1
|
Vučurović D, Bajić B, Trivunović Z, Dodić J, Zeljko M, Jevtić-Mučibabić R, Dodić S. Biotechnological Utilization of Agro-Industrial Residues and By-Products-Sustainable Production of Biosurfactants. Foods 2024; 13:711. [PMID: 38472824 DOI: 10.3390/foods13050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The importance and interest in the efficient use and valorization of agro-industrial residues and by-products have grown due to environmental problems associated with improper disposal. Biotechnological production processes, including microbial biosurfactant production, represent a sustainable way to utilize agro-industrial residues and by-products, which are applied as substrates in these processes. Biosurfactants produced by microorganisms using renewable resources are a viable alternative to traditional petrochemical surfactants and have several potential uses in a wide range of industrial sectors due to their minimal ecotoxicity, easy biodegradability, and moderate production conditions. The common applications of biosurfactants, besides in food industry as food additives and preservatives, are in agriculture, environmental protection, the cosmetics and pharmaceutical industry, wastewater treatment, the petroleum industry, etc. This review aims to summarize the comprehensive scientific research related to the use of various agro-industrial residues and by-products in the microbial production of biosurfactants, as well as to emphasize the present state and the importance of their sustainable production. Additionally, based on the available biosurfactant market analysis datasets and research studies, the current situation in science and industry and the future perspectives of microbial biosurfactant production have been discussed.
Collapse
Affiliation(s)
- Damjan Vučurović
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Bojana Bajić
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Zorana Trivunović
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jelena Dodić
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Marko Zeljko
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Rada Jevtić-Mučibabić
- Institute for Food Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Siniša Dodić
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
2
|
Dygas D, Kręgiel D, Berłowska J. Sugar Beet Pulp as a Biorefinery Substrate for Designing Feed. Molecules 2023; 28:2064. [PMID: 36903310 PMCID: PMC10004680 DOI: 10.3390/molecules28052064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
An example of the implementation of the principles of the circular economy is the use of sugar beet pulp as animal feed. Here, we investigate the possible use of yeast strains to enrich waste biomass in single-cell protein (SCP). The strains were evaluated for yeast growth (pour plate method), protein increment (Kjeldahl method), assimilation of free amino nitrogen (FAN), and reduction of crude fiber content. All the tested strains were able to grow on hydrolyzed sugar beet pulp-based medium. The greatest increases in protein content were observed for Candida utilis LOCK0021 and Saccharomyces cerevisiae Ethanol Red (ΔN = 2.33%) on fresh sugar beet pulp, and for Scheffersomyces stipitis NCYC1541 (ΔN = 3.04%) on dried sugar beet pulp. All the strains assimilated FAN from the culture medium. The largest reductions in the crude fiber content of the biomass were recorded for Saccharomyces cerevisiae Ethanol Red (Δ = 10.89%) on fresh sugar beet pulp and Candida utilis LOCK0021 (Δ = 15.05%) on dried sugar beet pulp. The results show that sugar beet pulp provides an excellent matrix for SCP and feed production.
Collapse
Affiliation(s)
- Dawid Dygas
- Department of Environmental Biotechnology, Lodz University of Technology, 171/173 Wólczańska Street, 90-530 Łódź, Poland
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, 171/173 Wólczańska Street, 90-530 Łódź, Poland
| | - Joanna Berłowska
- Department of Environmental Biotechnology, Lodz University of Technology, 171/173 Wólczańska Street, 90-530 Łódź, Poland
| |
Collapse
|
3
|
Tawfik A, Mostafa A, Elsamadony M, Pant D, Fujii M. Unraveling the metabolic shift in anaerobic digestion pathways associated with the alteration of onion skin waste concentration. ENVIRONMENTAL RESEARCH 2022; 212:113494. [PMID: 35660404 DOI: 10.1016/j.envres.2022.113494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/08/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Onion skin waste (OSW) is common waste in developing countries, which can cause severe environmental pollution when not properly treated. Value-added products can be chemically extracted from OSW; however, that process is not economically feasible. Alternatively, dry anaerobic digestion (DAD) of OSW is a promising approach for both energy recovery and environment protection. The main hurdles during DAD of OSW can be the hydrolysis and acidification. In batch tests, sludge digestate (SD) rich with methanogens was co-digested with different fractions of OSW for enhancing hydrolysis and raising biogas productivity. The cumulative biogas production (CBP) was 36.6 ± 0.3 mL for sole DAD of SD (100% SD) and increased up to 281.9 ± 14.1 mL for (50% SD: 50% OSW) batch. Self-delignification of OSW took place by SD addition, where the lignin removal reached 75.3 ± 10.5% for (85% SD: 15% OSW) batch. Increasing the fraction of OSW (45% SD: 55% OSW) reduced the delignification by a value of 68.8%, where initial lignin concentration was 9.48 ± 1.6% in dry weight. Lignin breaking down resulted a high fraction of phenolic compounds (345.6 ± 58.8 mg gallic acid equivalent/g dry weight) in the fermentation medium, causing CBP drop (219.0 ± 28.5 mL). The presence of elements (K, Ca, Mg, Fe, Zn, Mn, S and P) in OSW improved the enzymatic activity, facilitated phenolic compounds degradation, shifted the metabolism towards acetate fermentation pathway, and raised biogas productivity. Acidogenesis was less affected by phenolic compounds than methanogenesis, causing higher H2 contents and lower CH4 contents, at batches with high share of OSW.
Collapse
Affiliation(s)
- Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, 12622, Dokki, Cairo, Egypt
| | - Alsayed Mostafa
- Department of Smart-city Engineering, Inha University, 100 Inharo, Nam-gu, Incheon, 22212, South Korea
| | - Mohamed Elsamadony
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, 31521 Tanta City, Egypt; Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan.
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo, 152-8552, Japan
| |
Collapse
|
4
|
Igbokwe VC, Ezugworie FN, Onwosi CO, Aliyu GO, Obi CJ. Biochemical biorefinery: A low-cost and non-waste concept for promoting sustainable circular bioeconomy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114333. [PMID: 34952394 DOI: 10.1016/j.jenvman.2021.114333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The transition from a fossil-based linear economy to a circular bioeconomy is no longer an option but rather imperative, given worldwide concerns about the depletion of fossil resources and the demand for innovative products that are ecocompatible. As a critical component of sustainable development, this discourse has attracted wide attention at the regional and international levels. Biorefinery is an indispensable technology to implement the blueprint of the circular bioeconomy. As a low-cost, non-waste innovative concept, the biorefinery concept will spur a myriad of new economic opportunities across a wide range of sectors. Consequently, scaling up biorefinery processes is of the essence. Despite several decades of research and development channeled into upscaling biorefinery processes, the commercialization of biorefinery technology appears unrealizable. In this review, challenges limiting the commercialization of biorefinery technologies are discussed, with a particular focus on biofuels, biochemicals, and biomaterials. To counteract these challenges, various process intensification strategies such as consolidated bioprocessing, integrated biorefinery configurations, the use of highly efficient bioreactors, simultaneous saccharification and fermentation, have been explored. This study also includes an overview of biomass pretreatment-generated inhibitory compounds as platform chemicals to produce other essential biocommodities. There is a detailed examination of the technological, economic, and environmental considerations of a sustainable biorefinery. Finally, the prospects for establishing a viable circular bioeconomy in Nigeria are briefly discussed.
Collapse
Affiliation(s)
- Victor C Igbokwe
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Materials Science and Engineering, Université de Pau et des Pays de l'Adour, 64012, Pau Cedex, France
| | - Flora N Ezugworie
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Godwin O Aliyu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinonye J Obi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
5
|
Usmani Z, Sharma M, Diwan D, Tripathi M, Whale E, Jayakody LN, Moreau B, Thakur VK, Tuohy M, Gupta VK. Valorization of sugar beet pulp to value-added products: A review. BIORESOURCE TECHNOLOGY 2022; 346:126580. [PMID: 34923076 DOI: 10.1016/j.biortech.2021.126580] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
The processing of sugar beet in the sugar production industry releases huge amounts of sugar beet pulp as waste which can be considered a valuable by-product as a source of cellulose, hemicellulose, and pectin. Valorization of sugar beet pulp into value added products occurs through acid hydrolysis, hydrothermal techniques, and enzymatic hydrolysis. Biochemical conversion of beet pulp into simple fermentable sugars for producing value added products occurs through enzymatic hydrolysis is a cost effective and eco-friendly process. While beet pulp has predominantly been used as a fodder for livestock, recent developments in its biotechnological valorization have unlocked its value as a feedstock in the production of biofuels, biohydrogen, biodegradable plastics, and platform chemicals such as lactic acid, citric acid, alcohols, microbial enzymes, single cell proteins, and pectic oligosaccharides. This review brings forward recent biotechnological developments made in the valorization of sugar beet pulp into valuable products.
Collapse
Affiliation(s)
- Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Deepti Diwan
- Washington University, School of Medicine, Saint Louis, MO 63110, USA
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Eric Whale
- CelluComp Ltd., Unit 3, West Dock, Harbour Place, Burntisland KY3 9DW, UK
| | - Lahiru N Jayakody
- School of Biological Sciences, Southern Illinois University,1125 Lincoln Drive, Carbondale, IL 62901, USA
| | - Benoît Moreau
- Laboratoire de "Chimie verte et Produits Biobasés", Haute Ecole Provinciale du Hainaut-Condorcet, Département AgroBioscience et Chimie, 11, rue de la Sucrerie, 7800 Ath, Belgium
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Maria Tuohy
- Biochemistry, School of Natural Sciences, National University of Ireland Galway, University Road, Galway City, Ireland
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
6
|
Chatterjee S, Venkata Mohan S. Fungal biorefinery for sustainable resource recovery from waste. BIORESOURCE TECHNOLOGY 2022; 345:126443. [PMID: 34852279 DOI: 10.1016/j.biortech.2021.126443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Depletion of natural resources and negative impact of fossil fuels on environment are becoming a global concern. The concept of biorefinery is one of the alternative platforms for the production of biofuels and chemicals. Valorisation of biological resources through complete utilization of waste, reusing secondary products and generating energy to power the process are the key principles of biorefinery. Agricultural residues and biogenic municipal solid wastes are getting importance as a potential feedstock for the generation of bioproducts. This communication reviews and highlights the scope of yeast and fungi as a potent candidate for the synthesis of gamut of bioproducts in an integrated approach addressing sustainability and circular bioeconomy. It also provides a close view on importance of microbes in biorefinery, feedstock pretreatment strategies for renewable sugar production, cultivation systems and yeast and fungi based products. Integrated closed loop approach towards multiple product generation with zero waste discharge is also discussed.
Collapse
Affiliation(s)
- Sulogna Chatterjee
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
de Medeiros Dantas JM, Beigbeder JB, Lavoie JM. Evaluation of physicochemical preservation techniques for the storage of sugar beet molasses followed by bioethanol production. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Perpelea A, Wijaya AW, Martins LC, Rippert D, Klein M, Angelov A, Peltonen K, Teleki A, Liebl W, Richard P, Thevelein JM, Takors R, Sá-Correia I, Nevoigt E. Towards valorization of pectin-rich agro-industrial residues: Engineering of Saccharomyces cerevisiae for co-fermentation of d-galacturonic acid and glycerol. Metab Eng 2021; 69:1-14. [PMID: 34648971 DOI: 10.1016/j.ymben.2021.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/08/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Pectin-rich plant biomass residues represent underutilized feedstocks for industrial biotechnology. The conversion of the oxidized monomer d-galacturonic acid (d-GalUA) to highly reduced fermentation products such as alcohols is impossible due to the lack of electrons. The reduced compound glycerol has therefore been considered an optimal co-substrate, and a cell factory able to efficiently co-ferment these two carbon sources is in demand. Here, we inserted the fungal d-GalUA pathway in a strain of the yeast S. cerevisiae previously equipped with an NAD-dependent glycerol catabolic pathway. The constructed strain was able to consume d-GalUA with the highest reported maximum specific rate of 0.23 g gCDW-1 h-1 in synthetic minimal medium when glycerol was added. By means of a 13C isotope-labelling analysis, carbon from both substrates was shown to end up in pyruvate. The study delivers the proof of concept for a co-fermentation of the two 'respiratory' carbon sources to ethanol and demonstrates a fast and complete consumption of d-GalUA in crude sugar beet pulp hydrolysate under aerobic conditions. The future challenge will be to achieve co-fermentation under industrial, quasi-anaerobic conditions.
Collapse
Affiliation(s)
- Andreea Perpelea
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany
| | - Andy Wiranata Wijaya
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany; Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Luís C Martins
- iBB - Institute for Bioengineering and Biosciences/i4HB-Associate Laboratory Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Dorthe Rippert
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany
| | - Angel Angelov
- Chair of Microbiology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str 4, 85354, Freising-Weihenstephan, Germany; NGS Competence Center Tübingen, Universitätsklinikum Tübingen, Calwerstraße 7, 72076, Tübingen, Germany
| | - Kaisa Peltonen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, VTT Espoo, Finland
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str 4, 85354, Freising-Weihenstephan, Germany
| | - Peter Richard
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, VTT Espoo, Finland
| | - Johan M Thevelein
- NovelYeast bv, Open Bio-Incubator, Erasmus High School, Laarbeeklaan 121, 1090, Brussels (Jette), Belgium
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences/i4HB-Associate Laboratory Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany.
| |
Collapse
|
9
|
Valorization of sugar beet pulp through biotechnological approaches: recent developments. Biotechnol Lett 2021; 43:1253-1263. [PMID: 33978884 DOI: 10.1007/s10529-021-03146-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/05/2021] [Indexed: 01/21/2023]
Abstract
Sugar beet pulp (SBP) is a valuable by-product of the sugar beet industry and is predominantly composed of cellulose, hemicellulose, and pectin. It is commonly used as livestock feed because of its palatability, good energy levels, and highly digestible fibers such as pectins and glucans. However, the utilization of SBP for the production of value-added products via biotechnological approaches is gaining significance in recent years owing to its potential as a cost-effective nutrient source and technological advancements in its processing. SBP can be used as a substrate for bio-production of microbial enzymes, single cell protein, alcohols (e.g., ethanol), methane/biogas, hydrogen, lactic acid, ferulic acid, and pectic oligosaccharides. SBP can also be used as a carrier for cell immobilization in fermentation processes. This review focused on recent developments in biotechnological valorization of SBP.
Collapse
|
10
|
Srivastava RK, Shetti NP, Reddy KR, Kwon EE, Nadagouda MN, Aminabhavi TM. Biomass utilization and production of biofuels from carbon neutral materials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116731. [PMID: 33607352 DOI: 10.1016/j.envpol.2021.116731] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 05/22/2023]
Abstract
The availability of organic matters in vast quantities from the agricultural/industrial practices has long been a significant environmental challenge. These wastes have created global issues in increasing the levels of BOD or COD in water as well as in soil or air segments. Such wastes can be converted into bioenergy using a specific conversion platform in conjunction with the appropriate utilization of the methods such as anaerobic digestion, secondary waste treatment, or efficient hydrolytic breakdown as these can promote bioenergy production to mitigate the environmental issues. By the proper utilization of waste organics and by adopting innovative approaches, one can develop bioenergy processes to meet the energy needs of the society. Waste organic matters from plant origins or other agro-sources, biopolymers, or complex organic matters (cellulose, hemicelluloses, non-consumable starches or proteins) can be used as cheap raw carbon resources to produce biofuels or biogases to fulfill the ever increasing energy demands. Attempts have been made for bioenergy production by biosynthesizing, methanol, n-butanol, ethanol, algal biodiesel, and biohydrogen using different types of organic matters via biotechnological/chemical routes to meet the world's energy need by producing least amount of toxic gases (reduction up to 20-70% in concentration) in order to promote sustainable green environmental growth. This review emphasizes on the nature of available wastes, different strategies for its breakdown or hydrolysis, efficient microbial systems. Some representative examples of biomasses source that are used for bioenergy production by providing critical information are discussed. Furthermore, bioenergy production from the plant-based organic matters and environmental issues are also discussed. Advanced biofuels from the organic matters are discussed with efficient microbial and chemical processes for the promotion of biofuel production from the utilization of plant biomasses.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to Be University), Rushikonda, Visakhapatnam, 530045, (A.P.), India
| | - Nagaraj P Shetti
- Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi, 580027, Karnataka, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | | |
Collapse
|
11
|
Martins LC, Palma M, Angelov A, Nevoigt E, Liebl W, Sá-Correia I. Complete Utilization of the Major Carbon Sources Present in Sugar Beet Pulp Hydrolysates by the Oleaginous Red Yeasts Rhodotorula toruloides and R. mucilaginosa. J Fungi (Basel) 2021; 7:jof7030215. [PMID: 33802726 PMCID: PMC8002571 DOI: 10.3390/jof7030215] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Agro-industrial residues are low-cost carbon sources (C-sources) for microbial growth and production of value-added bioproducts. Among the agro-industrial residues available, those rich in pectin are generated in high amounts worldwide from the sugar industry or the industrial processing of fruits and vegetables. Sugar beet pulp (SBP) hydrolysates contain predominantly the neutral sugars d-glucose, l-arabinose and d-galactose, and the acidic sugar d-galacturonic acid. Acetic acid is also present at significant concentrations since the d-galacturonic acid residues are acetylated. In this study, we have examined and optimized the performance of a Rhodotorula mucilaginosa strain, isolated from SBP and identified at the molecular level during this work. This study was extended to another oleaginous red yeast species, R. toruloides, envisaging the full utilization of the C-sources from SBP hydrolysate (at pH 5.0). The dual role of acetic acid as a carbon and energy source and as a growth and metabolism inhibitor was examined. Acetic acid prevented the catabolism of d-galacturonic acid and l-arabinose after the complete use of the other C-sources. However, d-glucose and acetic acid were simultaneously and efficiently metabolized, followed by d-galactose. SBP hydrolysate supplementation with amino acids was crucial to allow d-galacturonic acid and l-arabinose catabolism. SBP valorization through the production of lipids and carotenoids by Rhodotorula strains, supported by complete catabolism of the major C-sources present, looks promising for industrial implementation.
Collapse
Affiliation(s)
- Luís C. Martins
- iBB—Institute for Bioengineering and Biosciences/i4HB—Associate Laboratory Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (L.C.M.); (M.P.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Margarida Palma
- iBB—Institute for Bioengineering and Biosciences/i4HB—Associate Laboratory Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (L.C.M.); (M.P.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Angel Angelov
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; (A.A.); (W.L.)
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen GmbH, Campus Ring 1, 28759 Bremen, Germany;
| | - Wolfgang Liebl
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; (A.A.); (W.L.)
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences/i4HB—Associate Laboratory Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (L.C.M.); (M.P.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
12
|
Yeast Fermentation at Low Temperatures: Adaptation to Changing Environmental Conditions and Formation of Volatile Compounds. Molecules 2021; 26:molecules26041035. [PMID: 33669237 PMCID: PMC7919833 DOI: 10.3390/molecules26041035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Yeast plays a key role in the production of fermented foods and beverages, such as bread, wine, and other alcoholic beverages. They are able to produce and release from the fermentation environment large numbers of volatile organic compounds (VOCs). This is the reason for the great interest in the possibility of adapting these microorganisms to fermentation at reduced temperatures. By doing this, it would be possible to obtain better sensory profiles of the final products. It can reduce the addition of artificial flavors and enhancements to food products and influence other important factors of fermented food production. Here, we reviewed the genetic and physiological mechanisms by which yeasts adapt to low temperatures. Next, we discussed the importance of VOCs for the food industry, their biosynthesis, and the most common volatiles in fermented foods and described the beneficial impact of decreased temperature as a factor that contributes to improving the composition of the sensory profiles of fermented foods.
Collapse
|
13
|
Cieciura-Włoch W, Borowski S, Domański J. Dark fermentative hydrogen production from hydrolyzed sugar beet pulp improved by iron addition. BIORESOURCE TECHNOLOGY 2020; 314:123713. [PMID: 32629374 DOI: 10.1016/j.biortech.2020.123713] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the impact of three different iron compounds (Fe2O3, FeSO4, FeCl3) on hydrogen production via mesophilic dark fermentation (DF) of hydrolyzed sugar beet pulp (SBP). In batch tests, the maximum hydrogen yield of over 200 dm3H2/kgVS was achieved with the addition of 0.1 gFe2O3/dm3, which was twice greater than the control. In semi-continuous experiments, the highest hydrogen production of 52.11 dm3H2/kgVS combined with 19.4 dm3CH4/kgVS methane yield was obtained at a dose of 1 gFe2O3/dm3. Acetic, lactic and caproic acids were the main metabolic products of DF. Microbiological studies showed some balance between hydrogen producing microorganisms from the order Clostridiales and lactic acid producers (LAB) affiliated with the orders Lactobacillales and Coriobacteriales. Moreover, the presence of methanogens affiliated to the genera Methanobrevibacter and Methanosphaera was also documented. An interesting finding was the appearance of rare bacteria from the genus Caproiciproducens, which was responsible for increased caproic acid production.
Collapse
Affiliation(s)
- Weronika Cieciura-Włoch
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Sebastian Borowski
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Jarosław Domański
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| |
Collapse
|
14
|
Martins LC, Monteiro CC, Semedo PM, Sá-Correia I. Valorisation of pectin-rich agro-industrial residues by yeasts: potential and challenges. Appl Microbiol Biotechnol 2020; 104:6527-6547. [PMID: 32474799 PMCID: PMC7347521 DOI: 10.1007/s00253-020-10697-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Accepted: 05/19/2020] [Indexed: 01/29/2023]
Abstract
Pectin-rich agro-industrial residues are feedstocks with potential for sustainable biorefineries. They are generated in high amounts worldwide from the industrial processing of fruits and vegetables. The challenges posed to the industrial implementation of efficient bioprocesses are however manyfold and thoroughly discussed in this review paper, mainly at the biological level. The most important yeast cell factory platform for advanced biorefineries is currently Saccharomyces cerevisiae, but this yeast species cannot naturally catabolise the main sugars present in pectin-rich agro-industrial residues hydrolysates, in particular D-galacturonic acid and L-arabinose. However, there are non-Saccharomyces species (non-conventional yeasts) considered advantageous alternatives whenever they can express highly interesting metabolic pathways, natively assimilate a wider range of carbon sources or exhibit higher tolerance to relevant bioprocess-related stresses. For this reason, the interest in non-conventional yeasts for biomass-based biorefineries is gaining momentum. This review paper focuses on the valorisation of pectin-rich residues by exploring the potential of yeasts that exhibit vast metabolic versatility for the efficient use of the carbon substrates present in their hydrolysates and high robustness to cope with the multiple stresses encountered. The major challenges and the progresses made related with the isolation, selection, sugar catabolism, metabolic engineering and use of non-conventional yeasts and S. cerevisiae-derived strains for the bioconversion of pectin-rich residue hydrolysates are discussed. The reported examples of value-added products synthesised by different yeasts using pectin-rich residues are reviewed. Key Points • Review of the challenges and progresses made on the bioconversion of pectin-rich residues by yeasts. • Catabolic pathways for the main carbon sources present in pectin-rich residues hydrolysates. • Multiple stresses with potential to affect bioconversion productivity. • Yeast metabolic engineering to improve pectin-rich residues bioconversion. Graphical abstract.
Collapse
Affiliation(s)
- Luís C Martins
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina C Monteiro
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Paula M Semedo
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
15
|
Alves de Oliveira R, Schneider R, Hoss Lunelli B, Vaz Rossell CE, Maciel Filho R, Venus J. A Simple Biorefinery Concept to Produce 2G-Lactic Acid from Sugar Beet Pulp (SBP): A High-Value Target Approach to Valorize a Waste Stream. Molecules 2020; 25:E2113. [PMID: 32365990 PMCID: PMC7248869 DOI: 10.3390/molecules25092113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Lactic acid is a high-value molecule with a vast number of applications. Its production in the biorefineries model is a possibility for this sector to aggregate value to its production chain. Thus, this investigation presents a biorefinery model based on the traditional sugar beet industry proposing an approach to produce lactic acid from a waste stream. Sugar beet is used to produce sugar and ethanol, and the remaining pulp is sent to animal feed. Using Bacillus coagulans in a continuous fermentation, 2781.01 g of lactic acid was produced from 3916.91 g of sugars from hydrolyzed sugar beet pulp, with a maximum productivity of 18.06 g L-1h-1. Without interfering in the sugar production, ethanol, or lactic acid, it is also possible to produce pectin and phenolic compounds in the biorefinery. The lactic acid produced was purified by a bipolar membrane electrodialysis and the recovery reached 788.80 g/L with 98% w/w purity.
Collapse
Affiliation(s)
- Regiane Alves de Oliveira
- Laboratory of Optimization, Design and Advanced Process Control, School of Chemical Engineering, University of Campinas (Unicamp), Avenida Albert Einstein 500, Campinas 13083-852, Brazil;
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany;
| | - Roland Schneider
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany;
| | - Betânia Hoss Lunelli
- Pontifícia Universidade Católica de Campinas (PUC-Campinas), Centro de Ciências Exatas, Ambientais e de Tecnologias, Faculdade de Química, Rua Professor Doutor Euryclides de Jesus Zerbini 1516, Campinas 13087-571, Brazil;
| | - Carlos Eduardo Vaz Rossell
- Interdisciplinary Center of Energy Planning (NIPE), University of Campinas (Unicamp), Rua Cora Coralina 330, Campinas 13083-896, Brazil;
| | - Rubens Maciel Filho
- Laboratory of Optimization, Design and Advanced Process Control, School of Chemical Engineering, University of Campinas (Unicamp), Avenida Albert Einstein 500, Campinas 13083-852, Brazil;
| | - Joachim Venus
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany;
| |
Collapse
|
16
|
Feasibility Assessment of a Bioethanol Plant in the Northern Netherlands. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to the exhaustion and increased pressure regarding the environmental and political aspects of fossil fuels, the industrial focus has switched towards renewable energy resources. Lignocellulosic biowaste can come from several sources, such as industrial waste, agricultural waste, forestry waste, and bioenergy crops and processed into bioethanol via a biochemical pathway. Although much research has been done on the ethanol production from lignocellulosic biomass, the economic viability of a bioethanol plant in the Northern Netherlands is yet unknown, and therefore, examined. In this thesis, the feasibility study of a bioethanol plant treating sugar beet pulp, cow manure, and grass straw is conducted using the simulation software SuperPro Designer. Results show that it is not economically viable to treat the tested lignocellulosic biomass for the production of bioethanol, since all three original cases result in a negative net present value (NPV). An alternative would be to exclude the pretreatment step from the process. Although this results in a lower production of bioethanol per year, the plant treating sugar beet pulp (SBP) and grass straw (GS) becomes economically viable since the costs have significantly decreased.
Collapse
|
17
|
Borowski S, Kucner M. The use of sugar beet pulp stillage for co-digestion with sewage sludge and poultry manure. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:1025-1032. [PMID: 30967060 DOI: 10.1177/0734242x19838610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The anaerobic mesophilic co-digestion of sugar beet pulp stillage with poultry manure and municipal sewage sludge was investigated in this study. The sugar beet pulp stillage (SBPS) mono-digestion failed owing to an accumulation of volatile fatty acids, leading to a pH value lower than 5.5. A 20% addition of poultry manure to stillage allowed for stable digestion performance despite high volatile fatty acid (total volatile fatty acids) concentrations of 5500-8500 g m-3 with propionic acid being the predominant one and constituting 72%-76% total volatile fatty acids. For this mixture, the maximum methane production of 418 dm3 kgVSfed-1 was achieved when the reactor was operated at a solids retention time of 20 days and an organic loading rate of 4.25 kgVS m-3 d-1. The co-digestion of stillage with 60% municipal sewage sludge gave the average methane yield of around 357 dm3 kgVSfed-1 for all operational conditions applied, however, the methane percentage of biogas (up to 70%) was far greater than the corresponding values obtained for sugar beet pulp stillage-poultry manure co-digestion. Neither ammonia nor volatile fatty acids destabilised the biogas production, and the volatile fatty acid profile showed the dominance of acetic acid (72%-82% total volatile fatty acids) followed by propionic and butyric acids.
Collapse
Affiliation(s)
- Sebastian Borowski
- Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Marcin Kucner
- Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
18
|
The Use of Acidic Hydrolysates after Furfural Production from Sugar Waste Biomass as a Fermentation Medium in the Biotechnological Production of Hydrogen. ENERGIES 2019. [DOI: 10.3390/en12173222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study investigates a simultaneous processing of sugar beet pulp (SBP) for furfural, hydrogen and methane production using various pretreatment methods. In the experiments, sugar beet pulp was first subjected to thermal and thermochemical pretreatment at 140 °C. Then hydrolysates from these operations were investigated for their potential for methane and hydrogen production in batch tests. The experiments showed that thermal pretreatment of SBP resulted in the highest biogas and methane yields of 945 dm3/kg volatile solids (VS) and 374 dm3 CH4/kg VS, respectively, and a moderate hydrogen production of 113 dm3 H2/kg VS, which corresponded to a calculated energy production of 142 kWh/t; however, only low amount of furfural was obtained (1.63 g/L). Conversely, the highest furfural yield of 12 g/L was achieved via thermochemical pretreatment of SBP; however, biogas production from hydrolysate was much lower (215 dm3/kg VS) and contained only 67 dm3/kg VS of hydrogen. Meanwhile, in the experiment with lower amounts of sulfuric acid (2%) used for pretreatment, a moderate furfural production of 4 g/L was achieved with as high as 220 dm3/kg VS of hydrogen and the corresponding energy yield of 75 kWh/t.
Collapse
|
19
|
Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines. ENERGIES 2019. [DOI: 10.3390/en12071194] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of alternative fuels contributes to the lowering of the carbon footprint of the internal combustion engine. Biofuels are the most important kinds of alternative fuels. Currently, thanks to the new manufacturing processes of biofuels, there is potential to decrease greenhouse gas (GHG) emissions, compared to fossil fuels, on a well-to-wheel basis. Amongst the most prominent alternative fuels to be used in mixtures/blends with fossil fuels in internal combustion (IC) engines are biodiesel, bioethanol, and biomethanol. With this perspective, considerable attention has been given to biodiesel and petroleum diesel fuel blends in compression ignition (CI) engines. Many studies have been conducted to assess the impacts of biodiesel use on engine operation. The addition of alcohols such as methanol and ethanol is also practised in biodiesel–diesel blends, due to their miscibility with the pure biodiesel. Alcohols improve the physico-chemical properties of biodiesel–diesel blends, which lead to improved CI engine operation. This review paper discusses some results of recent studies on biodiesel, bioethanol, and biomethanol production, their physicochemical properties, and also, on the influence of the use of diesel–biodiesel–alcohols blends in CI engines: combustion characteristics, performance, and emissions.
Collapse
|
20
|
Gharib-Bibalan S. High Value-added Products Recovery from Sugar Processing By-products and Residuals by Green Technologies: Opportunities, Challenges, and Prospects. FOOD ENGINEERING REVIEWS 2018. [DOI: 10.1007/s12393-018-9174-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Amamou S, Sambusiti C, Monlau F, Dubreucq E, Barakat A. Mechano-Enzymatic Deconstruction with a New Enzymatic Cocktail to Enhance Enzymatic Hydrolysis and Bioethanol Fermentation of Two Macroalgae Species. Molecules 2018; 23:molecules23010174. [PMID: 29342098 PMCID: PMC6017876 DOI: 10.3390/molecules23010174] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/19/2017] [Accepted: 01/07/2018] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to explore the efficiency of a mechano-enzymatic deconstruction of two macroalgae species for sugars and bioethanol production, by using a new enzymatic cocktail (Haliatase) and two types of milling modes (vibro-ball: VBM and centrifugal milling: CM). By increasing the enzymatic concentration from 3.4 to 30 g/L, the total sugars released after 72 h of hydrolysis increased (from 6.7 to 13.1 g/100 g TS and from 7.95 to 10.8 g/100 g TS for the green algae U. lactuca and the red algae G. sesquipedale, respectively). Conversely, total sugars released from G. sesquipedale increased (up to 126% and 129% after VBM and CM, respectively). The best bioethanol yield (6 geth/100 g TS) was reached after 72 h of fermentation of U. lactuca and no increase was obtained after centrifugal milling. The latter led to an enhancement of the ethanol yield of G. sesquipedale (from 2 to 4 g/100 g TS).
Collapse
Affiliation(s)
- Sameh Amamou
- UMR, Ingénierie des Agropolymères et des Technologies Emergentes (IATE), CIRAD, Montpellier SupAgro, INRA, Université de Montpellier, 34060 Montpellier, France.
| | - Cecilia Sambusiti
- UMR, Ingénierie des Agropolymères et des Technologies Emergentes (IATE), CIRAD, Montpellier SupAgro, INRA, Université de Montpellier, 34060 Montpellier, France.
| | - Florian Monlau
- UMR, Ingénierie des Agropolymères et des Technologies Emergentes (IATE), CIRAD, Montpellier SupAgro, INRA, Université de Montpellier, 34060 Montpellier, France.
- APESA, Plateau Technique, Cap Ecologia, Avenue Fréderic Joliot Curie, 64230 Lescar, France.
| | - Eric Dubreucq
- UMR, Ingénierie des Agropolymères et des Technologies Emergentes (IATE), CIRAD, Montpellier SupAgro, INRA, Université de Montpellier, 34060 Montpellier, France.
| | - Abdellatif Barakat
- UMR, Ingénierie des Agropolymères et des Technologies Emergentes (IATE), CIRAD, Montpellier SupAgro, INRA, Université de Montpellier, 34060 Montpellier, France.
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, Ben Guerir 43150, Morocco.
| |
Collapse
|
22
|
Tomaszewska J, Bieliński D, Binczarski M, Berlowska J, Dziugan P, Piotrowski J, Stanishevsky A, Witońska IA. Products of sugar beet processing as raw materials for chemicals and biodegradable polymers. RSC Adv 2018; 8:3161-3177. [PMID: 35541165 PMCID: PMC9077669 DOI: 10.1039/c7ra12782k] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/03/2018] [Indexed: 01/14/2023] Open
Abstract
This paper presents an overview of alternative uses for products of sugar beet processing, especially sucrose, as chemical raw materials for the production of biodegradable polymers. Traditionally, sucrose has not been considered as a chemical raw material, because of its use in the food industry and high sugar prices. Beet pulp and beetroot leaves have also not been considered as raw materials for chemical production processes until recently. However, current changes in the European sugar market could lead to falling demand and overproduction of sucrose. Increases in the production of white sugar will also increase the production of waste biomass, as a result of the processing of larger quantities of sugar beet. This creates an opportunity for the development of new chemical technologies based on the use of products of sugar beet processing as raw materials. Promising methods for producing functionalized materials include the acidic hydrolysis of sugars (sucrose, biomass polysaccharides), the catalytic dehydration of monosaccharides to HMF followed by catalytic oxidation of HMF to FDCA and polymerization to biodegradable polymers. The technologies reviewed in this article will be of interest both to industry and science.
Collapse
Affiliation(s)
- J Tomaszewska
- Institute of General and Ecological Chemistry, Lodz University of Technology 116 Zeromskiego Street Lodz 90-924 Poland +48 42 631 30 94
| | - D Bieliński
- Institute of Polymer & Dye Technology, Lodz University of Technology 12/16 Stefanowskiego Street Lodz 90-924 Poland
| | - M Binczarski
- Institute of General and Ecological Chemistry, Lodz University of Technology 116 Zeromskiego Street Lodz 90-924 Poland +48 42 631 30 94
| | - J Berlowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology 171/173 Wolczanska Street Lodz 90-924 Poland
| | - P Dziugan
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology 171/173 Wolczanska Street Lodz 90-924 Poland
| | - J Piotrowski
- National Sugar Company S.A. 12 John Paul II Avenue Warsaw 00-001 Poland
| | - A Stanishevsky
- Department of Physics, University of Alabama at Birmingham Birmingham AL 35294 USA
| | - I A Witońska
- Institute of General and Ecological Chemistry, Lodz University of Technology 116 Zeromskiego Street Lodz 90-924 Poland +48 42 631 30 94
| |
Collapse
|
23
|
Modelska M, Berlowska J, Kregiel D, Cieciura W, Antolak H, Tomaszewska J, Binczarski M, Szubiakiewicz E, Witonska IA. Concept for Recycling Waste Biomass from the Sugar Industry for Chemical and Biotechnological Purposes. Molecules 2017; 22:molecules22091544. [PMID: 28902173 PMCID: PMC6151602 DOI: 10.3390/molecules22091544] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 01/23/2023] Open
Abstract
The objective of this study was to develop a method for the thermally-assisted acidic hydrolysis of waste biomass from the sugar industry (sugar beet pulp and leaves) for chemical and biotechnological purposes. The distillates, containing furfural, can be catalytically reduced directly into furfurayl alcohol or tetrahydrofurfuryl alcohol. The sugars present in the hydrolysates can be converted by lactic bacteria into lactic acid, which, by catalytic reduction, leads to propylene glycol. The sugars may also be utilized by microorganisms in the process of cell proliferation, and the biomass obtained used as a protein supplement in animal feed. Our study also considered the effects of the mode and length of preservation (fresh, ensilage, and drying) on the yields of furfural and monosaccharides. The yield of furfural in the distillates was measured using gas chromatography with flame ionization detector (GC-FID). The content of monosaccharides in the hydrolysates was measured spectrophotometrically using enzymatic kits. Biomass preserved under all tested conditions produced high yields of furfural, comparable to those for fresh material. Long-term storage of ensiled waste biomass did not result in loss of furfural productivity. However, there were significant reductions in the amounts of monosaccharides in the hydrolysates.
Collapse
Affiliation(s)
- Magdalena Modelska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Joanna Berlowska
- Institute of Fermentation Technology and Microbiology, Faculty of Food Science and Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Dorota Kregiel
- Institute of Fermentation Technology and Microbiology, Faculty of Food Science and Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Weronika Cieciura
- Institute of Fermentation Technology and Microbiology, Faculty of Food Science and Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Faculty of Food Science and Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Jolanta Tomaszewska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Michał Binczarski
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Elzbieta Szubiakiewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Izabela A Witonska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|