-024-10194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024]
Abstract
PDGF receptors play pivotal roles in both developmental and physiological processes through the regulation of mesenchymal cells involved in paracrine instructive interactions with epithelial or endothelial cells. Tumor biology studies, alongside analyses of patient tissue samples, provide strong indications that the PDGF signaling pathways are also critical in various types of human cancer. This review summarizes experimental findings and correlative studies, which have explored the biological mechanisms and clinical relevance of PDGFRs in mesenchymal cells of the tumor microenvironment. Collectively, these studies support the overall concept that the PDGF system is a critical regulator of tumor growth, metastasis, and drug efficacy, suggesting yet unexploited targeting opportunities. The inter-patient variability in stromal PDGFR expression, as being linked to prognosis and treatment responses, not only indicates the need for stratified approaches in upcoming therapeutic investigations but also implies the potential for the development of PDGFRs as biomarkers of clinical utility, interestingly also in settings outside PDGFR-directed treatments.
Collapse
Affiliation(s)
- Carina Strell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Bergen University, Bergen, Norway
| | | | - Arne Östman
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Bergen University, Bergen, Norway.
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Vymola P, Garcia‐Borja E, Cervenka J, Balaziova E, Vymolova B, Veprkova J, Vodicka P, Skalnikova H, Tomas R, Netuka D, Busek P, Sedo A. Fibrillar extracellular matrix produced by pericyte-like cells facilitates glioma cell dissemination. Brain Pathol 2024; 34:e13265. [PMID: 38705944 PMCID: PMC11483521 DOI: 10.1111/bpa.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Gliomagenesis induces profound changes in the composition of the extracellular matrix (ECM) of the brain. In this study, we identified a cellular population responsible for the increased deposition of collagen I and fibronectin in glioblastoma. Elevated levels of the fibrillar proteins collagen I and fibronectin were associated with the expression of fibroblast activation protein (FAP), which is predominantly found in pericyte-like cells in glioblastoma. FAP+ pericyte-like cells were present in regions rich in collagen I and fibronectin in biopsy material and produced substantially more collagen I and fibronectin in vitro compared to other cell types found in the GBM microenvironment. Using mass spectrometry, we demonstrated that 3D matrices produced by FAP+ pericyte-like cells are rich in collagen I and fibronectin and contain several basement membrane proteins. This expression pattern differed markedly from glioma cells. Finally, we have shown that ECM produced by FAP+ pericyte-like cells enhances the migration of glioma cells including glioma stem-like cells, promotes their adhesion, and activates focal adhesion kinase (FAK) signaling. Taken together, our findings establish FAP+ pericyte-like cells as crucial producers of a complex ECM rich in collagen I and fibronectin, facilitating the dissemination of glioma cells through FAK activation.
Collapse
Affiliation(s)
- Petr Vymola
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Elena Garcia‐Borja
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Jakub Cervenka
- Laboratory of Applied Proteome Analyses, Research Center PIGMODInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
- Laboratory of proteomics, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Eva Balaziova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Barbora Vymolova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Jana Veprkova
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Petr Vodicka
- Laboratory of Applied Proteome Analyses, Research Center PIGMODInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
| | - Helena Skalnikova
- Laboratory of Applied Proteome Analyses, Research Center PIGMODInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLiběchovCzech Republic
- Laboratory of proteomics, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Robert Tomas
- Department of NeurosurgeryNa Homolce HospitalPragueCzech Republic
| | - David Netuka
- Department of Neurosurgery and Neurooncology, First Faculty of MedicineCharles University and Military University HospitalPragueCzech Republic
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
13
|
Wu C, Zhai Y, Ji J, Yang X, Ye L, Lu G, Shi X, Zhai G. Advances in tumor stroma-based targeted delivery. Int J Pharm 2024; 664:124580. [PMID: 39142464 DOI: 10.1016/j.ijpharm.2024.124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The tumor stroma plays a crucial role in tumor progression, and the interactions between the extracellular matrix, tumor cells, and stromal cells collectively influence tumor progression and the efficacy of therapeutic agents. Currently, utilizing components of the tumor stroma for drug delivery is a noteworthy strategy. A number of targeted drug delivery systems designed based on tumor stromal components are entering clinical trials. Therefore, this paper provides a thorough examination of the function of tumor stroma in the advancement of targeted drug delivery systems. One approach is to use tumor stromal components for targeted drug delivery, which includes certain stromal components possessing inherent targeting capabilities like HA, laminin, along with targeting stromal cells homologously. Another method entails directly focusing on tumor stromal components to reshape the tumor stroma and facilitate drug delivery. These drug delivery systems exhibit great potential in more effective cancer therapy strategies, such as precise targeting, enhanced penetration, improved safety profile, and biocompatibility. Ultimately, the deployment of these drug delivery systems can deepen our comprehension of tumor stroma and the advanced development of corresponding drug delivery systems.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
14
|
Ricci AD, Rizzo A, Schirizzi A, D’Alessandro R, Frega G, Brandi G, Shahini E, Cozzolongo R, Lotesoriere C, Giannelli G. Tumor Immune Microenvironment in Intrahepatic Cholangiocarcinoma: Regulatory Mechanisms, Functions, and Therapeutic Implications. Cancers (Basel) 2024; 16:3542. [PMID: 39456636 PMCID: PMC11505966 DOI: 10.3390/cancers16203542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Treatment options for intrahepatic cholangiocarcinoma (iCCA), a highly malignant tumor with poor prognosis, are limited. Recent developments in immunotherapy and immune checkpoint inhibitors (ICIs) have offered new hope for treating iCCA. However, several issues remain, including the identification of reliable biomarkers of response to ICIs and immune-based combinations. Tumor immune microenvironment (TIME) of these hepatobiliary tumors has been evaluated and is under assessment in this setting in order to boost the efficacy of ICIs and to convert these immunologically "cold" tumors to "hot" tumors. Herein, the review TIME of ICCA and its critical function in immunotherapy. Moreover, this paper also discusses potential avenues for future research, including novel targets for immunotherapy and emerging treatment plans aimed to increase the effectiveness of immunotherapy and survival rates for iCCA patients.
Collapse
Affiliation(s)
- Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Rosalba D’Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Giorgio Frega
- Osteoncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy
| | - Raffaele Cozzolongo
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| |
Collapse
|
15
|
Sabit H, Arneth B, Abdel-Ghany S, Madyan EF, Ghaleb AH, Selvaraj P, Shin DM, Bommireddy R, Elhashash A. Beyond Cancer Cells: How the Tumor Microenvironment Drives Cancer Progression. Cells 2024; 13:1666. [PMID: 39404428 PMCID: PMC11475877 DOI: 10.3390/cells13191666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Liver cancer represents a substantial global health challenge, contributing significantly to worldwide morbidity and mortality. It has long been understood that tumors are not composed solely of cancerous cells, but also include a variety of normal cells within their structure. These tumor-associated normal cells encompass vascular endothelial cells, fibroblasts, and various inflammatory cells, including neutrophils, monocytes, macrophages, mast cells, eosinophils, and lymphocytes. Additionally, tumor cells engage in complex interactions with stromal cells and elements of the extracellular matrix (ECM). Initially, the components of what is now known as the tumor microenvironment (TME) were thought to be passive bystanders in the processes of tumor proliferation and local invasion. However, recent research has significantly advanced our understanding of the TME's active role in tumor growth and metastasis. Tumor progression is now known to be driven by an intricate imbalance of positive and negative regulatory signals, primarily influenced by specific growth factors produced by both inflammatory and neoplastic cells. This review article explores the latest developments and future directions in understanding how the TME modulates liver cancer, with the aim of informing the design of novel therapies that target critical components of the TME.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
| | - Engy F. Madyan
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Ashraf H. Ghaleb
- Department of Surgery, College of Medicine, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
- Department of Surgery, College of Medicine, Cairo University, Giza 12613, Egypt
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Ahmed Elhashash
- Department of Biology, Texas A&M University, 3258 TAMU I, College Station, TX 77843-3258, USA
| |
Collapse
|
16
|
Schneider P, Zhang H, Simic L, Dai Z, Schrörs B, Akilli-Öztürk Ö, Lin J, Durak F, Schunke J, Bolduan V, Bogaert B, Schwiertz D, Schäfer G, Bros M, Grabbe S, Schattenberg JM, Raemdonck K, Koynov K, Diken M, Kaps L, Barz M. Multicompartment Polyion Complex Micelles Based on Triblock Polypept(o)ides Mediate Efficient siRNA Delivery to Cancer-Associated Fibroblasts for Antistromal Therapy of Hepatocellular Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404784. [PMID: 38958110 DOI: 10.1002/adma.202404784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Indexed: 07/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer and the third leading cause for cancer-related death worldwide. The tumor is difficult-to-treat due to its inherent resistance to chemotherapy. Antistromal therapy is a novel therapeutic approach, targeting cancer-associated fibroblasts (CAF) in the tumor microenvironment. CAF-derived microfibrillar-associated protein 5 (MFAP-5) is identified as a novel target for antistromal therapy of HCC with high translational relevance. Biocompatible polypept(o)ide-based polyion complex micelles (PICMs) constructed with a triblock copolymer composed of a cationic poly(l-lysine) complexing anti-MFAP-5 siRNA (siMFAP-5) via electrostatic interaction, a poly(γ-benzyl-l-glutamate) block loading cationic amphiphilic drug desloratatine (DES) via π-π interaction as endosomal escape enhancer and polysarcosine poly(N-methylglycine) for introducing stealth properties, are generated for siRNA delivery. Intravenous injection of siMFAP-5/DES PICMs significantly reduces the hepatic tumor burden in a syngeneic implantation model of HCC, with a superior MFAP-5 knockdown effect over siMFAP-5 PICMs or lipid nanoparticles. Transcriptome and histological analysis reveal that MFAP-5 knockdown inhibited CAF-related tumor vascularization, suggesting the anti-angiogenic effect of RNA interference therapy. In conclusion, multicompartment PICMs combining siMFAP-5 and DES in a single polypept(o)ide micelle induce a specific knockdown of MFAP-5 and demonstrate a potent antitumor efficacy (80% reduced tumor burden vs untreated control) in a clinically relevant HCC model.
Collapse
Affiliation(s)
- Paul Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Heyang Zhang
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Leon Simic
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Zhuqing Dai
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Barbara Schrörs
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Özlem Akilli-Öztürk
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Jian Lin
- Max Planck Institute for Polymer Research, Physics at Interphases, Ackermannweg 10, 55128, Mainz, Germany
| | - Feyza Durak
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Jenny Schunke
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Bram Bogaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - David Schwiertz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Gabriela Schäfer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Jörn Markus Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421, Homburg, Germany
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Physics at Interphases, Ackermannweg 10, 55128, Mainz, Germany
| | - Mustafa Diken
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421, Homburg, Germany
| | - Matthias Barz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| |
Collapse
|
17
|
Baj J, Kołodziej M, Kobak J, Januszewski J, Syty K, Portincasa P, Forma A. Significance of Immune and Non-Immune Cell Stroma as a Microenvironment of Hepatocellular Carcinoma-From Inflammation to Hepatocellular Carcinoma Progression. Int J Mol Sci 2024; 25:10233. [PMID: 39408564 PMCID: PMC11475949 DOI: 10.3390/ijms251910233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer as well as the most prevalent cause of death in the adult patient population with cirrhosis. The occurrence of HCC is primarily caused by chronic liver inflammation that might occur because of a viral infection, non-alcoholic fatty liver disease (NAFLD), or various lifestyle-associated factors. The objective of this review was to summarize the current knowledge regarding the microenvironment of HCC, indicating how immune- and non-immune-cell stroma might affect the onset and progression of HCC. Therefore, in the following narrative review, we described the role of tumor-infiltrating neutrophils, bone-marrow-derived cells, tumor-associated mast cells, cancer-associated fibroblasts, tumor-associated macrophages, liver-sinusoidal endothelial cells, lymphocytes, and certain cytokines in liver inflammation and the further progression to HCC. A better understanding of the HCC microenvironment might be crucial to introducing novel treatment strategies or combined therapies that could lead to more effective clinical outcomes.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.B.); (J.J.)
| | - Magdalena Kołodziej
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| | - Joanna Kobak
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| | - Jacek Januszewski
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.B.); (J.J.)
| | - Kinga Syty
- Institute of Health Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1G, 20-708 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| |
Collapse
|
18
|
Meng X, Zhu G, Yang YG, Sun T. Targeted delivery strategies: The interactions and applications of nanoparticles in liver diseases. Biomed Pharmacother 2024; 175:116702. [PMID: 38729052 DOI: 10.1016/j.biopha.2024.116702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
In recent years, nanoparticles have been broadly utilized in various drugs delivery formulations. Nanodelivery systems have shown promise in solving problems associated with the distribution of hydrophobic drugs and have promoted the accumulation of nanomedicines in the circulation or in organs. However, the injection dose of nanoparticles (NPs) is much greater than that needed by diseased tissues or organs. In other words, most of the NPs are localized off-target and do not reach the desired tissue or organs. With the rapid development of biodegradable and biosafety nanomaterials, the nanovectors represent assurance of safety. However, the off-target effects also induce concerns about the application of NPs, especially in the delivery of gene editing tools. Therefore, a complete understanding of the biological responses to NPs in the body will clearly guide the design of targeted delivery of NPs. The different properties of various nanodelivery systems may induce diverse interactions between carriers and organs. In this review, we describe the relationship between the liver, the most influenced organ of systemic administration of NPs, and targeted delivery nanoplatforms. Various transport vehicles have adopted multiple delivery strategies for the targeted delivery to the cells in the homeostasis liver and in diseased liver. Additionally, nanodelivery systems provide a novel strategy for treating incurable diseases. The appearance of a targeted delivery has profoundly improved the application of NPs to liver diseases.
Collapse
Affiliation(s)
- Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Ge Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
19
|
Xue Y, Ruan Y, Wang Y, Xiao P, Xu J. Signaling pathways in liver cancer: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:20. [PMID: 38816668 PMCID: PMC11139849 DOI: 10.1186/s43556-024-00184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Liver cancer remains one of the most prevalent malignancies worldwide with high incidence and mortality rates. Due to its subtle onset, liver cancer is commonly diagnosed at a late stage when surgical interventions are no longer feasible. This situation highlights the critical role of systemic treatments, including targeted therapies, in bettering patient outcomes. Despite numerous studies on the mechanisms underlying liver cancer, tyrosine kinase inhibitors (TKIs) are the only widely used clinical inhibitors, represented by sorafenib, whose clinical application is greatly limited by the phenomenon of drug resistance. Here we show an in-depth discussion of the signaling pathways frequently implicated in liver cancer pathogenesis and the inhibitors targeting these pathways under investigation or already in use in the management of advanced liver cancer. We elucidate the oncogenic roles of these pathways in liver cancer especially hepatocellular carcinoma (HCC), as well as the current state of research on inhibitors respectively. Given that TKIs represent the sole class of targeted therapeutics for liver cancer employed in clinical practice, we have particularly focused on TKIs and the mechanisms of the commonly encountered phenomena of its resistance during HCC treatment. This necessitates the imperative development of innovative targeted strategies and the urgency of overcoming the existing limitations. This review endeavors to shed light on the utilization of targeted therapy in advanced liver cancer, with a vision to improve the unsatisfactory prognostic outlook for those patients.
Collapse
Affiliation(s)
- Yangtao Xue
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yeling Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yali Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Peng Xiao
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
20
|
Huang Q, Zhong X, Li J, Hu R, Yi J, Sun J, Xu Y, Zhou X. Exosomal ncRNAs: Multifunctional contributors to the immunosuppressive tumor microenvironment of hepatocellular carcinoma. Biomed Pharmacother 2024; 173:116409. [PMID: 38460375 DOI: 10.1016/j.biopha.2024.116409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant liver cancer characterized by aggressive progression, unfavorable prognosis, and an increasing global health burden. Therapies that precisely target immunological checkpoints and immune cells have gained significant attention as possible therapeutics in recent years. In truth, the efficacy of immunotherapy is heavily contingent upon the tumor microenvironment (TME). Recent studies have indicated that exosomes serve as a sophisticated means of communication among biomolecules, executing an essential part in the TME of immune suppression. Exosomal non-coding RNAs (ncRNAs) can induce the activation of tumor cells and immunosuppressive immune cells that suppress the immune system, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), CD+8 T cells, regulatory T cells (Tregs), and regulatory B cells (Bregs). This cell-cell crosstalk triggered by exosomal ncRNAs promotes tumor proliferation and metastasis, angiogenesis, malignant phenotype transformation, and drug resistance. Hence, it is imperative to comprehend how exosomal ncRNAs regulate tumor cells or immune cells within the TME to devise more comprehensive and productive immunotherapy programs. This study discusses the features of exosomal ncRNAs in HCC and how the activation of the exosomes redefines the tumor's immunosuppressive microenvironment, hence facilitating the advancement of HCC. Furthermore, we also explored the potential of exosomal ncRNAs as a viable biological target or natural vehicle for HCC therapy.
Collapse
Affiliation(s)
- Qi Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Xin Zhong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jing Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Rui Hu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jinyu Yi
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jialing Sun
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China.
| | - Xiaozhou Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China.
| |
Collapse
|
21
|
Li H, Dai R, Huang Y, Zhong J, Yan Q, Yang J, Hu K, Zhong Y. [18F]AlF-ND-bisFAPI PET imaging of fibroblast activation protein as a biomarker to monitor the progression of liver fibrosis. Hepatol Commun 2024; 8:e0407. [PMID: 38466884 PMCID: PMC10932522 DOI: 10.1097/hc9.0000000000000407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/01/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Hepatic fibrosis is a progressive disease, which is reversible in the early stages. The current monitoring methods have notable limitations that pose a challenge to early detection. In this study, we evaluated the utility of [18F]AlF-ND-bisFAPI positron emission tomography imaging of fibroblast activation protein (FAP) to monitor the progression of liver fibrosis. METHODS Two mouse models of liver fibrosis were established by bile duct ligation and carbon tetrachloride administration, respectively. Positron emission tomography imaging was performed with the FAP-specific radiotracer [18F]AlF-ND-bisFAPI for the evaluation of rat HSCs and mouse models of fibrosis and combined with histopathology, immunohistochemical staining, and immunoblotting to elucidate the relationships among radioactivity uptake, FAP levels, and liver fibrosis progression. Furthermore, [18F]AlF-ND-bisFAPI autoradiography was performed to assess tracer binding in liver sections from patients with varying degrees of liver fibrosis. RESULTS Cell experiments demonstrated that [18F]AlF-ND-bisFAPI uptake was specific in activated HSCs. Compared with control mice, [18F]AlF-ND-bisFAPI uptake in livers increased in the early stages of fibrosis and increased significantly further with disease progression. Immunohistochemistry and western blot analyses demonstrated that FAP expression increased with fibrosis severity. In accordance with the findings in animal models, ex vivo autoradiography on human fibrotic liver sections showed that radioactivity increased as fibrosis progressed from mild to severe. CONCLUSIONS [18F]AlF-ND-bisFAPI positron emission tomography imaging is a promising noninvasive method for monitoring the progression of liver fibrosis.
Collapse
Affiliation(s)
- Hongsheng Li
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoxue Dai
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yueqi Huang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiawei Zhong
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingsong Yan
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaqi Yang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kongzhen Hu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yuhua Zhong
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Liu Y, Deng Y, Constanthin PE, Li F. Ultrasound-targeted microbubble destruction improves the suppression and magnetic resonance imaging of pancreatic cancer with polyethyleneimine nanogels. J Cancer 2024; 15:2880-2890. [PMID: 38706910 PMCID: PMC11064254 DOI: 10.7150/jca.93802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/22/2024] [Indexed: 05/07/2024] Open
Abstract
The chemoresistance of pancreatic cancer tumors urgently needs to be addressed. Pancreatic cancer is characterized by an abundant stroma, with significant fibrous connective tissue formation that encapsulates the tumor parenchyma and forms an interstitial microenvironment. Pancreatic stellate cells (PSCs) play a crucial role in this microenvironment and specially secrete periosteal protein (periostin), which can promote tumor growth, metastasis, and chemoresistance. Therefore, periostin has become a specific target of chemotherapy resistance intervention methods. The proposed polyethyleneimine (PEI) nanogels have multiple modification and efficient drug-loading properties. Additionally, ultrasound-targeted microbubble destruction (UTMD) supports the breakdown of the tough interstitial barrier of pancreatic cancer. A small interfering RNA (siRNA) can be used to downregulated the periostin gene, while sustained release of gemcitabine can promote killing of tumor cells. This method achieves a combination of gene silencing and chemotherapy. The imaging effect can be evaluated using magnetic resonance imaging (MRI). The ultimate goal of this work is to support individualized and effective therapeutic methods and help develop new strategies for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanqiong Deng
- Department of Ultrasound, Maternal and Child Health Hospital of Shanghai Jiading District, Shanghai, China
| | - Paul E Constanthin
- CHU Pellegrin, Service de Neurochirurgie B, Hôpital Pellegrin-Tripode, Place Amélie Raba-Léon, 33 076, Bordeaux Cedex, France
| | - Fan Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Chen J, Zhao L, Zhang L, Luo Y, Jiang Y, H P. The identification of signature genes and their relationship with immune cell infiltration in age-related macular degeneration. Mol Biol Rep 2024; 51:339. [PMID: 38393419 DOI: 10.1007/s11033-023-08969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/26/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a prevalent source of visual impairment among the elderly population, and its incidence has risen in tandem with the increasing longevity of humans. Despite the progress made with anti-VEGF therapy, clinical outcomes have proven to be unsatisfactory. METHOD We obtained differentially expressed genes (DEGs) of AMD patients and healthy controls from the GEO database. GO and KEGG analyses were used to enrich the DEGs. Weighted gene coexpression network analysis (WGCNA) was used to identify modules related to AMD. SVM, random forest, and least absolute shrinkage and selection operator (LASSO) were employed to screen hub genes. Gene set enrichment analysis (GSEA) was used to explore the pathways in which these hub genes were enriched. CIBERSORT was utilized to analyze the relationship between the hub genes and immune cell infiltration. Finally, Western blotting and RT‒PCR were used to explore the expression of hub genes in AMD mice. RESULTS We screened 1084 DEGs in GSE29801, of which 496 genes were upregulated. These 1084 DEGs were introduced into the WGCNA, and 94 genes related to AMD were obtained. Seventy-nine overlapping genes were obtained by the Venn plot. These 79 genes were introduced into three machine-learning methods to screen the hub genes, and the genes identified by the three methods were TNC, FAP, SREBF1, and TGF-β2. We verified their diagnostic function in the GSE29801 and GSE103060 datasets. Then, the hub gene co-enrichment pathways were obtained by GO and KEGG analyses. CIBERSORT analysis showed that these hub genes were associated with immune cell infiltration. Finally, we found increased expression of TNC, FAP, SREBF1, and TGF-β2 mRNA and protein in the retinas of AMD mice. CONCLUSION We found that four hub genes, namely, FAP, TGF-β2, SREBF1, and TNC, have diagnostic significance in patients with AMD and are related to immune cell infiltration. Finally, we determined that the mRNA and protein expression of these hub genes was upregulated in the retinas of AMD mice.
Collapse
Affiliation(s)
- Jinquan Chen
- Department of Ophthalmology, The Tongnan District People's Hospital, Chongqing, China
| | - Long Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Longbin Zhang
- Department of Ophthalmology, The Tongnan District People's Hospital, Chongqing, China
| | - Yiling Luo
- Department of Ophthalmology, The Tongnan District People's Hospital, Chongqing, China
| | - Yuling Jiang
- Department of Ophthalmology, The Tongnan District People's Hospital, Chongqing, China
| | - Peng H
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
24
|
Chen P, Wei Y, Sun T, Lin J, Zhang K. Enabling safer, more potent oligonucleotide therapeutics with bottlebrush polymer conjugates. J Control Release 2024; 366:44-51. [PMID: 38145661 PMCID: PMC10922259 DOI: 10.1016/j.jconrel.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Oligonucleotide therapeutics have the unique ability to address traditionally undruggable targets through various target engagement pathways. However, despite advances in chemically modified oligonucleotides and carrier-assisted delivery systems such as lipid nanoparticles and protein/peptide conjugates, the development of oligonucleotide drugs is still plagued with lackluster potency, narrow therapeutic window, poor delivery to non-liver target sites, and/or high potential for toxicity and unwanted immune system activation. In this perspective, we discuss an unconventional delivery solution based upon bottlebrush polymers, which overcomes many key challenges in oligonucleotide drug development. We address the molecular basis of the polymer's ability to enhance tissue bioavailability and drug potency, reduce side effects, and suppress anti-carrier immunity. Furthermore, we discuss the potential of the technology in advancing oligonucleotide-based therapies for non-liver targets.
Collapse
Affiliation(s)
- Peiru Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Yun Wei
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Tingyu Sun
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jiachen Lin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering and Bioengineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Xie C, Hao X, Yuan H, Wang C, Sharif R, Yu H. Crosstalk Between circRNA and Tumor Microenvironment of Hepatocellular Carcinoma: Mechanism, Function and Applications. Onco Targets Ther 2024; 17:7-26. [PMID: 38283733 PMCID: PMC10812140 DOI: 10.2147/ott.s437536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common aggressive tumors in the world. Despite the availability of various treatments, its prognosis remains poor due to the lack of specific diagnostic indicators and the high heterogeneity of HCC cases. CircRNAs are noncoding RNAs with stable and highly specific expression. Extensive research evidence suggests that circRNAs mediate the pathogenesis and progression of HCC through acting as miRNA sponges, protein modulators, and translation templates. Tumor microenvironment (TME) has become a hotspot of immune-related research in recent years due to its effects on metabolism, secretion and immunity of HCC. Accordingly, understanding the role played by circRNAs in TME is important for the study of HCC. This review will discuss the crosstalk between circRNAs and TME in HCC. In addition, we will discuss the current deficiencies and controversies in research on circRNAs and predict future research directions.
Collapse
Affiliation(s)
- Chenxi Xie
- Hepatobiliary Center, Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaopei Hao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| | - Hao Yuan
- Hepatobiliary Center, Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Chongyu Wang
- The First Clinical Medical College of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Razinah Sharif
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
- Biocompatibility Laboratory, Centre for Research and Instrumentation, University Kebangsaan Malaysia, UKM, Bangi, Selangor Darul Ehsan, 43600, Malaysia
| | - Haibo Yu
- Hepatobiliary Center, Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
26
|
Gehris J, Ervin C, Hawkins C, Womack S, Churillo AM, Doyle J, Sinusas AJ, Spinale FG. Fibroblast activation protein: Pivoting cancer/chemotherapeutic insight towards heart failure. Biochem Pharmacol 2024; 219:115914. [PMID: 37956895 PMCID: PMC10824141 DOI: 10.1016/j.bcp.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) which is accompanied by the emergence and proliferation of an activated fibroblast, termed the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be amplified with local cancer progression and proliferation of the CAF, is fibroblast activation protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology is associated with left ventricular (LV) remodeling and changes in ECM structure and function. As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic targets in HF.
Collapse
Affiliation(s)
- John Gehris
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlie Ervin
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlotte Hawkins
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Sydney Womack
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Amelia M Churillo
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Jonathan Doyle
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Albert J Sinusas
- Yale University Cardiovascular Imaging Center, New Haven CT, United States
| | - Francis G Spinale
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States.
| |
Collapse
|
27
|
Gauthier C, El Cheikh K, Basile I, Daurat M, Morère E, Garcia M, Maynadier M, Morère A, Gary-Bobo M. Cation-independent mannose 6-phosphate receptor: From roles and functions to targeted therapies. J Control Release 2024; 365:759-772. [PMID: 38086445 DOI: 10.1016/j.jconrel.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The cation-independent mannose 6-phosphate receptor (CI-M6PR) is a ubiquitous transmembrane receptor whose main intracellular role is to direct enzymes carrying mannose 6-phosphate moieties to lysosomal compartments. Recently, the small membrane-bound portion of this receptor has appeared to be implicated in numerous pathophysiological processes. This review presents an overview of the main ligand partners and the roles of CI-M6PR in lysosomal storage diseases, neurology, immunology and cancer fields. Moreover, this membrane receptor has already been noted for its strong potential in therapeutic applications thanks to its cellular internalization activity and its ability to address pathogenic factors to lysosomes for degradation. A number of therapeutic delivery approaches using CI-M6PR, in particular with enzymes, antibodies or nanoparticles, are currently being proposed.
Collapse
Affiliation(s)
- Corentin Gauthier
- NanoMedSyn, Montpellier, France; IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | | | - Elodie Morère
- NanoMedSyn, Montpellier, France; IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Alain Morère
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
28
|
Casari M, Siegl D, Deppermann C, Schuppan D. Macrophages and platelets in liver fibrosis and hepatocellular carcinoma. Front Immunol 2023; 14:1277808. [PMID: 38116017 PMCID: PMC10728659 DOI: 10.3389/fimmu.2023.1277808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
During fibrosis, (myo)fibroblasts deposit large amounts of extracellular matrix proteins, thereby replacing healthy functional tissue. In liver fibrosis, this leads to the loss of hepatocyte function, portal hypertension, variceal bleeding, and increased susceptibility to infection. At an early stage, liver fibrosis is a dynamic and reversible process, however, from the cirrhotic stage, there is significant progression to hepatocellular carcinoma. Both liver-resident macrophages (Kupffer cells) and monocyte-derived macrophages are important drivers of fibrosis progression, but can also induce its regression once triggers of chronic inflammation are eliminated. In liver cancer, they are attracted to the tumor site to become tumor-associated macrophages (TAMs) polarized towards a M2- anti-inflammatory/tumor-promoting phenotype. Besides their role in thrombosis and hemostasis, platelets can also stimulate fibrosis and tumor development by secreting profibrogenic factors and regulating the innate immune response, e.g., by interacting with monocytes and macrophages. Here, we review recent literature on the role of macrophages and platelets and their interplay in liver fibrosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dominik Siegl
- Institute for Translational Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immune Therapy Forschungszentrum für Immuntherapie (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Detlef Schuppan
- Institute for Translational Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immune Therapy Forschungszentrum für Immuntherapie (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
Chen Q, Wang X, Zheng Y, Ye T, Liu J, Wang JQ, Zhang WF, Wu FL, Bo H, Shao H, Zhang R, Shen H. Cancer-associated fibroblasts contribute to the immunosuppressive landscape and influence the efficacy of the combination therapy of PD-1 inhibitors and antiangiogenic agents in hepatocellular carcinoma. Cancer 2023; 129:3405-3416. [PMID: 37395148 DOI: 10.1002/cncr.34935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Chronic inflammation is considered the most critical predisposing factor of hepatocellular carcinoma (HCC), with inflammatory cell heterogeneity, hepatic fibrosis accumulation, and abnormal vascular proliferation as prominent features of the HCC tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) play a key role in HCC TME remodeling. Therefore, the level of abundance of CAFs may significantly affect the prognosis and outcome in HCC patients. METHODS Unsupervised clustering was performed based on 39 genes related to CAFs in HCC identified by single-cell RNA sequencing data. Patients of bulk RNA were grouped into CAF low abundance cluster and high abundance clusters. Subsequently, prognosis, immune infiltration landscape, metabolism, and treatment response between the two clusters were investigated and validated by immunohistochemistry. RESULTS Patients in the CAF high cluster had a higher level of inflammatory cell infiltration, a more significant immunosuppressive microenvironment, and a significantly worse prognosis than those in the low cluster. At the metabolic level, the CAF high cluster had lower levels of aerobic oxidation and higher angiogenic scores. Drug treatment response prediction indicated that the CAF high cluster could have a better response to PD-1 inhibitors and conventional chemotherapeutic agents for HCC such as anti-angiogenic drugs, whereas CAF low cluster may be more sensitive to transarterial chemoembolization treatment. CONCLUSIONS This study not only revealed the TME characteristics of HCC with the difference in CAF abundance but also further confirmed that the combination therapy of PD-1 inhibitors and anti-angiogenic drugs may be more valuable for patients with high CAF abundance.
Collapse
Affiliation(s)
- Qiurui Chen
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate Research, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuejia Wang
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate Research, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yichen Zheng
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate Research, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Ye
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate Research, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate Research, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jin-Quan Wang
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate Research, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wen-Feng Zhang
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate Research, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Feng-Lin Wu
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate Research, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaben Bo
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate Research, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate Research, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate Research, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate Research, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
30
|
Sabir U, Gu HM, Zhang DW. Extracellular matrix turnover: phytochemicals target and modulate the dual role of matrix metalloproteinases (MMPs) in liver fibrosis. Phytother Res 2023; 37:4932-4962. [PMID: 37461256 DOI: 10.1002/ptr.7959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 07/02/2023] [Indexed: 11/10/2023]
Abstract
Extracellular matrix (ECM) resolution by matrix metalloproteinases (MMPs) is a well-documented mechanism. MMPs play a dual and complex role in modulating ECM degradation at different stages of liver fibrosis, depending on the timing and levels of their expression. Increased MMP-1 combats disease progression by cleaving the fibrillar ECM. Activated hepatic stellate cells (HSCs) increase expression of MMP-2, -9, and -13 in different chemicals-induced animal models, which may alleviate or worsen disease progression based on animal models and the stage of liver fibrosis. In the early stage, elevated expression of certain MMPs may damage surrounding tissue and activate HSCs, promoting fibrosis progression. At the later stage, downregulation of MMPs can facilitate ECM accumulation and disease progression. A number of phytochemicals modulate MMP activity and ECM turnover, alleviating disease progression. However, the effects of phytochemicals on the expression of different MMPs are variable and may depend on the disease models and stage, and the dosage, timing and duration of phytochemicals used in each study. Here, we review the most recent advances in the role of MMPs in the effects of phytochemicals on liver fibrogenesis, which indicates that further studies are warranted to confirm and define the potential clinical efficacy of these phytochemicals.
Collapse
Affiliation(s)
- Usman Sabir
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Yang D, Kuang T, Zhou Y, Su Y, Shen J, Yu B, Zhao K, Ding Y. Tumor-associated endothelial cell prognostic risk model and tumor immune environment modulation in liver cancer based on single-cell and bulk RNA sequencing: Experimental verification. Int Immunopharmacol 2023; 124:110870. [PMID: 37690233 DOI: 10.1016/j.intimp.2023.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND To build a prognostic and immunotherapeutic response prediction model for liver cancer based on marker genes of tumor-associated endothelial cell (TEC). METHOD Single cell sequencing data from Gene Expression Omnibus (GEO) liver cancer patients were utilized to identify TEC subpopulations. Models were built from transcriptomic and clinical data of TCGA liver cancer patients. The GSE76427 and ICGC databases were used as independent validation sets. Time-dependent receiver operating characteristic (ROC) curves and Kaplan-Meier curves were used to verify the ability of the model to predict survival. XCELL, TIMER, QUANTISEQ, CIBERSORT, CIBERSORT-ABS, and ssGSEA were applied to evaluate tumor immune cell infiltration. The TIDE score was used to predict the effect of immunotherapy. Immune blockade checkpoint gene, tumor mutational load and GSVA enrichment analyses were further explored. The expression levels of candidate genes were measured and validated by real-time PCR between liver cancer tissues and adjacent nontumor liver tissues. RESULTS Eighty-seven genes were identified as marker genes for TECs. IGFBP3, RHOC, S100A16, FSCN1, and CLEC3B were included in the constructed prognostic model. Time-dependent ROC curve values were higher than 0.700 in both the model and validation groups. The low risk group exhibited high immune cell infiltration and function than the higher risk group. The TIDE score indicated that the low-risk group benefited more from immunotherapy than the high-risk group. The risk score and multiple immune blockade checkpoint genes and immune-related pathways were strongly correlated. CONCLUSION Novel signatures of TEC marker genes showed a powerful ability to predict prognosis and immunotherapy response in patients with liver cancer.
Collapse
Affiliation(s)
- Dashuai Yang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Tianrui Kuang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Yu Zhou
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Yang Su
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College in Huazhong University of Science and Technology, Wuhan 430060, Hubei, China.
| | - Jie Shen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Bin Yu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Kailiang Zhao
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Youming Ding
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| |
Collapse
|
32
|
Zhang L, Zhang Q, Teng D, Guo M, Tang K, Wang Z, Wei X, Lin L, Zhang X, Wang X, Huang D, Ren C, Yang Q, Zhang W, Gao Y, Chen W, Chang Y, Zhang H. FGF9 Recruits β-Catenin to Increase Hepatic ECM Synthesis and Promote NASH-Driven HCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301166. [PMID: 37566761 PMCID: PMC10558677 DOI: 10.1002/advs.202301166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Most nonalcoholic steatohepatitis (NASH) patients develop severe fibrosis through extracellular matrix (ECM) accumulation, which can lead to hepatocellular carcinoma (HCC). Fibroblast growth factor 9 (FGF9) is involved in serial types of cancer; however, the specific role of FGF9 in NASH-driven HCC is not fully understood. This study finds that FGF9 is increased in patients with NASH-associated HCC. Furthermore, NASH-driven HCC mice models by feeding wildtype mice with high-fat/high-cholesterol (HFHC) diet and low dose carbon tetrachloride (CCl4 ) treatment is established; and identified that hepatic FGF9 is increased; with severe fibrosis. Additionally, AAV-mediated knockdown of FGF9 reduced the hepatic tumor burden of NASH-driven HCC mice models. Hepatocyte-specific FGF9 transgenic mice (FGF9Alb ) fed with a HFHC diet without CCl4 treatment exhibited an increased hepatic ECM and tumor burden. However, XAV-939 treatment blocked ECM accumulation and NASH-driven HCC in FGF9Alb mice fed with HFHC diet. Molecular mechanism studies show that FGF9 stimulated the expression of ECM related genes in a β-catenin dependent manner; and FGF9 exerts its effect on β-catenin stability via the ERK1/2-GSK-3β signaling pathway. In summary, the data provides evidence for the critical role of FGF9 in NASH-driven HCC pathogenesis; wherein it promotes the tumors formation through the ECM pathway.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Tianjin Key of Cellular Homeostasis and DiseaseDepartment of Physiology and PathophysiologyTianjin Medical University300070TianjinChina
| | - Qing Zhang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Da Teng
- Department of Hepatopancreatobiliary SurgeryAffifiliated Chuzhou Hospital of Anhui Medical University (The First People's Hospital of Chuzhou)Chuzhou239001China
| | - Manyu Guo
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Kechao Tang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Zhenglin Wang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical University230022HefeiChina
| | - Xiang Wei
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Li Lin
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Xiaomin Zhang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Xiuyun Wang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Dake Huang
- Synthetic Laboratory of School of Basic Medicine SciencesAnhui Medical University230032HefeiChina
| | - Cuiping Ren
- Department of Microbiology and ParasitologySchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Qingsong Yang
- Department of Hepatopancreatobiliary SurgeryAffifiliated Chuzhou Hospital of Anhui Medical University (The First People's Hospital of Chuzhou)Chuzhou239001China
| | - Wenjun Zhang
- Department of Hepatopancreatobiliary SurgeryAffifiliated Chuzhou Hospital of Anhui Medical University (The First People's Hospital of Chuzhou)Chuzhou239001China
| | - Yong Gao
- Science and Technology Innovation CenterGuangzhou University of Chinese Medicine510006GuangzhouChina
| | - Wei Chen
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical University230022HefeiChina
| | - Yongsheng Chang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Tianjin Key of Cellular Homeostasis and DiseaseDepartment of Physiology and PathophysiologyTianjin Medical University300070TianjinChina
| | - Huabing Zhang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
- The Affiliated Chuzhou Hospital of Anhui Medical University (The First People's Hospital of Chuzhou)Chuzhou239001China
| |
Collapse
|
33
|
Xiang L, Wang X, Jiao Q, Shao Y, Luo R, Zhang J, Zheng X, Zhou S, Chen Y. Selective inhibition of glycolysis in hepatic stellate cells and suppression of liver fibrogenesis with vitamin A-derivative decorated camptothecin micelles. Acta Biomater 2023; 168:497-514. [PMID: 37507035 DOI: 10.1016/j.actbio.2023.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
The persistent transformation of quiescent hepatic stellate cells (HSCs) into myofibroblasts (MFs) and the excessive proliferation of MF-HSCs in the liver contribute to the pathogenesis of liver fibrosis, cirrhosis, and liver cancer. Glycolysis inhibition of MF-HSCs can reverse their MF phenotype and suppress their abnormal expansion. Here, we have developed vitamin A-derivative (VA) decorated PEG-PCL polymeric micelles to encapsulate the labile and hydrophobic camptothecin (CPT) and direct its active attack on HSCs, selectively inhibiting of HIF-1α and cellular glycolysis, ultimately repressing hepatic fibrogenesis. The obtained micelles exhibited a good stability, biocompatibility, pH sensitivity, and exceptional HSC-targetability, allowing an efficient accumulation of their carried CPT in acutely and chronically injured livers. On their intracellular release of CPT specifically in MF-HSCs, these CPT micelles nicely inhibited the HIF-1α and a series of glycolytic players in MF-HSCs and prominently suppressed their proliferation and MF phenotypic characteristics. Accordingly, on in vitro administration to the mice challenged by CCl4 or subjected to bile duct ligation, these VA-decorated CPT micelles ameliorated the pathological symptoms of the livers, as evidenced by the significant reduction in serum levels of ALT and AST, infiltration of inflammatory cells, and collagen accumulation, the drastic down-regulation of multiple fibrotic genes, and the good recovery of attenuated hepatocyte CYP2E1 and lipogenesis regulator PPARγ. Overall, the CPT carried by VA-decorated PEG-PCL polymeric micelles can selectively inhibit the glycolysis and expansion of HSCs and thus suppress fibrogenesis, providing an original and effective approach for anti-fibrotic therapy. STATEMENT OF SIGNIFICANCE: Our work introduces an innovative antifibrotic drug system that is developed upon the active targeting of CPT and aims for the fate reversal of HSCs. Through HSC-targeted delivery achieved by PEG-PCL polymeric micelles decorated with vitamin A-derivatives, CPT significantly suppressed the expressions of HIF-1α and glycolytic enzymes in MF-HSCs, as well as their pathologic expansion in mouse livers. It effectively ameliorated chronic liver fibrosis in mice induced by CCl4 injection or BDL and restored the damaged liver structure and function. These compelling findings demonstrate the therapeutic potential of glycolytic HSC-targeting in combating fibrosis and related disorders and thus provide new promise for future clinical management of such prevalent and life-threatening conditions.
Collapse
Affiliation(s)
- Li Xiang
- Hengyang Medical School, University of South China, Hengyang, Hunan, 410001, China
| | - Xin Wang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qiangqiang Jiao
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yaru Shao
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Rui Luo
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Jie Zhang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Xiaotong Zheng
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Shaobing Zhou
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yuping Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan, 410001, China; School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China.
| |
Collapse
|
34
|
Tang Z, Li X, Tian L, Sun Y, Zhu X, Liu F. Mesoporous polydopamine based biominetic nanodrug ameliorates liver fibrosis via antioxidation and TGF-β/SMADS pathway. Int J Biol Macromol 2023; 248:125906. [PMID: 37482153 DOI: 10.1016/j.ijbiomac.2023.125906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/12/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Early intervention of liver fibrosis can prevent its further irreversible progression. Both excess reactive oxygen species (ROS) and transforming growth factor beta(TGF-β)/drosophila mothers against decapentaplegic protein (SMADS) pathway balance disorder promote the progression of hepatic stellate cell (HSC) activation, but existing therapeutic strategies failed to focus on those two problems. A new biomimetic mesoporous polydopamine nandrug (MPO) was constructed for liver fibrosis therapy with multiple targets and reliable biosafety. The MPO was formed by mesoporous polydopamine (mPDA) which has the effect of ROS elimination and encapsulated with anti-fibrotic drug -oxymatrine (OMT) which can intervene liver fibrosis targeting TGF-β/SMADSpathway. Particularly, the nanodrug was completed by macrophage-derived exosome covering. The MPO was confirmed to possess a desired size distribution with negative zeta potential and exhibite strong ROS scavenger ability. Besides, in vitro studies, MPO showed efficient endocytosis and superior intracellular ROS scavenging without cytotoxicity; in vivo studies, MPO effectively cleared the excessive ROS in liver tissue and balanced the TGF-β/SMADS pathways, which in turn inhibited HSC activation and showed superior anti-liver fibrosis therapeutic efficiency with good biological safety. Taken together, this work showed highlights the great potential of the MPO for ameliorating liver fibrosis via ROS elimination and TGF-β/SMADS balancing.
Collapse
Affiliation(s)
- Zihui Tang
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; State Key Laboratory of Systems Medicine for Cancer, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200090, China
| | - Xiaojuan Li
- Department of Gastroenterology, Minhang hospital of Fudan University, China
| | - Le Tian
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuhao Sun
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xinyan Zhu
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Fei Liu
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
35
|
Zhu Z, Cheng K, Yun Z, Zhang X, Hu X, Liu J, Wang F, Fu Z, Yue J. [ 18F] AlF-NOTA-FAPI-04 PET/CT can predict treatment response and survival in patients receiving chemotherapy for inoperable pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging 2023; 50:3425-3438. [PMID: 37328622 DOI: 10.1007/s00259-023-06271-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/18/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE We investigated whether uptake of [18F] AlF-NOTA-FAPI-04 on positron emission tomography/computed tomography (PET/CT) could predict treatment response and survival in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS We prospectively evaluated 47 patients with histopathologically confirmed primary PDAC who provided pretreatment [18F] AlF-NOTA-FAPI-04 scans to detect fibroblast activation protein (FAP) on the tumor surface by uptake of [18F] AlF-NOTA-FAPI-04. PDAC specimens were immunohistochemically stained with cancer-associated fibroblast (CAF) markers. We obtained a second PET scan after one cycle of chemotherapy to study changes in FAPI uptake variables from before to during treatment. Correlations between baseline PET variables and CAF-related immunohistochemical markers were assessed with Spearman's rank test. Cox regression and Kaplan-Meier methods were used to assess relationships between disease progression and potential predictors. Receiver operating characteristic (ROC) curve analysis was used to define the optimal cut-off points for distinguishing patients according to good response vs. poor response per RECIST v.1.1. RESULTS The FAPI PET variables maximum and mean standardized uptake values (SUVmax, SUVmean), metabolic tumor volume (MTV), and total lesion FAP expression (TLF) were positively correlated with CAF markers (FAP, α-smooth muscle actin, vimentin, S100A4, and platelet-derived growth factor receptor α/β, all P < 0.05). MTV was associated with survival in patients with inoperable PDAC (all P < 0.05). Cox multivariate regression showed that MTV was associated with overall survival (MTV hazard ratio [HR] = 1.016, P = 0.016). Greater changes from before to during chemotherapy in SUVmax, MTV, and TLF were associated with good treatment response (all P < 0.05). ΔMTV, ΔTLF, and ΔSUVmax had larger areas under the curve than ΔCA19-9 for predicting treatment response. Kaplan-Meier analysis showed that the extent of change in MTV and TLF from before to after treatment predicted progression-free survival, with cut-off values (based on medians) of - 4.95 for ΔMTV (HR = 8.09, P = 0.013) and - 77.83 for ΔTLF (HR = 4.62, P = 0.012). CONCLUSIONS A higher baseline MTV on [18F] AlF-NOTA-FAPI-04 scans was associated with poorer survival in patients with inoperable PDAC. ΔMTV was more sensitive for predicting response than ΔCA19-9. These results are clinically meaningful for identifying patients with PDAC who are at high risk of disease progression.
Collapse
Affiliation(s)
- Ziyuan Zhu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, Shandong, China
| | - Kai Cheng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, Shandong, China
- PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhang Yun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, Shandong, China
| | - Xiang Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, Shandong, China
| | - Xiaoyu Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, Shandong, China
| | - Jing Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, Shandong, China
| | - Fuhao Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zheng Fu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, Shandong, China.
- PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinbo Yue
- School of Clinical Medicine, Weifang Medical University, Weifang, China.
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, Shandong, China.
| |
Collapse
|
36
|
Sato H, Hara T, Meng S, Tsuji Y, Arao Y, Saito Y, Sasaki K, Kobayashi S, Doki Y, Eguchi H, Ishii H. Multifaced roles of desmoplastic reaction and fibrosis in pancreatic cancer progression: Current understanding and future directions. Cancer Sci 2023; 114:3487-3495. [PMID: 37480223 PMCID: PMC10475783 DOI: 10.1111/cas.15890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 07/23/2023] Open
Abstract
Desmoplastic reaction is a fibrosis reaction that is characterized by a large amount of dense extracellular matrix (ECM) and dense fibrous stroma. Fibrotic stroma around the tumor has several different components, including myofibroblasts, collagen, and other ECM molecules. This stromal reaction is a natural response to the tissue injury process, and fibrosis formation is a key factor in pancreatic cancer development. The fibrotic stroma of pancreatic cancer is associated with tumor progression, metastasis, and poor prognosis. Reportedly, multiple processes are involved in fibrosis, which is largely associated with the upregulation of various cytokines, chemokines, matrix metalloproteinases, and other growth factors that promote tumor growth and metastasis. Fibrosis is also associated with immunosuppressive cell recruitment, such as regulatory T cells (Tregs) with suppressing function to antitumor immunity. Further, dense fibrosis restricts the flow of nutrients and oxygen to the tumor cells, which can contribute to drug resistance. Furthermore, the dense collagen matrix can act as a physical barrier to block the entry of drugs into the tumor, thereby further contributing to drug resistance. Thus, understanding the mechanism of desmoplastic reaction and fibrosis in pancreatic cancer will open an avenue to innovative medicine and improve the prognosis of patients suffering from this disease.
Collapse
Grants
- 17cm0106414h0002 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- JP21lm0203007 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 18KK0251 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 19K2265 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 20H00541 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 21K19526 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 22H03146 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 22K19559 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 16H06279 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- Mitsubishi Foundation
- Mitsubishi Foundation
Collapse
Affiliation(s)
- Hiromichi Sato
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Tomoaki Hara
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Sikun Meng
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yoshiko Tsuji
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yasuko Arao
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yoshiko Saito
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Kazuki Sasaki
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Shogo Kobayashi
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Yuichiro Doki
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Hidetoshi Eguchi
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Hideshi Ishii
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
37
|
Kaps L, Limeres MJ, Schneider P, Svensson M, Zeyn Y, Fraude S, Cacicedo ML, Galle PR, Gehring S, Bros M. Liver Cell Type-Specific Targeting by Nanoformulations for Therapeutic Applications. Int J Mol Sci 2023; 24:11869. [PMID: 37511628 PMCID: PMC10380755 DOI: 10.3390/ijms241411869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocytes exert pivotal roles in metabolism, protein synthesis and detoxification. Non-parenchymal liver cells (NPCs), largely comprising macrophages, dendritic cells, hepatic stellate cells and liver sinusoidal cells (LSECs), serve to induce immunological tolerance. Therefore, the liver is an important target for therapeutic approaches, in case of both (inflammatory) metabolic diseases and immunological disorders. This review aims to summarize current preclinical nanodrug-based approaches for the treatment of liver disorders. So far, nano-vaccines that aim to induce hepatitis virus-specific immune responses and nanoformulated adjuvants to overcome the default tolerogenic state of liver NPCs for the treatment of chronic hepatitis have been tested. Moreover, liver cancer may be treated using nanodrugs which specifically target and kill tumor cells. Alternatively, nanodrugs may target and reprogram or deplete immunosuppressive cells of the tumor microenvironment, such as tumor-associated macrophages. Here, combination therapies have been demonstrated to yield synergistic effects. In the case of autoimmune hepatitis and other inflammatory liver diseases, anti-inflammatory agents can be encapsulated into nanoparticles to dampen inflammatory processes specifically in the liver. Finally, the tolerance-promoting activity especially of LSECs has been exploited to induce antigen-specific tolerance for the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Leonard Kaps
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - María José Limeres
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Paul Schneider
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Malin Svensson
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Silvia Fraude
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter R Galle
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Stephan Gehring
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
38
|
Sun B, Lei X, Cao M, Li Y, Yang LY. Hepatocellular carcinoma cells remodel the pro-metastatic tumour microenvironment through recruitment and activation of fibroblasts via paracrine Egfl7 signaling. Cell Commun Signal 2023; 21:180. [PMID: 37480091 PMCID: PMC10362567 DOI: 10.1186/s12964-023-01200-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The tumour microenvironment consists of a complex and dynamic milieu of cancer cells, including tumour-associated stromal cells (leukocytes, fibroblasts, vascular cells, etc.) and their extracellular products. During invasion and metastasis, cancer cells actively remodel the tumour microenvironment and alterations of microenvironment, particularly cancer-associated fibroblasts (CAFs), can promote tumour progression. However, the underlying mechanisms of the CAF formation and their metastasis-promoting functions remain unclear. METHODS Primary liver fibroblasts and CAFs were isolated and characterized. CAFs in clinical samples were identified by immunohistochemical staining and the clinical significance of CAFs was also analysed in two independent cohorts. A transwell coculture system was used to confirm the role of HCC cells in CAF recruitment and activation. qRT-PCR, western blotting and ELISA were used to screen paracrine cytokines. The role and mechanism of Egfl7 in CAFs were explored via an in vitro coculture system and an in vivo mouse orthotopic transplantation model. RESULTS We showed that CAFs in hepatocellular carcinoma (HCC) are characterized by the expression of α-SMA and that HCC cells can recruit liver fibroblasts (LFs) and activate them to promote their transformation into CAFs. High α-SMA expression, indicating high CAF infiltration, was correlated with malignant characteristics. It was also an independent risk factor for HCC survival and could predict a poor prognosis in HCC patients. Then, we demonstrated that EGF-like domain multiple 7 (Egfl7) was preferentially secreted by HCC cells, and exhibited high potential to recruit and activate LFs into the CAF phenotype. The ability of Egfl7 to modulate LFs relies upon increased phosphorylation of FAK and AKT via the receptor ανβ3 integrin. Strikingly, CAFs activated by paracrine Egfl7 could further remodel the tumour microenvironment by depositing fibrils and collagen and in turn facilitate HCC cell proliferation, invasion and metastasis. CONCLUSION Our data highlighted a novel role of Egfl7 in remodelling the tumour microenvironment: it recruits LFs and activates them to promote their transformation into CAFs via the ανβ3 integrin signaling pathway, which further promotes HCC progression and contributes to poor clinical outcomes in HCC patients. Video Abstract.
Collapse
Affiliation(s)
- Bo Sun
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Xiong Lei
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, Hunan, China
| | - Momo Cao
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, Hunan, China
| | - Yiming Li
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, Hunan, China
| | - Lian-Yue Yang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, Hunan, China.
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
39
|
Kersten V, Seitz T, Sommer J, Thasler WE, Bosserhoff A, Hellerbrand C. Bone Morphogenetic Protein 13 Has Protumorigenic Effects on Hepatocellular Carcinoma Cells In Vitro. Int J Mol Sci 2023; 24:11059. [PMID: 37446238 DOI: 10.3390/ijms241311059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrosis and, thus, build the "soil" for hepatocarcinogenesis. Furthermore, HSCs are known to promote the progression of hepatocellular carcinoma (HCC), but the molecular mechanisms are only incompletely understood. Recently, we newly described the expression of bone morphogenetic protein 13 (BMP13) by HSCs in fibrotic liver tissue. In addition, BMP13 has mostly been studied in the context of cartilage and bone repair, but not in liver disease or cancer. Thus, we aimed to analyze the expression and function of BMP13 in HCC. Expression analyses revealed high BMP13-expression in activated human HSCs, but not in human HCC-cell-lines. Furthermore, analysis of human HCC tissues showed a significant correlation between BMP13 and α-smooth muscle actin (α-SMA), and immunofluorescence staining confirmed the co-localization of BMP13 and α-SMA, indicating activated HSCs as the cellular source of BMP13 in HCC. Stimulation of HCC cells with recombinant BMP13 increased the expression of the inhibitors of differentiation 1 (ID1) and 2 (ID2), which are known targets of BMP-signaling and cell-cycle promotors. In line with this, BMP13-stimulation caused an induced SMAD 1/5/9 and extracellular signal-regulated kinase (ERK) phosphorylation, as well as reduced expression of cyclin-dependent kinase inhibitors 1A (CDKN1A) and 2A (CDKN2A). Furthermore, stimulation with recombinant BMP13 led to increased proliferation and colony size formation of HCC cells in clonogenicity assays. The protumorigenic effects of BMP13 on HCC cells were almost completely abrogated by the small molecule dorsomorphin 1 (DMH1), which selectively blocks the intracellular kinase domain of ALK2 and ALK3, indicating that BMP13 acts via these BMP type I receptors on HCC cells. In summary, this study newly identifies stroma-derived BMP13 as a potential new tumor promotor in HCC and indicates this secreted growth-factor as a possible novel therapeutic target in HCC.
Collapse
Affiliation(s)
- Vanessa Kersten
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Tatjana Seitz
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Judith Sommer
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Wolfgang E Thasler
- Human Tissue and Cell Research-Services GmbH, Am Klopferspitz 19, D-82152 Planegg, Germany
| | - Anja Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, D-91054 Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, D-91054 Erlangen, Germany
| |
Collapse
|
40
|
Singh AK, Malviya R, Prajapati B, Singh S, Yadav D, Kumar A. Nanotechnology-Aided Advancement in Combating the Cancer Metastasis. Pharmaceuticals (Basel) 2023; 16:899. [PMID: 37375846 PMCID: PMC10304141 DOI: 10.3390/ph16060899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Modern medicine has been working to find a cure for cancer for almost a century, but thus far, they have not been very successful. Although cancer treatment has come a long way, more work has to be carried out to boost specificity and reduce systemic toxicity. The diagnostic industry is on the cusp of a technological revolution, and early diagnosis is essential for improving prognostic outlook and patient quality of life. In recent years, nanotechnology's use has expanded, demonstrating its efficacy in enhancing fields such as cancer treatment, radiation therapy, diagnostics, and imaging. Applications for nanomaterials are diverse, ranging from enhanced radiation adjuvants to more sensitive early detection instruments. Cancer, particularly when it has spread beyond the original site of cancer, is notoriously tough to combat. Many people die from metastatic cancer, which is why it remains a huge issue. Cancer cells go through a sequence of events known as the "metastatic cascade" throughout metastasis, which may be used to build anti-metastatic therapeutic techniques. Conventional treatments and diagnostics for metastasis have their drawbacks and hurdles that must be overcome. In this contribution, we explore in-depth the potential benefits that nanotechnology-aided methods might offer to the detection and treatment of metastatic illness, either alone or in conjunction with currently available conventional procedures. Anti-metastatic drugs, which can prevent or slow the spread of cancer throughout the body, can be more precisely targeted and developed with the help of nanotechnology. Furthermore, we talk about how nanotechnology is being applied to the treatment of patients with cancer metastases.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Arvind Kumar
- Chandigarh Engineering College, Jhanjeri, Mohali 140307, India;
| |
Collapse
|
41
|
Wang Y, Yin Z, Gao L, Ma B, Shi J, Chen H. Lipid Nanoparticles-Based Therapy in Liver Metastasis Management: From Tumor Cell-Directed Strategy to Liver Microenvironment-Directed Strategy. Int J Nanomedicine 2023; 18:2939-2954. [PMID: 37288351 PMCID: PMC10243353 DOI: 10.2147/ijn.s402821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Abstract
Metastasis to the liver, as one of the most frequent metastatic patterns, was associated with poor prognosis. Major drawbacks of conventional therapies in liver metastasis were the lack of metastatic-targeting ability, predominant systemic toxicities and incapability of tumor microenvironment modulations. Lipid nanoparticles-based strategies like galactosylated, lyso-thermosensitive or active-targeting chemotherapeutics liposomes have been explored in liver metastasis management. This review aimed to summarize the state-of-art lipid nanoparticles-based therapies in liver metastasis management. Clinical and translational studies on the lipid nanoparticles in treating liver metastasis were searched up to April, 2023 from online databases. This review focused not only on the updates in drug-encapsulated lipid nanoparticles directly targeting metastatic cancer cells in treating liver metastasis, but more importantly on research frontiers in drug-loading lipid nanoparticles targeting nonparenchymal liver tumor microenvironment components in treating liver metastasis, which showed promise for future clinical oncological practice.
Collapse
Affiliation(s)
- Yuhan Wang
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Zhenyu Yin
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Lei Gao
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Bin Ma
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Jianming Shi
- Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China
| | - Hao Chen
- Department of Surgical Oncology, Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, People’s Republic of China
| |
Collapse
|
42
|
Basu A, Namporn T, Ruenraroengsak P. Critical Review in Designing Plant-Based Anticancer Nanoparticles against Hepatocellular Carcinoma. Pharmaceutics 2023; 15:1611. [PMID: 37376061 DOI: 10.3390/pharmaceutics15061611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC), accounting for 85% of liver cancer cases, continues to be the third leading cause of cancer-related deaths worldwide. Although various forms of chemotherapy and immunotherapy have been investigated in clinics, patients continue to suffer from high toxicity and undesirable side effects. Medicinal plants contain novel critical bioactives that can target multimodal oncogenic pathways; however, their clinical translation is often challenged due to poor aqueous solubility, low cellular uptake, and poor bioavailability. Nanoparticle-based drug delivery presents great opportunities in HCC therapy by increasing selectivity and transferring sufficient doses of bioactives to tumor areas with minimal damage to adjacent healthy cells. In fact, many phytochemicals encapsulated in FDA-approved nanocarriers have demonstrated the ability to modulate the tumor microenvironment. In this review, information about the mechanisms of promising plant bioactives against HCC is discussed and compared. Their benefits and risks as future nanotherapeutics are underscored. Nanocarriers that have been employed to encapsulate both pure bioactives and crude extracts for application in various HCC models are examined and compared. Finally, the current limitations in nanocarrier design, challenges related to the HCC microenvironment, and future opportunities are also discussed for the clinical translation of plant-based nanomedicines from bench to bedside.
Collapse
Affiliation(s)
- Aalok Basu
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| | - Thanaphon Namporn
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| | - Pakatip Ruenraroengsak
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| |
Collapse
|
43
|
Zhong X, Guo J, Han X, Wu W, Yang R, Zhang J, Shao G. Synthesis and Preclinical Evaluation of a Novel FAPI-04 Dimer for Cancer Theranostics. Mol Pharm 2023; 20:2402-2414. [PMID: 37015025 DOI: 10.1021/acs.molpharmaceut.2c00965] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Overexpression of fibroblast activation protein (FAP) in cancer-associated fibroblasts in a wide variety of tumors enables a highly selective targeting strategy using FAP inhibitors (FAPIs). Quinoline-based FAPIs labeled with radionuclides have been widely developed for tumor-targeted nuclear medicine imaging. However, the short retention time of FAPIs at the tumor site limits their application in radionuclide therapy. In this study, a novel FAPI-04 dimer was synthesized and labeled with radionuclides to prolong the retention time in tumors for imaging and therapy. To prepare the FAPI-04 dimer complex, DOTA-Suc-Lys-(FAPI-04)2, we used Fmoc-Lys(Boc)-OH as the linker to conjugate two FAPI-04 structures by an amide reaction. The resulting product was further modified by DOTA groups to allow for conjugation with radioactive metals. Both [68Ga]Ga-(FAPI-04)2 and [177Lu]Lu-(FAPI-04)2 showed a radiochemical purity of >99% and remained stable in vitro. In vivo, micro-PET images of SKOV3, A431, and H1299 xenografts revealed that the tumor uptake of [68Ga]Ga-(FAPI-04)2 was about twice that of [68Ga]Ga-FAPI-04 and that the accumulation of [68Ga]Ga-(FAPI-04)2 at the tumor site did not significantly decrease even 3h after injection. The tumor-abdomen ratio of [68Ga]Ga-(FAPI-04)2 images was significantly higher than that of [18F]F-FDG images. For radionuclide therapy, [177Lu]Lu-(FAPI-04)2 effectively retarded tumor growth and displayed good tolerance. In conclusion, the DOTA-Suc-Lys-(FAPI-04)2 design enhanced its uptake in FAP-expressing tumors, improved its retention time at the tumor site, and produced high-contrast imaging in xenografts after radionuclide labeling. Furthermore, it showed a noticeable antitumor effect. DOTA-Suc-Lys-(FAPI-04)2 provides a new approach for applying FAPI derivatives in tumor theranostics.
Collapse
Affiliation(s)
- Xuan Zhong
- Nanjing University of Chinese Medicine, Nanjing 210046, China
- Department of Nuclear Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Jingru Guo
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Xiuping Han
- Department of Nuclear Medicine, Nanjing Medical University Affiliated Nanjing Hospital, Nanjing 210029, China
| | - Wenyu Wu
- Department of Nuclear Medicine, Nanjing Medical University Affiliated Nanjing Hospital, Nanjing 210029, China
| | - Rui Yang
- Department of Nuclear Medicine, Nanjing Medical University Affiliated Nanjing Hospital, Nanjing 210029, China
| | - Jun Zhang
- Nanjing University of Chinese Medicine, Nanjing 210046, China
- Department of Nuclear Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing Medical University Affiliated Nanjing Hospital, Nanjing 210029, China
| |
Collapse
|
44
|
Bai S, Zhao Y, Chen W, Peng W, Wang Y, Xiong S, Li Y, Yang Y, Chen S, Cheng B, Wang R. The stromal-tumor amplifying STC1-Notch1 feedforward signal promotes the stemness of hepatocellular carcinoma. J Transl Med 2023; 21:236. [PMID: 37004088 PMCID: PMC10067215 DOI: 10.1186/s12967-023-04085-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs), an important component of the tumor microenvironment (TME), play crucial roles in tumor stemness. It has been shown in various cancer studies that stanniocalcin-1 (STC1) is secreted by CAFs, however, its function in HCC is still not clear. METHODS The serum concentration and intracellular expression level of STC1 were quantified by ELISA and western blotting, respectively. The role of CAF-derived STC1 in HCC stemness was investigated by sphere formation, sorafenib resistance, colony formation, and transwell migration and invasion assays in vitro and in an orthotopic liver xenograft model in vivo. An HCC tissue microarray containing 72 samples was used to evaluate the expression of STC1 and Notch1 in HCC tissues. Coimmunoprecipitation (CoIP) and dual-luciferase reporter assays were performed to further explore the underlying mechanisms. ELISAs were used to measure the serum concentration of STC1 in HCC patients. RESULTS We demonstrated that CAFs were the main source of STC1 in HCC and that CAF-derived STC1 promoted HCC stemness through activation of the Notch signaling pathway. In HCC patients, the expression of STC1 was positively correlated with Notch1 expression and poor prognosis. The co-IP assay showed that STC1 directly bound to Notch1 receptors to activate the Notch signaling pathway, thereby promoting the stemness of HCC cells. Our data further demonstrated that STC1 was a direct transcriptional target of CSL in HCC cells. Furthermore, ELISA revealed that the serum STC1 concentration was higher in patients with advanced liver cancer than in patients with early liver cancer. CONCLUSIONS CAF-derived STC1 promoted HCC stemness via the Notch1 signaling pathway. STC1 might serve as a potential biomarker for the prognostic assessment of HCC, and the stromal-tumor amplifying STC1-Notch1 feedforward signal could constitute an effective therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yun Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yanling Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yilei Yang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Shiru Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Ronghua Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
45
|
Hu X, Zhu H, He X, Chen J, Xiong L, Shen Y, Li J, Xu Y, Chen W, Liu X, Cao D, Xu X. The application of nanoparticles in immunotherapy for hepatocellular carcinoma. J Control Release 2023; 355:85-108. [PMID: 36708880 DOI: 10.1016/j.jconrel.2023.01.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related deaths worldwide, however, current clinical diagnostic and treatment approaches remain relatively limited, creating an urgent need for the development of effective technologies. Immunotherapy has emerged as a powerful treatment strategy for advanced cancer. The number of clinically approved drugs for HCC immunotherapy has been increasing. However, it remains challenging to improve their transport and therapeutic efficiency, control their targeting and release, and mitigate their adverse effects. Nanotechnology has recently gained attention for improving the effectiveness of precision therapy for HCC. We summarize the key features of HCC associated with nanoparticle (NPs) targeting, release, and uptake, the roles and limitations of several major immunotherapies in HCC, the use of NPs in immunotherapy, the properties of NPs that influence their design and application, and current clinical trials of NPs in HCC, with the aim of informing the design of delivery platforms that have the potential to improve the safety and efficacy of HCC immunotherapy,and thus, ultimately improve the prognosis of HCC patients.
Collapse
Affiliation(s)
- Xinyao Hu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoqin He
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lin Xiong
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayi Li
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Liu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dedong Cao
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ximing Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
46
|
Cui Y, Wang Q, Zhang X, Yang X, Shi Y, Li Y, Song M. Curcumin Alleviates Aflatoxin B 1-Induced Liver Pyroptosis and Fibrosis by Regulating the JAK2/NLRP3 Signaling Pathway in Ducks. Foods 2023; 12:foods12051006. [PMID: 36900523 PMCID: PMC10000391 DOI: 10.3390/foods12051006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 03/02/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a serious pollutant in feed and food which causes liver inflammation, fibrosis, and even cirrhosis. The Janus kinase 2 (JAK2)/signal transducers and activators of the transcription 3 (STAT3) signaling pathway is widely involved in inflammatory response and promotes the activation of nod-like receptor protein 3 (NLRP3) inflammasome, thus leading to pyroptosis and fibrosis. Curcumin is a natural compound with anti-inflammatory and anti-cancer properties. However, whether AFB1 exposure leads to the activation of the JAK2/NLRP3 signaling pathway in the liver and whether curcumin can regulate this pathway to influence pyroptosis and fibrosis in the liver remains unclear. In order to clarify these problems, we first treated ducklings with 0, 30, or 60 µg/kg AFB1 for 21 days. We found that AFB1 exposure caused growth inhibition, liver structural and functional damage, and activated JAK2/NLRP3-mediated liver pyroptosis and fibrosis in ducks. Secondly, ducklings were divided into a control group, 60 µg/kg AFB1 group, and 60 µg/kg AFB1 + 500 mg/kg curcumin group. We found that curcumin significantly inhibited the activation of the JAK2/STAT3 pathway and NLRP3 inflammasome, as well as the occurrence of pyroptosis and fibrosis in AFB1-exposed duck livers. These results suggested that curcumin alleviated AFB1-induced liver pyroptosis and fibrosis by regulating the JAK2/NLRP3 signaling pathway in ducks. Curcumin is a potential agent for preventing and treating liver toxicity of AFB1.
Collapse
Affiliation(s)
- Yilong Cui
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yun Shi
- Tongliao City Animal Quarantine Technical Service Center, Tongliao 028000, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Correspondence:
| |
Collapse
|
47
|
Suoangbaji T, Zhang VX, Ng IOL, Ho DWH. Single-Cell Analysis of Primary Liver Cancer in Mouse Models. Cells 2023; 12:cells12030477. [PMID: 36766817 PMCID: PMC9914042 DOI: 10.3390/cells12030477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Primary liver cancer (PLC), consisting mainly of hepatocellular carcinoma and intrahepatic cholangiocarcinoma, is one of the major causes of cancer-related mortality worldwide. The curative therapy for PLC is surgical resection and liver transplantation, but most PLCs are inoperable at diagnosis. Even after surgery, there is a high rate of tumor recurrence. There is an unmet clinical need to discover more effective treatment options for advanced PLCs. Pre-clinical mouse models in PLC research have played a critical role in identifying key oncogenic drivers and signaling pathways in hepatocarcinogenesis. Furthermore, recent advances in single-cell RNA sequencing (scRNA-seq) have provided an unprecedented degree of resolution in such characterization. In this review, we will summarize the recent studies that utilized pre-clinical mouse models with the combination of scRNA-seq to provide an understanding of different aspects of PLC. We will focus particularly on the potentially actionable targets regarding the cellular and molecular components. We anticipate that the findings in mouse models could complement those in patients. With more defined etiological background, mouse models may provide valuable insights.
Collapse
Affiliation(s)
| | | | - Irene Oi-Lin Ng
- Correspondence: (I.O.-L.N.); (D.W.-H.H.); Fax: +852-28872-5197 (I.O.-L.N.); +852-2819-5375 (D.W.-H.H.)
| | - Daniel Wai-Hung Ho
- Correspondence: (I.O.-L.N.); (D.W.-H.H.); Fax: +852-28872-5197 (I.O.-L.N.); +852-2819-5375 (D.W.-H.H.)
| |
Collapse
|
48
|
Sasaki K, Komamura S, Matsuda K. Extracellular stimulation of lung fibroblasts with arachidonic acid increases interleukin 11 expression through p38 and ERK signaling. Biol Chem 2023; 404:59-69. [PMID: 36268909 DOI: 10.1515/hsz-2022-0218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022]
Abstract
Interleukin-11 (IL-11) is a pleiotropic cytokine that regulates proliferation and motility of cancer cells. Fibroblasts reside in the cancer microenvironment and are the primary source of IL-11. Activated fibroblasts, including cancer-associated fibroblasts that produce IL-11, contribute to the development and progression of cancer, and induce fibrosis associated with cancer. Changes in fatty acid composition or its metabolites, and an increase in free fatty acids have been observed in cancer. The effect of deregulated fatty acids on the development and progression of cancer is not fully understood yet. In the present study, we investigated the effects of fatty acids on mRNA expression and secretion of IL-11 in lung fibroblasts. Among the eight fatty acids added exogenously, arachidonic acid (AA) increased mRNA expression and secretion of IL-11 in lung fibroblasts in a dose-dependent manner. AA-induced upregulation of IL-11 was dependent on the activation of the p38 or ERK MAPK signaling pathways. Furthermore, prostaglandin E2, associated with elevated cyclooxygenase-2 expression, participated in the upregulation of IL-11 via its specific receptor in an autocrine/paracrine manner. These results suggest that AA may mediate IL-11 upregulation in lung fibroblasts in the cancer microenvironment, accompanied by unbalanced fatty acid composition.
Collapse
Affiliation(s)
- Kanako Sasaki
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Shotaro Komamura
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| | - Kazuyuki Matsuda
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Nagano, Japan
| |
Collapse
|
49
|
Calitz C, Rosenquist J, Degerstedt O, Khaled J, Kopsida M, Fryknäs M, Lennernäs H, Samanta A, Heindryckx F. Influence of extracellular matrix composition on tumour cell behaviour in a biomimetic in vitro model for hepatocellular carcinoma. Sci Rep 2023; 13:748. [PMID: 36639512 PMCID: PMC9839216 DOI: 10.1038/s41598-023-27997-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The tumor micro-environment (TME) of hepatocellular carcinoma (HCC) consists out of cirrhotic liver tissue and is characterized by an extensive deposition of extracellular matrix proteins (ECM). The evolution from a reversible fibrotic state to end-stage of liver disease, namely cirrhosis, is characterized by an increased deposition of ECM, as well as changes in the exact ECM composition, which both contribute to an increased liver stiffness and can alter tumor phenotype. The goal of this study was to assess how changes in matrix composition and stiffness influence tumor behavior. HCC-cell lines were grown in a biomimetic hydrogel model resembling the stiffness and composition of a fibrotic or cirrhotic liver. When HCC-cells were grown in a matrix resembling a cirrhotic liver, they increased proliferation and protein content, compared to those grown in a fibrotic environment. Tumour nodules spontaneously formed outside the gels, which appeared earlier in cirrhotic conditions and were significantly larger compared to those found outside fibrotic gels. These tumor nodules had an increased expression of markers related to epithelial-to-mesenchymal transition (EMT), when comparing cirrhotic to fibrotic gels. HCC-cells grown in cirrhotic gels were also more resistant to doxorubicin compared with those grown in fibrotic gels or in 2D. Therefore, altering ECM composition affects tumor behavior, for instance by increasing pro-metastatic potential, inducing EMT and reducing response to chemotherapy.
Collapse
Affiliation(s)
- Carlemi Calitz
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, Box 571, 75431, Uppsala, Sweden
| | - Jenny Rosenquist
- Polymer Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Oliver Degerstedt
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jaafar Khaled
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, Box 571, 75431, Uppsala, Sweden
| | - Maria Kopsida
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, Box 571, 75431, Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ayan Samanta
- Polymer Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, Box 571, 75431, Uppsala, Sweden.
| |
Collapse
|
50
|
Yang AT, Kim YO, Yan XZ, Abe H, Aslam M, Park KS, Zhao XY, Jia JD, Klein T, You H, Schuppan D. Fibroblast Activation Protein Activates Macrophages and Promotes Parenchymal Liver Inflammation and Fibrosis. Cell Mol Gastroenterol Hepatol 2023; 15:841-867. [PMID: 36521660 PMCID: PMC9972574 DOI: 10.1016/j.jcmgh.2022.12.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Fibroblast activation protein (FAP) is expressed on activated fibroblast. Its role in fibrosis and desmoplasia is controversial, and data on pharmacological FAP inhibition are lacking. We aimed to better define the role of FAP in liver fibrosis in vivo and in vitro. METHODS FAP expression was analyzed in mice and patients with fibrotic liver diseases of various etiologies. Fibrotic mice received a specific FAP inhibitor (FAPi) at 2 doses orally for 2 weeks during parenchymal fibrosis progression (6 weeks of carbon tetrachloride) and regression (2 weeks off carbon tetrachloride), and with biliary fibrosis (Mdr2-/-). Recombinant FAP was added to (co-)cultures of hepatic stellate cells (HSC), fibroblasts, and macrophages. Fibrosis- and inflammation-related parameters were determined biochemically, by quantitative immunohistochemistry, polymerase chain reaction, and transcriptomics. RESULTS FAP+ fibroblasts/HSCs were α-smooth muscle actin (α-SMA)-negative and located at interfaces of fibrotic septa next to macrophages in murine and human livers. In parenchymal fibrosis, FAPi reduced collagen area, liver collagen content, α-SMA+ myofibroblasts, M2-type macrophages, serum alanine transaminase and aspartate aminotransferase, key fibrogenesis-related transcripts, and increased hepatocyte proliferation 10-fold. During regression, FAP was suppressed, and FAPi was ineffective. FAPi less potently inhibited biliary fibrosis. In vitro, FAP small interfering RNA reduced HSC α-SMA expression and collagen production, and FAPi suppressed their activation and proliferation. Compared with untreated macrophages, FAPi regulated macrophage profibrogenic activation and transcriptome, and their conditioned medium attenuated HSC activation, which was increased with addition of recombinant FAP. CONCLUSIONS Pharmacological FAP inhibition attenuates inflammation-predominant liver fibrosis. FAP is expressed on subsets of activated fibroblasts/HSC and promotes both macrophage and HSC profibrogenic activity in liver fibrosis.
Collapse
Affiliation(s)
- Ai-Ting Yang
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Experimental and Translational Research Center, Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China; Beijing Clinical Medicine Institute, Beijing, P.R. China; National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Yong-Ook Kim
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Xu-Zhen Yan
- Experimental and Translational Research Center, Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China; Beijing Clinical Medicine Institute, Beijing, P.R. China; National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Hiroyuki Abe
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Misbah Aslam
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kyoung-Sook Park
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Xin-Yan Zhao
- Liver Research Center, Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China; Beijing Clinical Medicine Institute, Beijing, P.R. China; National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Ji-Dong Jia
- Liver Research Center, Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China; Beijing Clinical Medicine Institute, Beijing, P.R. China; National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Thomas Klein
- Boehringer-Ingelheim, Cardiometabolic Research, Biberach, Germany
| | - Hong You
- Liver Research Center, Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China; National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Division of Gastroenterology Beth Israel Deaconess Medical Center, Harvard Medical School Boston, Boston, Massachusetts.
| |
Collapse
|