1
|
Teijeiro M, Abraham AG, Cabrera J, Suchowlanski GA, Losada A, Ruarte S, López M, Vinderola G. [Analysis of sugary kefir samples for the development of a regulatory framework in the Argentinian Food Code]. Rev Argent Microbiol 2025:S0325-7541(25)00029-X. [PMID: 40133130 DOI: 10.1016/j.ram.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/08/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Water kefir is a fermented beverage that has experienced a growing popular interest in its production, commercialization and consumption. However, it was not contemplated as such in the Argentine Food Code (CAA, Spanish acronym). The aim of this work was to determine some microbiological and physicochemical characteristics of water kefir samples produced by Argentine entrepreneurs, to have the necessary information for the National Food Commission (CONAL, Spanish acronym) to generate an article incorporating water kefir in the CAA. For this purpose, 31 water kefir producers from different cities of the country were invited to send samples of their products for microbiological and physicochemical analysis to the National Reference Laboratory of the National Food Institute (INAL, Spanish acronym) (Buenos Aires, Argentina). In the period December 2021-February 2022, a total of 13 samples were received, together with the corresponding information on their production process. The samples analyzed showed a pH between 2.9 and 3.7, a titratable acidity between 6 and 16.6 (ml of NaOH 1N/100ml of sample), an alcohol content between 0.58 and 2.55 (%v/v), a lactic acid bacteria count of 1×107CFU/ml and a yeast count of 1×106CFU/ml, with enterobacteria counts lower than 10CFU/ml). The results provided local data that culminated in the publication, on August 12, 2024, of the joint resolution 7/2024 of the Secretariat of Quality in Health and Secretariat of Bioeconomy by which article 1084 tris was incorporated to the CAA in the chapter XIII of fermented beverages, referring to water kefir.
Collapse
Affiliation(s)
- Manuel Teijeiro
- Instituto Nacional de Alimentos (INAL), ANMAT, Ciudad Autónoma de Buenos Aires, Argentina
| | - Analía Graciela Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET) y Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Josefina Cabrera
- Instituto Nacional de Alimentos (INAL), ANMAT, Ciudad Autónoma de Buenos Aires, Argentina
| | - Galia Ana Suchowlanski
- Instituto Nacional de Alimentos (INAL), ANMAT, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Losada
- Instituto Nacional de Alimentos (INAL), ANMAT, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvana Ruarte
- Instituto Nacional de Alimentos (INAL), ANMAT, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mónica López
- Instituto Nacional de Alimentos (INAL), ANMAT, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
2
|
Abou Ayana IAA, Al-Otibi FO, Elgarhy MR, Omar MM, EL-Abbassy MZ, Khalifa SA, Helmy YA, Saber WIA. Chemical, Physical, Microbial, and Sensory Properties of Innovative Sesame Milk Kefir, Focusing on the Ultrastructure of Kefir Grains. ACS OMEGA 2025; 10:7752-7769. [PMID: 40060880 PMCID: PMC11886653 DOI: 10.1021/acsomega.4c08044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 04/07/2025]
Abstract
The demand for innovative plant-based probiotic beverages is growing rapidly. This study aimed to develop and evaluate a novel kefir beverage using two types of sesame milk: permeate-based sesame milk (PSM) and water-based sesame milk (WSM). Chemical, physical, microbial, and sensory properties of kefir were assessed. The total solids content (protein, fat, carbohydrates, and ash) in fresh kefir was 12.68, 13.31, and 16.38% for cow milk kefir (CMK), WSM kefir (WSMK), and PSM kefir (PSMK), respectively, and increased slightly after 14 days of storage, reaching 13.18, 13.53, and 16.56%. The fresh PSMK exhibited notable mineral content, containing (mg/100 g) 258.23 Ca, 137.14 P, 70.24 K, and smaller amounts of Na, Mg, Cu, Fe, Zn, and Mn, along with 5.18 μg/100 g of Se. In terms of volatile compounds, PSMK had the highest acetaldehyde concentration (7.48 mg/L), followed by CMK (4.91 mg/L) and WSMK (4.44 mg/L). Ethanol levels were the highest in fresh WSMK (0.129%). The viscosity and color attributes of PSMK were closely aligned with those of CMK, with the viscosity increasing over time to 1.53, 1.40, and 1.57 cP for PSMK, WSMK, and CMK, respectively. All kefir types supported viable probiotic populations, with PSMK demonstrating superior Lactobacillus and Lactococcus growth compared to WSMK. Sensory evaluations revealed high consumer acceptability for PSMK, comparable to CMK, with a purchase recommendation rate exceeding 76% for both PSMK and WSMK. Scanning electron microscopy revealed that the microstructure of PSMK grains was well-balanced and similar to that of CMK grains. This study highlights PSM as a promising dairy alternative for producing high-quality probiotic kefir, offering consumers an appealing, nutritious option within the growing plant-based beverage market.
Collapse
Affiliation(s)
- Ibrahim A. A. Abou Ayana
- Dairy
Research Department, Food Technology Research Institute (FTRI), Agricultural Research Center, Giza 12619, Egypt
| | - Fatimah O. Al-Otibi
- Botany
and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed R. Elgarhy
- Dairy
Research Department, Food Technology Research Institute (FTRI), Agricultural Research Center, Giza 12619, Egypt
| | - Mohamed M. Omar
- Food
Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed. Z. EL-Abbassy
- Food
Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Salah A. Khalifa
- Food
Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Yosra A. Helmy
- Department
of Veterinary Science, Martin-Gatton College of Agriculture, Food,
and Environment, University of Kentucky, Lexington, Kentucky 40546, United States
| | - WesamEldin I. A. Saber
- Microbial
Activity Unit, Microbiology Department, Soils, Water and Environment
Research Institute, Agricultural Research
Center, Giza 12619, Egypt
| |
Collapse
|
3
|
González-Rascón A, Chávez-Cortéz EG, Hurtado-Camarena A, Serafín-Higuera N, Castillo-Uribe S, Martínez-Aguilar VM, Carrillo-Ávila BA, Pitones-Rubio V. Evaluating the Impact of Kefir Consumption on Dental Caries and Periodontal Disease: A Narrative Review. Dent J (Basel) 2025; 13:86. [PMID: 39996960 PMCID: PMC11854779 DOI: 10.3390/dj13020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Dental caries and periodontal diseases are the most common illnesses in the oral cavity and represent a public health concern globally. In recent decades, diverse studies showed that Kefir, a traditional beverage that can be milk- or water-based, contains a complex microbial community and has health benefits. The goal of this review was to update the current knowledge of kefir consumption and its impact on oral health. Methods: The search of a combination of keywords-kefir; dental caries; probiotics; microbiota; periodontal diseases; biofilm; and oral health-was conducted using PubMed, Google Scholar, and Web of Science databases for studies in human subjects. Discussion: The research suggests that kefir consumption may aid in decreasing counts of microorganisms typically associated with oral illness. Conclusions: Kefir has the potential to inhibit certain oral pathogens and reduce biofilm formation by promoting diversity within the oral microbiota, suggesting that kefir could be a promising adjuvant treatment for dental caries and periodontal diseases by improving oral health.
Collapse
Affiliation(s)
- Anna González-Rascón
- Facultad de Odontología, Universidad Autónoma de Baja California, Mexicali 21040, Mexico; (A.G.-R.); (A.H.-C.); (N.S.-H.); (S.C.-U.)
| | - Elda Georgina Chávez-Cortéz
- Facultad de Odontología, Universidad Autónoma de Yucatán, Mérida 97000, Mexico; (E.G.C.-C.); (V.M.M.-A.); (B.A.C.-Á.)
| | - Angélica Hurtado-Camarena
- Facultad de Odontología, Universidad Autónoma de Baja California, Mexicali 21040, Mexico; (A.G.-R.); (A.H.-C.); (N.S.-H.); (S.C.-U.)
| | - Nicolás Serafín-Higuera
- Facultad de Odontología, Universidad Autónoma de Baja California, Mexicali 21040, Mexico; (A.G.-R.); (A.H.-C.); (N.S.-H.); (S.C.-U.)
| | - Sandra Castillo-Uribe
- Facultad de Odontología, Universidad Autónoma de Baja California, Mexicali 21040, Mexico; (A.G.-R.); (A.H.-C.); (N.S.-H.); (S.C.-U.)
| | | | - Bertha Arelly Carrillo-Ávila
- Facultad de Odontología, Universidad Autónoma de Yucatán, Mérida 97000, Mexico; (E.G.C.-C.); (V.M.M.-A.); (B.A.C.-Á.)
| | - Viviana Pitones-Rubio
- Facultad de Odontología, Universidad Autónoma de Baja California, Mexicali 21040, Mexico; (A.G.-R.); (A.H.-C.); (N.S.-H.); (S.C.-U.)
| |
Collapse
|
4
|
Silva MH, Batista LL, Malta SM, Santos ACC, Mendes-Silva AP, Bonetti AM, Ueira-Vieira C, Dos Santos AR. Unveiling the Brazilian kefir microbiome: discovery of a novel Lactobacillus kefiranofaciens (LkefirU) genome and in silico prospection of bioactive peptides with potential anti-Alzheimer properties. BMC Genomics 2024; 25:884. [PMID: 39304820 DOI: 10.1186/s12864-024-10695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Kefir is a complex microbial community that plays a critical role in the fermentation and production of bioactive peptides, and has health-improving properties. The composition of kefir can vary by geographic localization and weather, and this paper focuses on a Brazilian sample and continues previous work that has successful anti-Alzheimer properties. In this study, we employed shotgun metagenomics and peptidomics approaches to characterize Brazilian kefir further. RESULTS We successfully assembled the novel genome of Lactobacillus kefiranofaciens (LkefirU) and conducted a comprehensive pangenome analysis to compare it with other strains. Furthermore, we performed a peptidome analysis, revealing the presence of bioactive peptides encrypted by L. kefiranofaciens in the Brazilian kefir sample, and utilized in silico prospecting and molecular docking techniques to identify potential anti-Alzheimer peptides, targeting β-amyloid (fibril and plaque), BACE, and acetylcholinesterase. Through this analysis, we identified two peptides that show promise as compounds with anti-Alzheimer properties. CONCLUSIONS These findings not only provide insights into the genome of L. kefiranofaciens but also serve as a promising prototype for the development of novel anti-Alzheimer compounds derived from Brazilian kefir.
Collapse
Affiliation(s)
- Matheus H Silva
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil.
| | | | - Serena M Malta
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Ana C C Santos
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Ana P Mendes-Silva
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ana M Bonetti
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Carlos Ueira-Vieira
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil.
| | | |
Collapse
|
5
|
Cheng T, Zhang T, Zhang P, He X, Sadiq FA, Li J, Sang Y, Gao J. The complex world of kefir: Structural insights and symbiotic relationships. Compr Rev Food Sci Food Saf 2024; 23:e13364. [PMID: 38847746 DOI: 10.1111/1541-4337.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Kefir milk, known for its high nutritional value and health benefits, is traditionally produced by fermenting milk with kefir grains. These grains are a complex symbiotic community of lactic acid bacteria, acetic acid bacteria, yeasts, and other microorganisms. However, the intricate coexistence mechanisms within these microbial colonies remain a mystery, posing challenges in predicting their biological and functional traits. This uncertainty often leads to variability in kefir milk's quality and safety. This review delves into the unique structural characteristics of kefir grains, particularly their distinctive hollow structure. We propose hypotheses on their formation, which appears to be influenced by the aggregation behaviors of the community members and their alliances. In kefir milk, a systematic colonization process is driven by metabolite release, orchestrating the spatiotemporal rearrangement of ecological niches. We place special emphasis on the dynamic spatiotemporal changes within the kefir microbial community. Spatially, we observe variations in species morphology and distribution across different locations within the grain structure. Temporally, the review highlights the succession patterns of the microbial community, shedding light on their evolving interactions.Furthermore, we explore the ecological mechanisms underpinning the formation of a stable community composition. The interplay of cooperative and competitive species within these microorganisms ensures a dynamic balance, contributing to the community's richness and stability. In kefir community, competitive species foster diversity and stability, whereas cooperative species bolster mutualistic symbiosis. By deepening our understanding of the behaviors of these complex microbial communities, we can pave the way for future advancements in the development and diversification of starter cultures for food fermentation processes.
Collapse
Affiliation(s)
- Tiantian Cheng
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Tuo Zhang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Pengmin Zhang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaowei He
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Faizan Ahmed Sadiq
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff, UK
| | - Jiale Li
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yaxin Sang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Jie Gao
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
6
|
Shah AB, Baiseitova A, Zahoor M, Ahmad I, Ikram M, Bakhsh A, Shah MA, Ali I, Idress M, Ullah R, Nasr FA, Al-Zharani M. Probiotic significance of Lactobacillus strains: a comprehensive review on health impacts, research gaps, and future prospects. Gut Microbes 2024; 16:2431643. [PMID: 39582101 PMCID: PMC11591481 DOI: 10.1080/19490976.2024.2431643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
A rising corpus of research has shown the beneficial effects of probiotic Lactobacilli on human health, contributing to the growing popularity of these microorganisms in recent decades. The gastrointestinal and urinary tracts are home to these bacteria, which play a vital role in the microbial flora of both humans and animals. The Lactobacillus probiotic, i.e, Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacillus bulgaricus, are highly recognized for their remarkable probiotic qualities. The current study aims to highlight the beneficial effects of probiotics in different health conditions, point out the research gap, and highlight the future directives for the safe use of these probiotics in several health issues. Most importantly, we have added the most recent literature related to the characteristics and usage of these probiotics in clinical and pre-clinical settings. Based on the above statement, we believe that this is the first report on the application of probiotics in human diseases. By providing a deeper knowledge of the complex functions these probiotics play in both human and animal health, our analysis will direct future studies and developments in this rapidly developing field.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Aizhamal Baiseitova
- Division of Applied Life Science (BK21 Four), IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| | - Ishaq Ahmad
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do, Republic of Korea
| | - Muhammad Ikram
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Hayatabad, Pakistan
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Allah Bakhsh
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Murad Ali Shah
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Imdad Ali
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Bellaterra, Spain
- Department of Plant Biotechnology, Faculty of Pharmacy, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Muhammad Idress
- Division of Applied Life Science (BK21 Four), IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahd A. Nasr
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Casimero C, Smith RB, Davis J. Integration of Riboflavin-Modified Carbon Fiber Mesh Electrode Systems in a 3D-Printed Catheter Hub. MICROMACHINES 2023; 15:79. [PMID: 38258198 PMCID: PMC10818592 DOI: 10.3390/mi15010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Catheter line infection is a common complication within clinical environments, and there is a pressing need for technological options to aid in reducing the possibility of sepsis. The early identification of contamination could be pivotal in reducing cases and improving outcomes. METHOD A sensing rationale based on a riboflavin-modified electrode system integrated within a modified 3D-printed catheter needle-free connector is proposed, which can monitor changes in pH brought about by bacterial contamination. RESULTS Riboflavin, vitamin B2, is a biocompatible chemical that possesses a redox-active flavin core that is pH dependent. The oxidation peak potential of the adsorbed riboflavin responds linearly to changes in pH with a near-Nernstian behavior of 63 mV/pH unit and is capable of accurately monitoring the pH of an authentic IV infusate. CONCLUSIONS The proof of principle is demonstrated with an electrode-printed hub design offering a valuable foundation from which to explore bacterial interactions within the catheter lumen with the potential of providing an early warning of contamination.
Collapse
Affiliation(s)
| | - Robert B. Smith
- Institute for Materials and Investigative Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - James Davis
- School of Engineering, Ulster University, Belfast BT15 1ED, UK;
| |
Collapse
|
8
|
Arrieta-Echeverri MC, Fernandez GJ, Duarte-Riveros A, Correa-Álvarez J, Bardales JA, Villanueva-Mejía DF, Sierra-Zapata L. Multi-omics characterization of the microbial populations and chemical space composition of a water kefir fermentation. Front Mol Biosci 2023; 10:1223863. [PMID: 37849822 PMCID: PMC10577418 DOI: 10.3389/fmolb.2023.1223863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
In recent years, the popularity of fermented foods has strongly increased based on their proven health benefits and the adoption of new trends among consumers. One of these health-promoting products is water kefir, which is a fermented sugary beverage based on kefir grains (symbiotic colonies of yeast, lactic acid and acetic acid bacteria). According to previous knowledge and the uniqueness of each water kefir fermentation, the following project aimed to explore the microbial and chemical composition of a water kefir fermentation and its microbial consortium, through the integration of culture-dependent methods, compositional metagenomics, and untargeted metabolomics. These methods were applied in two types of samples: fermentation grains (inoculum) and fermentation samples collected at different time points. A strains culture collection of ∼90 strains was established by means of culture-dependent methods, mainly consisting of individuals of Pichia membranifaciens, Acetobacter orientalis, Lentilactobacillus hilgardii, Lacticaseibacillus paracasei, Acetobacter pomorum, Lentilactobacillus buchneri, Pichia kudriavzevii, Acetobacter pasteurianus, Schleiferilactobacillus harbinensis, and Kazachstania exigua, which can be further studied for their use in synthetic consortia formulation. In addition, metabarcoding of each fermentation time was done by 16S and ITS sequencing for bacteria and yeast, respectively. The results show strong population shifts of the microbial community during the fermentation time course, with an enrichment of microbial groups after 72 h of fermentation. Metataxonomics results revealed Lactobacillus and Acetobacter as the dominant genera for lactic acid and acetic acid bacteria, whereas, for yeast, P. membranifaciens was the dominant species. In addition, correlation and systematic analyses of microbial growth patterns and metabolite richness allowed the recognition of metabolic enrichment points between 72 and 96 h and correlation between microbial groups and metabolite abundance (e.g., Bile acid conjugates and Acetobacter tropicalis). Metabolomic analysis also evidenced the production of bioactive compounds in this fermented matrix, which have been associated with biological activities, including antimicrobial and antioxidant. Interestingly, the chemical family of Isoschaftosides (C-glycosyl flavonoids) was also found, representing an important finding since this compound, with hepatoprotective and anti-inflammatory activity, had not been previously reported in this matrix. We conclude that the integration of microbial biodiversity, cultured species, and chemical data enables the identification of relevant microbial population patterns and the detection of specific points of enrichment during the fermentation process of a food matrix, which enables the future design of synthetic microbial consortia, which can be used as targeted probiotics for digestive and metabolic health.
Collapse
Affiliation(s)
| | - Geysson Javier Fernandez
- Infectious Diseases Biology and Control Group (BCEI), Universidad de Antioquia UdeA, Medellín, Colombia
| | | | - Javier Correa-Álvarez
- Research Group CIBIOP, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Antioquia, Colombia
| | | | | | - Laura Sierra-Zapata
- Research Group CIBIOP, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Antioquia, Colombia
| |
Collapse
|
9
|
Puzeryte V, Martusevice P, Sousa S, Balciunaitiene A, Viskelis J, Gomes AM, Viskelis P, Cesoniene L, Urbonaviciene D. Optimization of Enzyme-Assisted Extraction of Bioactive Compounds from Sea Buckthorn ( Hippophae rhamnoides L.) Leaves: Evaluation of Mixed-Culture Fermentation. Microorganisms 2023; 11:2180. [PMID: 37764024 PMCID: PMC10536544 DOI: 10.3390/microorganisms11092180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Hippophae rhamnoides L. leaves possess a remarkable amount of polyphenols that could serve as a natural remedy in various applications. In comparison, numerous techniques, such as conventional and high-pressure techniques, are available for extracting the bioactive fractions from sea buckthorn leaves (SBL). However, enzyme-assisted extraction (EAE) of SBL has not been comprehensively studied. The aim of this study was to optimize critical EAE parameters of SBL using the cellulolytic enzyme complex, Viscozyme L, to obtain a high-yield extract with a high concentration of bioactive compounds. In order to determine the optimal conditions for EAE, the study employed a central composite design and response surface methodology to analyze the effects of four independent factors (pH, temperature, extraction time, and enzyme concentration) on two different responses. Our findings indicated that under optimal conditions (3:15 h extraction, temperature 45 °C, pH 4.9, and 1% Viscozyme L v/w of leaves DW), EAE yielded 28.90 g/100 g DW of the water-soluble fraction. Furthermore, the EAE-optimized liquid extract was continuously fermented using an ancient fermentation starter, Tibetan kefir grains, which possess lactic acid bacteria (LAB) and have significant potential for use in biopreservation. Interestingly, the results indicated various potential prebiotic characteristics of LAB. Additionally, alterations in the cell wall morphology of the SBL residue after EAE were examined using scanning electron microscopy (SEM). This study significantly optimized EAE parameters for sea buckthorn leaves, providing a promising natural source of bioactive compounds for various applications, such as nutraceuticals, functional foods, and high-value products.
Collapse
Affiliation(s)
- Viktorija Puzeryte
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
| | - Paulina Martusevice
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
| | - Sérgio Sousa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (A.M.G.)
| | - Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 40444 Kaunas, Lithuania
| | - Jonas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (A.M.G.)
| | - Pranas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
| | - Laima Cesoniene
- Botanical Garden, Vytautas Magnus University, Z.E. Zilibero 6, 46324 Kaunas, Lithuania;
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 40444 Kaunas, Lithuania
| | - Dalia Urbonaviciene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Kaunas, Lithuania; (V.P.); (P.M.); (A.B.); (J.V.); (P.V.)
| |
Collapse
|
10
|
Konuspayeva G, Baubekova A, Akhmetsadykova S, Faye B. Traditional dairy fermented products in Central Asia. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Rutkowska J, Antoniewska-Krzeska A, Żbikowska A, Cazón P, Vázquez M. Volatile Composition and Sensory Profile of Lactose-Free Kefir, and Its Acceptability by Elderly Consumers. Molecules 2022; 27:molecules27175386. [PMID: 36080153 PMCID: PMC9457958 DOI: 10.3390/molecules27175386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
Lactose-free products are crucial in the diet of lactose-intolerant elderly consumers, one of them being kefir due to its unique chemical composition and diversity of valuable microflora. The study aimed at determining the volatile compound profile and the corresponding sensory attributes of lactose-free kefir (LFK) as compared with the traditional one (TK). The perception of main sensory attributes and hedonic acceptability of LFK by elderly were also studied. The LFK contained two times more ketones, especially 3-hydroxy-2-butanone and 2,3-butanedione, that probably contributed to the high intensity of creamy aroma. A substantial share of acetic acid in LFK was not associated with high intensity of sour aroma, probably being masked by the creamy aroma, perceived as dominating. LFK was sensed as sweeter and more milky than the traditional one. The intense sweet taste of LFK was due to higher amounts of glucose and galactose than in TK, and was perceived as “just about right” by 63% of elderly subjects in the just-about-right (JAR) scale. The lower acidity of LFK than that of TK, assayed both instrumentally and by sensory assessment, was highly appreciated by 73% of elderly subjects as “just about right” in JAR scale. These two taste attributes dominated in liking the lactose-free kefir by elderly subjects.
Collapse
Affiliation(s)
- Jaroslawa Rutkowska
- Institute of Human Nutrition Sciences, Faculty of Human Nutrition, Warsaw University of Life Sciences, Nowoursynowska st.159c, 02-776 Warsaw, Poland
- Correspondence:
| | - Agata Antoniewska-Krzeska
- Institute of Human Nutrition Sciences, Faculty of Human Nutrition, Warsaw University of Life Sciences, Nowoursynowska st.159c, 02-776 Warsaw, Poland
| | - Anna Żbikowska
- Institute of Food Sciences, Department of Food Technology and Assessment, Division of Fat and Oils and Food Concentrates Technology, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska st.159c, 02-776 Warsaw, Poland
| | - Patricia Cazón
- Department of Analytical Chemistry, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Manuel Vázquez
- Department of Analytical Chemistry, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
12
|
Streimikyte P, Kailiuviene J, Mazoniene E, Puzeryte V, Urbonaviciene D, Balciunaitiene A, Liapman TD, Laureckas Z, Viskelis P, Viskelis J. The Biochemical Alteration of Enzymatically Hydrolysed and Spontaneously Fermented Oat Flour and Its Impact on Pathogenic Bacteria. Foods 2022; 11:2055. [PMID: 35885298 PMCID: PMC9316710 DOI: 10.3390/foods11142055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Avena sativa (A. sativa) oats have recently made a comeback as suitable alternative raw materials for dairy substitutes due to their functional properties. Amylolytic and cellulolytic enzyme-assisted modifications of oats produce new products that are more appealing to consumers. However, the biochemical and functional alteration of products and extracts requires careful selection of raw materials, enzyme cocktails, and technological aspects. This study compares the biochemical composition of different A. sativa enzyme-assisted water extracts and evaluates their microbial growth using spontaneous fermentation and the antimicrobial properties of the ferment extracts. Fibre content, total phenolic content, and antioxidant activity were evaluated using traditional methodologies. The degradation of A. sativa flour was captured using scanning electron microscopy (SEM); moreover, sugar and oligosaccharide alteration were identified using HPLC and HPLC-SEC after INFOGEST in vitro digestion (IVD). Additionally, taste differentiation was performed using an electronic tongue with principal component analysis. The oat liquid extracts were continuously fermented using two ancient fermentation starters, birch sap and Tibetan kefir grains. Both starters contain lactic acid bacteria (LAB), which has major potential for use in bio-preservation. In fermented extracts, antimicrobial properties against Gram-positive Staphylococcus aureus and group A streptococci as well as Gram-negative opportunistic bacteria such as Escherichia coli and Pseudomonas aeruginosa were also determined. SEM images confirmed the successful incorporation of enzymes into the oat flour. The results indicate that using enzyme-assisted extraction significantly increased TPC and antioxidant activity in both the extract and residues. Additionally, carbohydrates with a molecular mass (MM) of over 70,000 kDa were reduced to 7000 kDa and lower after the incorporation of amylolytic and cellulolytic enzymes. The MM impacted the variation in microbial fermentation, which demonstrated favourable antimicrobial properties. The results demonstrated promising applications for developing functional products and components using bioprocessing as an innovative tool.
Collapse
Affiliation(s)
- Paulina Streimikyte
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| | | | - Edita Mazoniene
- Roquette Amilina, 35101 Panevėžys, Lithuania; (J.K.); (E.M.)
| | - Viktorija Puzeryte
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| | - Dalia Urbonaviciene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| | - Aiste Balciunaitiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| | | | - Zygimantas Laureckas
- Faculty of Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| | - Jonas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.S.); (V.P.); (D.U.); (A.B.); (P.V.)
| |
Collapse
|
13
|
Detoxification of AFB1 by Yeasts Isolates from Kefir and Traditional Kefir-Like Products. MEDICAL LABORATORY JOURNAL 2022. [DOI: 10.52547/mlj.16.4.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
14
|
Malta SM, Batista LL, Silva HCG, Franco RR, Silva MH, Rodrigues TS, Correia LIV, Martins MM, Venturini G, Espindola FS, da Silva MV, Ueira-Vieira C. Identification of bioactive peptides from a Brazilian kefir sample, and their anti-Alzheimer potential in Drosophila melanogaster. Sci Rep 2022; 12:11065. [PMID: 35773306 PMCID: PMC9246878 DOI: 10.1038/s41598-022-15297-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/22/2022] [Indexed: 01/10/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the elderly, affecting cognitive, intellectual, and motor functions. Different hypotheses explain AD’s mechanism, such as the amyloidogenic hypothesis. Moreover, this disease is multifactorial, and several studies have shown that gut dysbiosis and oxidative stress influence its pathogenesis. Knowing that kefir is a probiotic used in therapies to restore dysbiosis and that the bioactive peptides present in it have antioxidant properties, we explored its biotechnological potential as a source of molecules capable of modulating the amyloidogenic pathway and reducing oxidative stress, contributing to the treatment of AD. For that, we used Drosophila melanogaster model for AD (AD-like flies). Identification of bioactive peptides in the kefir sample was made by proteomic and peptidomic analyses, followed by in vitro evaluation of antioxidant and acetylcholinesterase inhibition potential. Flies were treated and their motor performance, brain morphology, and oxidative stress evaluated. Finally, we performed molecular docking between the peptides found and the main pathology-related proteins in the flies. The results showed that the fraction with the higher peptide concentration was positive for the parameters evaluated. In conclusion, these results revealed these kefir peptide-rich fractions have therapeutic potential for AD.
Collapse
Affiliation(s)
- Serena Mares Malta
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil. .,Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Acre Street, 2E building, room 230, Uberlândia, MG, 38405-319, Brazil.
| | | | | | | | | | | | | | - Mário Machado Martins
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Gabriela Venturini
- Laboratório de Genética e Cardiologia Molecular-LIM-13, Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Murilo Vieira da Silva
- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Carlos Ueira-Vieira
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil. .,Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Acre Street, 2E building, room 230, Uberlândia, MG, 38405-319, Brazil.
| |
Collapse
|
15
|
Valorization of Lactic Acid Fermentation of Pomegranate Juice by an Acid Tolerant and Potentially Probiotic LAB Isolated from Kefir Grains. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040142] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study describes the application of an acid tolerant and potentially probiotic L. paracasei SP3 strain, recently isolated from kefir grains, in the production of a novel functional beverage based on the fermentation of pomegranate juice. The fermentation ability of the novel strain was assessed during pomegranate juice fermentations at 30 °C for 24 h and storage at 4 °C for 4 weeks. Various parameters were assessed such as residual sugar, organic acid and alcohol levels, total phenolics content, antioxidant activity, astringency, cell viability, and consumer acceptance. Residual sugar was decreased by approximately 25%, while respectable amounts of lactic acid were determined (4.8 g/L) on the 28th day of storage, proving that the novel strain was effective at lactic acid fermentation. The concentration of ethanol was maintained at low levels (0.3–0.4 % v/v) and low levels of acetic acid were detected (0.6 g/L). The viability of L. paracasei SP3 cells retained high levels (>7 log cfu/mL), even by the 4th week. The total phenolic content (123.7–201.1 mg GAE/100 mL) and antioxidant activity (124.5–148.5 mgTE/100 mL) of fermented pomegranate juice were recorded at higher levels for all of the studied time periods compared to the non-fermented juice. The employment of the novel strain led to a significant reduction in the levels of hydrolysable tannins (42%) in the juice, reducing its astringency. The latter was further proven through sensorial tests, which reflected the amelioration of the sensorial features of the final product. It should be underlined that fruit juices as well as pomegranate juice comprised a very harsh food matrix for microorganisms to survive and ferment. Likewise, the L. paracasei SP3 strain showed a significant potential, because it was applied as a free culture, without the application of microencapsulation methods that are usually employed in these fermentations, leading to a product with possible functional properties and a high nutritive value.
Collapse
|
16
|
Ellatif SA, Abdel Razik ES, Abu-Serie MM, Mahfouz A, Shater AF, Saleh FM, Hassan MM, Alsanie WF, Altalhi A, Daigham GE, Mahfouz AY. Immunomodulatory Efficacy-Mediated Anti-HCV and Anti-HBV Potential of Kefir Grains; Unveiling the In Vitro Antibacterial, Antifungal, and Wound Healing Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27062016. [PMID: 35335377 PMCID: PMC8951848 DOI: 10.3390/molecules27062016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/23/2022]
Abstract
The utilization of fermented foods with health-promoting properties is becoming more popular around the world. Consequently, kefir, a fermented milk beverage made from kefir grains, was shown in numerous studies to be a probiotic product providing significant health benefits. Herein, we assessed the antibacterial and antifungal potential of kefir against a variety of pathogenic bacteria and fungi. This study also showed the effectiveness of kefir in healing wounds in human gastric epithelial cells (GES-1) by (80.78%) compared with control (55.75%) within 48 h. The quantitative polymerase chain reaction (qPCR) results of kefir-treated HCV- or HBV- infected cells found that 200 µg/mL of kefir can eliminate 92.36% of HCV and 75.71% of HBV relative to the untreated infected cells, whereas 800 µg/mL (the highest concentration) completely eradicated HCV and HBV. Moreover, the estimated IC50 values of kefir, at which HCV and HBV were eradicated by 50%, were 63.84 ± 5.81 µg/mL and 224.02 ± 14.36 µg/mL, correspondingly. Kefir can significantly suppress the elevation of TNF-α and upregulate IL-10 and INF-γ in both treated HCV- and HBV-infected cells. High-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) analysis of kefir revealed the presence of numerous active metabolites which mainly contribute to the antimicrobial, antiviral, and immunomodulatory activities. This study demonstrated, for the first time, the anti-HBV efficacy of kefir while also illustrating the immunomodulatory impact in the treated HBV-infected cells. Accordingly, kefir represents a potent antiviral agent against both viral hepatitis C and B, as well as having antimicrobial and wound healing potential.
Collapse
Affiliation(s)
- Sawsan Abd Ellatif
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria 21934, Egypt;
| | - Elsayed S. Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria 21934, Egypt;
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications, New Borg El-Arab, Alexandria 21934, Egypt;
| | - Ahmed Mahfouz
- National Health Service Foundation Trust (NHS), Manchester University, Manchester M14 5RH, UK;
| | - Abdullah F. Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Fayez M. Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.M.H.); (A.A.)
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdullah Altalhi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.M.H.); (A.A.)
| | - Ghadir E. Daigham
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11651, Egypt;
| | - Amira Y. Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11651, Egypt;
- Correspondence:
| |
Collapse
|
17
|
From Milk Kefir to Water Kefir: Assessment of Fermentation Processes, Microbial Changes and Evaluation of the Produced Beverages. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to investigate the feasibly of using traditional milk kefir grains for the production of water kefir-like beverages and assess the changes in the physicochemical characteristics and the microbial populations of the fermented beverages. To this end, experiments of milk fermentation were primarily conducted at different temperatures and upon selection of the optimal, a gradual substitution of the substrate was performed by replacing milk from a sucrose-based solution. After the successful fermentation of the sucrose substrate, fruit juices were used as fermentation substrates. Sensory evaluation of the sugar-based beverages was also performed in order to access their acceptability for consumption. According to the results, the transition from milk to water kefir is indeed feasible, leading to the production of beverages with relatively higher ethanol concentrations (up to 2.14 ± 0.12% w/v) than milk kefir and much lower lactic acid concentrations (up to 0.16 ± 0.01% w/v). During the fermentation of the sugary substrates, yeasts seemed to be dominant over lactic acid bacteria, in contrast to what was observed in the case of milk kefir, where LAB dominated. The sensory evaluation revealed that all sugar-based beverages were acceptable for consumption, with the fruit-based ones obtaining, though, a better score in all attributes.
Collapse
|
18
|
Gut AM, Vasiljevic T, Yeager T, Donkor ON. Anti-salmonella properties of kefir yeast isolates : An in vitro screening for potential infection control. Saudi J Biol Sci 2022; 29:550-563. [PMID: 35002451 PMCID: PMC8717153 DOI: 10.1016/j.sjbs.2021.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022] Open
Abstract
The rise of antibiotic resistance has increased the need for alternative ways of preventing and treating enteropathogenic bacterial infection. Various probiotic bacteria have been used in animal and human. However, Saccharomyces boulardii is the only yeast currently used in humans as probiotic. There is scarce research conducted on yeast species commonly found in kefir despite its claimed potential preventative and curative effects. This work focused on adhesion properties, and antibacterial metabolites produced by Kluyveromyces lactis and Saccharomyces unisporus isolated from traditional kefir grains compared to Saccharomyces boulardii strains. Adhesion and sedimentation assay, slide agglutination, microscopy and turbidimetry assay were used to analyze adhesion of Salmonella Arizonae and Salmonella Typhimurium onto yeast cells. Salmonella growth inhibition due to the antimicrobial metabolites produced by yeasts in killer toxin medium was analyzed by slab on the lawn, turbidimetry, tube dilution and solid agar plating assays. Alcohol and antimicrobial proteins production by yeasts in killer toxin medium were analyzed using gas chromatography and shotgun proteomics, respectively. Salmonella adhered onto viable and non-viable yeast isolates cell wall. Adhesion was visualized using scanning electron microscope. Yeasts-fermented killer toxin medium showed Salmonella growth inhibition. The highest alcohol concentration detected was 1.55%, and proteins with known antimicrobial properties including cathelicidin, xanthine dehydrogenase, mucin-1, lactadherin, lactoperoxidase, serum amyloid A protein and lactotransferrin were detected in yeasts fermented killer medium. These proteins are suggested to be responsible for the observed growth inhibition effect of yeasts-fermented killer toxin medium. Kluyveromyces lactis and Saccharomyces unisporus have anti-salmonella effect comparable to Saccharomyces boulardii strains, and therefore have potential to control Salmonella infection.
Collapse
Key Words
- AGC, Automatic Gain Control
- ATCC, American type Culture Collection
- ATP, Adenosine triphosphate
- CFS, Cell Free Supernatant
- CFU, Colony Forming Unit
- DNA, Deoxyribonucleic Acid
- DSR, Desk Sputter Coater
- DTT, Dithiothreitol
- FAO, Food Agriculture Organization
- GIT, The gastrointestinal tract
- HCL, Hydrochloric Acid
- HPLC, High-performance liquid chromatography
- IBM, International Business Machines
- KTM, Killer Toxin Cedium
- Kefir
- Kluyveromyces lactis
- LC-MS/MS, Liquid Chromatography with tandem mass spectrometry/Liquid Chromatography with tandem mass spectrometry
- LFQ, Label Free Quantitation
- Min, Minute
- NaOH, Sodium hydroxide
- PBS, Phosphate buffered saline
- Probiotics
- RNA, Ribonucleic Acid
- RSLC, Rapid Separation Liquid Chromatography
- SD, Standard Deviation
- SPSS, Statistical Package for the Social Sciences
- Saccharomyces boulardii
- Saccharomyces unisporus
- Salmonella
- Shotgun proteomics
- WHO, World Health Organization
- YEPDA, Yeast Extract Peptone Dextrose Agar
- YEPDB, Yeast Extract Peptone Dextrose Broth
- Yeasts
- h, Hour
- mL, Milliliter
Collapse
Affiliation(s)
- Abraham Majak Gut
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.,College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Todor Vasiljevic
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.,College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Thomas Yeager
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.,First YearCollege, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Osaana N Donkor
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.,College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia
| |
Collapse
|
19
|
Gut AM, Vasiljevic T, Yeager T, Donkor ON. Antimicrobial properties of traditional kefir: An in vitro screening for antagonistic effect on Salmonella Typhimurium and Salmonella Arizonae. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Hurtado-Romero A, Del Toro-Barbosa M, Gradilla-Hernández MS, Garcia-Amezquita LE, García-Cayuela T. Probiotic Properties, Prebiotic Fermentability, and GABA-Producing Capacity of Microorganisms Isolated from Mexican Milk Kefir Grains: A Clustering Evaluation for Functional Dairy Food Applications. Foods 2021; 10:foods10102275. [PMID: 34681324 PMCID: PMC8534820 DOI: 10.3390/foods10102275] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/13/2023] Open
Abstract
Isolation and functional characterization of microorganisms are relevant steps for generating starter cultures with functional properties, and more recently, those related to improving mental health. Milk kefir grains have been recently investigated as a source of health-related strains. This study focused on the evaluation of microorganisms from artisanal Mexican milk kefir grains regarding probiotic properties, in vitro fermentability with commercial prebiotics (lactulose, inulin, and citrus pectin), and γ-aminobutyric acid (GABA)-producing capacity. Microorganisms were identified belonging to genera Lactococcus, Lactobacillus, Leuconostoc, and Kluyveromyces. The probiotic properties were assessed by aggregation abilities, antimicrobial activity, antibiotic susceptibility, and resistance to in vitro gastrointestinal digestion, showing a good performance compared with commercial probiotics. Most of isolates maintained a concentration above 6 log colony forming units/mL after the intestinal phase. Specific isolates of Kluyveromyces (BIOTEC009 and BIOTEC010), Leuconostoc (BIOTEC011 and BIOTEC012), and Lactobacillus (BIOTEC014 and BIOTEC15) showed a high fermentability in media supplemented with commercial prebiotics. The capacity to produce GABA was classified as medium for L. lactis BIOTEC006, BIOTEC007, and BIOTEC008; K. lactis BIOTEC009; L. pseudomesenteroides BIOTEC012; and L. kefiri BIOTEC014, and comparable to that obtained for commercial probiotics. Finally, a multivariate approach was performed, allowing the grouping of 2-5 clusters of microorganisms that could be further considered new promising cultures for functional dairy food applications.
Collapse
|
21
|
Goktas H, Dikmen H, Demirbas F, Sagdic O, Dertli E. Characterisation of probiotic properties of yeast strains isolated from kefir samples. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hamza Goktas
- Vocational School Programme of Food Science and Technology Istinye University Istanbul 34020 Turkey
| | - Hilal Dikmen
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering Yildiz Technical University Istanbul 34210 Turkey
| | - Fatmanur Demirbas
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering Yildiz Technical University Istanbul 34210 Turkey
| | - Osman Sagdic
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering Yildiz Technical University Istanbul 34210 Turkey
| | - Enes Dertli
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering Yildiz Technical University Istanbul 34210 Turkey
| |
Collapse
|
22
|
Kefir as a Functional Beverage Gaining Momentum towards Its Health Promoting Attributes. BEVERAGES 2021. [DOI: 10.3390/beverages7030048] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The consumption of fermented foods posing health-promoting attributes is a rising global trend. In this manner, fermented dairy products represent a significant subcategory of functional foods with established positive health benefits. Likewise, kefir—a fermented milk product manufactured from kefir grains—has been reported by many studies to be a probiotic drink with great potential in health promotion. Existing research data link regular kefir consumption with a wide range of health-promoting attributes, and more recent findings support the link between kefir’s probiotic strains and its bio-functional metabolites in the enhancement of the immune system, providing significant antiviral effects. Although it has been consumed for thousands of years, kefir has recently gained popularity in relation to novel biotechnological applications, with different fermentation substrates being tested as non-dairy functional beverages. The present review focuses on the microbiological composition of kefir and highlights novel applications associated with its fermentation capacity. Future prospects relating to kefir’s capacity for disease prevention are also addressed and discussed.
Collapse
|
23
|
Kefir characteristics and antibacterial properties - Potential applications in control of enteric bacterial infection. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Begunova AV, Savinova OS, Moiseenko KV, Glazunova OA, Rozhkova IV, Fedorova TV. Characterization and Functional Properties of Lactobacilli Isolated from Kefir Grains. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Kumar MR, Yeap SK, Mohamad NE, Abdullah JO, Masarudin MJ, Khalid M, Leow ATC, Alitheen NB. Metagenomic and phytochemical analyses of kefir water and its subchronic toxicity study in BALB/c mice. BMC Complement Med Ther 2021; 21:183. [PMID: 34210310 PMCID: PMC8247212 DOI: 10.1186/s12906-021-03358-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/21/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In recent years, researchers are interested in the discovery of active compounds from traditional remedies and natural sources, as they reveal higher therapeutic efficacies and improved toxicological profiles. Among the various traditional treatments that have been widely studied and explored for their potential therapeutic benefits, kefir, a fermented beverage, demonstrates a broad spectrum of pharmacological properties, including antioxidant, anti-inflammation, and healing activities. These health-promoting properties of kefir vary among the kefir cultures found at the different part of the world as different media and culture conditions are used for kefir maintenance and fermentation. METHODS This study investigated the microbial composition and readily found bioactive compounds in water kefir fermented in Malaysia using 16S rRNA microbiome and UHPLC sequencing approaches. The toxicity effects of the kefir water administration in BALB/c mice were analysed based on the mice survival, body weight index, biochemistry profile, and histopathological changes. The antioxidant activities were evaluated using SOD, FRAP, and NO assays. RESULTS The 16S rRNA amplicon sequencing revealed the most abundant species found in the water kefir was Lactobacillus hilgardii followed by Lactobacillus harbinensis, Acetobacter lovaniensis, Lactobacillus satsumensis, Acetobacter tropicalis, Lactobacillus zeae, and Oenococcus oeni. The UHPLC screening showed flavonoid and phenolic acid derivatives as the most important bioactive compounds present in kefir water which has been responsible for its antioxidant activities. Subchronic toxicity study showed no toxicological signs, behavioural changes, or adverse effects by administrating 10 mL/kg/day and 2.5 mL/kg/day kefir water to the mice. Antioxidants assays demonstrated enhanced SOD and FRAP activities and reduced NO level, especially in the brain and kidney samples. CONCLUSIONS This study will help to intensify the knowledge on the water kefir microbial composition, available phytochemicals and its toxicological and antioxidant effects on BALB/c mice since there are very limited studies on the water kefir grain fermented in Malaysia.
Collapse
Affiliation(s)
- Muganti Rajah Kumar
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Malaysia
| | - Nurul Elyani Mohamad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Janna Ong Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Melati Khalid
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Adam Thean Chor Leow
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan Malaysia
- Department of Biomedical Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor Darul Ehsan Malaysia
| |
Collapse
|
26
|
Core-shell PLA/Kef hybrid scaffolds for skin tissue engineering applications prepared by direct kefiran coating on PLA electrospun fibers optimized via air-plasma treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112248. [PMID: 34225887 DOI: 10.1016/j.msec.2021.112248] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Over the recent years, there is a growing interest in electrospun hybrid scaffolds composed of synthetic and natural polymers that can support cell attachment and proliferation. In this work, the physical and biological properties of polylactic acid (PLA) electrospun mats coated with kefiran (Kef) were evaluated. Gravimetric, spectroscopic (FTIR-ATR) and morphological investigations via scanning electron microscopy confirmed the effective formation of a thin kefiran layer wrapped on the PLA fibers with an easy-tunable thickness. Air plasma pre-treatment carried out on PLA (P-PLA) affected both the morphology and the crystallinity of Kef coating as confirmed by differential scanning calorimetry and X-ray diffraction analyses. Scaffolds were mechanically characterized with tensile tests to evaluate the reinforcing action of the Kef coating. The water resistance of Kefiran coating in distilled water at 37 °C evaluated on both PLA/Kef and P-PLA/Kef was carried out by gravimetric and morphological analyses. Finally, cell culture assays with embryonic fibroblast cells were conducted on selected hybrid scaffolds to compare the cell proliferation, morphology, and collagen production with PLA and P-PLA electrospun scaffolds. Based on the results, we can demonstrate that direct coating of PLA from Kef/water solutions is an effective approach to prepare hybrid scaffolds with tunable properties and that the plasma pre-treatment enhances the affinity between PLA and Kefiran. In vitro tests demonstrated the great potential of PLA/Kef hybrid scaffolds for skin tissue engineering.
Collapse
|
27
|
Bodur S, Öner M, Erarpat S, Bakırdere S. Determination of selenite and selenomethionine in kefir grains by reversed-phase high-performance liquid chromatography-inductively coupled plasma-optical emission spectrometry. J Sep Sci 2021; 44:3031-3040. [PMID: 34102001 DOI: 10.1002/jssc.202100359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 11/08/2022]
Abstract
A new and efficient reversed-phase high-performance liquid chromatography-inductively coupled plasma-optical emission spectrometry method was developed for the simultaneous separation and determination of SeO3 2- and seleno-dl-methionine in kefir grains. For the system, limits of detection and quantitation values for SeO3 2- and seleno-dl-methionine were calculated as 0.52/1.73 mg/kg (as Se) and 0.26/0.87 mg/kg (as Se), respectively. After performing the system analytical performance, recovery experiment was done for kefir grains and percent recovery results for SeO3 2- and seleno-dl-methionine were calculated as 98.4 ± 0.8% and 93.6 ± 1.0%, respectively. It followed by the feeding studies that the kefir grains were exposed to three different concentrations of SeO3 2- (20, 30, and 50 mg/kg) for approximately 4 days at room temperature to investigate the conversion/non-conversion of SeO3 2- to seleno-dl-methionine. Next, the fed grains were extracted with tetramethylammonium hydroxide pentahydrate solution (20%, w/w) and then sent to the developed system. There was no detectable seleno-dl-methionine found in fed kefir grains at different concentrations of SeO3 2- while inorganic or elemental selenium in the fed kefir grains was determined between 1579.5 - 3116.0 mg/kg (as Se). Selenium species in the kefir grains samples was found in the form of SeO3 2- proved by using an anion exchange column.
Collapse
Affiliation(s)
- Süleyman Bodur
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, Esenler, İstanbul, Turkey
| | - Miray Öner
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, Esenler, İstanbul, Turkey
| | - Sezin Erarpat
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, Esenler, İstanbul, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, Esenler, İstanbul, Turkey.,Turkish Academy of Sciences (TÜBA), Çankaya, Ankara, Turkey
| |
Collapse
|
28
|
Batista LL, Malta SM, Guerra Silva HC, Borges LDF, Rocha LO, da Silva JR, Rodrigues TS, Venturini G, Padilha K, da Costa Pereira A, Espindola FS, Ueira-Vieira C. Kefir metabolites in a fly model for Alzheimer's disease. Sci Rep 2021; 11:11262. [PMID: 34045626 PMCID: PMC8160324 DOI: 10.1038/s41598-021-90749-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's Disease (AD) is the most common cause of dementia among elderly individuals worldwide, leading to a strong motor-cognitive decline and consequent emotional distress and codependence. It is traditionally characterized by amyloidogenic pathway formation of senile plaques, and recent studies indicate that dysbiosis is also an important factor in AD's pathology. To overcome dysbiosis, probiotics-as kefir-have shown to be a great therapeutic alternative for Alzheimer's disease. In this present work, we explored kefir as a probiotic and a metabolite source as a modulator of microbiome and amyloidogenic pathway, using a Drosophila melanogaster model for AD (AD-like flies). Kefir microbiota composition was determined through 16S rRNA sequencing, and the metabolome of each fraction (hexane, dichloromethane, ethyl acetate, and n-butanol) was investigated. After treatment, flies had their survival, climbing ability, and vacuolar lesions accessed. Kefir and fraction treated flies improved their climbing ability survival rate and neurodegeneration index. In conclusion, we show that kefir in natura, as well as its fractions may be promising therapeutic source against AD, modulating amyloidogenic related pathways.
Collapse
Affiliation(s)
| | - Serena Mares Malta
- Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | | | - Lays Oliveira Rocha
- Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | | | | | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil
| | | | | | - Carlos Ueira-Vieira
- Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia, Brazil.
| |
Collapse
|
29
|
Biçer Y, Telli AE, Sönmez G, Turkal G, Telli N, Uçar G. Comparison of commercial and traditional kefir microbiota using metagenomic analysis. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yusuf Biçer
- Department of Food Hygiene and Technology Faculty of Veterinary Medicine Selcuk University KonyaTurkey
| | - Arife Ezgi Telli
- Department of Food Hygiene and Technology Faculty of Veterinary Medicine Selcuk University KonyaTurkey
| | - Gonca Sönmez
- Department of Genetics Faculty of Veterinary Medicine Selcuk University KonyaTurkey
| | - Gamze Turkal
- Department of Food Hygiene and Technology Faculty of Veterinary Medicine Selcuk University KonyaTurkey
| | - Nihat Telli
- Department of Food Processing Vocational School of Technical Sciences Konya Technical University Konya Turkey
| | - Gürkan Uçar
- Department of Food Hygiene and Technology Faculty of Veterinary Medicine Selcuk University KonyaTurkey
| |
Collapse
|
30
|
Du G, Liu L, Guo Q, Cui Y, Chen H, Yuan Y, Wang Z, Gao Z, Sheng Q, Yue T. Microbial community diversity associated with Tibetan kefir grains and its detoxification of Ochratoxin A during fermentation. Food Microbiol 2021; 99:103803. [PMID: 34119096 DOI: 10.1016/j.fm.2021.103803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
Tibetan kefir grains (TKG) are multi-functional starter cultures used in foods and have been applied in various fermentation systems. This study aimed to investigate the microbial community composition of TKG, the detoxification abilities of TKG and their isolates towards common mycotoxins, and the potential for applying TKG and their associated microbial populations to avoid mycotoxin contamination in dairy products. Cultivation-independent high-throughput sequencing of bacterial and fungal rDNA genes indicated that Lactobacillus kefiranofaciens and Kazachstania turicensis were the most abundant bacterial and fungal taxa, respectively. In addition, 27 total isolates were obtained using cultivation methods. TKG removed more than 90% of the Ochratoxin A (OTA) after 24 h, while the isolate Kazachstania unisporus AC-2 exhibited the highest removal capacity (~46.1%). Further, the isolate exhibited good resistance to acid and bile salts environment. Analysis of the OTA detoxification mechanism revealed that both adsorption and degradation activities were exhibited by TKG, with adsorption playing a major detoxification role. Furthermore, the addition of OTA did not affect the microbial community structure of TKG. These results indicate that TKG-fermented products can naturally remove mycotoxin contamination of milk and could potentially be practically applied as probiotics in fermentation products.
Collapse
Affiliation(s)
- Gengan Du
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Lin Liu
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Qi Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yuanyuan Cui
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Qinlin Sheng
- College of Food Science and Engineering, Northwest University, Xi'an, 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; College of Food Science and Engineering, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
31
|
High-Temperature Semi-Dry and Sweet Low Alcohol Wine-Making Using Immobilized Kefir Culture. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low alcohol wines (≤10.5% vol) represent novel wine products steadily gaining the commercial market interest. Considering the technological advancements of immobilized systems in association with the drastic reduction of industrial operational costs in high-temperature wine-making in regions with tropical climate or hot summer periods, the aim of the present study was to assess the fermentation efficiency of both wet and freeze-dried immobilized kefir culture on natural supports in low alcohol wine production at high temperatures (>30 °C). Immobilized kefir culture was evaluated and compared to free cells in repeated batch fermentations for 3 months, indicating high operational stability, and found suitable for simultaneous alcoholic and malolactic low alcohol wine fermentation at temperatures up to 45 °C. High ethanol productivity [up to 55.3 g/(Ld)] and malic acid conversion rates (up to 71.6%), which could be adopted by the industrial sector, were recorded. Principal Component Analysis (PCA) revealed that the state of the cells rather than the nature of kefir culture affected significantly the content of minor volatiles determined by Head Space Solid-Phase Microextraction (HS-SPME) Gas Chromatography–Mass Spectrometry (GC/MS) analysis. Notably, all new products were of high quality and approved by the sensory panel. The results suggested a high industrial potential of the proposed technology in semi-dry low alcohol wine-making at 37 °C and in developing novel wine products with a sweet (liquoreux) character at 45 °C.
Collapse
|
32
|
Laela N, Legowo AM, Fulyani F. The effect of kefir-spirulina on glycemic status and antioxidant activity in hyperglycemia rats. POTRAVINARSTVO 2021. [DOI: 10.5219/1445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia. It is caused by impaired insulin secretion or by insulin receptor insensitivity. DM and its complications are often related to increases in the level of oxidative stress. Spirulina is a nutrient-dense food that contains an abundance of antioxidant compounds. In combination with kefir, it may serve as both a nutrient-rich diet and an antioxidant agent that can prevent complications of diabetes. This study aims to investigate the nutritional content of kefir-spirulina and its effect on glycemic status and antioxidant activity in streptozotocin-nicotinamide (STZ-NA) induced diabetic rats. A total of 30 male Sprague Dawley rats were divided into five groups: normal control (K1), diabetic control (K2), pioglitazone treatment (K3), kefir combined with 1% spirulina treatment (P1), and kefir combined with 2% spirulina treatment (P2). All rats were induced by STZ-NA, except for the normal control. Before and after the 28 days of intervention, blood samples were taken and analyzed for fasting plasma glucose, postprandial glucose, and SOD activity. The nutritional content, ethanol content, and total antioxidant capacity of kefir-spirulina were also analyzed. The diabetic rats that were fed with kefir-spirulina (P1 and P2) had a significant decrease in both fasting and postprandial plasma glucose (p <0.001) compared to the diabetic control rats. The decrease of plasma glucose in K2 is comparable to the control rats treated with the diabetic drug pioglitazone (K3). The activity of SOD in diabetic rats fed in P1 and P2 were higher (p <0.001) than in untreated diabetic rats (K2). The IC50 of kefir-spirulina was 42 – 43 ppm. It was concluded that kefir combined with spirulina has high nutrition and antioxidant capacity, which is proven to be capable of controlling glycemic status and enhancing antioxidant status in a diabetic rat model.
Collapse
|
33
|
Łopusiewicz Ł, Drozłowska E, Trocer P, Kwiatkowski P, Bartkowiak A, Gefrom A, Sienkiewicz M. The Effect of Fermentation with Kefir Grains on the Physicochemical and Antioxidant Properties of Beverages from Blue Lupin ( Lupinus angustifolius L.) Seeds. Molecules 2020; 25:E5791. [PMID: 33302553 PMCID: PMC7764189 DOI: 10.3390/molecules25245791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Plant derived fermented beverages have recently gained consumers' interest, particularly due to their intrinsic functional properties and presence of beneficial microorganisms. Three variants containing 5%, 10%, and 15% (w/w) of sweet blue lupin (Lupinus angustifolius L. cv. "Boregine") seeds were inoculated with kefir grains and incubated at 25 °C for 24 h. After processing, beverages were stored in refrigerated conditions (6 °C) for 21 days. Changes in microbial population, pH, bioactive compounds (polyphenolics, flavonoids, ascorbic acid), reducing sugars, and free amino acids were estimated. Additionally, viscosity, firmness, color, and free radicals scavenging properties were determined. Results showed that lactic acid bacteria as well as yeast were capable of growing well in the lupin matrix without any supplementation. During the process of refrigeration, the viability of the microorganisms was over the recommended minimum level for kefir products. Hydrolysis of polysaccharides as well as increase of free amino acids was observed. As a result of fermentation, the beverages showed excellent DPPH, ABTS+·, ·OH, and O2- radicals scavenging activities with a potential when considering diseases associated with oxidative stress. This beverages could be used as a new, non-dairy vehicle for beneficial microflora consumption, especially by vegans and lactose-intolerant consumers.
Collapse
Affiliation(s)
- Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (E.D.); (P.T.); (A.B.)
| | - Emilia Drozłowska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (E.D.); (P.T.); (A.B.)
| | - Paulina Trocer
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (E.D.); (P.T.); (A.B.)
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Artur Bartkowiak
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland; (E.D.); (P.T.); (A.B.)
| | - Annett Gefrom
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries, Dorfplatz 1/OT Gülzow, 18276 Gülzow-Prüzen, Germany;
| | - Monika Sienkiewicz
- Department of Allergology and Respiratory Rehabilitation, Medical University of Łódź, Żeligowskiego 7/9, 90-752 Łódź, Poland;
| |
Collapse
|
34
|
Wang H, Wang C, Guo M. Autogenic successions of bacteria and fungi in kefir grains from different origins when sub-cultured in goat milk. Food Res Int 2020; 138:109784. [PMID: 33288170 DOI: 10.1016/j.foodres.2020.109784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 01/06/2023]
Abstract
Kefir grains are a unique symbiotic association of different microbiota, including a variety of bacterial and fungal species. The microbiota in kefir grains is strongly influenced by the geographical origin and sub-culturing environment. After sub-culturing in goat milk for 2 to 4 months, amplicon sequencing (16S rRNA and ITS1 region) was applied for the identification of bacterial and fungal autogenic succession of three kefir grains collected from China (CN, Asia), Germany (DE, Europe) and United States of America (USA, America). Taxonomic analysis displayed three main bacterial and fungal species in kefir grains from different origins during sub-culturing process (Lactobacillus helveticus, Lactobacillus kefiranofaciens and Lactobacillus kefiri for bacteria, Kazachstania unispora, Kluyveromyces marxianus and Saccharomyces cerevisiae for fungi). Based on the results of beta diversity analysis, microbiota in kefir grains from CN and DE would be stable when sub-cultured in goat milk for more than three months. Differently, a highly microbial stability has been found for the sample from USA during the whole sub-culturing process. These results helped to understand the composition and stability of microbiota in kefir grains when sub-cultured in goat milk.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Cuina Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mingruo Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
35
|
Prospects of Artificial Kefir Grains Prepared by Cheese and Encapsulated Vectors to Mimic Natural Kefir Grains. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8839135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Kefir is a natural fermented dairy beverage obtained by fermenting milk with kefir starter grains. However, up to now, there is still no efficient approach to producing stable kefir grains by using the pure or cultural mixture of strains isolated from the original kefir grains. Therefore, new techniques need to be taken to promote the kefir grain production. To this purpose, an encapsulated vector produced by entrapment of the dominant strains isolated from kefir grain and the cheese vector which was produced by a traditional manufacturing method was used to mimic kefir grain forming, respectively. Then, the composition, microstructure, and microflora of the two vectors were investigated and were compared with the natural kefir grains. Results indicated that the protein and polysaccharide content of cheese vector were much higher than encapsulated vector; the distribution of microorganisms inside the cheese vector was more similar to that inside the natural kefirs. It indicated that the cheese vector would be more suitable to mimic kefir grain production. Results of the present investigations reveal the potential of the cheese vector for kefir grains production at the industrial level.
Collapse
|
36
|
Elleuch L, Salem-Berrabah OB, Cherni Y, Sghaier-Hammami B, Kasmi M, Botta C, Ouerghi I, Franciosa I, Cocolin L, Trabelsi I, Chatti A. A new practical approach for the biological treatment of a mixture of cheese whey and white wastewaters using Kefir grains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33127-33139. [PMID: 32529610 DOI: 10.1007/s11356-020-09549-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Kefir grains are a microbial consortium of different genera of bacteria and yeasts. In this study, the performance of Tunisian Kefir grains during the biological treatment of a mixture of Gouda cheese whey and white wastewaters (GCW) in ratio 1:1 with very high organic matter concentration is investigated. The biological process was evaluated and optimized through the response surface methodology. Under the optimum conditions, Kefir grains concentration of 1.02%, temperature at 36.68 °C, and incubation time of 5.14 days, the removal efficiencies of COD, PO43-, and NO3- were 87, 37.48, and 39.5%, respectively. Interestingly, the reusability tests of the grains proved not only their high resistance to harsh environmental conditions but also their great potential for more practical applications. Particularly, different strains were isolated from the grains and identified as Kluyveromyces marxianus, Lactoccocus lactis, Lactobacillus kefiri, and Bacillus spp. using 16S rDNA sequence analysis and rep-PCR fingerprinting. At the biological level, the raw GCW (RGCW) has a negative impact on the Hordeum vulgare both on seed germination, and on the growth parameters of seedlings. Interestingly, after Kefir grains treatment, the treated GCW (TGCW) allow a seedlings growth and germination rate similar to those soaked in water.
Collapse
Affiliation(s)
- Lobna Elleuch
- Laboratory of Treatment and Valorization of Water Rejects, Water Researches and Technologies Center, Borj-Cedria Technopark, University of Carthage, 8020, Soliman, Tunisia.
| | - Olfa Ben Salem-Berrabah
- Laboratory of Environmental Science and Technologies, Higher Institute of Sciences and Technology of Environment, University of Carthage, 2050, Borj-Cedria, Tunisia
- Department of Process Engineering, General Directorate of Technological Studies, Higher Institute of Technological Studies of Zaghouan, Mogren, 1121, Zaghouan, Tunisia
| | - Yasmin Cherni
- Laboratory of Treatment and Valorization of Water Rejects, Water Researches and Technologies Center, Borj-Cedria Technopark, University of Carthage, 8020, Soliman, Tunisia
| | - Besma Sghaier-Hammami
- Laboratoire des plantes extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Mariam Kasmi
- Laboratory of Treatment and Valorization of Water Rejects, Water Researches and Technologies Center, Borj-Cedria Technopark, University of Carthage, 8020, Soliman, Tunisia
| | - Cristian Botta
- Department of Agriculture, Forest and Food Sciences, University of Torino, Turin, Italy
| | - Ikram Ouerghi
- Laboratory of Treatment and Valorization of Water Rejects, Water Researches and Technologies Center, Borj-Cedria Technopark, University of Carthage, 8020, Soliman, Tunisia
| | - Irene Franciosa
- Department of Agriculture, Forest and Food Sciences, University of Torino, Turin, Italy
| | - Luca Cocolin
- Department of Agriculture, Forest and Food Sciences, University of Torino, Turin, Italy
| | - Ismail Trabelsi
- Laboratory of Treatment and Valorization of Water Rejects, Water Researches and Technologies Center, Borj-Cedria Technopark, University of Carthage, 8020, Soliman, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Treatment and Valorization of Water Rejects, Water Researches and Technologies Center, Borj-Cedria Technopark, University of Carthage, 8020, Soliman, Tunisia
- Laboratory of Biochemistry and Molecular Biology, Faculty of Science of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| |
Collapse
|
37
|
Matos RS, Pinto EP, Ramos GQ, Fonseca de Albuquerque MD, Fonseca Filho HD. Stereometric characterization of kefir microbial films associated with
Maytenus rigida
extract. Microsc Res Tech 2020; 83:1401-1410. [DOI: 10.1002/jemt.23532] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 02/01/2023]
Affiliation(s)
- Robert Saraiva Matos
- Postgraduate Program in Materials Science and Engineering Federal University of Sergipe‐UFS São Cristóvão Brazil
- Amazonian Materials Group, Physics Department Federal University of Amapá‐UNIFAP Brazil
| | | | - Glenda Quaresma Ramos
- Postgraduate Program in Tropical Medicine Fundação de Medicina Tropical, State University of Amazonas Manaus Brazil
| | - Marta Duarte Fonseca de Albuquerque
- Laboratory for Surface Chemistry, Coordination of Process and Mineral Technologies Center for Mineral Technology – CETEM, Cidade Universitária Rio de Janeiro Brazil
| | | |
Collapse
|
38
|
Sindi A, Badsha MB, Nielsen B, Ünlü G. Antimicrobial Activity of Six International Artisanal Kefirs Against Bacillus cereus, Listeria monocytogenes, Salmonella enterica serovar Enteritidis, and Staphylococcus aureus. Microorganisms 2020; 8:E849. [PMID: 32512951 PMCID: PMC7356263 DOI: 10.3390/microorganisms8060849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/02/2022] Open
Abstract
Kefir, a fermented dairy beverage, exhibits antimicrobial activity due to many metabolic products, including bacteriocins, generated by lactic acid bacteria. In this study, the antimicrobial activities of artisanal kefir products from Fusion Tea (A), Britain (B), Ireland (I), Lithuania (L), the Caucuses region (C), and South Korea (K) were investigated against select foodborne pathogens. Listeria monocytogenes CWD 1198, Salmonella enterica serovar Enteritidis ATCC 13076, Staphylococcus aureus ATCC 25923, and Bacillus cereus ATCC 14579 were inhibited by artisanal kefirs made with kefir grains from diverse origins. Kefirs A, B, and I inhibited all bacterial indicator strains examined at varying levels, except Escherichia coli ATCC 12435 (non-pathogenic, negative control). Kefirs K, L, and C inhibited all indicator strains, except S. aureus ATCC 25923 and E. coli ATCC 12435. Bacteriocins present in artisanal kefirs were determined to be the main antimicrobials in all kefirs examined. Kefir-based antimicrobials are being proposed as promising natural biopreservatives as per the results of the study.
Collapse
Affiliation(s)
- Abrar Sindi
- School of Food Science, University of Idaho, 875 Perimeter Drive, MS 2312, Moscow, ID 83844-2312, USA; (A.S.); (B.N.)
| | - Md. Bahadur Badsha
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, 875 Perimeter Drive, MS 1122, Moscow, ID 83844-1122, USA;
| | - Barbara Nielsen
- School of Food Science, University of Idaho, 875 Perimeter Drive, MS 2312, Moscow, ID 83844-2312, USA; (A.S.); (B.N.)
| | - Gülhan Ünlü
- School of Food Science, University of Idaho, 875 Perimeter Drive, MS 2312, Moscow, ID 83844-2312, USA; (A.S.); (B.N.)
- School of Food Science, Washington State University, Pullman, WA 99164-6376, USA
- Department of Biological Engineering, University of Idaho, 875 Perimeter Drive, MS 2312, Moscow, ID 83844-0904, USA
| |
Collapse
|
39
|
Study of kefir drinks produced by backslopping method using kefir grains from Bosnia and Herzegovina: Microbial dynamics and volatilome profile. Food Res Int 2020; 137:109369. [PMID: 33233071 DOI: 10.1016/j.foodres.2020.109369] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/06/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Kefir is a well-known health-promoting beverage that can be produced by using kefir grains (traditional method) or by using natural starter cultures from kefir (backslopping method). The aim of this study was to elucidate the microbial dynamics and volatilome profile occurring during kefir production through traditional and backslopping methods by using five kefir grains that were collected in Bosnia and Herzegovina. The results from conventional pour plating techniques and amplicon-based sequencing were combined. The kefir drinks have also been characterized in terms of their physico-chemical and colorimetric parameters. A bacterial shift from Lactobacillus kefiranofaciens to Acetobacter syzygii, Lactococcus lactis and Leuconostoc pseudomesenteroides from kefir grains in traditional kefir to backslopped kefir was generally observed. Despite some differences within samples, the dominant mycobiota of backslopped kefir samples remained quite similar to that of the kefir grain samples. However, unlike the lactic acid and acetic acid bacteria, the yeast counts decreased progressively from the grains to the backslopped kefir. The backslopped kefir samples showed higher protein, lactose and ash content and lower ethanol content compared to traditional kefir samples, coupled with optimal pH values that contribute to a pleasant sensory profile. Concerning the volatilome, backslopped kefir samples were correlated with cheesy, buttery, floral and fermented odors, whereas the traditional kefir samples were correlated with alcoholic, fruity, fatty and acid odors. Overall, the data obtained in the present study provided evidence that different kefir production methods (traditional vs backslopping) affect the quality characteristics of the final product. Hence, the functional traits of backslopped kefir should be further investigated in order to verify the suitability of a potential scale-up methodology for backslopping.
Collapse
|
40
|
Oryan A, Alemzadeh E, Eskandari MH. Kefir Accelerates Burn Wound Healing Through Inducing Fibroblast Cell Migration In Vitro and Modulating the Expression of IL-1ß, TGF-ß1, and bFGF Genes In Vivo. Probiotics Antimicrob Proteins 2020; 11:874-886. [PMID: 29948798 DOI: 10.1007/s12602-018-9435-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Kefir is a natural probiotic compound with a long history of health benefits which can improve wound healing. This study investigated the regeneration potential of kefir in vitro scratch assay and in vivo burn wound in rat model. Cytotoxicity of different concentrations of kefir was evaluated by colorimetric methylthiazoltetrazolium assay. A scratch wound experiment was performed to investigate the ability of kefir in reducing the gap of wounds in a dose-dependent manner, in vitro. The standardized kefir was incorporated into silver sulfadiazine (SSD) and applied on burn wounds in vivo, and was compared with the SSD and negative control groups after 7, 14, and 28 days of treatment. The wound sites were then removed for histopathological and morphometric analyses, assessment of interleukin-1β (IL-1β), transforming growth factor-β1 (TGF-β1), basic fibroblast growth factor (bFGF), dry weight, and hydroxyproline contents. Kefir enhanced proliferation and migration of human dermal fibroblast (HDF) cells and 12.50, 6.25, and 3.12 μL/mL concentrations showed better effects on the scratch assay. Kefir resulted in reduction of IL-1β and TGF-β1 expression at day 7 compared to the negative control. Kefir also reduced the expression of IL-1β at days 14 and 28 and stimulated bFGF at day 28. It significantly improved the dry matter and hydroxyproline contents in the burn wounds. Kefir also resulted in enhanced angiogenesis and elevated migration and proliferation of fibroblasts and improved fibrous connective tissue formation in the wound area. The morphometric results indicated significant global contraction values in the kefir-treated wounds compared to other groups. Taken together, the findings suggest that kefir has considerable ability to accelerate healing of the burn wounds. Therefore, kefir may be a possible option to improve the outcomes of severe burns.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Esmat Alemzadeh
- Department of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
41
|
Behera SS, Panda SK. Ethnic and industrial probiotic foods and beverages: efficacy and acceptance. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Development of a novel probiotic milk product with enhanced antioxidant properties using mango peel as a fermentation substrate. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101564] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Elleuch L, Messaoud M, Djebali K, Attafi M, Cherni Y, Kasmi M, Elaoud A, Trabelsi I, Chatti A. A new insight into highly contaminated landfill leachate treatment using Kefir grains pre-treatment combined with Ag-doped TiO 2 photocatalytic process. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121119. [PMID: 31494532 DOI: 10.1016/j.jhazmat.2019.121119] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
This study investigates the performance of the combination of biological pre-treatment with Kefir grains (KGs) and photocatalytic process using Ag-doped TiO2 nanoparticles (NPs) for the simultaneous removal of toxic pollutants from landfill leachate (LFL). After 5 days of 1% (w/v) KGs pre-treatment at 37 °C, TOC, COD, NH4+-N, and PO43- removal rates were 93, 83.33, 70 and 88.25%, respectively. The removal efficiencies were found to be 100, 94, 62.5, 53.16 and 47.52 % for Cd, Ni, Zn, Mn and Cu, respectively. The optimal conditions of Ag-doped TiO2 photocatalytic process were optimized using Box-Behnken design and response surface methodology (BBD-RSM) to enhance the quality of pre-treated LFL. Interestingly, Ag-doped TiO2 photocatalytic process increases the overall removal efficiencies to 98, 96, 85 and 93% of TOC, COD, NH4+-N, and PO43-, respectively. Furthermore, the removal efficiency of toxic heavy metals was gradually improved. In addition, KGs and Ag-doped TiO2 exhibited excellent recyclability showing the potential of combined biological/photocatalytic process to treat hazardous LFL.
Collapse
Affiliation(s)
- Lobna Elleuch
- Laboratory of Treatment and Valorization of Water Rejects, Water Researches and Technologies Center, Borj-Cedria Technopark, University of Carthage, 8020, Soliman, Tunisia.
| | - Mouna Messaoud
- Laboratory of advanced Materials, National School of Engineers of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Kais Djebali
- Support Research and Technology Transfer Unit, Biotechnology Center Borj-Cedria Technopark, 2050, Hammam-Lif, Tunisia
| | - Marwa Attafi
- Laboratory of Treatment and Valorization of Water Rejects, Water Researches and Technologies Center, Borj-Cedria Technopark, University of Carthage, 8020, Soliman, Tunisia
| | - Yasmin Cherni
- Laboratory of Treatment and Valorization of Water Rejects, Water Researches and Technologies Center, Borj-Cedria Technopark, University of Carthage, 8020, Soliman, Tunisia
| | - Mariam Kasmi
- Laboratory of Treatment and Valorization of Water Rejects, Water Researches and Technologies Center, Borj-Cedria Technopark, University of Carthage, 8020, Soliman, Tunisia
| | - Anis Elaoud
- Laboratory of Environmental Science and Technologies, Higher Institute of Sciences and Technology of Environment, University of Carthage, 2050, Borj-Cedria, Tunisia
| | - Ismail Trabelsi
- Laboratory of Treatment and Valorization of Water Rejects, Water Researches and Technologies Center, Borj-Cedria Technopark, University of Carthage, 8020, Soliman, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Treatment and Valorization of Water Rejects, Water Researches and Technologies Center, Borj-Cedria Technopark, University of Carthage, 8020, Soliman, Tunisia
| |
Collapse
|
44
|
Evaluation of Pediococcus pentosaceus SP2 as Starter Culture on Sourdough Bread Making. Foods 2020; 9:foods9010077. [PMID: 31936736 PMCID: PMC7023139 DOI: 10.3390/foods9010077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/04/2020] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
In the present study, a novel Pediococcus pentosaceus SP2 strain, recently isolated from kefir grains, was evaluated as a starter culture in sourdough bread making. The novel starter was applied in fresh, freeze-dried, and freeze-dried immobilized (on wheat bran) form. The type of culture (fresh, freeze-dried, immobilized cells) influenced the bread characteristics. Specifically, the application of freeze-dried immobilized cells led to higher total titratable acidity (TTA) values (9.81 mL NaOH N/10), and the produced bread presented higher resistance to mold and rope spoilage. Moreover, the produced sourdough breads were significantly better in terms of pH, TTA, organic acids content, and resistance to mold and rope spoilage, compared to breads made with a commercial, wild microbiota, sourdough. The organic acids content was also significantly higher than the commercial sourdough sample (2.93 g/kg lactic acid; 1.01 g/kg acetic acid). Determination of volatile compounds through solid-phase microextraction (SPME) gas chromatography/mass spectrometry (GC/MS) analysis and sensorial assessments indicated no significant differences between the tested sourdough breads.
Collapse
|
45
|
Tan KX, Chamundeswari VN, Loo SCJ. Prospects of kefiran as a food-derived biopolymer for agri-food and biomedical applications. RSC Adv 2020; 10:25339-25351. [PMID: 35517442 PMCID: PMC9055270 DOI: 10.1039/d0ra02810j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
There is a huge demand for food-derived polysaccharides in the field of materials research due to the increasing concerns posed by synthetic biopolymers.
Collapse
Affiliation(s)
- Kei-Xian Tan
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
| | | | - Say Chye Joachim Loo
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore Centre for Environmental Life Sciences Engineering
- Nanyang Technological University
| |
Collapse
|
46
|
Development of a Novel Whey Date Beverage Fermented with Kefir Grains Using Response Surface Methodology. J CHEM-NY 2019. [DOI: 10.1155/2019/1218058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to develop a novel kefir beverage using date syrup, whey permeate, and whey. The levels of the kefir grain inoculum (2–5% w/v), fruit syrup (10–50% w/v), and whey permeate (0–5% w/v) on pH, total phenolic content, antioxidant activity, lactic acid bacteria and yeast counts, and overall acceptability were investigated using central composite design. The use of response surface methodology allowed us to obtain a formulation with acceptable organoleptic properties and high antioxidant activities. The obtained beverages had total phenolic content, % DPPH scavenging activity, and overall acceptability ranging from 24 to 74 mg GAE/mL, from 74.80 to 91.37 mg GAE/mL, and from 3.50 to 6 mg GAE/mL (based on a 1 to 9 preference scale), respectively. Date syrup of 36.76% (w/v), whey permeates of 2.99%, and kefir grains inoculum size of 2.08% were the optimized process conditions achieved.
Collapse
|
47
|
Kim D, Kim H, Seo K. Microbial composition of Korean kefir and antimicrobial activity of
Acetobacter fabarum
DH1801. J Food Saf 2019. [DOI: 10.1111/jfs.12728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dong‐Hyeon Kim
- Center for One HealthCollege of Veterinary Medicine, Konkuk University Seoul South Korea
| | - Hyunsook Kim
- Department of Food & NutritionCollege of Human Ecology, Hanyang University Seoul South Korea
| | - Kun‐Ho Seo
- Center for One HealthCollege of Veterinary Medicine, Konkuk University Seoul South Korea
| |
Collapse
|
48
|
Łopusiewicz Ł, Drozłowska E, Siedlecka P, Mężyńska M, Bartkowiak A, Sienkiewicz M, Zielińska-Bliźniewska H, Kwiatkowski P. Development, Characterization, and Bioactivity of Non-Dairy Kefir-Like Fermented Beverage Based on Flaxseed Oil Cake. Foods 2019; 8:foods8110544. [PMID: 31684151 PMCID: PMC6915687 DOI: 10.3390/foods8110544] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Flaxseed oil cake (FOC) was evaluated as a potential substrate for the production of a novel kefir-like fermented beverage. Three variants containing 5%, 10%, and 15% (w/w) of FOC were inoculated with kefir grains and incubated at 25 °C for 24 h. After processing, beverages were stored in refrigerated conditions (6 °C) for 21 days. Changes in microbial population, pH, acidity, levels of proteins, polyphenolics, flavonoids, ascorbic acid, and reducing sugars were estimated. Additionally, viscosity, firmness, color, and antioxidant properties were determined. Results showed that lactic acid bacteria as well as yeast were capable of growing well in the FOC without any supplementation. During refrigerated storage, the viability of the microorganisms were over the recommended minimum level for kefir products. As a result of fermentation, the beverages showed excellent antioxidant activity. Because of the functional characteristics conferred to the FOC beverages, the use of kefir grains showed adequate potential for the industrial application. Therefore, this beverages could be used as a new, non-dairy vehicle for beneficial microflora consumption, especially by vegans and lactose-intolerant consumers.
Collapse
Affiliation(s)
- Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland.
| | - Emilia Drozłowska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland.
| | - Paulina Siedlecka
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland.
| | - Monika Mężyńska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland.
| | - Artur Bartkowiak
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland.
| | - Monika Sienkiewicz
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Hanna Zielińska-Bliźniewska
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstancow Wielkopolskich Avenue, 70-111 Szczecin, Poland.
| |
Collapse
|
49
|
Gut AM, Vasiljevic T, Yeager T, Donkor ON. Characterization of yeasts isolated from traditional kefir grains for potential probiotic properties. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
50
|
Verruck S, Balthazar CF, Rocha RS, Silva R, Esmerino EA, Pimentel TC, Freitas MQ, Silva MC, da Cruz AG, Prudencio ES. Dairy foods and positive impact on the consumer's health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:95-164. [PMID: 31351531 DOI: 10.1016/bs.afnr.2019.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of the present chapter was to demonstrate the state of the art in the recent advances in nutritional and functional components of dairy products research. In this chapter, the main mechanisms responsible and essential for a better understanding of nutritional and functional values of the components of milk and dairy products are highlighted. It also includes a discussion about the positive impacts of fermented milk, cheese, butter, ice cream, and dairy desserts components on the consumer's health.
Collapse
Affiliation(s)
- Silvani Verruck
- Universidade Federal de Santa Catarina (UFSC), Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, Brazil
| | | | - Ramon Silva Rocha
- Universidade Federal Fluminense (UFF), Faculdade de Veterinária, Niterói, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, Rio de Janeiro, Brazil
| | - Ramon Silva
- Universidade Federal Fluminense (UFF), Faculdade de Veterinária, Niterói, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, Rio de Janeiro, Brazil
| | | | | | | | - Marcia Cristina Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, Rio de Janeiro, Brazil
| | - Adriano Gomes da Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, Rio de Janeiro, Brazil.
| | - Elane Schwinden Prudencio
- Universidade Federal de Santa Catarina (UFSC), Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, Brazil
| |
Collapse
|