1
|
Chakravarty K, Gaur S, Kumar R, Jha NK, Gupta PK. Exploring the Multifaceted Therapeutic Potential of Probiotics: A Review of Current Insights and Applications. Probiotics Antimicrob Proteins 2025; 17:341-363. [PMID: 39069588 DOI: 10.1007/s12602-024-10328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
The interplay between human health and the microbiome has gained extensive attention, with probiotics emerging as pivotal therapeutic agents due to their vast potential in treating various health issues. As significant modulators of the gut microbiota, probiotics are crucial in maintaining intestinal homeostasis and enhancing the synthesis of short-chain fatty acids. Despite extensive research over the past decades, there remains an urgent need for a comprehensive and detailed review that encapsulates probiotics' latest insights and applications. This review focusses on the multifaceted roles of probiotics in promoting health and preventing disease, highlighting the complex mechanisms through which these beneficial bacteria influence both gut flora and the human body at large. This paper also explores probiotics' neurological and gastrointestinal applications, focussing on their significant impact on the gut-brain axis and their therapeutic potential in a broad spectrum of pathological conditions. Current innovations in probiotic formulations, mainly focusing on integrating genomics and biotechnological advancements, have also been comprehensively discussed herein. This paper also critically examines the regulatory landscape that governs probiotic use, ensuring safety and efficacy in clinical and dietary settings. By presenting a comprehensive overview of recent studies and emerging trends, this review aims to illuminate probiotics' extensive therapeutic capabilities, leading to future research and clinical applications. However, besides extensive research, further advanced explorations into probiotic interactions and mechanisms will be essential for developing more targeted and effective therapeutic strategies, potentially revolutionizing health care practices for consumers.
Collapse
Affiliation(s)
- Kashyapi Chakravarty
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India.
| | - Rohit Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, 140401, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
2
|
Al-Adham ISI, Agha ASAA, Al-Akayleh F, Al-Remawi M, Jaber N, Al Manasur M, Collier PJ. Prebiotics Beyond the Gut: Omics Insights, Artificial Intelligence, and Clinical Trials in Organ-Specific Applications. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10465-x. [PMID: 39878922 DOI: 10.1007/s12602-025-10465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications. Integrating these innovations with "omics" technologies enables precise microbial modulation, fostering personalized nutrition and precision therapies. This review examines organ-specific effects of prebiotics, highlights findings from clinical trials, and explores biotechnological innovations that enhance prebiotic efficacy, laying the groundwork for future personalized therapeutic strategies.
Collapse
Affiliation(s)
- Ibrahim S I Al-Adham
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan.
| | - Ahmed S A Ali Agha
- School of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan, Amman, 11942, Jordan
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Manar Al Manasur
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan.
| |
Collapse
|
3
|
Jain R, Voss AL, Del Rosario J, Hale JDF. Efficacy of a topical live probiotic in improving skin health. Int J Cosmet Sci 2025. [PMID: 39840452 DOI: 10.1111/ics.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/11/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025]
Abstract
INTRODUCTION Micrococcus luteus is a commensal bacterial member of the human skin and is essential in keeping the balance among the various microbial flora of the skin. M. luteus strain Q24 or BLIS Q24™ was isolated from the skin of a healthy human adult and is known to produce a unique antimicrobial spectrum that is inhibitory towards pathogens associated with skin diseases. It has been developed as a probiotic with potential applications in improving overall skin health. OBJECTIVE This study aimed to evaluate the perceived changes in skin quality following topical application of a formulation containing skin commensal probiotic BLIS Q24™. METHODS A 28-day study involving 96 participants with self-reported normal skin with occasional blemishes or breakouts, topically applied a serum formulation containing BLIS Q24™ to the face. Participants quantitatively evaluated the probiotic serum effect on their skin at baseline Day 0 and then again on Day 10, 20 and 28 of the application. In addition, participants maintained a photo diary to record the perceived changes to their skin. RESULTS A total of 96 participants completed this research. In comparison to the baseline (Day 0), within 10 days, a significant reduction in blackheads (48%), oiliness (48%), blemishes (57%), dry areas (23%), redness/rosacea (45%) and flaky and rough skin (38%) were reported. The probiotic serum was also effective in a significant reduction in fine lines and wrinkles (38%), whiteheads (41%), pimples (55%), age spots (29%), and acne (21%) by the end of 28 days of probiotic application. Overall, there's agreement that probiotic serum delivers or exceeds consumer expectations from the concept and performs just as well, or better, than their regular moisturizer. CONCLUSION An approach of delivering a live probiotic packaged in an innovative formula to improve several skin conditions in otherwise healthy individuals was found to be successful. This study highlights that a serum formulation containing BLIS Q24™ has a positive impact on skin health. It is effective topically in reducing the appearance of skin blemishes, oiliness, wrinkles, redness, and dryness. BLIS Q24™ offers the potential for preventing skin health-related issues and routine maintenance of skin microbiome for healthy skin.
Collapse
Affiliation(s)
- Rohit Jain
- Blis Technologies Limited, Dunedin, New Zealand
| | | | | | | |
Collapse
|
4
|
Park JY, Lee JY, Hong S, Heo H, Lee H, Kim YG, Kim BK, Choi SI, Lee J. Limosilactobacillus fermentum MG5368 and Lactiplantibacillus plantarum MG989 Regulates Skin Health in UVB-Induced HaCaT Cells and Hairless Mice Model. Nutrients 2024; 16:4083. [PMID: 39683478 DOI: 10.3390/nu16234083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Photoaging, induced by chronic ultraviolet B (UVB) exposure, results in the degradation of extracellular matrix (ECM) components, leading to skin roughness, wrinkle formation, and reduced elasticity. Recent studies have explored probiotics as potential inhibitors of extrinsic aging, primarily through mechanisms that protect the skin barrier and reduce collagen breakdown. METHODS This study investigates the anti-photoaging effects of Limosilactobacillus fermentum MG5368 (L. fermentum MG5368) and Lactiplantibacillus plantarum MG989 (L. plantarum MG989) in UVB-exposed keratinocytes and an SKH-1 hairless mice model. RESULTS Both strains demonstrated significant efficacy in preserving collagen through the inhibition of activating protein-1 (AP-1) and reducing the expression of matrix metalloproteinase (MMP)-1 and MMP-3. Additionally, both strains restored COL1A1 protein expressions, thereby enhancing collagen synthesis and ECM stability. Enhanced skin elasticity was observed, attributed to restored levels of hyaluronic acid and hyaluronan synthase 2 (HAS2) protein expressions. CONCLUSIONS These findings suggest that L. fermentum MG5368 and L. plantarum MG989 may serve as promising probiotic-based agents for anti-photoaging applications.
Collapse
Affiliation(s)
- Jeong-Yong Park
- Mediogen, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| | - Ji Yeon Lee
- Mediogen, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| | - Seonghwa Hong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Yong Gyeong Kim
- Mediogen, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| | - Byoung-Kook Kim
- Mediogen, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| | - Soo-Im Choi
- Mediogen, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| |
Collapse
|
5
|
Niedźwiedzka A, Micallef MP, Biazzo M, Podrini C. The Role of the Skin Microbiome in Acne: Challenges and Future Therapeutic Opportunities. Int J Mol Sci 2024; 25:11422. [PMID: 39518974 PMCID: PMC11546345 DOI: 10.3390/ijms252111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Acne vulgaris is a widespread dermatological condition that significantly affects the quality of life of adolescents and adults. Traditionally, acne pathogenesis has been linked to factors such as excess sebum production, follicular hyperkeratinization, and the presence of Cutibacterium acnes (C. acnes). However, recent studies have highlighted the role of the skin microbiome, shifting focus from individual pathogens to microbial community dynamics. This review critically evaluates existing research on the skin microbiome and its relationship to acne, focusing on microbial diversity, C. acnes strain variability, and emerging therapies targeting the microbiome. While certain studies associate C. acnes with acne severity, others show this bacterium's presence in healthy skin, suggesting that strain-specific differences and overall microbial balance play crucial roles. Emerging therapeutic approaches, such as probiotics and bacteriophage therapy, aim to restore microbial equilibrium or selectively target pathogenic strains without disturbing the broader microbiome. However, the lack of standardized methodologies, limited longitudinal studies, and the narrow focus on bacterial communities are major limitations in current research. Future research should explore the broader skin microbiome, including fungi and viruses, use consistent methodologies, and focus on longitudinal studies to better understand microbial fluctuations over time. Addressing these gaps will enable the development of more effective microbiome-based treatments for acne. In conclusion, while microbiome-targeted therapies hold promise, further investigation is needed to validate their efficacy and safety, paving the way for innovative, personalized acne management strategies.
Collapse
Affiliation(s)
| | | | | | - Christine Podrini
- The BioArte Ltd., Malta Life Science Park, Triq San Giljan, SGN 3000 San Gwann, Malta
| |
Collapse
|
6
|
Zhu X, Tian X, Wang M, Li Y, Yang S, Kong J. Protective effect of Bifidobacterium animalis CGMCC25262 on HaCaT keratinocytes. Int Microbiol 2024; 27:1417-1428. [PMID: 38278974 DOI: 10.1007/s10123-024-00485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Bifidobacteria are the most prevalent members of the intestinal microbiota in mammals and other animals, and they play a significant role in promoting gut health through their probiotic effects. Recently, the potential applications of Bifidobacteria have been extended to skin health. However, the beneficial mechanism of Bifidobacteria on the skin barrier remains unclear. In this study, keratinocyte HaCaT cells were used as models to evaluate the protective effects of the cell-free supernatant (CFS), heat-inactivated bacteria, and bacterial lysate of Bifidobacterium animalis CGMCC25262 on the skin barrier and inflammatory cytokines. The results showed that all the tested samples were able to upregulate the transcription levels of biomarker genes associated with the skin barrier, such as hyaluronic acid synthetase (HAS) and aquaporins (AQPs). Notably, the transcription of the hyaluronic acid synthetase gene-2 (HAS-2) is upregulated by 3~4 times, and AQP3 increased by 2.5 times when the keratinocyte HaCaT cells were co-incubated with 0.8 to 1% CFS. In particular, the expression level of Filaggrin (FLG) in HaCaT cells increased by 1.7 to 2.7 times when incubated with Bifidobacterial samples, reaching its peak at a concentration of 0.8% CFS. Moreover, B. animalis CGMCC25262 also decreased the expression of the proinflammatory cytokine RANTES to one-tenth compared to the levels observed in HaCaT cells induced with tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). These results demonstrate the potential of B. animalis CGMCC25262 in protecting the skin barrier and reducing inflammatory response.
Collapse
Affiliation(s)
- Xiaoce Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Xingfang Tian
- Shandong Freda Biotech Co., Ltd, Jinan, People's Republic of China
| | - Meng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Yan Li
- Shandong Freda Biotech Co., Ltd, Jinan, People's Republic of China
| | - Suzhen Yang
- Shandong Freda Biotech Co., Ltd, Jinan, People's Republic of China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.
| |
Collapse
|
7
|
Özdemіr E, Öksüz L. Effect of Staphylococcus aureus colonization and immune defects on the pathogenesis of atopic dermatitis. Arch Microbiol 2024; 206:410. [PMID: 39302484 DOI: 10.1007/s00203-024-04134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Atopic dermatitis (AD) is a common and recurrent skin disease characterized by skin barrier dysfunction, inflammation and chronic pruritus, with wide heterogeneity in terms of age of onset, clinical course and persistence over the lifespan. Although the pathogenesis of the disease are unclear, epidermal barrier dysfunction, immune and microbial dysregulation, and environmental factors are known to be critical etiologies in AD pathology. The skin microbiota represents an ecosystem consisting of numerous microbial species that interact with each other as well as host epithelial cells and immune cells. Although the skin microbiota benefits the host by supporting the basic functions of the skin and preventing the colonization of pathogens, disruption of the microbial balance (dysbiosis) can cause skin diseases such as AD. Although AD is a dermatological disease, recent evidence has shown that changes in microbiota composition in the skin and intestine contribute to the pathogenesis of AD. Environmental factors that contribute to skin barrier dysfunction and microbial dysbiosis in AD include allergens, diet, irritants, air pollution, epigenetics and microbial exposure. Knowing the microbial combination of intestin, as well as the genetic and epigenetic determinants associated with the development of autoantibodies, may help elucidate the pathophysiology of the disease. The skin of patients with AD is characterized by microbial dysbiosis as a result of reduced microbial diversity and overgrowth of the pathogens such as Staphylococcus aureus. Recent studies have revealed the importance of building a strong immune response against microorganisms during childhood and new mechanisms of microbial community dynamics in modulating the skin microbiome. Numerous microorganisms are reported to modulate host response through communication with keratinocytes, specific immune cells and adipocytes to improve skin health and barrier function. This growing insight into bioactive substances in the skin microbiota has led to novel biotherapeutic approaches targeting the skin surface for the treatment of AD. This review will provide an updated overview of the skin microbiota in AD and its complex interaction with immune response mechanisms, as well as explore possible underlying mechanisms in the pathogenesis of AD and provide insights into new therapeutic developments for the treatment of AD. It also focuses on restoring skin microbial homeostasis, aiming to reduce inflammation by repairing the skin barrier.
Collapse
Affiliation(s)
- Evrim Özdemіr
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey.
| | - Lütfiye Öksüz
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Fara A, Hernández Hernández O, Palacios J, Montilla A, Zárate G. In vitro and in vivo digestibility of prebiotic galactooligosacharides synthesized by β-galactosidase from Lactobacillus delbruecki subsp. bulgaricus CRL450. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6769-6777. [PMID: 38563403 DOI: 10.1002/jsfa.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND The general assumption that prebiotics reach the colon without any alterations has been challenged. Some in vitro and in vivo studies have demonstrated that 'non-digestible' oligosaccharides are digested to different degrees depending on their structural composition. In the present study, we compared different methods aiming to assess the digestibility of oligosaccharides synthesized by β-galactosidase (β-gal) of Lactobacillus delbruecki subsp. bulgaricus CRL450 (CRL450-β-gal) from lactose, lactulose and lactitol. RESULTS In the simulated gastrointestinal fluid method, no changes were observed. However, the oligosaccharides synthesized by CRL450-β-gal were partially hydrolyzed in vitro, depending on their structure and composition, with rat small intestinal extract (RSIE) and small intestinal brush-border membrane vesicles (BBMV) from pig. Digestion of some oligosaccharides increased when mixtures were fed to C57BL/6 mice used as in vivo model; however, lactulose-oligosaccharides were the most resistant to the physiological conditions of mice. In general β (1→6) linked products showed higher resistance compared to β (1→3) oligosaccharides. CONCLUSION In vitro digestion methods, without disaccharidases, may underestimate the importance of carbohydrates hydrolysis in the small intestine. Although BVMM and RSIE digestion assays are appropriate in vitro methods for these studies, in vivo studies remain the most reliable for understanding what actually happens in the digestion of oligosaccharides. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Agustina Fara
- Laboratorio de Ecofisiología Tecnológica, CERELA-CONICET, San Miguel de Tucumán, Argentina
| | - Oswaldo Hernández Hernández
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
| | - Jorge Palacios
- Laboratorio de Ecofisiología Tecnológica, CERELA-CONICET, San Miguel de Tucumán, Argentina
| | - Antonia Montilla
- Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
| | - Gabriela Zárate
- Laboratorio de Ecofisiología Tecnológica, CERELA-CONICET, San Miguel de Tucumán, Argentina
- Universidad de San Pablo Tucumán, Av. Solano Vera y Camino a Villa Nougués, Tucumán, Argentina
| |
Collapse
|
9
|
Arshad T, Mundrathi V, Perez VE, Nunez JM, Cho H. Topical Probiotic Hydrogels for Burn Wound Healing. Gels 2024; 10:545. [PMID: 39330147 PMCID: PMC11431453 DOI: 10.3390/gels10090545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Hydrogels have increasingly been used to enhance the effective healing of various wounds, including burn wounds. Similarly, the application of probiotics has recently been explored in wound healing and skin repairs. While probiotics have been consumed to provide therapeutic effects that aid with improving gut health, topical applications have been found to accelerate wound healing both in vitro and in vivo. For wounds that have complex healing mechanisms, such as burn wounds which depend on factors such as the depth of the burn, size of the afflicted area, and cause of the injury, probiotics with or without conventional therapeutic agents topically delivered via hydrogel technology are proven to be effective in the recovery of the damaged skin. This article aims to investigate the microorganisms present in the human skin microbiome and observe the effects of probiotics delivered by hydrogels on burn wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Hyunah Cho
- Industrial Pharmacy, Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (T.A.); (V.M.); (V.E.P.); (J.M.N.)
| |
Collapse
|
10
|
Theodorou IM, Kapoukranidou D, Theodorou M, Tsetis JK, Menni AE, Tzikos G, Bareka S, Shrewsbury A, Stavrou G, Kotzampassi K. Cosmeceuticals: A Review of Clinical Studies Claiming to Contain Specific, Well-Characterized Strains of Probiotics or Postbiotics. Nutrients 2024; 16:2526. [PMID: 39125405 PMCID: PMC11314542 DOI: 10.3390/nu16152526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The skin serves as a critical barrier against external threats-dehydration, ultraviolet exposure, and infections-playing a significant role in internal homeostasis and moisture retention. Additionally, and equally importantly, it interacts dynamically with the complex microbiome resident in it, which is essential for maintaining skin health. Recent interest has focused on the use of probiotics and postbiotics, besides their ability to modulate the skin microbiome, to enhance barrier function, and exhibit anti-inflammatory properties, to be involved in skincare, by having the potential to improve skin hydration, elasticity, and overall appearance, as well as in reducing signs of aging, such as wrinkles and fine lines. The products-being a combination of a cosmetic regime plus probiotic[s] or postbiotic[s]-are named cosmeceuticals. However, to comply with the regulations for the characterization of a microorganism as a specific probiotic strain, the pro- or postbiotics incorporated into the cosmetic regime should be both genetically and phenotypically defined. Thus, in this review, we present 14 published clinical trials using such cosmetic products with specific, well-characterized strains of probiotics or postbiotics applied to volunteers with healthy skin. Looking at the results of these studies collectively, we can say that these genetically and phenotypically defined strains of either live or inanimate bacteria and/or their components seem to keep the treated skin at least fully hydrated, with intact epithelial tone, increased radiance, and with decreased wrinkle depth, while normalizing the commensal skin microbiota. Future advancements in personalized skin care may lead to genomic sequencing and metabolomics to tailor probiotic and postbiotic treatments to individual skin microbiomes, promising a new frontier in cosmeceuticals.
Collapse
Affiliation(s)
| | - Dorothea Kapoukranidou
- Department of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | | | | | - Alexandra Eleftheria Menni
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.E.M.); (G.T.); (S.B.); (A.S.)
| | - Georgios Tzikos
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.E.M.); (G.T.); (S.B.); (A.S.)
| | - Stella Bareka
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.E.M.); (G.T.); (S.B.); (A.S.)
| | - Anne Shrewsbury
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.E.M.); (G.T.); (S.B.); (A.S.)
| | - George Stavrou
- Department of Surgery, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK;
| | | |
Collapse
|
11
|
Mehta H, Narang T, Dogra S, Handa S, Hatwal J, Batta A. Cardiovascular Considerations and Implications for Treatment in Psoriasis: An Updated Review. Vasc Health Risk Manag 2024; 20:215-229. [PMID: 38745849 PMCID: PMC11093123 DOI: 10.2147/vhrm.s464471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Psoriasis, a prevalent chronic inflammatory skin disorder affecting 2-3% of the global population, has transcended its dermatological confines, revealing a profound association with cardiovascular diseases (CVD). This comprehensive review explores the intricate interplay between psoriasis and cardiovascular system, delving into genetic links, immune pathways, and adipose tissue dysfunction beyond conventional CVD risk factors. The pathophysiological connections unveil unique signatures, distinct from other inflammatory skin conditions, in particular psoriasis-specific genetic polymorphisms in IL-23 and TNF-α have consistently been linked to CVD. The review navigates the complex landscape of psoriasis treatments, addressing challenges and future directions in particular relevance to CVDs in psoriasis. Therapeutic interventions, including TNF inhibitors (TNFi), present promise in reducing cardiovascular risks, and methotrexate could constitute a favourable choice. Conversely, the relationship between IL-12/23 inhibitors and cardiovascular risk remains uncertain, while recent evidence indicates that Janus kinase inhibitors may not carry CVD risks. Emerging evidence supports the safety and efficacy of IL-17 and IL-23 inhibitors in patients with CVDs, hinting at evolving therapeutic paradigms. Lifestyle modifications, statins, and emerging therapies offer preventive strategies. Dedicated screening guidelines for CVD risk assessment in psoriasis are however lacking. Further, the impact of different disease phenotypes and treatment hierarchies in cardiovascular outcomes remains elusive, demanding ongoing research at the intersection of dermatology, rheumatology, and cardiology. In conclusion, unraveling the intricate connections between psoriasis and CVD provides a foundation for a holistic approach to patient care. Collaboration between specialties, advancements in screening methodologies, and a nuanced understanding of treatment impacts are essential for comprehensive cardiovascular risk management in individuals with psoriasis.
Collapse
Affiliation(s)
- Hitaishi Mehta
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Tarun Narang
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sunil Dogra
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sanjeev Handa
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Juniali Hatwal
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Akash Batta
- Department of Cardiology, Dayanand Medical College and Hospital (DMCH), Ludhiana, 141001, India
| |
Collapse
|
12
|
Khosravi M, Avizeh R, Zayerzadeh A, Gharibi D, Razijalali M. Effect of Bacillus subtilis and Bacillus coagulans spores on induced allergic contact dermatitis in dogs. Vet Med Sci 2024; 10:e1410. [PMID: 38501344 PMCID: PMC10949178 DOI: 10.1002/vms3.1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Probiotic strains have the potential to modulate immune responses, reduce intestinal inflammation, normalize intestinal mucosal function and decrease allergic reactions. OBJECTIVE This study aimed to investigate the effect of oral probiotic supplements containing Bacillus subtilis and Bacillus coagulans spores on clinical symptoms, haematological factors and immune responses to allergic contact dermatitis in dogs induced by dinitrochlorobenzene (DNCB). METHODS DNCB was injected subcutaneously into the scapular region of 20 healthy adult dogs of both sexes, divided into four groups, to induce experimental allergic contact dermatitis. Dogs in Group 1 received food without probiotics or medication. Oral prednisolone was administered to Group 2 for 30 days at a dosage of 0.25 mg/kg every other day. The dogs in Group 3 were treated with a combination of oral prednisolone and probiotics. The dogs in Group 4 were fed daily with a mixture of 109 B. subtilis and B. coagulans bacteria for 30 days. The immune system responses and related gene expression were analysed in the treated animals. RESULTS The administration of probiotics for 30 days resulted in a reduction in clinical symptoms and duration of wound repair. The probiotics treatment also significantly increased the serum bactericidal effects against Staphylococcus aureus and Escherichia coli. It enhanced both the classic and alternative activity of the complement, as well as lysozyme activity. Additionally, the probiotics led to higher total immunoglobulin levels and significant reductions in anti-trypsin and C-reactive protein levels. Furthermore, the expression of IgE, induction of interferon-gamma and IL-4 genes were also reduced. CONCLUSIONS According to the results, B. subtilis and B. coagulans can be further investigated as a viable alternative to corticosteroids in treating allergic contact dermatitis in dogs.
Collapse
Affiliation(s)
- Mohammad Khosravi
- Department of PathobiologyFaculty of Veterinary MedicineShahid Chamran University of AhvazAhvazKhuzestanIran
| | - Reza Avizeh
- Department of Clinical SciencesFaculty of Veterinary MedicineShahid Chamran University of AhvazAhvazKhuzestanIran
| | - Akram Zayerzadeh
- DVSc of Small Animal Internal MedicineFaculty of Veterinary MedicineShahid Chamran University of AhvazAhvazKhuzestanIran
| | - Darioush Gharibi
- Department of PathobiologyFaculty of Veterinary MedicineShahid Chamran University of AhvazAhvazKhuzestanIran
| | - Mohammad Razijalali
- Department of Clinical SciencesFaculty of Veterinary MedicineShahid Chamran University of AhvazAhvazKhuzestanIran
| |
Collapse
|
13
|
Mahroof M, Dar RA, Nazir R, Ali MN, Ganai BA. Valorization of rice straw and vascular aquatic weeds for sustainable prebiotic hemicellulosic autohydrolysate production: Extraction, characterization and fermentability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35744-35759. [PMID: 38744764 DOI: 10.1007/s11356-024-33611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
This study describes the extraction and characterization of the hemicellulosic autohydrolysates (HAHs) derived from rice straw (RS) and vascular aquatic weeds like Typha angustifolia (TA) and Ceretophyllum demersum (CD). It further explores their capacity to sustain the proliferation of selected lactic acid bacteria (i.e., prebiotic activity) isolated from milk samples. To fractionate HAH from RS, TA and CD hot water extraction (HWE) method was used and RS, TA, and CD biomasses yielded 6.8, 4.99 and 2.98% of HAH corresponding to the hemicellulose extraction efficiencies of 26.15 ± 0.8%, 23.76 ± 0.6%, and 18.62 ± 0.4% respectively. The chemical characterization of HAH concentrates through HPLC showed that they comprised galactose, arabinose, xylose and glucose. The total phenol content of the RS, TA and CD-derived HAH concentrates were 37.53, 56.78 and 48.08 mg GAE/g. The five lactic acid bacteria (LAB) isolates Q1B, Q2A, Q3B, G1C and G2B selected for prebiotic activity assays generated mixed responses with the highest growth in RS-HAH for Q2A and the least in TA-HAH for Q3B. Further, the isolates Q2A, Q3B, G1C, and G2B, which showed the highest growth performance, were identified through MALDI-TOF and 16S rRNA sequencing as Lactobacillus brevis. All the tested LAB isolates showed diauxic growth in crude HAH preparations to maximize the utilization of carbon resources for their proliferation. This suggests that the selected LAB isolates are efficient degraders of hemicellulosic sugars. This paves the way for the valorization of lignocellulosic biomass to produce prebiotic hemicellulosic autohydrolysate and consequently enhances environmental sustainability by improving resource efficiency.
Collapse
Affiliation(s)
- Mawish Mahroof
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Rouf Ahmad Dar
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India.
| | - Ruqeya Nazir
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Md Niamat Ali
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| |
Collapse
|
14
|
Alagiakrishnan K, Morgadinho J, Halverson T. Approach to the diagnosis and management of dysbiosis. Front Nutr 2024; 11:1330903. [PMID: 38706561 PMCID: PMC11069313 DOI: 10.3389/fnut.2024.1330903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024] Open
Abstract
All microorganisms like bacteria, viruses and fungi that reside within a host environment are considered a microbiome. The number of bacteria almost equal that of human cells, however, the genome of these bacteria may be almost 100 times larger than the human genome. Every aspect of the physiology and health can be influenced by the microbiome living in various parts of our body. Any imbalance in the microbiome composition or function is seen as dysbiosis. Different types of dysbiosis are seen and the corresponding symptoms depend on the site of microbial imbalance. The contribution of the intestinal and extra-intestinal microbiota to influence systemic activities is through interplay between different axes. Whole body dysbiosis is a complex process involving gut microbiome and non-gut related microbiome. It is still at the stage of infancy and has not yet been fully understood. Dysbiosis can be influenced by genetic factors, lifestyle habits, diet including ultra-processed foods and food additives, as well as medications. Dysbiosis has been associated with many systemic diseases and cannot be diagnosed through standard blood tests or investigations. Microbiota derived metabolites can be analyzed and can be useful in the management of dysbiosis. Whole body dysbiosis can be addressed by altering lifestyle factors, proper diet and microbial modulation. The effect of these interventions in humans depends on the beneficial microbiome alteration mostly based on animal studies with evolving evidence from human studies. There is tremendous potential for the human microbiome in the diagnosis, treatment, and prognosis of diseases, as well as, for the monitoring of health and disease in humans. Whole body system-based approach to the diagnosis of dysbiosis is better than a pure taxonomic approach. Whole body dysbiosis could be a new therapeutic target in the management of various health conditions.
Collapse
Affiliation(s)
| | - Joao Morgadinho
- Kaye Edmonton Clinic, Alberta Health Services, Edmonton, AB, Canada
| | - Tyler Halverson
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Xu J, Chen X, Song J, Wang C, Xu W, Tan H, Suo H. Antibacterial activity and mechanism of cell-free supernatants of Lacticaseibacillus paracasei against Propionibacterium acnes. Microb Pathog 2024; 189:106598. [PMID: 38423403 DOI: 10.1016/j.micpath.2024.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Propionibacterium acnes (P. acnes) is an anaerobic and gram-positive bacterium involved in the pathogenesis and inflammation of acne vulgaris. This study particularly focuses on the antimicrobial effect of Lacticaseibacillus paracasei LPH01 against P. acnes, a bacterium that causes acne vulgaris. Fifty-seven Lactobacillus strains were tested for their ability to inhibit P. acnes growth employing the Oxford Cup and double dilution methods. The cell-free supernatant (CFS) of L. paracasei LPH01 demonstrated a strong inhibitory effect, with an inhibition zone diameter of 24.65 ± 0.27 mm and a minimum inhibitory concentration of 12.5 mg/mL. Among the CFS, the fraction over 10 kDa (CFS-10) revealed the best antibacterial effect. Confocal laser scanning microscopes and flow cytometry showed that CFS-10 could reduce cell metabolic activity and cell viability and destroy the integrity and permeability of the cell membrane. A scanning electron microscope revealed that bacterial cells exhibited obvious morphological and ultrastructural changes, which further confirmed the damage of CFS-10 to the cell membrane and cell wall. Findings demonstrated that CFS-10 inhibited the conversion of triglycerides, decreased the production of free fatty acids, and down-regulated the extracellular expression of the lipase gene. This study provides a theoretical basis for the metabolite of L. paracasei LPH01 as a potential antibiotic alternative in cosmeceutical skincare products.
Collapse
Affiliation(s)
- Jiahui Xu
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China
| | - Weiping Xu
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Han Tan
- College of Food Science, Southwest University, Chongqing, 400715, PR China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, 400715, PR China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chongqing, 400715, PR China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
16
|
Reali E, Caliceti C, Lorenzini A, Rizzo P. The Use of Microbial Modifying Therapies to Prevent Psoriasis Exacerbation and Associated Cardiovascular Comorbidity. Inflammation 2024; 47:13-29. [PMID: 37953417 PMCID: PMC10799147 DOI: 10.1007/s10753-023-01915-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
Psoriasis has emerged as a systemic disease characterized by skin and joint manifestations as well as systemic inflammation and cardiovascular comorbidities. Many progresses have been made in the comprehension of the immunological mechanisms involved in the exacerbation of psoriatic plaques, and initial studies have investigated the mechanisms that lead to extracutaneous disease manifestations, including endothelial disfunction and cardiovascular disease. In the past decade, the involvement of gut dysbiosis in the development of pathologies with inflammatory and autoimmune basis has clearly emerged. More recently, a major role for the skin microbiota in establishing the immunological tolerance in early life and as a source of antigens leading to cross-reactive responses towards self-antigens in adult life has also been evidenced. Gut microbiota can indeed be involved in shaping the immune and inflammatory response at systemic level and in fueling inflammation in the cutaneous and vascular compartments. Here, we summarized the microbiota-mediated mechanisms that, in the skin and gut, may promote and modulate local or systemic inflammation involved in psoriatic disease and endothelial dysfunction. We also analyze the emerging strategies for correcting dysbiosis or modulating skin and gut microbiota composition to integrate systemically existing pharmacological therapies for psoriatic disease. The possibility of merging systemic treatment and tailored microbial modifying therapies could increase the efficacy of the current treatments and potentially lower the effect on patient's life quality.
Collapse
Affiliation(s)
- Eva Reali
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| | - Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Istituto Nazionale Biosistemi e Biostrutture (INBB), Rome, Italy
| | - Paola Rizzo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Ravenna, Italy.
| |
Collapse
|
17
|
Bachtarzi N, Gomri MA, Meradji M, Gil-Cardoso K, Ortega N, Chomiciute G, Del Bas JM, López Q, Martínez V, Kharroub K. In vitro assessment of biofunctional properties of Lactiplantibacillus plantarum strain Jb21-11 and the characterization of its exopolysaccharide. Int Microbiol 2024; 27:239-256. [PMID: 37286917 DOI: 10.1007/s10123-023-00387-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
ABSTACT The microbiota of traditional food provides a rich reservoir of biodiversity to find new strains with interesting features for novel functional food formulation. Therefore, this study aimed to investigate the biofunctional potential of the lactic acid bacteria (LAB) strain Jb21-11 isolated from Jben, a traditional Algerian fresh cheese. This isolate was selected out of a collection of 154 LAB based on its exopolysaccharide (EPS) phenotype and was preliminarily identified by polyphasic characterization as Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) and its biofunctional properties were then assessed in vitro. The tested strain demonstrated good resistance to gastric juice, acidity around pH 2, and 2% (v/v) bile salts, which are important characteristics for potential biofunctional LAB candidates. It also showed a good production of ropy EPS with 674 mg/L on MRS medium. However, this ability appears to compromise the adhesion of the strain to Caco-2 cells (less than 1%), which according to our results, seems not to be related to autoaggregation and hydrophobicity (44.88 ± 0.028% and 16.59 ± 0.012%). Furthermore, promising antimicrobial activity against three pathogenic bacteria (Escherichia coli, Staphylococcus aureus, and Salmonella) was detected probably due to antimicrobial metabolites excreted during fermentation process into the medium. Moreover, the strain L. plantarum Jb21-11 displayed a therapeutic functionality with both anti-inflammatory and immunomodulatory action using RAW 264.7 cells. The chemical features of the novel ropy Jb21-11-EPS were also investigated revealing the presence of three monosaccharides, namely, mannose, galactose, and glucose, with a molar ratio of 5.42:1.00:4.52 linked together by α- and β-glycosidic bonds, presenting a relatively high molecular weight of 1.08 × 105 Da of interest for a texturing potential. Therefore, the new producing EPS strain Jb21-11 is a promising candidate for use as an adjunct culture for improving the texture of functional food.
Collapse
Affiliation(s)
- Nadia Bachtarzi
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria.
| | - Mohamed Amine Gomri
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| | - Meriem Meradji
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| | - Katherine Gil-Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Nàdia Ortega
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | | | - Quiro López
- Creaciones Aromáticas Industriales SA, Cuatrecasas i Arimí, 2, 08192, Sant Quirze del Vallès, Barcelona, Spain
| | - Vanesa Martínez
- Creaciones Aromáticas Industriales SA, Cuatrecasas i Arimí, 2, 08192, Sant Quirze del Vallès, Barcelona, Spain
| | - Karima Kharroub
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| |
Collapse
|
18
|
Jain A, Meshram RJ, Lohiya S, Patel A, Kaplish D. Exploring the Microbial Landscape of Neonatal Skin Flora: A Comprehensive Review. Cureus 2024; 16:e52972. [PMID: 38406113 PMCID: PMC10894447 DOI: 10.7759/cureus.52972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
This comprehensive review explores the intricate landscape of the neonatal skin microbiome, shedding light on its dynamic composition, developmental nuances, and influential factors. The neonatal period represents a critical window during which microbial colonization significantly impacts local skin health and the foundational development of the immune system. Factors such as mode of delivery and gestational age underscore the vulnerability of neonates to disruptions in microbial establishment. Key findings emphasize the broader systemic implications of the neonatal skin microbiome, extending beyond immediate health outcomes to influence susceptibility to infections, allergies, and immune-related disorders. This review advocates for a paradigm shift in neonatal care, proposing strategies to preserve and promote a healthy skin microbiome for long-term health benefits. The implications of this research extend to public health, where interventions targeting the neonatal skin microbiome could potentially mitigate diseases originating in early life. As we navigate the intersection of research and practical applications, bridging the gap between knowledge and implementation becomes imperative for translating these findings into evidence-based practices and improving neonatal well-being on a broader scale.
Collapse
Affiliation(s)
- Aditya Jain
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Revat J Meshram
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sham Lohiya
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ankita Patel
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Divyanshi Kaplish
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
19
|
Fusco A, Perfetto B, Savio V, Chiaromonte A, Torelli G, Donnarumma G, Baroni A. Regulatory Ability of Lactiplantibacillus plantarum on Human Skin Health by Counteracting In Vitro Malassezia furfur Effects. J Fungi (Basel) 2023; 9:1153. [PMID: 38132754 PMCID: PMC10744525 DOI: 10.3390/jof9121153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
The skin serves as the first barrier against pathogen attacks, thanks to its multifunctional microbial community. Malassezia furfur is a commensal organism of normal cutaneous microflora but is also a cause of skin diseases. It acts on different cell pattern recognition receptors (TLRs, AhR, NLRP3 inflammasome) leading to cellular damage, barrier impairment, and inflammatory cytokines production. Lactobacillus spp. Is an endogenous inhabitant of healthy skin, and studies have proven its beneficial role in wound healing, skin inflammation, and protection against pathogen infections. The aim of our study is to demonstrate the ability of live Lactiplantibacillus plantarum to interfere with the harmful effects of the yeast on human keratinocytes (HaCat) in vitro. To enable this, the cells were treated with M. furfur, either alone or in the presence of L. plantarum. To study the inflammasome activation, cells require a stimulus triggering inflammation (LPS) before M. furfur infection, with or without L. plantarum. L. plantarum effectively counteracts all the harmful strategies of yeast, reducing the phospholipase activity, accelerating wound repair, restoring barrier integrity, reducing AhR and NLRP3 inflammasome activation, and, consequently, releasing inflammatory cytokines. Although lactobacilli have a long history of use in fermented foods, it can be speculated that they can also have health-promoting activities when topically applied.
Collapse
Affiliation(s)
- Alessandra Fusco
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (B.P.); (V.S.); (A.C.); (G.T.)
| | - Brunella Perfetto
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (B.P.); (V.S.); (A.C.); (G.T.)
| | - Vittoria Savio
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (B.P.); (V.S.); (A.C.); (G.T.)
| | - Adriana Chiaromonte
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (B.P.); (V.S.); (A.C.); (G.T.)
| | - Giovanna Torelli
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (B.P.); (V.S.); (A.C.); (G.T.)
| | - Giovanna Donnarumma
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (B.P.); (V.S.); (A.C.); (G.T.)
| | - Adone Baroni
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
20
|
Wang Y, Li J, Wu J, Gu S, Hu H, Cai R, Wang M, Zou Y. Effects of a Postbiotic Saccharomyces and Lactobacillus Ferment Complex on the Scalp Microbiome of Chinese Women with Sensitive Scalp Syndrome. Clin Cosmet Investig Dermatol 2023; 16:2623-2635. [PMID: 37767337 PMCID: PMC10520257 DOI: 10.2147/ccid.s415787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023]
Abstract
Introduction Sensitive scalp is one of the most frequent complaints related to sensitive skin syndrome, characterized by unpleasant sensory reactions in the absence of visible signs of inflammation. In this study, the effects of topical application of postbiotic Himalaya-derived Saccharomyces and Lactobacillus ferment complex (SLFC) on the bacterial and fungal scalp microbiome at the taxonomic level and alleviation of sensitive skin syndrome were investigated. Methods Firstly, healthy female participants (aged 30-45) were classified into a healthy scalp group and a sensitive scalp group based on the questionnaire. Thereafter, topical application of SLFC on sensitive scalp as well as scalp microbiome was evaluated, with the difference in the distribution of microbial taxa between healthy and sensitive scalp communities was assessed using 16S rRNA and ITS1 sequencing analysis. In addition, the effect of SLFC on scalp microbiome at the species level for Cutibacterium acnes, Staphylococcus epidermidis, and Malassezia restricta was evaluated by the qPCR assessment. Results After treatment with SLFC for 28 days, the abundance of Staphylococcus, Lawsonella, and Fusarium in the sensitive scalp group was highly significantly increased (p < 0.001), while the abundance of Cutibacterium and Malassezia was highly significantly decreased (p < 0.001). Furthermore, the self-assessment questionnaire indicated a syndrome alleviation effect of 100% after 28 days with a twice-daily application of the SLFC. Discussion The obtained results would help to better understand the microbial community of the sensitive scalp and provide useful information on utilization of SLFC for maintaining a healthy scalp and modulating the scalp microbiome.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Shanghai Oriental Beauty Valley, Shanghai Institute of Technology, Shanghai, People’s Republic of China
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China
| | - Jun Li
- R&D Center, JALA (Group) Co., Ltd, Shanghai, People’s Republic of China
| | - Jianming Wu
- R&D Center, JALA (Group) Co., Ltd, Shanghai, People’s Republic of China
| | - Shihong Gu
- R&D Center, JALA (Group) Co., Ltd, Shanghai, People’s Republic of China
| | - Huishu Hu
- R&D Center, JALA (Group) Co., Ltd, Shanghai, People’s Republic of China
| | - Rongjuan Cai
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China
| | - Man Wang
- Department of Nutrition, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, People’s Republic of China
| | - Yue Zou
- R&D Center, JALA (Group) Co., Ltd, Shanghai, People’s Republic of China
| |
Collapse
|
21
|
Zhang X, Xu J, Ma M, Zhao Y, Song Y, Zheng B, Wen Z, Gong M, Meng L. Heat-Killed Lactobacillus rhamnosus ATCC 7469 Improved UVB-Induced Photoaging Via Antiwrinkle and Antimelanogenesis Impacts. Photochem Photobiol 2023; 99:1318-1331. [PMID: 36588480 DOI: 10.1111/php.13775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Exposure of ultraviolet B (UVB) radiation is the main factor from the environment to cause skin photoaging. Lactobacillus rhamnosus ATCC 7469, is a probiotic strain with a good track record for enhancing human health. The present study conducted the impacts of heat-killed L. rhamnosus ATCC 7469 (RL) on photoaging in vitro using mouse skin fibroblast (MSF) cells and human epidermal melanocytes (HEM) exposed to UVB. The results showed that (1) RL-protected UVB-induced cytotoxicity relating to absorb UVB and reduce DNA damage. (2) RL exerted the antiwrinkle impact involved in two aspects. Firstly, RL downregulated MMP-1, 2, 3 expressions associating with MAPK signaling, resulting in the increased the protein expression of COL1A1, further booting type I collagen abundant thereby promoting the antiwrinkle impact in MSF cells. Secondly, RL reduced ROS content, further decreasing oxidative damage relating to Nrf2/Sirt3/SOD2 signaling, thereby promoting the antiwrinkle impact in MSF cells. (3) RL suppressed tyrosinase and TYRP-2 activity and/or levels associating with PKA/CREB/MITF signaling, thereby promoting antimelanogenesis impact in HEM cells. In conclusion, our findings suggest that RL could reduce photoaging caused by UVB via antiwrinkle and antimelanogenesis properties and may be a potential antiphotoaging beneficial component, which is applied in the cosmetic industry.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jing Xu
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Mingzhu Ma
- Zhejiang Marine Development Research Institute, Zhoushan, Zhejiang, China
| | - Yadong Zhao
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Yan Song
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Bin Zheng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Zhengshun Wen
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Miao Gong
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Lingting Meng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
22
|
Lee JY, Jeong, Park Y, Jeong Y, Chang, Kang H. Anti-Inflammatory Response in TNFα/IFNγ-Induced HaCaT Keratinocytes and Probiotic Properties of Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474. J Microbiol Biotechnol 2023; 33:1039-1049. [PMID: 37280776 PMCID: PMC10468673 DOI: 10.4014/jmb.2301.01028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory disease caused by immune dysregulation. Meanwhile, the supernatant of lactic acid bacteria (SL) was recently reported to have anti-inflammatory effects. In addition, HaCaT keratinocytes stimulated by tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) are widely used for studying AD-like responses. In this study, we evaluated the anti-inflammatory effects of SL from lactic acid bacteria (LAB) on TNF-α/IFN-γ-induced HaCaT keratinocytes, and then we investigated the strains' probiotic properties. SL was noncytotoxic and regulated chemokines (macrophage-derived chemokine (MDC) and thymus and activation-regulated chemokine (TARC)) and cytokines (interleukin (IL)-4, IL-5, IL-25, and IL-33) in TNF-α/IFN-γ-induced HaCaT keratinocytes. SL from Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474 decreased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). Furthermore, the safety of the three strains was demonstrated via hemolysis, bile salt hydrolase (BSH) activity, and toxicity tests, and the stability was confirmed under simulated gastrointestinal conditions. Therefore, L. rhamnosus MG4644, L. paracasei MG4693, and Lc. lactis MG5474 have potential applications in functional food as they are stable and safe for intestinal epithelial cells and could improve atopic inflammation.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Jeong
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Yong Park
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Yulah Jeong
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Chang
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Ho Kang
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| |
Collapse
|
23
|
Older CE, Hoffmann AR, Diesel AB. The feline skin microbiome: interrelationship between health and disease. J Feline Med Surg 2023; 25:1098612X231180231. [PMID: 37404049 PMCID: PMC10812058 DOI: 10.1177/1098612x231180231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
PRACTICAL RELEVANCE As with other species, the skin microbiome of cats has been assessed over the past few years utilizing modern technologies. This has resulted in the identification of many more bacterial and fungal organisms compared with what had been recorded historically on the skin in various states of health and disease using culture-based studies. This information is expanding the knowledge of how microbial communities are impacted by various changes in the skin health of cats. More specifically, how these microbial communities change in the face of health and disease, and how various therapeutic interventions affect the cutaneous microbiome, lends a greater understanding of disease pathogenesis and provides a growing area of research for correcting dysbiosis and improving feline skin health. EVIDENCE BASE Most studies on the feline skin microbiome thus far have been descriptive in nature. These provide a framework for the next level of investigations on how various states of health and disease impact the products produced by the cutaneous microbiome (ie, the cutaneous metabolome), as well as how targeted interventions may promote the restoration of balance. AIMS This review aims to summarize what is currently known about the feline cutaneous microbiome and its clinical implications. The role of the skin microbiome in health and disease, the current state of research in this area and the potential for future studies to produce targeted interventions for cats are a particular focus.
Collapse
Affiliation(s)
- Caitlin E Older
- BS, PhD Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA; and Warmwater Aquaculture Research Unit, Agricultural Research Service, US Department of Agriculture, Stoneville, MS, USA
| | - Aline Rodrigues Hoffmann
- DVM, MS, PhD Department of Comparative, Diagnostic and Preventive Medicine, College of Veterinary Medicine, University of Florida - Gainesville, FL, USA
| | - Alison B Diesel
- DVM, DACVD Animal Dermatology Group, Animal Dermatology Clinic - Austin, Austin, TX, USA
| |
Collapse
|
24
|
Kapoor MP, Yamaguchi H, Ishida H, Mizutani Y, Timm D, Abe A. The effects of prebiotic partially hydrolyzed guar gum on skin hydration: A randomized, open-label, parallel, controlled study in healthy humans. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
|
25
|
Lombardi F, Augello FR, Artone S, Bahiti B, Sheldon JM, Giuliani M, Cifone MG, Palumbo P, Cinque B. Efficacy of probiotic Streptococcus thermophilus in counteracting TGF-β1-induced fibrotic response in normal human dermal fibroblasts. J Inflamm (Lond) 2022; 19:27. [PMID: 36536411 PMCID: PMC9764521 DOI: 10.1186/s12950-022-00324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Abnormal and deregulated skin wound healing associated with prolonged inflammation may result in dermal fibrosis. Since the current therapeutic strategies revealed unsatisfactory, the investigation of alternative approaches such as those based on the use of specific probiotic strains could provide promising therapeutic options. In this study, we aimed to evaluate whether the lysate from S. thermophilus could antagonize the fibrogenic effects of TGF-β1 in normal human dermal fibroblasts (NHDF). METHODS NHDF were exposed to TGF-β1 to establish a fibrotic phenotype. Proliferation rate and cell number were measured using the IncuCyte® Live Cell Imager system and the trypan blue dye exclusion test. Phenoconversion markers (α-SMA and fibronectin) and collagen I levels were assessed by western blot and immunofluorescence. The mRNA levels of TGF-β1 were evaluated by RT-PCR. The Smad2/3 phosphorylation level as well as β-catenin and PPARγ expression, were assessed by western blot. The cell contractility function and migration of NHDF were studied using collagen gel retraction assay, and scratch wound healing assay, respectively. The effects of S. thermophilus lysate, alone or combined with TGF-β1, were evaluated on all of the above-listed parameters and markers associated with TGF-β1-induced fibrotic phenotype. RESULTS Exposure to the S. thermophilus lysate significantly reduced the key mediators and events involved in the abnormal activation of myofibroblasts by TGF-β1 within the fibrotic profile. The S. thermophilus treatment significantly reduced cell proliferation, migration, and myo-differentiation. In addition, the treatment with probiotic lysate reduced the α-SMA, fibronectin, collagen-I expression levels, and affected the collagen contraction ability of activated dermal fibroblasts. Moreover, the probiotic targeted the TGF-β1 signaling, reducing Smad2/3 activation, TGF-β1 mRNA level, and β-catenin expression through the upregulation of PPARγ. CONCLUSION This is the first report showing that S. thermophilus lysate had a remarkable anti-fibrotic effect in TGF-β1-activated NHDF by inhibiting Smad signaling. Notably, the probiotic was able to reduce β-catenin and increase PPARγ levels. The findings support our point that S. thermophilus may help prevent or treat hypertrophic scarring and keloids.
Collapse
Affiliation(s)
- Francesca Lombardi
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building “Rita Levi Montalcini” (Delta 6), 67100 L’Aquila, Italy
| | - Francesca Rosaria Augello
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building “Rita Levi Montalcini” (Delta 6), 67100 L’Aquila, Italy
| | - Serena Artone
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building “Rita Levi Montalcini” (Delta 6), 67100 L’Aquila, Italy
| | - Blerina Bahiti
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building “Rita Levi Montalcini” (Delta 6), 67100 L’Aquila, Italy
| | - Jenna Marie Sheldon
- grid.261241.20000 0001 2168 8324Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL USA
| | - Maurizio Giuliani
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building “Rita Levi Montalcini” (Delta 6), 67100 L’Aquila, Italy
| | - Maria Grazia Cifone
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building “Rita Levi Montalcini” (Delta 6), 67100 L’Aquila, Italy
| | - Paola Palumbo
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building “Rita Levi Montalcini” (Delta 6), 67100 L’Aquila, Italy
| | - Benedetta Cinque
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building “Rita Levi Montalcini” (Delta 6), 67100 L’Aquila, Italy
| |
Collapse
|
26
|
Park JY, Lee JY, Kim Y, Kang CH. Lactic Acid Bacteria Improve the Photoprotective Effect via MAPK/AP-1/MMP Signaling Pathway on Skin Fibroblasts. Microorganisms 2022; 10:2481. [PMID: 36557732 PMCID: PMC9782026 DOI: 10.3390/microorganisms10122481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Ultraviolet B (UVB) exposure causes a breakdown of collagen, oxidative stress, and inflammation. UVB activates mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and matrix metalloproteinases (MMPs). In this study, we evaluated 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radical scavenging activity and the photoprotective effect of lactic acid bacteria LAB strains, including Lactobacillus, Bifidobacterium, and Streptococcus genera in UVB-exposed skin fibroblasts. Nine LAB strains displayed antioxidant activity by regulating superoxide dismutase in UVB-exposed skin fibroblasts. Four LAB strains (MG4684, MG5368, MG4511, and MG5140) recovered type I procollagen level by inhibiting MMPs, MAPK, and AP-1 protein expression. Additionally, these four strains reduced the expression of proinflammatory cytokines by inhibiting oxidative stress. Therefore, L. fermentum MG4684, MG5368, L. rhamnosus MG4511, and S. thermophilus MG5140 are potentially photoprotective.
Collapse
Affiliation(s)
| | | | | | - Chang-Ho Kang
- MEDIOGEN, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Republic of Korea
| |
Collapse
|
27
|
Lee JY, Park JY, Kim Y, Kang CH. Protective Effect of Bifidobacterium animalis subs. lactis MG741 as Probiotics against UVB-Exposed Fibroblasts and Hairless Mice. Microorganisms 2022; 10:microorganisms10122343. [PMID: 36557596 PMCID: PMC9782240 DOI: 10.3390/microorganisms10122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Skin photoaging, which causes wrinkles, increased epidermal thickness, and rough skin texture, is induced by ultraviolet B (UVB) exposure. These symptoms by skin photoaging have been reported to be involved in the reduction of collagen by the expression of matrix metalloproteinases (MMPs) and activator protein-1 (AP-1). This study investigated the protective effects of Bifidobacterium animalis subsp. lactis MG741 (Bi. lactis MG741) in Hs-68 fibroblasts and hairless mice (HR-1) following UVB exposure. We demonstrated that the Bi. lactis MG741 reduces wrinkles and skin thickness by downregulating MMP-1 and MMP-3, phosphorylation of extracellular signal-regulated kinase (ERK), and c-FOS in fibroblasts and HR-1. Additionally, in UVB-irradiated dorsal skin of HR-1, Bi. lactis MG741 inhibits the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), an inflammation-related factor. Thus, Bi. lactis MG741 has the potential to prevent wrinkles and skin inflammation by modulating skin photoaging markers.
Collapse
|
28
|
Alves E, Gregório J, Rijo P, Rosado C, Monteiro Rodrigues L. Kefir and the Gut-Skin Axis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113791. [PMID: 36360671 PMCID: PMC9653948 DOI: 10.3390/ijerph192113791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 05/31/2023]
Abstract
The human gastrointestinal (GI) tract is a dynamic system influenced by various environmental factors, including diet and exposure to ingested probiotics, and prone to various functional impairments. These impairments are mostly related to any combination of motility alterations, visceral hypersensitivity, and changes in the mucosa, immune function, and intestinal microbiota. Intestinal microbial imbalance and immunological dysfunction have been linked to several chronic inflammatory disease states, including atopic dermatitis (AD). Disruption of the intestinal microbial balance, known as gut dysbiosis, has been demonstrated to negatively impact skin function by increasing the intestinal permeability. Consequently, the gut-skin axis may be receptive to modulation via dietary modification, namely, via ingestion of probiotics, thus representing interesting potential as an AD therapy. Kefir is an ancient probiotic food that has been demonstrated to positively impact the general condition of the digestive system, including the intestinal microbiota. However, the literature is still scarce on the impact on the gut-skin relationship of a diet containing kefir. This study, continuing research in our group, aimed to evaluate the impact of kefir intake on GI symptoms in healthy and AD skin subjects. Results showed a significant improvement in GI status, namely, in functional constipation, abdominal pain intensity, and abdominal distension, thus supporting the hypothesis that kefir intake is positively associated with improvement in GI status. The existence of a relationship between the improvement in skin parameters and the improvement in GI status after kefir consumption was established, thus reinforcing the role of homemade kefir as a potential modulator of the gut-skin axis in both healthy and atopic individuals.
Collapse
Affiliation(s)
- Emília Alves
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Health Sciences Ph.D. Program, University of Alcalá, Carretera Madrid-Barcelona, Km 33.100, 28805 Alcalá de Henares, Spain
| | - João Gregório
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Patrícia Rijo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Catarina Rosado
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Luis Monteiro Rodrigues
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|
29
|
Bjørklund G, Shanaida M, Lysiuk R, Butnariu M, Peana M, Sarac I, Strus O, Smetanina K, Chirumbolo S. Natural Compounds and Products from an Anti-Aging Perspective. Molecules 2022; 27:7084. [PMID: 36296673 PMCID: PMC9610014 DOI: 10.3390/molecules27207084] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is a very complex process that is accompanied by a degenerative impairment in many of the major functions of the human body over time. This inevitable process is influenced by hereditary factors, lifestyle, and environmental influences such as xenobiotic pollution, infectious agents, UV radiation, diet-borne toxins, and so on. Many external and internal signs and symptoms are related with the aging process and senescence, including skin dryness and wrinkles, atherosclerosis, diabetes, neurodegenerative disorders, cancer, etc. Oxidative stress, a consequence of the imbalance between pro- and antioxidants, is one of the main provoking factors causing aging-related damages and concerns, due to the generation of highly reactive byproducts such as reactive oxygen and nitrogen species during the metabolism, which result in cellular damage and apoptosis. Antioxidants can prevent these processes and extend healthy longevity due to the ability to inhibit the formation of free radicals or interrupt their propagation, thereby lowering the level of oxidative stress. This review focuses on supporting the antioxidant system of the organism by balancing the diet through the consumption of the necessary amount of natural ingredients, including vitamins, minerals, polyunsaturated fatty acids (PUFA), essential amino acids, probiotics, plants' fibers, nutritional supplements, polyphenols, some phytoextracts, and drinking water.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Ioan Sarac
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Oksana Strus
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Kateryna Smetanina
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Volyn National University, 43025 Lutsk, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134 Verona, Italy
| |
Collapse
|
30
|
Textural and Functional Properties of Skimmed and Whole Milk Fermented by Novel Lactiplantibacillus plantarum AG10 Strain Isolated from Silage. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Milk fermentation by lactic acid bacteria both enhances its nutritional value and provides probiotic strains to correct the intestinal microflora. Here, we show the comparative analysis of milk fermented with the new strain, Lactiplantibacillus plantarum AG10, isolated from silage and the industrial strain Lactobacillus delbrukii subs. bulgaricus. While the milk acidification during fermentation with L. plantarum AG10 was lower compared with L. bulgaricus, milk fermented with L. plantarum AG10 after a 14-day storage period retained a high level of viable cells and was characterized by an increased content of exopolysaccharides and higher viscosity. The increased EPS production led to clot formation with higher density on microphotographs and increased firmness and cohesiveness of the product compared with L. bulgaricus-fermented milk. Furthermore, the L. plantarum AG10-fermented milk exhibited increased radical-scavenging activity assuming lower fat oxidation during storage. Taken together, these data suggest that L. plantarum AG10 seems to be a promising starter culture for dairy products with lowered levels of lactic acid, which is important for people with increased gastric acid formation.
Collapse
|
31
|
Le Bourgot C, Meunier C, Gaio E, Murat V, Micheletto M, Tedesco E, Benetti F. Effects of short chain fructo-oligosaccharides on selected skin bacteria. Sci Rep 2022; 12:9702. [PMID: 35690598 PMCID: PMC9188601 DOI: 10.1038/s41598-022-13093-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/20/2022] [Indexed: 11/09/2022] Open
Abstract
The human skin microbiota plays a key role in the maintenance of healthy skin, ensuring protection and biological barrier by competing with pathogens and by closely communicating with the immune system. The development of approaches which preserve or restore the skin microbiota represents a novel target for skincare applications. Prebiotics could be applied to balance almost any microbial community to achieve advantageous effects. However, information about their effectiveness as skin microbiota modulators is limited. The objective of the current study was to evaluate the effects of short chain fructo-oligosaccharides (scFOS) from sugar beet (DP 3-5), well-recognised prebiotics, on some representative bacterial strains of the skin microbiota. We measured the growth and competitive activity of these specific bacteria for the use of scFOS as energy source in minimal medium and in a reconstructed human epithelium (RHE) in vitro model. In minimal growth medium, scFOS promoted and sustained the growth of Staphylococcus epidermidis up to 24 h, considered a beneficial skin commensal bacterium, while inhibiting both Cutibacterium acnes and Staphylococcus aureus growth, regarded as opportunistic pathogens. S. epidermidis showed the highest colonization potential and 1% scFOS was effective in shifting the competition in favour of S. epidermidis with respect to C. acnes in the RHE model. This latter effect was observed following 24 h of exposure, suggesting a long-term effect of scFOS in a highly skin dynamic environment. Therefore, scFOS could be effectively implemented in skincare formulations for recovering skin microbiota homeostasis.
Collapse
Affiliation(s)
- Cindy Le Bourgot
- Tereos, R&D Department, Rue de Senlis, 77290, Moussy-Le-Vieux, France.
| | - Claire Meunier
- Tereos, R&D Department, Rue de Senlis, 77290, Moussy-Le-Vieux, France
| | - Elisa Gaio
- ECSIN-ECAMRICERT SRL Laboratory, Corso Stati Uniti, 4, 35127, Padua, Italy
| | - Vincent Murat
- Tereos, R&D Department, Rue de Senlis, 77290, Moussy-Le-Vieux, France
| | - Marta Micheletto
- ECSIN-ECAMRICERT SRL Laboratory, Corso Stati Uniti, 4, 35127, Padua, Italy
| | - Erik Tedesco
- ECSIN-ECAMRICERT SRL Laboratory, Corso Stati Uniti, 4, 35127, Padua, Italy
| | - Federico Benetti
- ECSIN-ECAMRICERT SRL Laboratory, Corso Stati Uniti, 4, 35127, Padua, Italy
| |
Collapse
|
32
|
Abstract
Skin aging usually results from intrinsic or extrinsic stress. Photodamage promotes skin damage and stimulates the skin, manifesting as wrinkles, dryness, roughness, and loss of elasticity. We have previously found that blackberry (Rubus fruticosus B) fermented by Lactobacillus plantarum JBMI F5, designated BB-1000, showed an in vitro and in vivo anti-skin-aging activity. In the present study, we have further evaluated the anti-aging effect of BB-1000 via a randomized, double-blind, and placebo-controlled clinical trial. The trial included 102 volunteers aged 35 to 59 years who have dry skin and wrinkles. Subjects took BB-1000 or a placebo orally at 800 mg/day for 12 weeks. Skin hydration and degree of wrinkles around the eyes were measured at weeks 6 and 12. Skin hydration had no significant effect in both groups at weeks 6 and 12. Otherwise, volunteers in the BB-1000 group had a significant reduction in eye wrinkle grade at week 12. These findings suggest that BB-1000 may be considered a candidate anti-aging agent for preventing skin wrinkles as a nutricosmetic agent.
Collapse
|
33
|
Comparative Insights into the Skin Beneficial Properties of Probiotic Lactobacillus Isolates of Skin Origin. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7728789. [PMID: 35601147 PMCID: PMC9122713 DOI: 10.1155/2022/7728789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
In recent times, probiotics have been emerging as one of valuable cosmetic resources. This work was undertaken to evaluate and compare the skin beneficial properties of three Lactobacillus strains, namely, L. plantarum SB202, L. fermentum SB101, and L. paraplantarum SB401, originally isolated from the healthy skins of Koreans. The Lactobacillus isolates were individually grown in MRS broth, and the corresponding cell-free conditioned mediums (CMs), LP202, LF101 and LPP401, were prepared for analyzing diverse cosmetic potentials at a comparative perspective. The superoxide radical and nitrite ion scavenging activities of the CMs were in the orders of LPP401 ≥ LF101 > LP202 and LPP401 > LF101≒LPP202, respectively. They attenuated the lipopolysaccharide-induced reactive oxygen species (ROS) and nitrite ion levels in RAW264.7 murine macrophages both in the order of LPP401 ≥ LF101 > LP202, implying their anti-inflammatory properties. They exhibited antityrosinase activities in the order of LPP401 > LF101 ≥ LP202 and diminished α-melanocyte-stimulating hormone-induced melanin levels in B16F10 melanoma cells in the order of LPP401≒LF101 > LP202, suggesting their skin whitening activities. They enhanced cornfield envelope formation in HaCaT keratinocytes in the order of LPP401 > LF101 > LP202. They inhibited the in vitro hyaluronidase and elastase activities in the orders of LPP401 > LP202 ≥ LF101 and LPP401 ≥ LP202 > LF101, respectively. Their enhancing properties on the synthesis of procollagen type I in normal human dermal fibroblasts were in the order of LF101≒LPP401 > >LP202. The CMs possess various cosmetic characteristics, such as antioxidant, skin whitening, antiaging, barrier improving, and anti-inflammatory activities. LPP401, the CM prepared from L. paraplantarum SB401, has been evaluated to be more desirable cosmetic resource than LP202 and LF101.
Collapse
|
34
|
Eco-evolutionary impact of ultraviolet radiation (UVR) exposure on microorganisms, with a special focus on our skin microbiome. Microbiol Res 2022; 260:127044. [DOI: 10.1016/j.micres.2022.127044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
|
35
|
Vitek M, Gosenca Matjaž M, Roškar R, Gašperlin M, Zvonar Pobirk A. A comparative study of lipid-based drug delivery systems with different microstructure for combined dermal administration of antioxidant vitamins. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2037437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mercedes Vitek
- Department of Pharmaceutical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Mirjam Gosenca Matjaž
- Department of Pharmaceutical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Roškar
- Department of Biopharmaceutics and Pharmacokinetics, University of Ljubljana, Ljubljana, Slovenia
| | - Mirjana Gašperlin
- Department of Pharmaceutical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Alenka Zvonar Pobirk
- Department of Pharmaceutical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
36
|
Hertiš Petek T, Petek M, Petek T, Marčun Varda N. Emerging Links between Microbiome Composition and Skin Immunology in Diaper Dermatitis: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:112. [PMID: 35053737 PMCID: PMC8775025 DOI: 10.3390/children9010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
Diaper dermatitis is a common type of irritant contact dermatitis occurring in infants and toddlers. Its occurrence is triggered by an unfavorable environment under the diaper, damage to skin integrity by fecal enzyme degradation, overhydration and disruption of the lipid bilayer structure facilitating the entry of irritants and microorganisms. In diaper dermatitis development, the central proinflammatory cytokines are IL-1α, IL-8 and TNF-α. The initial release of IL-1α and TNF-α starts a further cascade of pro-inflammatory chemo- and cytokines, resulting in inflammation and erythema of the skin. A recently recognized factor in diaper dermatitis is the composition of the skin microbiome; common pathogenic strains Candida albicans and Staphylococcus aureus are associated with skin irritation. The resulting impaired microbiome composition produces a local inflammatory response and may thus worsen the initial dermatitis clinical presentation and subsequent healing. Introduction of probiotics is an attractive treatment for microbiome modulation, which has shown success in other skin conditions in adults and children. Probiotics are thought to work as a protective shield against irritants, maintain low skin pH, secrete beneficial metabolites, and block pathogen invasion. There is preliminary evidence that certain probiotics given orally or topically could be used as a gentle intervention in diaper dermatitis.
Collapse
Affiliation(s)
- Tjaša Hertiš Petek
- Department of Pediatrics, University Medical Center Maribor, 2000 Maribor, Slovenia; (T.P.); (N.M.V.)
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia;
| | - Maya Petek
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia;
| | - Tadej Petek
- Department of Pediatrics, University Medical Center Maribor, 2000 Maribor, Slovenia; (T.P.); (N.M.V.)
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia;
| | - Nataša Marčun Varda
- Department of Pediatrics, University Medical Center Maribor, 2000 Maribor, Slovenia; (T.P.); (N.M.V.)
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia;
| |
Collapse
|
37
|
Gueniche A, Nielsen M. Introduction to probiotic fractions and Vichy volcanic mineralizing water: two key ingredients for stressed skin. J Eur Acad Dermatol Venereol 2022; 36 Suppl 2:3-4. [PMID: 34979588 DOI: 10.1111/jdv.17783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Affiliation(s)
- A Gueniche
- L'Oréal Research & Innovation, Chevilly Larue, France
| | - M Nielsen
- Laboratoires Vichy, Levallois Perret, France
| |
Collapse
|
38
|
Mahmud MR, Akter S, Tamanna SK, Mazumder L, Esti IZ, Banerjee S, Akter S, Hasan MR, Acharjee M, Hossain MS, Pirttilä AM. Impact of gut microbiome on skin health: gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes 2022; 14:2096995. [PMID: 35866234 PMCID: PMC9311318 DOI: 10.1080/19490976.2022.2096995] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/08/2023] Open
Abstract
The human intestine hosts diverse microbial communities that play a significant role in maintaining gut-skin homeostasis. When the relationship between gut microbiome and the immune system is impaired, subsequent effects can be triggered on the skin, potentially promoting the development of skin diseases. The mechanisms through which the gut microbiome affects skin health are still unclear. Enhancing our understanding on the connection between skin and gut microbiome is needed to find novel ways to treat human skin disorders. In this review, we systematically evaluate current data regarding microbial ecology of healthy skin and gut, diet, pre- and probiotics, and antibiotics, on gut microbiome and their effects on skin health. We discuss potential mechanisms of the gut-skin axis and the link between the gut and skin-associated diseases, such as psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. This review will increase our understanding of the impacts of gut microbiome on skin conditions to aid in finding new medications for skin-associated diseases.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | | | | |
Collapse
|
39
|
Alves E, Gregório J, Baby AR, Rijo P, Rodrigues LM, Rosado C. Homemade Kefir Consumption Improves Skin Condition-A Study Conducted in Healthy and Atopic Volunteers. Foods 2021; 10:foods10112794. [PMID: 34829075 PMCID: PMC8622502 DOI: 10.3390/foods10112794] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Diet has a fundamental role in the homeostasis of bodily functions, including the skin, which, as an essential protective barrier, plays a crucial role in this balance. The skin and intestine appear to share a series of indirect metabolic pathways, in a dual relationship known as the “gut-skin axis”. Hence, the gut-skin axis might be receptive to modulation via dietary modification, where probiotics can be included, thus representing a potential therapeutic target in inflammatory skin diseases, such as atopic dermatitis (AD), in order to control and/or ameliorate symptoms. Kefir is one of the most ancient fermented foods, with probiotic characteristics that have been associated with a wide variety of health-promoting benefits, and it presents a microbiological diversity that makes its application as a probiotic in the gut-skin relationship of the utmost interest. However, the impact of a diet containing kefir on skin health has yet to be reported in scientific literature. This study aimed to assess the impact of the intake of homemade kefir in the skin of healthy and atopic volunteers. The intervention resulted in a boost on barrier function in both skin types verified only in the respective kefir intake groups. An improvement in the degree of severity of AD was also confirmed for the kefir intake group. Atopic individuals may benefit from kefir intake, especially in regard to their skin hydration. Finally, the effects observed on skin barrier function in this study probably culminate from the effects of all the ingredients in kefir, including the complex microbiota, its metabolites and macro- and micronutrients resulting from the fermentation. This work opens the way for more advanced research on the impact of the probiotic kefir on cutaneous health, further clarifying its mechanism of action namely via gut-skin axis.
Collapse
Affiliation(s)
- Emília Alves
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (J.G.); (P.R.)
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Carretera Madrid-Barcelona, Km 33.100, 28805 Alcalá de Henares, Spain
| | - João Gregório
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (J.G.); (P.R.)
| | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Pharmacy, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Patrícia Rijo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (J.G.); (P.R.)
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Luis M. Rodrigues
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (J.G.); (P.R.)
- Correspondence: (L.M.R.); (C.R.)
| | - Catarina Rosado
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (J.G.); (P.R.)
- Correspondence: (L.M.R.); (C.R.)
| |
Collapse
|
40
|
Liu C, Tseng YP, Chan LP, Liang CH. The potential of Streptococcus thermophiles (TCI633) in the anti-aging. J Cosmet Dermatol 2021; 21:2635-2647. [PMID: 34587358 DOI: 10.1111/jocd.14445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Streptococcus thermophilus (TCI633) is a probiotic that has been newly isolated from human breast milk, and it can produce hyaluronic acid (HA) when colonizing the gastrointestinal (GI) tract of rodents and humans. A recent study has the established that TCI633 can alleviate synovial tissue inflammation and has potential to mitigate the progression of osteoarthritis. OBJECTIVE TCI633 has not been available for use in skincare and this preliminary clinical study will assess its improvement of the skin. METHODS In this study, DNA protection, Hyaluronidase assay, cell viability, and collagen synthesis on human fibroblasts of TCI633 were assessed. Subjects were enrolled in this clinical study and randomly assigned to the TCI633 or placebo group. Each subject was informed to intake two tablets daily for 8 weeks. Each subject was required to undergo skin condition inspection at weeks 0, 4, and 8 and hematology tests to monitor HA, superoxide dismutase (SOD) and catalase levels, and kidney and liver function at weeks 0 and 8. RESULTS The effects of TCI633 supplementation, including the promotion of skin cell proliferation, the increase of their collagen content, their protection against DNA damage, and the inhibition of hyaluronidase activities, are investigated. Subjects were recruited for an 8-week long clinical trial to confirm the efficacy of TCI633 in improving the serum biochemical HA, SOD and catalase levels, and anti-skin age markers. CONCLUSIONS This work provides an alternative approach to improving health, indicating the potential of TCI633 supplementation to delay the aging of skin and improve its condition.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Health and Beauty, Kaohsiung, Taiwan.,Department of Optometry, Kaohsiung, Taiwan.,Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Ya-Ping Tseng
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Leong-Perng Chan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hua Liang
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
41
|
Renye JA, White AK, Hotchkiss AT. Identification of Lactobacillus Strains Capable of Fermenting Fructo-Oligosaccharides and Inulin. Microorganisms 2021; 9:microorganisms9102020. [PMID: 34683341 PMCID: PMC8537702 DOI: 10.3390/microorganisms9102020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/14/2023] Open
Abstract
Novel probiotic strains that can ferment prebiotics are important for functional foods. The utilization of prebiotics is strain specific, so we screened 86 Lactobacillus strains and compared them to Bifidobacterium breve 2141 for the ability to grow and produce SCFA when 1% inulin or fructo-oligosaccharides (FOS) were provided as the carbon source in batch fermentations. When grown anaerobically at 32 °C, ten Lactobacillus strains grew on both prebiotic substrates (OD600 ≥ 1.2); while Lactobacillus coryniformis subsp. torquens B4390 grew only in the presence of inulin. When the growth temperature was increased to 37 °C to simulate the human body temperature, four of these strains were no longer able to grow on either prebiotic. Additionally, L. casei strains 4646 and B441, and L. helveticus strains B1842 and B1929 did not require anaerobic conditions for growth on both prebiotics. Short-chain fatty acid analysis was performed on cell-free supernatants. The concentration of lactic acid produced by the ten Lactobacillus strains in the presence of prebiotics ranged from 73-205 mM. L. helveticus B1929 produced the highest concentration of acetic acid ~19 mM, while L. paraplantarum B23115 and L. paracasei ssp. paracasei B4564 produced the highest concentrations of propionic (1.8-4.0 mM) and butyric (0.9 and 1.1 mM) acids from prebiotic fermentation. L. mali B4563, L. paraplantarum B23115 and L. paracasei ssp. paracasei B4564 were identified as butyrate producers for the first time. These strains hold potential as synbiotics with FOS or inulin in the development of functional foods, including infant formula.
Collapse
|
42
|
Pistone D, Meroni G, Panelli S, D’Auria E, Acunzo M, Pasala AR, Zuccotti GV, Bandi C, Drago L. A Journey on the Skin Microbiome: Pitfalls and Opportunities. Int J Mol Sci 2021; 22:9846. [PMID: 34576010 PMCID: PMC8469928 DOI: 10.3390/ijms22189846] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022] Open
Abstract
The human skin microbiota is essential for maintaining homeostasis and ensuring barrier functions. Over the years, the characterization of its composition and taxonomic diversity has reached outstanding goals, with more than 10 million bacterial genes collected and cataloged. Nevertheless, the study of the skin microbiota presents specific challenges that need to be addressed in study design. Benchmarking procedures and reproducible and robust analysis workflows for increasing comparability among studies are required. For various reasons and because of specific technical problems, these issues have been investigated in gut microbiota studies, but they have been largely overlooked for skin microbiota. After a short description of the skin microbiota, the review tackles methodological aspects and their pitfalls, covering NGS approaches and high throughput culture-based techniques. Recent insights into the "core" and "transient" types of skin microbiota and how the manipulation of these communities can prevent or combat skin diseases are also covered. Finally, this review includes an overview of the main dermatological diseases, the changes in the microbiota composition associated with them, and the recommended skin sampling procedures. The last section focuses on topical and oral probiotics to improve and maintain skin health, considering their possible applications for skin diseases.
Collapse
Affiliation(s)
- Dario Pistone
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (S.P.); (A.R.P.); (G.V.Z.)
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Gabriele Meroni
- Department of Biomedical Surgical and Dental Sciences-One Health Unit, University of Milan, 20133 Milan, Italy;
| | - Simona Panelli
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (S.P.); (A.R.P.); (G.V.Z.)
| | - Enza D’Auria
- Department of Pediatrics, Children’s Hospital Vittore Buzzi, University of Milan, 20154 Milan, Italy; (E.D.); (M.A.)
| | - Miriam Acunzo
- Department of Pediatrics, Children’s Hospital Vittore Buzzi, University of Milan, 20154 Milan, Italy; (E.D.); (M.A.)
| | - Ajay Ratan Pasala
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (S.P.); (A.R.P.); (G.V.Z.)
| | - Gian Vincenzo Zuccotti
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (S.P.); (A.R.P.); (G.V.Z.)
- Department of Pediatrics, Children’s Hospital Vittore Buzzi, University of Milan, 20154 Milan, Italy; (E.D.); (M.A.)
| | - Claudio Bandi
- Pediatric Clinical Research Center “Invernizzi”, Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Lorenzo Drago
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| |
Collapse
|
43
|
Moskovicz V, Ben-El R, Horev G, Mizrahi B. Skin microbiota dynamics following B. subtilis formulation challenge: an in vivo study in mice. BMC Microbiol 2021; 21:231. [PMID: 34418955 PMCID: PMC8379746 DOI: 10.1186/s12866-021-02295-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/12/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Modulating the microbiota is a leading-edge strategy for the restoration and maintenance of a healthy, balanced environment. The use of health-promoting bacteria has demonstrated some potential benefits as an alternative for skin microbiota intervention. Here, we investigate the manipulation of mice skin microbiota using B. subtilis incorporated into a supportive Pluronic F-127 hydrogel formulation. The formula plays an important role in delivering the bacteria to the desired action site. RESULTS The B. subtilis challenge induced a shift in the composition and abundance of the skin microbiota. Containment of B. subtilis in the Pluronic F-127 hydrogel accelerated bacterial modulation compared with free B. subtilis. The abundance of both Staphylococcus and Corynebacterium spp. was altered as a result of the live bacterial intervention: the abundance of Corynebacterium increased while that of Staphylococcus decreased. Four days after last application of the B. subtilis formulation, B. subtilis counts returned to its initial level. CONCLUSIONS B. subtilis intervention can induce a shift in the skin microbiota, influencing the abundance of commensal, beneficial, and pathogenic bacteria. Containment of B. subtilis in Pluronic hydrogel accelerates the microbial alteration, probably by facilitating bacterial attachment and supporting continuous growth. Our results reveal the ability of B. subtilis in Pluronic to modulate the skin microbiota composition, suggesting that the formulation holds therapeutic potential for skin disease treatment.
Collapse
Affiliation(s)
- Veronica Moskovicz
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Rina Ben-El
- Bioinformatics Knowledge Unit, The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel.,Faculty of Biology, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Guy Horev
- Bioinformatics Knowledge Unit, The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Boaz Mizrahi
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
44
|
McLoughlin IJ, Wright EM, Tagg JR, Jain R, Hale JDF. Skin Microbiome-The Next Frontier for Probiotic Intervention. Probiotics Antimicrob Proteins 2021; 14:630-647. [PMID: 34383234 DOI: 10.1007/s12602-021-09824-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 01/16/2023]
Abstract
The skin is the largest organ in the human body, and it orchestrates many functions that are fundamentally important for our survival. Although the skin might appear to present a relatively inhospitable or even hostile environment, a multitude of commensals and also some potentially pathogenic microorganisms have successfully adapted to survive and/or thrive within the diverse ecological niches created by the skin's topographical architecture. Dysbiosis within these microbial populations can result in the emergence and pathological progression of skin diseases. Unsurprisingly, this has led to a new focus of research both for the medical dermatology and cosmetic industries that is concerned with modulation of the skin microbiome to help address common microbially mediated or modulated conditions such as acne, body odour, and atopic dermatitis. This review presents an overview of our current understanding of the complex relationship of the skin with its microbiome and then introduces the concept of probiotic intervention for the management of microbial dysbiosis within the skin ecosystem.
Collapse
Affiliation(s)
| | - Eva M Wright
- School of Pharmacy, University of Otago, PO Box 56, Dunedin, New Zealand
| | - John R Tagg
- Blis Technologies, 81 Glasgow St, South Dunedin, 9012, Dunedin, New Zealand
| | - Rohit Jain
- Blis Technologies, 81 Glasgow St, South Dunedin, 9012, Dunedin, New Zealand
| | - John D F Hale
- Blis Technologies, 81 Glasgow St, South Dunedin, 9012, Dunedin, New Zealand.
| |
Collapse
|
45
|
Sharma G, Sharma M, Sood R, Neelamraju J, Lakshmi SG, Madempudi RS, Rishi P, Kaur IP. Self-preserving gelatin emulgel containing whole cell probiotic for topical use: preclinical safety, efficacy, and germination studies. Expert Opin Drug Deliv 2021; 18:1777-1789. [PMID: 34176401 DOI: 10.1080/17425247.2021.1947239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Dermal disorders, owing to disruption of skin-microflora balance can be served by direct application of probiotics. However, there are few topical whole probiotic products in market because of (i) loss of viability during manufacturing and storage(ii) inadequate germination and retention on skin. Presently we report a novel (IPA 201811010395) emulgel incorporatingBacillus coagulans (Unique IS-2) for possible topical use. METHODS Developed emulgel was characterized for particle size, texture, rheology, morphology, water activity, self-preservation, safety, and stability. RESULTS We successfully incorporated 97 ± 5% (1.7×108CFU/g) Bacillus coagulans in honeycomb network of gelatin nanoparticles (≈600 nm). Maintenance of CFU at 30 ± 2°C, 65 ± 5% RH for 3 months confirmed viability of incorporated probiotic. Low water-activity (0.66-0.732aw) and challenge test (0.05-0.5% viability) confirmed its self-preserving nature. Early initiation (6 h) and complete (24 h) spore germination was evident onrabbit skin. No cytotoxicity, dermal irritation or translocation established its safety. Faster wound closure and reduced oxidative stress (LPO, catalase, SOD, glutathione reductase) in comparison to Soframycin® (1%w/w Framycetin) was observed in excision wound in mice. CONCLUSIONS A whole cell probiotic formulation that is self-preserving, maintains probiotic viability, guarantees germination, and has wound healing properties was successfully formulated.
Collapse
Affiliation(s)
- Garima Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Manuhaar Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Rishav Sood
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | | | | | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
46
|
Juncan AM, Moisă DG, Santini A, Morgovan C, Rus LL, Vonica-Țincu AL, Loghin F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021; 26:molecules26154429. [PMID: 34361586 PMCID: PMC8347214 DOI: 10.3390/molecules26154429] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
This study proposes a review on hyaluronic acid (HA) known as hyaluronan or hyaluronate and its derivates and their application in cosmetic formulations. HA is a glycosaminoglycan constituted from two disaccharides (N-acetylglucosamine and D-glucuronic acid), isolated initially from the vitreous humour of the eye, and subsequently discovered in different tissues or fluids (especially in the articular cartilage and the synovial fluid). It is ubiquitous in vertebrates, including humans, and it is involved in diverse biological processes, such as cell differentiation, embryological development, inflammation, wound healing, etc. HA has many qualities that recommend it over other substances used in skin regeneration, with moisturizing and anti-ageing effects. HA molecular weight influences its penetration into the skin and its biological activity. Considering that, nowadays, hyaluronic acid has a wide use and a multitude of applications (in ophthalmology, arthrology, pneumology, rhinology, aesthetic medicine, oncology, nutrition, and cosmetics), the present study describes the main aspects related to its use in cosmetology. The biological effect of HA on the skin level and its potential adverse effects are discussed. Some available cosmetic products containing HA have been identified from the brand portfolio of most known manufacturers and their composition was evaluated. Further, additional biological effects due to the other active ingredients (plant extracts, vitamins, amino acids, peptides, proteins, saccharides, probiotics, etc.) are presented, as well as a description of their possible toxic effects.
Collapse
Affiliation(s)
- Anca Maria Juncan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
- SC Aviva Cosmetics SRL, 71A Kövari Str., 400217 Cluj-Napoca, Romania
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Dana Georgiana Moisă
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Luca-Liviu Rus
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Andreea Loredana Vonica-Țincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
| |
Collapse
|
47
|
Lousada MB, Lachnit T, Edelkamp J, Rouillé T, Ajdic D, Uchida Y, Di Nardo A, Bosch TCG, Paus R. Exploring the human hair follicle microbiome. Br J Dermatol 2021; 184:802-815. [PMID: 32762039 DOI: 10.1111/bjd.19461] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 12/31/2022]
Abstract
Human hair follicles (HFs) carry complex microbial communities that differ from the skin surface microbiota. This likely reflects that the HF epithelium differs from the epidermal barrier in that it provides a moist, less acidic, and relatively ultraviolet light-protected environment, part of which is immune-privileged, thus facilitating microbial survival. Here we review the current understanding of the human HF microbiome and its potential physiological and pathological functions, including in folliculitis, acne vulgaris, hidradenitis suppurativa, alopecia areata and cicatricial alopecias. While reviewing the main human HF bacteria (such as Propionibacteria, Corynebacteria, Staphylococci and Streptococci), viruses, fungi and parasites as human HF microbiome constituents, we advocate a broad view of the HF as an integral part of the human holobiont. Specifically, we explore how the human HF may manage its microbiome via the regulated production of antimicrobial peptides (such as cathelicidin, psoriasin, RNAse7 and dermcidin) by HF keratinocytes, how the microbiome may impact on cytokine and chemokine release from the HF, and examine hair growth-modulatory effects of antibiotics, and ask whether the microbiome affects hair growth in turn. We highlight major open questions and potential novel approaches to the management of hair diseases by targeting the HF microbiome.
Collapse
Affiliation(s)
- M B Lousada
- Monasterium Laboratory, Münster, Germany
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - T Lachnit
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - J Edelkamp
- Monasterium Laboratory, Münster, Germany
| | - T Rouillé
- Monasterium Laboratory, Münster, Germany
| | - D Ajdic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Y Uchida
- Monasterium Laboratory, Münster, Germany
| | - A Di Nardo
- Department of Dermatology, University of California, San Diego, CA, USA
| | - T C G Bosch
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - R Paus
- Monasterium Laboratory, Münster, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| |
Collapse
|
48
|
Rajan K, D’Souza DH, Kim K, Choi JM, Elder T, Carrier DJ, Labbé N. Production and Characterization of High Value Prebiotics From Biorefinery-Relevant Feedstocks. Front Microbiol 2021; 12:675314. [PMID: 33995339 PMCID: PMC8116503 DOI: 10.3389/fmicb.2021.675314] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Hemicellulose, a structural polysaccharide and often underutilized co-product stream of biorefineries, could be used to produce prebiotic ingredients with novel functionalities. Since hot water pre-extraction is a cost-effective strategy for integrated biorefineries to partially fractionate hemicellulose and improve feedstock quality and performance for downstream operations, the approach was applied to process switchgrass (SG), hybrid poplar (HP), and southern pine (SP) biomass at 160°C for 60 min. As a result, different hemicellulose-rich fractions were generated and the chemical characterization studies showed that they were composed of 76-91% of glucan, xylan, galactan, arabinan, and mannan oligosaccharides. The hot water extracts also contained minor concentrations of monomeric sugars (≤18%), phenolic components (≤1%), and other degradation products (≤3%), but were tested for probiotic activity without any purification. When subjected to batch fermentations by individual cultures of Lactobacillus casei, Bifidobacterium bifidum, and Bacteroides fragilis, the hemicellulosic hydrolysates elicited varied responses. SG hydrolysates induced the highest cell count in L. casei at 8.6 log10 cells/ml, whereas the highest cell counts for B. fragilis and B. bifidum were obtained with southern pine (5.8 log10 cells/ml) and HP hydrolysates (6.4 log10 cells/ml), respectively. The observed differences were attributed to the preferential consumption of mannooligosaccharides in SP hydrolysates by B. fragilis. Lactobacillus casei preferentially consumed xylooligosaccharides in the switchgrass and southern pine hydrolysates, whereas B. bifidum consumed galactose in the hybrid poplar hydrolysates. Thus, this study (1) reveals the potential to produce prebiotic ingredients from biorefinery-relevant lignocellulosic biomass, and (2) demonstrates how the chemical composition of hemicellulose-derived sources could regulate the viability and selective proliferation of probiotic microorganisms.
Collapse
Affiliation(s)
- Kalavathy Rajan
- Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Doris H. D’Souza
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Keonhee Kim
- Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Joseph Moon Choi
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Thomas Elder
- USDA-Forest Service, Southern Research Station, Auburn, AL, United States
| | - Danielle Julie Carrier
- Department of Biosystems Engineering and Soil Science, The University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Nicole Labbé
- Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN, United States
- Department of Forestry, Wildlife and Fisheries, The University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| |
Collapse
|
49
|
Park DH, Kim JW, Park HJ, Hahm DH. Comparative Analysis of the Microbiome across the Gut-Skin Axis in Atopic Dermatitis. Int J Mol Sci 2021; 22:ijms22084228. [PMID: 33921772 PMCID: PMC8073639 DOI: 10.3390/ijms22084228] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is a refractory and relapsing skin disease with a complex and multifactorial etiology. Various congenital malformations and environmental factors are thought to be involved in the onset of the disease. The etiology of the disease has been investigated, with respect to clinical skin symptoms and systemic immune response factors. A gut microbiome–mediated connection between emotional disorders such as depression and anxiety, and dermatologic conditions such as acne, based on the comorbidities of these two seemingly unrelated disorders, has long been hypothesized. Many aspects of this gut–brain–skin integration theory have recently been revalidated to identify treatment options for AD with the recent advances in metagenomic analysis involving powerful sequencing techniques and bioinformatics that overcome the need for isolation and cultivation of individual microbial strains from the skin or gut. Comparative analysis of microbial clusters across the gut–skin axis can provide new information regarding AD research. Herein, we provide a historical perspective on the modern investigation and clinical implications of gut–skin connections in AD in terms of the integration between the two microbial clusters.
Collapse
Affiliation(s)
- Dong Hoon Park
- College of Medicine, Kyung Hee University, Seoul 02447, Korea; (D.H.P.); (J.W.K.)
| | - Joo Wan Kim
- College of Medicine, Kyung Hee University, Seoul 02447, Korea; (D.H.P.); (J.W.K.)
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea;
| | - Dae-Hyun Hahm
- College of Medicine, Kyung Hee University, Seoul 02447, Korea; (D.H.P.); (J.W.K.)
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-0366
| |
Collapse
|
50
|
Exopolysaccharide from Lactobacillus plantarum HY7714 Protects against Skin Aging through Skin-Gut Axis Communication. Molecules 2021; 26:molecules26061651. [PMID: 33809637 PMCID: PMC8002305 DOI: 10.3390/molecules26061651] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Skin aging occurs inevitably as a natural result of physiological changes over time. In particular, solar exposure of the skin accounts for up to 90% of skin damage. Numerous studies have examined the ability of dietary constituents to prevent skin aging, and recent research has emphasized the role of functional probiotics in intestinal function and skin aging. However, the mechanism of the interactions between aging and probiotics has not been elucidated yet. The aim of this study was to determine the role of exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) identified as Lactobacillus plantarum HY7714 in regulating tight junctions in intestinal epithelial cells and increasing moisture retention in human dermal fibroblasts cells. We observed that HY7714 EPS controlled intestinal tight junctions in Caco-2 cells by upregulating the genes encoding occludin-1 (OCL-1) and zonula occluden-1 (ZO-1). In addition, HY7714 EPS effectively improved UVB-induced cytotoxicity and hydration capacity in HS68 cells by downregulating production of metalloproteinases (MMPs) and reactive oxygen species (ROS). In summary, HY7714 EPS is an effective anti-aging molecule in skin and may have therapeutic potential against skin diseases and UVB-induced damage. Therefore, HY7714 EPS serves as a functional substance in skin-gut axis communication.
Collapse
|