1
|
Chen D, Zhao R, Liu H, Tian Y, Deng C, Chen C, Liu X, Huang D, Huang Y. Selective glyphosate degradation via oxygen activation using Fe-N-C: Critical role of size exclusion. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137810. [PMID: 40054185 DOI: 10.1016/j.jhazmat.2025.137810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/15/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Selective elimination of glyphosate (PMG) from complex water matrices remains a significant challenge. Metal-nitrogen-carbon (M-N-C) materials derived from metal-organic frameworks (MOFs) offer a promising platform due to their tunable porosity and abundant active sites. In this study, three Fe-N-C-x (x = 5, 10, 20) catalysts with varying pore sizes (2-4 nm) and no surface-active sites were synthesized for PMG degradation under interference with contaminants of different sizes. The results showed Fe-N-C-5 exhibited superior catalytic and anti-interference performance for PMG degradation compared to Fe-N-C-10 and Fe-N-C-20. This was attributed to the greater accessibility of smaller-sized PMG (molecular size 0.9 nm) to the internal active sites through the pore channels, while larger-sized pollutants were effectively excluded. Zeta potential measurements and in situ ATR-FTIR spectroscopy revealed that the entrance of PMG was driven by both electrostatic interaction and coordination bonding between phosphate and Fe in Fe-N-C-5. Quenching experiments combined with electron spin resonance (ESR) analysis confirmed that singlet oxygen (1O2) was the primary reactive oxygen species responsible for PMG degradation in the Fe-N-C-5/O2(Vis) system. This study highlights the robust anti-interference capability of Fe-N-C-5 and provides new insights into its potential applications in advanced water treatment technologies.
Collapse
Affiliation(s)
- Danyi Chen
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China
| | - Rongrong Zhao
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China
| | - Honglin Liu
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China.
| | - Yiqun Tian
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China; Hubei Xingfa Chemicals Group Co., Ltd., Yichang 443002, China
| | - Cuiwen Deng
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China
| | - Chuncheng Chen
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang Liu
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China
| | - Di Huang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yingping Huang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
2
|
Neves Rebello Alves L, Merigueti LP, Casotti MC, Cancian de Araújo B, Silva Dos Reis Trabach R, Batitucci MDCP, Meira DD, de Paula F, de Vargas Wolfgramm Dos Santos E, Louro ID. Glyphosate-based herbicide as a potential risk factor for breast cancer. Food Chem Toxicol 2025; 200:115404. [PMID: 40122508 DOI: 10.1016/j.fct.2025.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 03/09/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Breast cancer is the most common neoplasm in women worldwide, with both genetic and environmental factors playing a role in its development. Glyphosate, the active ingredient in widely used agricultural herbicides, is recognized as a potential carcinogen and endocrine disruptor, making it a candidate for inducing epigenetic modifications linked to breast cancer. This study investigates the effects of the glyphosate-based herbicide Roundup® on non-tumorigenic (MCF10A) and tumorigenic (MCF7 and MDA-MB-231) breast cell lines, focusing on the expression of key breast cancer-related genes. Additionally, the study examines the association with epigenetic modifications and the use of epidrugs to reverse potential alterations, aiming to understand the risks and mechanisms of herbicide action. Results indicate that Roundup® affects cells through a non-estrogenic mechanism, impacting both hormone-dependent and -independent cells with varying toxic and proliferative effects depending on dose and exposure time. Moreover, it altered the expression of breast cancer-related genes such as BRCA1 and BRCA2 at low doses. The use of epigenetic modulators was able to reverse some Roundup®-induced changes, suggesting the herbicide's role in epigenetic modifications. Overall, these findings highlight the importance of understanding glyphosate-based herbicide mechanisms in humans, which could enable personalized prevention strategies to mitigate breast cancer risks.
Collapse
Affiliation(s)
- Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular (NGHM), Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória, 29075-910, ES, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo (UFES), Vitória, 29047-105, ES, Brazil.
| | - Luiza Poppe Merigueti
- Núcleo de Genética Humana e Molecular (NGHM), Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória, 29075-910, ES, Brazil.
| | - Matheus Correia Casotti
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo (UFES), Vitória, 29047-105, ES, Brazil.
| | - Bruno Cancian de Araújo
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo (UFES), Vitória, 29047-105, ES, Brazil.
| | - Raquel Silva Dos Reis Trabach
- Núcleo de Genética Humana e Molecular (NGHM), Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória, 29075-910, ES, Brazil.
| | | | - Débora Dummer Meira
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo (UFES), Vitória, 29047-105, ES, Brazil.
| | - Flávia de Paula
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo (UFES), Vitória, 29047-105, ES, Brazil.
| | | | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular (NGHM), Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória, 29075-910, ES, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Espírito Santo (UFES), Vitória, 29047-105, ES, Brazil.
| |
Collapse
|
3
|
Stone AM, Camp OG, Biernat MM, Bai D, Awonuga AO, Abu-Soud HM. Re-Evaluating the Use of Glyphosate-based Herbicides: Implications on Fertility. Reprod Sci 2025; 32:950-964. [PMID: 40072826 DOI: 10.1007/s43032-025-01834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/23/2025] [Indexed: 03/14/2025]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used herbicides in the United States, accounting for 19% of estimated global use. Although the Environmental Protection Agency (EPA) has reaffirmed that the active ingredient glyphosate (GLY) is safe for humans, recent studies on exposure have suggested association with cancer, metabolic disorders, endocrine disruption and infertility, Alzheimer's and Parkinson's disease, and psychological disorders. Current literature on the effects of GLY exposure on reproductive function suggests potential clinical implications on women's reproductive health, including polycystic ovarian syndrome (PCOS), endometriosis, infertility, and adverse pregnancy outcomes. The continued debate surrounding GLY exposure increasingly exemplifies the public health issue surrounding its consequences on female reproductive health, human fertility, and the potential epigenetic effects. In this review, we discuss the potential mechanisms of toxicity and endocrine disruption of GLY on the female reproductive tract and highlight possible implications of GLY exposure on reproductive health outcomes. GLY adversely affects the female reproductive system through increased oxidative stress, endocrine disruption of reproductive hormones, histological changes in ovarian and uterus tissue, and diminished ovarian function in human cell lines and animals. We conclude that increased research efforts are warranted regarding the safety and efficacy of GBH as it pertains to female reproduction, as well as investments in cost-effective alternatives with the potential to reduce GBH usage.
Collapse
Affiliation(s)
- Alexandra M Stone
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mia M Biernat
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - David Bai
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
4
|
Shi Y, Pu S, Huang N, Wang Y. Association Between Urinary Glyphosate Concentrations and Chronic Obstructive Pulmonary Disease in USA Participants: Evidence from NHANES 2013-2018. Int J Chron Obstruct Pulmon Dis 2025; 20:883-894. [PMID: 40191266 PMCID: PMC11970271 DOI: 10.2147/copd.s500429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/22/2025] [Indexed: 04/09/2025] Open
Abstract
Background Glyphosate has raised health concerns due to its widespread detection in environment and human tissues. Limited evidence exists found in the association between urinary glyphosate concentrations and chronic obstructive pulmonary disease. Methods Analyzing data from 2588 participants, we applied survey-weighted logistic regression models and cubic spline techniques to quantify link between urinary glyphosate concentrations and prevalence of COPD. Further subgroup and sensitivity analyses were also conducted. Results Study revealed a significant association between higher urinary glyphosate concentrations that increased risk of COPD. In fully adjusted models, a one-unit increase in natural logarithm of urinary glyphosate was associated with a 35% increased risk of COPD (OR, 1.35, 95% CI, 1.01-1.82, P=0.043). Subgroup analyses showed consistent associations across different demographic groups with a pronounced association in current smokers and females. Sensitivity analyses and exclusion of participants with chronic kidney disease reinforced the robustness of the findings. Conclusion Findings provide evidence of a positive association between urinary glyphosate concentrations and prevalence of COPD in a representative sample of the adult population at the United States of America. Further studies are needed to investigate the influence of factors and other environmental pollutants on COPD.
Collapse
Affiliation(s)
- Yushan Shi
- Department of Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Shuangshuang Pu
- Department of Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Ning Huang
- Department of Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yan Wang
- Department of Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
- Department of Respiratory and Critical Care, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
5
|
Campbell G, Tscharke BJ, Prasad P, Knight ER, Reeks T, Jackson A, Thomas KV, Mueller JF, Kaserzon SL. Occurrence and fate of glyphosate and AMPA in wastewater treatment plants in Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178964. [PMID: 40022983 DOI: 10.1016/j.scitotenv.2025.178964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Glyphosate is the most used herbicide globally, but little is known of its prevalence in the Australian environment or its behaviour during wastewater treatment. This study examined the concentration of glyphosate and its primary biodegradation product, aminomethylphosphonic acid (AMPA), in influent and effluent from 22 Australian wastewater treatment plants (WWTPs) to inform exposure risks. Glyphosate was detected in all 22 WWTP influent samples, with concentrations ranging from 0.37 to 370 μg/L (mean: 22 ± 76 μg/L). In treated effluent, glyphosate was found in 82 % of samples with concentrations ranging from
Collapse
Affiliation(s)
- Garth Campbell
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| | - Ben J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Pritesh Prasad
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Emma R Knight
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia; Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Tim Reeks
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Aiko Jackson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Sarit L Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
6
|
Morales-Olivares MI, Castrejón-Godínez ML, Mussali-Galante P, Tovar-Sánchez E, Saldarriaga-Noreña HA, Rodríguez A. Characterization of Glyphosate Resistance and Degradation Profile of Caballeronia zhejiangensis CEIB S4-3 and Genes Involved in Its Degradation. Microorganisms 2025; 13:651. [PMID: 40142544 PMCID: PMC11945143 DOI: 10.3390/microorganisms13030651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Herbicides are the most employed pesticides in agriculture worldwide; among them, glyphosate is the most successful herbicide molecule in history. The extensive use of glyphosate has been related to environmental pollution and toxic effects on non-target organisms. Effective remediation and treatment alternatives must be developed to reduce the environmental presence of glyphosate and its adverse effects. Bioremediation using microorganisms has been proposed as a feasible alternative for treating glyphosate pollution; due to this, identifying and characterizing microorganisms capable of biodegrading glyphosate is a key environmental task for the bioremediation of polluted sites by this herbicide. This study characterized the glyphosate resistance profile and degradation capacity of the bacterial strain Caballeronia zhejiangensis CEIB S4-3. According to the results of the bacterial growth inhibition assays on agar plates, C. zhejiangensis CEIB S4-3 can resist exposure to high concentrations of glyphosate, up to 1600 mg/L in glyphosate-based herbicide (GBH) formulation, and 12,000 mg/L of the analytical-grade molecule. In the inhibition assay in liquid media, C. zhejiangensis CEIB S4-3 resisted glyphosate exposure to all concentrations evaluated (25-400 mg/L). After 48 h exposure, GBH caused important bacterial growth inhibition (>80%) at concentrations between 100 and 400 mg/L, while exposure to analytical-grade glyphosate caused bacterial growth inhibitions below 15% in all tested concentrations. Finally, this bacterial strain was capable of degrading 60% of the glyphosate supplemented to culture media (50 mg/L), when used as the sole carbon source, in twelve hours; moreover, C. zhejiangensis CEIB S4-3 can also degrade the primary glyphosate degradation metabolite aminomethylphosphonic acid (AMPA). Genomic analysis revealed the presence of genes associated with the two reported metabolic pathways for glyphosate degradation, the sarcosine and AMPA pathways. This is the first report on the glyphosate degradation capacity and the genes related to its metabolism in a Caballeronia genus strain. The results from this investigation demonstrate that C. zhejiangensis CEIB S4-3 exhibits significant potential for glyphosate biodegradation, suggesting its applicability in bioremediation strategies targeting this contaminant.
Collapse
Affiliation(s)
- Manuel Isaac Morales-Olivares
- Programa de Doctorado en Ciencias Naturales, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico;
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico;
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico;
| | - Hugo Albeiro Saldarriaga-Noreña
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico;
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico;
| |
Collapse
|
7
|
Araújo GTS, Faustino LC, Silva RMP, Cantanhêde W, Gerôncio ETS. Simple graphite/PVC ink-designed paper-based electrodes integrated with a 3D-printed electrochemical device for affordable analyses. Mikrochim Acta 2025; 192:191. [PMID: 40011243 DOI: 10.1007/s00604-025-07041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
A simple and cost-effective methodology for manufacturing a portable electroanalytical device is reported. The device is based on a graphite/polyvinyl chloride (PVC) paper-based electrode coupled to a miniaturized 3D-printed electrochemical cell (3DEC). The 3DEC was designed to ensure the reproducibility of the system by delimitating the paper-based graphite electrode (PGE) area. The disposable PGE was fabricated by paint-brushing a conductive ink based on graphite powder and toluene-free PVC glue, onto a kraft paper. Different weight proportions (wt%) of graphite/PVC were evaluated regarding mechanical stability and electrochemical behavior. Cyclic voltammetric (CV) analysis in the presence of the [Fe(CN)6]3-/4- redox probe has shown that as the wt% of graphite in the ink increased from 50 to 90%, a clear decrease in peak potential separation (ΔEp) and increase in current are observed, indicating an improvement in charge transfer kinetics. However, 90 wt% graphite electrodes have shown poor adhesion to the substrate and easy leaching due to the small amount of PVC (binder). Therefore, the best PGE was achieved using 80:20 wt% graphite/PVC ink (PGE8020). Moreover, scanning electron microscopy (SEM) images and energy dispersive spectroscopy (EDS) mapping revealed a rugous and more uniform deposition of the conductive ink containing 80 wt% graphite. As a proof of concept, the graphite/PVC ink-based disposable electrodes were employed for the detection of 3-nitro-L-tyrosine (3-NLT) in synthetic urine samples, showing a detection limit of 2.85 μmol L-1, and %recovery in synthetic urine between 97 and 109%, highlighting the reliability and applicability of the proposed approach.
Collapse
Affiliation(s)
- Gleidson Thiago Sá Araújo
- Department of Chemistry - PPGQ, State University of Piauí, Campus Poeta Torquato Neto, Pirajá, Teresina, PI, 64002-150, Brazil
| | - Lucas Costa Faustino
- Department of Chemistry - PPGQ, Federal University of Piauí, Campus Universitário Ministro Petrônio Portella, Teresina, PI, 64049-550, Brazil
| | - Rejane Maria Pereira Silva
- Department of Chemistry - PPGQ, State University of Piauí, Campus Poeta Torquato Neto, Pirajá, Teresina, PI, 64002-150, Brazil
| | - Welter Cantanhêde
- Department of Chemistry - PPGQ, Federal University of Piauí, Campus Universitário Ministro Petrônio Portella, Teresina, PI, 64049-550, Brazil
| | - Everson Thiago Santos Gerôncio
- Department of Chemistry - PPGQ, State University of Piauí, Campus Poeta Torquato Neto, Pirajá, Teresina, PI, 64002-150, Brazil.
- Department of Chemistry - PPGQ, Federal University of Piauí, Campus Universitário Ministro Petrônio Portella, Teresina, PI, 64049-550, Brazil.
| |
Collapse
|
8
|
Li W, Wang K, Wang P, Yang P, Xu S, Tong J, Zhang Y, Yang Y, Han L, Ye M, Shen S, Lei B, Liu B. Impact of glyphosate on soil bacterial communities and degradation mechanisms in large-leaf tea plantations. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136626. [PMID: 39603119 DOI: 10.1016/j.jhazmat.2024.136626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
This study investigated the impact of glyphosate on bacterial communities and their degradation mechanisms in large-leaf tea soil, through exposure microcosm and enrichment culture experiments. Soils from three tea gardens in Yunnan, China, were used: two glyphosate-free (JM and KL) for microcosm study and one long-term exposed (G2) for enrichment culture experiment. The results revealed a two-phase degradation process with half-lives of 12.7 to 268 days, while the metabolite AMPA was notably persistent. The acidic conditions and high organic content of tea soils may retard glyphosate microbial availability and degradation. Glyphosate initially stimulated bacterial growth but led to abundance declines with prolonged exposure. It tended to enhance bacterial diversity at lower doses. Network complexity increased in JM soil where strong adsorption moderated glyphosate exposure, yet decreased in KL soil where weak adsorption enabled greater microbial-glyphosate interactions. Community structure analysis revealed soil-specific responses, with decreased Proteobacteria in JM soil and Actinobacteria in KL soil, while several phyla including Proteobacteria, Acidobacteriota, Chloroflexi, Myxococcota, and Verrucomicrobiota showed increased abundance. PICRUSt2 analysis indicated enhanced biosynthesis and cell growth pathways, while carbohydrate metabolism, nitrogen metabolism, and xenobiotics biodegradation pathways were reduced. LEfSe analysis identified potential degrading biomarkers primarily from Proteobacteria, Acidobacteriota, Myxococcota, Chloroflexi, and Actinobacteriota, suggesting their putative role in degradation. The enriched consortium G2 efficiently degraded 400 mg/L glyphosate within 7 days, with notable increases in Afipia, Dokdonella, and Cohnella abundance. This study provides insights into bacterial interactions with glyphosate in tea soils, suggesting strategies for contamination mitigation and environmental restoration.
Collapse
Affiliation(s)
- Wenxi Li
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650500, Yunnan, China; Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Kaibo Wang
- Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Panlei Wang
- Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Peiwen Yang
- Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Shengtao Xu
- Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Jiayin Tong
- Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Yanmei Zhang
- Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Yuhan Yang
- Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Lijun Han
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Min Ye
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650500, Yunnan, China.
| | - Shiquan Shen
- Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China.
| | - Baokun Lei
- Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Benying Liu
- Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| |
Collapse
|
9
|
Mellor E, Trasande L, Albergamo V, Kannan K, Li Z, Ghassabian A, Afanasyeva Y, Liu M, Cowell W. Sociodemographic and dietary determinants of glyphosate exposure in a NYC-based pregnancy cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125083. [PMID: 39374760 PMCID: PMC11602357 DOI: 10.1016/j.envpol.2024.125083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Previous studies have provided evidence for associations between glyphosate and aminomethylphosphonic acid (AMPA) exposure and adverse birth outcomes. However, few pregnancy cohort studies have investigated dietary and other determinants of glyphosate and AMPA exposure. We aimed to identify dietary and sociodemographic factors that predict glyphosate and AMPA exposure in a contemporary, urban pregnancy cohort in the US. The study included 725 pregnant participants from the New York University Children's Health and Environment Study (NYU CHES) in New York City. Urinary concentrations of glyphosate and AMPA, determined by high-performance liquid chromatography and tandem mass spectrometry, were analyzed in urine collected from NYU CHES participants across three prenatal time points. The Diet Health Questionnaire II was completed to capture dietary intake during the prenatal period. Descriptive statistics and bivariate linear models were used to assess determinants of urinary glyphosate and AMPA concentrations. Median urinary glyphosate and AMPA levels were 0.36 ng/mL and 0.37 ng/mL, respectively. Lower glyphosate levels were associated with younger age, obesity, public insurance, being single, and lower educational attainment. Nuts, seeds and whole grain intake was associated with increased urinary glyphosate concentrations. Urinary glyphosate concentrations were lower in summer than in winter. The study findings highlight widespread exposure to glyphosate and AMPA in this pregnancy cohort, with nuts/seeds and whole grains identified as possible dietary sources of exposure. High detection rates in the study population necessitate further research on dietary exposure patterns and perinatal outcomes to inform targeted interventions and reduce exposure in vulnerable populations.
Collapse
Affiliation(s)
- Ellison Mellor
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY, USA; CUNY Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Leonardo Trasande
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Vittorio Albergamo
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Kurunthachalam Kannan
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Zhongmin Li
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Akhgar Ghassabian
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Yelena Afanasyeva
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Mengling Liu
- Division of Biostatistics, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Whitney Cowell
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Gonzalez A, Fionah A, Bamiduro GJ, Zahran EM. Heterostructured S-Scheme BiOBr/Cu 2O Nanocomposite for Photocatalytic Degradation of Glyphosate. ACS OMEGA 2024; 9:48512-48523. [PMID: 39676984 PMCID: PMC11635517 DOI: 10.1021/acsomega.4c07304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Metal oxide semiconductor-activated photocatalysis has become a promising sustainable technology for the mitigation of emerging organic pollutants. The rational design of a photocatalyst heterojunction allows the degradation of a broad range of organic contaminants. Herein, we optimized hydrothermal approaches for the facial synthesis of well-defined BiOBr/Cu2O heterojunction photocatalysts. Tuning the synthesis condition enhanced the interfacing of BiOBr and Cu2O nanostructures in the heterojunction photocatalyst, as confirmed by STEM, TEM, XPS, XRD, and BET analysis. The optimized BiOBr/Cu2O heterostructured photocatalyst demonstrated substantial activity in the degradation of both anionic and cationic dyes compared to the individual components. The enhanced nanocomposite exhibited complete degradation of glyphosate in 10 min of light irradiation and demonstrated high stability after five photocatalytic cycles. Our mechanistic and photoelectrochemical studies suggest that establishing an S-scheme heterojunction between BiOBr and Cu2O enhances the separation of photogenerated charge carriers and expands the redox potentials of the nanocomposite to allow high catalytic efficiency. These findings indicate that tuning the design of metal oxide heterojunctions promises applications in the remediation of a wide range of organic contaminants.
Collapse
Affiliation(s)
| | | | | | - Elsayed M. Zahran
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| |
Collapse
|
11
|
Caneparo C, Carignan L, Lonina E, Goulet SM, Pellerin FA, Chabaud S, Bordeleau F, Bolduc S, Pelletier M. Impact of Endocrine Disruptors on the Genitourinary Tract. J Xenobiot 2024; 14:1849-1888. [PMID: 39728407 DOI: 10.3390/jox14040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Over the last decades, the human species has seen an increase in the incidence of pathologies linked to the genitourinary tract. Observations in animals have allowed us to link these increases, at least in part, to changes in the environment and, in particular, to an increasing presence of endocrine disruptors. These can be physical agents, such as light or heat; natural products, such as phytoestrogens; or chemicals produced by humans. Endocrine disruptors may interfere with the signaling pathways mediated by the endocrine system, particularly those linked to sex hormones. These factors and their general effects are presented before focusing on the male and female genitourinary tracts by describing their anatomy, development, and pathologies, including bladder and prostate cancer.
Collapse
Affiliation(s)
- Christophe Caneparo
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva University Hospitals, University of Geneva, CH-1205 Geneva, Switzerland
| | - Laurence Carignan
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Elena Lonina
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Sarah-Maude Goulet
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Felix-Antoine Pellerin
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Stéphane Chabaud
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - François Bordeleau
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Stéphane Bolduc
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Surgery, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
12
|
Basu P, Ngo HT, Aizen MA, Garibaldi LA, Gemmill-Herren B, Imperatriz-Fonseca V, Klein AM, Potts SG, Seymour CL, Vanbergen AJ. Pesticide impacts on insect pollinators: Current knowledge and future research challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176656. [PMID: 39366587 DOI: 10.1016/j.scitotenv.2024.176656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
With the need to intensify agriculture to meet growing food demand, there has been significant rise in pesticide use to protect crops, but at different rates in different world regions. In 2016, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) global assessment on pollinators, pollination and food production identified pesticides as one of the major drivers of pollinator decline. This assessment highlighted that studies on the effects of pesticides on pollinating insects have been limited to only a few species, primarily from developed countries. Given the worldwide variation in the scale of intensive agricultural practices, pesticide application intensities are likely to vary regionally and consequently the associated risks for insect pollinators. We provide the first long-term, global analysis of inter-regional trends in the use of different classes of pesticide between 1995 and 2020 (FAOSTAT) and a review of literature since the IPBES pollination assessment (2016). All three pesticide classes use rates varied greatly with some countries seeing increased use by 3000 to 4000 % between 1995 and 2020, while for most countries, growth roughly doubled. We present forecast models to predict regional trends of different pesticides up to 2030. Use of all three pesticide classes is to increase in Africa and South America. Herbicide use is to increase in North America and Central Asia. Fungicide use is to increase across all Asian regions. In each of the respective regions, we also examined the number of studies since 2016 in relation to pesticide use trends over the past twenty-five years. Additionally, we present a comprehensive update on the status of knowledge on pesticide impacts on different pollinating insects from literature published during 2016-2022. Finally, we outline several research challenges and knowledge gaps with respect to pesticides and highlight some regional and international conservation efforts and initiatives that address pesticide reduction and/or elimination.
Collapse
Affiliation(s)
- P Basu
- Department of Zoology, University of Calcutta, Kolkata, India.
| | - H T Ngo
- Food and Agriculture Organization of the United Nations (UN FAO), Regional Office for Latin America and the Caribbean (RLC), Región Metropolitana, Santiago, Chile
| | - M A Aizen
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - L A Garibaldi
- National University of Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, San Carlos de Bariloche, Río Negro, Argentina; National Council of Scientific and Technical Research, Institute of Research in Natural Resources, Agroecology and Rural Development, San Carlos de Bariloche, Río Negro, Argentina
| | | | | | - A M Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, 79106 Freiburg, Germany
| | | | - C L Seymour
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont 7735, South Africa; FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - A J Vanbergen
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne-Franche-Comté, Dijon, France
| |
Collapse
|
13
|
Wu X, Liu X, Song Y. The association of glyphosate exposure with kidney stones in American adults: A nationally representative cross-sectional study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117189. [PMID: 39405966 DOI: 10.1016/j.ecoenv.2024.117189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE Glyphosate has been ubiquitously present in our living environment due to its efficient herbicidal ability, but its association with the prevalence of kidney stones remains uncertain. This study aims to explore the impact of glyphosate exposure on kidney stones and to investigate the mediating effects of some serologic indicators. Furthermore, we attempt to identify the specific populations at greater risk of exposure. METHODS This is a cross-sectional study of the U.S. adult population examining the association between glyphosate exposure and kidney stones based on data from the 2013-2018 National Health and Nutrition Examination Survey (NHANES). We implemented multi-model-adjusted logistic regression and smoothed curve fitting to explore the connection between them. Further subgroup analyses were conducted to confirm the magnitude of exposure risk in specific populations. Mediation effects analysis served to provide insight into the underlying mechanisms of the link. RESULTS A total of 4302 participants' health data were ultimately analyzed, and the prevalence of kidney stones was 10.85 %. Participants with the highest urinary glyphosate(uGLY) content(Q3) had a higher prevalence of kidney stones compared with participants with the lowest uGLY content(Q1) (OR=1.70, 95 %CI: 1.10-2.63). Smoothed curve fitting revealed a linear positive association between ln-transformed uGLY and kidney stones (OR=1.21,95 %CI:1.08-1.37, LLR=0.291), and this exposure-outcome effect was at greater risk in men (OR=1.24,95 %CI: 1.05-1.46), non-Hispanic whites (OR=1.29, 95 %CI: 1.09-1.53), and hypertensive groups (OR=1.23,95 %CI: 1.05-1.44). Serum biochemical markers HDL, ALP, and serum glucose partially mediated the correlation between glyphosate and kidney stones (2.44-4.20 %). CONCLUSION Glyphosate exposure is significantly associated with the prevalence of kidney stones. In men, non-Hispanic whites, and hypertensive populations, the management of glyphosate exposure should be emphasized, and appropriate protective strategies may be beneficial in reducing the burden of kidney stones. More high-quality clinical inquiries and animal toxicology experiments are still required to verify the reliability of our findings and their underlying mechanisms.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xi Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
14
|
Yan B, Luo L, Zhang Y, Men J, Guo Y, Wu S, Han J, Zhou B. Detrimental effects of glyphosate on muscle metabolism in grass carp (Ctenopharyngodon idellus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107122. [PMID: 39426364 DOI: 10.1016/j.aquatox.2024.107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Glyphosate, a commonly used herbicide, has been associated with environmental pollution and potential health risks to aquatic organisms. This study investigated the effects of glyphosate on the muscle metabolism of grass carp (Ctenopharyngodon idellus) following exposure to environmentally relevant concentrations. Over a 14-day exposure period to varying glyphosate levels, significant disruptions were observed in antioxidant capacity and muscle health. These disruptions were evidenced by reductions in total antioxidant capacity (T-AOC), increases in malondialdehyde (MDA) levels, and decreases in activities of glutathione peroxidase (GSH-PX) and catalase (CAT). Furthermore, exposure to glyphosate resulted in a reduction of vitamin E content and an elevation of hormonal levels, suggesting the potential for endocrine disruption. Metabolomics analysis identified 605 distinct metabolites, with notable alterations in amino acid, carbohydrate, and nucleotide metabolism pathways. Specifically, arginine and glutathione metabolisms were severely impacted, with decreases in key amino acids such as glycine and glutathione at higher glyphosate concentrations. Nucleotide metabolism, particularly purine synthesis, was also significantly affected, with reduced levels of deoxyguanosine and other purine-related compounds. The study further investigated the origins of these differential metabolites using the MetOrigin platform, suggesting a potential involvement of the intestinal microbiota in the metabolic response to glyphosate. These findings highlight the multifaceted adverse effects of glyphosate on fish muscle, including oxidative stress and metabolic dysregulation, which may contribute to diminished muscle quality and health risks for aquatic organisms.
Collapse
Affiliation(s)
- Biao Yan
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, PR China; Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| | - Lijun Luo
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, PR China
| | - Yindan Zhang
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| | - Jun Men
- The Analysis and Testing Center of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yongyong Guo
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| | - Shengmin Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Jian Han
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China.
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, PR China
| |
Collapse
|
15
|
He X, Yang Y, Zhou S, Wei Q, Zhou H, Tao J, Yang G, You M. Alterations in microbiota-metabolism-circRNA crosstalk in autism spectrum disorder-like behaviours caused by maternal exposure to glyphosate-based herbicides in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117060. [PMID: 39299209 DOI: 10.1016/j.ecoenv.2024.117060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Epidemiological evidence indicates exposure to glyphosate-based herbicides (GBHs) increases the risk for autism spectrum disorder (ASD). The gut microbiota has been found to influence ASD behaviours through the microbiota-gut-brain axis. However, the underlying links between early life GBH exposure and ASD-like phenotypes through the microbiota-gut-brain axis remain unclear. Therefore, we exposed mice to low-dose GBH (0.10, 0.25, 0.50, and 1.00 %) and determined the effects on ASD-like behaviours. Furthermore, three kinds of omics (gut microbiomics, metabolomics, and transcriptomics) were conducted to investigate the effects of GBH exposure on gut microbiota, gut metabolites, and circular RNAs (circRNAs) in the prefrontal cortex (PFC) using a cross-generational mouse model. Behavioural analyses suggested social impairment and repetitive/stereotypic behaviours in the GBH-exposed offspring. Furthermore, maternal exposure to glyphosate significantly altered the ASD-associated gut microbiota of offspring, and ASD-associated gut metabolites were identified. Specifically, we found that alterations in the gut microenvironment may contribute to changes in gut permeability and the blood-brain barrier, which are related to changes in the levels of circRNAs in the PFC. Our results suggest a potential effect of circRNAs through the disruption of the gut-brain interaction, which is an important factor in the pathogenesis of ASD in offspring induced by maternal exposure to GBH.
Collapse
Affiliation(s)
- Xiu He
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Yongyong Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Shun Zhou
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Qinghao Wei
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Hao Zhou
- Department of Developmental Behavioural Pediatrics, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Junyan Tao
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Guanghong Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China.
| | - Mingdan You
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| |
Collapse
|
16
|
Izumi Y, O’Dell KA, Zorumski CF. Glyphosate as a direct or indirect activator of pro-inflammatory signaling and cognitive impairment. Neural Regen Res 2024; 19:2212-2218. [PMID: 38488555 PMCID: PMC11034589 DOI: 10.4103/1673-5374.391331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Accepted: 11/16/2023] [Indexed: 04/24/2024] Open
Abstract
Glyphosate-based herbicides are widely used around the world, making it likely that most humans have significant exposure. Because of habitual exposure, there are concerns about toxicity including neurotoxicity that could result in neurological, psychiatric, or cognitive impairment. We recently found that a single injection of glyphosate inhibits long-term potentiation, a cellular model of learning and memory, in rat hippocampal slices dissected 1 day after injection, indicating that glyphosate-based herbicides can alter cognitive function. Glyphosate-based herbicides could adversely affect cognitive function either indirectly and/or directly. Indirectly, glyphosate could affect gut microbiota, and if dysbiosis results in endotoxemia (leaky gut), infiltrated bacterial by-products such as lipopolysaccharides could activate pro-inflammatory cascades. Glyphosate can also directly trigger pro-inflammatory cascades. Indeed, we observed that acute glyphosate exposure inhibits long-term potentiation in rat hippocampal slices. Interestingly, direct inhibition of long-term potentiation by glyphosate appears to be similar to that of lipopolysaccharides. There are several possible measures to control dysbiosis and neuroinflammation caused by glyphosate. Dietary intake of polyphenols, such as quercetin, which overcome the inhibitory effect of glyphosate on long-term potentiation, could be one effective strategy. The aim of this narrative review is to discuss possible mechanisms underlying neurotoxicity following glyphosate exposure as a means to identify potential treatments.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kazuko A. O’Dell
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
17
|
Dinep-Schneider O, Appiah E, Dapper A, Patterson S, Vermulst M, Gout JF. Effects of the glyphosate-based herbicide roundup on C. elegans and S. cerevisiae mortality, reproduction, and transcription fidelity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124203. [PMID: 38830529 PMCID: PMC11321929 DOI: 10.1016/j.envpol.2024.124203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Glyphosate-based weed killers such as Roundup have been implicated in detrimental effects on single- and multicellular eukaryotic model organism health and longevity. However, the mode(s) of action for these effects are currently unknown. In this study, we investigate the impact of exposure to Roundup on two model organisms: Saccharomyces cerevisiae and Caenorhabditis elegans and test the hypothesis that exposure to Roundup decreases transcription fidelity. Population growth assays and motility assays were performed in order to determine the phenotypic effects of Roundup exposure. We also used Rolling-Circle Amplification RNA sequencing to quantify the impact of exposure to Roundup on transcription fidelity in these two model organisms. Our results show that exposure to the glyphosate-based herbicide Roundup increases mortality, reduces reproduction, and increases transcription error rates in C. elegans and S. cerevisiae. We suggest that these effects may be due in part to the involvement of inflammation and oxidative stress, conditions which may also contribute to increases in transcription error rates.
Collapse
Affiliation(s)
| | - Eastilan Appiah
- Department of Computer Science and Engineering, Computational Biology, Mississippi State University, Starkville, MS, USA
| | - Amy Dapper
- Department of Biology, Mississippi State University, Starkville, MS, USA
| | - Sarah Patterson
- Department of Computer Science and Engineering, Computational Biology, Mississippi State University, Starkville, MS, USA
| | - Marc Vermulst
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, 90089, USA
| | - Jean-Francois Gout
- Department of Biology, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
18
|
Leblanc PO, Breton Y, Léveillé F, Tessier PA, Pelletier M. The impact of the herbicide glyphosate and its metabolites AMPA and MPA on the metabolism and functions of human blood neutrophils and their sex-dependent effects on reactive oxygen species and CXCL8/IL-8 production. ENVIRONMENTAL RESEARCH 2024; 252:118831. [PMID: 38580005 DOI: 10.1016/j.envres.2024.118831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Significant levels of glyphosate, the world's most widely used herbicide, and its primary metabolites, AMPA and MPA, are detected in various human organs and body fluids, including blood. Several studies have associated the presence of glyphosate in humans with health problems, and effects on immune cells and their functions have been reported. However, the impact of this molecule and its metabolites on neutrophils, the most abundant leukocytes in the human bloodstream, is still poorly documented. We isolated neutrophils from human donor blood and investigated the effects of exposure to glyphosate, AMPA, and MPA on viability, energy metabolism, and essential antimicrobial functions in vitro. We observed that neutrophil viability was unaffected at the blood-relevant average concentrations of the general population and exposed workers, as well as at higher intoxication concentrations. Neutrophil energy metabolism was also not altered following exposure to the chemicals. However, while phagocytosis was unaffected, reactive oxygen species generation and CXCL8/IL-8 production were altered by exposure to the molecules. Alterations in function following exposure to glyphosate and metabolites differed according to the sex of the donors, which could be linked to glyphosate's known role as an endocrine disruptor. While ROS generation was increased in both sexes, male neutrophils exposed to glyphosate had increased intracellular production of CXCL8/IL-8, with no effect on female neutrophils. Conversely, exposure to the metabolites AMPA and MPA decreased extracellular production of this chemokine only in female neutrophils, with MPA also increasing intracellular production in male cells exposed to the chemoattractant N-formyl-methionine-leucyl-phenylalanine. Our study highlights the effects of glyphosate and its metabolites on the antimicrobial functions of neutrophils, which could be associated with health problems as future studies provide a better understanding of the risks associated with glyphosate use. Advances in knowledge will enable better and potentially stricter regulations to protect the public.
Collapse
Affiliation(s)
- Pier-Olivier Leblanc
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada
| | - Yann Breton
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada
| | - Florence Léveillé
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada
| | - Philippe A Tessier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec, G1V 0A6, Canada.
| |
Collapse
|
19
|
Chianese T, Trinchese G, Leandri R, De Falco M, Mollica MP, Scudiero R, Rosati L. Glyphosate Exposure Induces Cytotoxicity, Mitochondrial Dysfunction and Activation of ERα and ERβ Estrogen Receptors in Human Prostate PNT1A Cells. Int J Mol Sci 2024; 25:7039. [PMID: 39000147 PMCID: PMC11241661 DOI: 10.3390/ijms25137039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Glyphosate, the active ingredient of several broad-spectrum herbicides, is widely used throughout the world, although many adverse effects are known. Among these, it has been recognized as an endocrine disruptor. This work aimed to test the effects and potential endocrine disrupting action of glyphosate on PNT1A human prostate cells, an immortalized non-tumor epithelial cell line, possessing both ERα and ERβ estrogen receptors. The results showed that glyphosate induces cytotoxicity, mitochondrial dysfunction, and rapid activation of ERα and ERβ via nuclear translocation. Molecular analysis indicated a possible involvement of apoptosis in glyphosate-induced cytotoxicology. The apoptotic process could be attributed to alterations in mitochondrial metabolism; therefore, the main parameters of mitochondrial functionality were investigated using the Seahorse analyzer. Impaired mitochondrial function was observed in glyphosate-treated cells, with reductions in ATP production, spare respiratory capacity, and proton leakage, along with increased efficiency of mitochondrial coupling. Finally, the results of immunofluorescence analysis demonstrated that glyphosate acts as an estrogen disruptor determining the nuclear translocation of both ERs. Nuclear translocation occurred independent of dose, faster than the specific hormone, and persisted throughout treatment. In conclusion, the results collected show that in non-tumor prostate cells glyphosate can cause cell death and acts as a xenoestrogen, activating estrogen receptors. The consequent alteration of hormonal functions can have negative effects on the reproductive health of exposed animals, compromising their fertility.
Collapse
Affiliation(s)
- Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
| | - Giovanna Trinchese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
| | - Rebecca Leandri
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
| | - Maria De Falco
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
- National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Portici, Italy
| | - Maria Pina Mollica
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Portici, Italy
| | - Luigi Rosati
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Portici, Italy
- CIRAM—Centro Interdipartimentale di Ricerca “Ambiente”, University Federico II, Via Mezzocannone 16, 80134 Napoli, Italy
| |
Collapse
|
20
|
Jauregui-Zunzunegui S, Rodríguez-Artalejo F, Tellez-Plaza M, García-Esquinas E. Glyphosate exposure, muscular health and functional limitations in middle-aged and older adults. ENVIRONMENTAL RESEARCH 2024; 251:118547. [PMID: 38452917 DOI: 10.1016/j.envres.2024.118547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Glyphosate is the most widely used herbicide worldwide, both in domestic and industrial settings. Experimental research in animal models has demonstrated changes in muscle physiology and reduced contractile strength associated with glyphosate exposure, while epidemiological studies have shown associations between glyphosate exposure and adverse health outcomes in critical biological systems affecting muscle function. METHODS This study used data from a nationally representative survey of the non-institutionalized U.S. general population (NHANES, n = 2132). Urine glyphosate concentrations were determined by ion chromatography with tandem mass spectrometry. Hand grip strength (HGS) was measured using a Takei Dynamometer, and relative strength estimated as the ratio between HGS in the dominant hand and the appendicular lean mass (ALM) to body mass index (ALMBMI) ratio. Low HGS and low relative HGS were defined as 1 sex-, age- and race-specific SD below the mean. Physical function limitations were identified as significant difficulty or incapacity in various activities. RESULTS In fully-adjusted models, the Mean Differences (MD) and 95% confidence intervals [95%CI] per doubling increase in glyphosate concentrations were -0.55 [-1.09, -0.01] kg for HGS in the dominant hand, and -0.90 [-1.58. -0.21] kg for HGS/ALMBMI. The Odds Ratios (OR) [95% CI] for low HGS, low relative HGS and functional limitations by glyphosate concentrations were 1.27 [1.03, 1.57] for low HGS; 1.43 [1.05; 1.94] for low relative HGS; 1.33 [1.08, 1.63] for stooping, crouching or kneeling difficulty; 1.17 [0.91, 1.50] for lifting or carrying items weighting up to 10 pounds difficulty; 1.21 [1.01, 1.40] for standing up from armless chair difficulty; and 1.47 [1.05, 2.29] for ascending ten steps without pause difficulty. CONCLUSIONS Glyphosate exposure may be a risk factor for decreased grip strength and increased physical functional limitations. More studies investigating the influence of this and other environmental pollutants on functional aging are needed.
Collapse
Affiliation(s)
- Sara Jauregui-Zunzunegui
- Department of Preventive Medicine and Public Health, Hospital Universitario Nuestra Señora de Candelaria, Spain.
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain; IMDEA-Food, CEI UAM+CSIC, Madrid, Spain.
| | - María Tellez-Plaza
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center of Epidemiology, Carlos III Health Institute, Madrid, Spain.
| | - Esther García-Esquinas
- CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center of Epidemiology, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
21
|
Lapierre C, Erlandson LW, Stoneroad II R, Rhiner A, Gosnell R, Barber J, Pham L. Substances of health concern in home-distilled and commercial alcohols from Texas. Heliyon 2024; 10:e32317. [PMID: 38912503 PMCID: PMC11190660 DOI: 10.1016/j.heliyon.2024.e32317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Objective Poor distillation practices in the production of spirits have historically resulted in many instances of adverse health outcomes including death. Concern has focused on lead and copper contamination as well as unhealthy levels of methanol and glyphosate. This study assesses home-distilled and commercially distilled alcohols from Texas for these substances of concern, highlighting their potential risks to public health. Methods Atomic absorption spectroscopy, gas chromatography, and enzyme-linked immunosorbent assay were employed to determine lead and copper, methanol, and glyphosate levels in 12 commercial and 36 home-distilled alcohol samples. Results Our findings showed that 11 % of the home-distilled alcohols exceeded the U.S. Alcohol and Tobacco Tax and Trade Bureau's copper safety limits of 0.5 mg/L for wine. Additionally, 36 % of these samples surpassed the European Commission (EC)'s lead legal threshold of 0.15 mg/L set for wine products. Results from commercial alcohols indicated that no samples exceeded the same safety limits for copper, and 33 % exceeded the same legal threshold for lead. Both commercial and home-distilled alcohols exhibited methanol concentrations remarkably below the 0.35 % limit for brandy set by the U.S. Food and Drug Administration. Only two home-distilled samples contained detectable glyphosate concentrations well below 100 μg/L, the maximum residue level in beer and wine established by the EC. Conclusions Our findings suggested that consumption of alcohol in Texas may pose potential health risks associated with the elevated content of lead and copper. There is a need for increased focus on alcohol as a potential source of exposure to heavy metals.
Collapse
Affiliation(s)
- Coady Lapierre
- Department of Counseling and Psychology, Texas A&M University-Central Texas, Texas, USA
| | | | - Randy Stoneroad II
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| | - Andrew Rhiner
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| | - Renae Gosnell
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| | - John Barber
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| | - Linh Pham
- Department of Mathematics and Sciences, Texas A&M University-Central Texas, Texas, USA
| |
Collapse
|
22
|
de Morais Valentim JMB, Coradi C, Viana NP, Fagundes TR, Micheletti PL, Gaboardi SC, Fadel B, Pizzatti L, Candiotto LZP, Panis C. Glyphosate as a Food Contaminant: Main Sources, Detection Levels, and Implications for Human and Public Health. Foods 2024; 13:1697. [PMID: 38890925 PMCID: PMC11171990 DOI: 10.3390/foods13111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Glyphosate is a broad-spectrum pesticide that has become the most widely used herbicide globally. However, concerns have risen regarding its potential health impacts due to food contamination. Studies have detected glyphosate in human blood and urine samples, indicating human exposure and its persistence in the organism. A growing body of literature has reported the health risks concerning glyphosate exposure, suggesting that the daily intake of contaminated food and water poses a public health concern. Furthermore, countries with high glyphosate usage and lenient regulations regarding food and water contamination may face more severe consequences. In this context, in this review, we examined the literature regarding food contamination by glyphosate, discussed its detection methods, and highlighted its risks to human health.
Collapse
Affiliation(s)
| | - Carolina Coradi
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
| | - Natália Prudêncio Viana
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
| | - Tatiane Renata Fagundes
- Department of Biological Sciences, Universidade Estadual do Norte do Paraná (UENP), Bandeirantes 86360-000, Brazil;
| | - Pâmela Lonardoni Micheletti
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
| | - Shaiane Carla Gaboardi
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
- Instituto Federal Catarinense, Blumenau 89070-270, Brazil
| | - Bruna Fadel
- Laboratório de Biologia Molecular e Proteômica do Sangue, Instituto de Química, Universidade Federal do Rio de Janeiro (IQ-UFRJ), Rio de Janeiro 21941-909, Brazil; (B.F.); (L.P.)
| | - Luciana Pizzatti
- Laboratório de Biologia Molecular e Proteômica do Sangue, Instituto de Química, Universidade Federal do Rio de Janeiro (IQ-UFRJ), Rio de Janeiro 21941-909, Brazil; (B.F.); (L.P.)
| | - Luciano Zanetti Pessoa Candiotto
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
| | - Carolina Panis
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina 86057-970, Brazil;
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
| |
Collapse
|
23
|
Masci M, Caproni R, Nevigato T. Chromatographic Methods for the Determination of Glyphosate in Cereals Together with a Discussion of Its Occurrence, Accumulation, Fate, Degradation, and Regulatory Status. Methods Protoc 2024; 7:38. [PMID: 38804332 PMCID: PMC11130892 DOI: 10.3390/mps7030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
The European Union's recent decision to renew the authorization for the use of glyphosate until 15 December 2033 has stimulated scientific discussion all around the world regarding its toxicity or otherwise for humans. Glyphosate is a chemical of which millions of tons have been used in the last 50 years worldwide to dry out weeds in cultivated fields and greenhouses and on roadsides. Concern has been raised in many areas about its possible presence in the food chain and its consequent adverse effects on health. Both aspects that argue in favor of toxicity and those that instead may indicate limited toxicity of glyphosate are discussed here. The widespread debate that has been generated requires further investigations and field measurements to understand glyphosate's fate once dispersed in the environment and its concentration in the food chain. Hence, there is a need for validated analytical methods that are available to analysts in the field. In the present review, methods for the analytical determination of glyphosate and its main metabolite, AMPA, are discussed, with a specific focus on chromatographic techniques applied to cereal products. The experimental procedures are explained in detail, including the cleanup, derivatization, and instrumental conditions, to give the laboratories involved enough information to proceed with the implementation of this line of analysis. The prevalent chromatographic methods used are LC-MS/MS, GC-MS/SIM, and GC-MS/MS, but sufficient indications are also given to those laboratories that wish to use the better performing high-resolution MS or the simpler HPLC-FLD, HPLC-UV, GC-NPD, and GC-FPD techniques for screening purposes. The concentrations of glyphosate from the literature measured in wheat, corn, barley, rye, oats, soybean, and cereal-based foods are reported, together with its regulatory status in various parts of the world and its accumulation mechanism. As for its accumulation in cereals, the available data show that glyphosate tends to accumulate more in wholemeal flours than in refined ones, that its concentration in the product strictly depends on the treatment period (the closer it is to the time of harvesting, the higher the concentration), and that in cold climates, the herbicide tends to persist in the soil for a long time.
Collapse
Affiliation(s)
- Maurizio Masci
- Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, via Ardeatina 546, 00178 Rome, Italy (T.N.)
| | | | | |
Collapse
|
24
|
Sun X, Zhang H, Huang X, Yang D, Wu C, Liu H, Zhang L. Associations of glyphosate exposure and serum sex steroid hormones among 6-19-year-old children and adolescents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116266. [PMID: 38564862 DOI: 10.1016/j.ecoenv.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Glyphosate, ranked as one of the most widely used herbicides in the world, has raised concerns about its potential disruptive effects on sex hormones. However, limited human evidence was available, especially for children and adolescents. The present study aimed to examine the associations between exposure to glyphosate and sex hormones among participants aged 6-19 years, utilizing data from the National Health and Nutrition Examination Survey (NHANES) conducted between 2013 and 2016. Children and adolescents who had available data on urinary glyphosate, serum sex steroid hormones, including testosterone (TT), estradiol (E2) and sex hormone binding globulin (SHBG), and covariates were selected. Additionally, the ratio of TT to E2 (TT/E2) and the free androgen index (FAI), which was calculated using TT/SHBG, were also included as sex hormone indicators. Survey regression statistical modeling was used to examine the associations between urinary glyphosate concentration and sex hormone indicators by age and sex group. Among the 964 participants, 83.71% had been exposed to glyphosate (>lower limit of detection). The survey regression revealed a marginally negative association between urinary glyphosate and E2 in the overall population, while this association was more pronounced in adolescents with a significant trend. In further sex-stratified analyses among adolescents, a significant decrease in E2, FAI, and TT (p trend <0.05) was observed in female adolescents for the highest quartile of urinary glyphosate compared to the lowest quartile. However, no similar association was observed among male adolescents. Our findings suggest that exposure to glyphosate at the current level may decrease the levels of sex steroids in adolescents, particularly female adolescents. Considering the cross-sectional study design, further research is needed to confirm our findings.
Collapse
Affiliation(s)
- Xiaojie Sun
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Zhang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaojing Huang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Di Yang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Chuansha Wu
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
25
|
Dernbach MR, Carpenter JE. Case Files of the Emory University Medical Toxicology Fellowship: A Patient Presents to the Outpatient Toxicology Clinic with Delusions of Being Poisoned. J Med Toxicol 2024; 20:233-244. [PMID: 38378951 PMCID: PMC10959915 DOI: 10.1007/s13181-024-00995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Affiliation(s)
- Matthew Robert Dernbach
- Department of Emergency Medicine, Emory University, 50 Hurt Plaza SE, Suite 600, Atlanta, GA, 30303, USA.
- Georgia Poison Center, Atlanta, GA, USA.
| | - Joseph E Carpenter
- Department of Emergency Medicine, Emory University, 50 Hurt Plaza SE, Suite 600, Atlanta, GA, 30303, USA
- Georgia Poison Center, Atlanta, GA, USA
| |
Collapse
|
26
|
Nacano BRM, Convento MB, de Oliveira AS, Castino R, Castino B, Razvickas CV, Bondan E, Borges FT. Effects of glyphosate herbicide ingestion on kidney function in rats on a balanced diet. J Bras Nefrol 2024; 46:e20230043. [PMID: 38039493 PMCID: PMC11210533 DOI: 10.1590/2175-8239-jbn-2023-0043en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/30/2023] [Indexed: 12/03/2023] Open
Abstract
INTRODUCTION Glyphosate is the most widely used herbicide worldwide and in Brazil. There is currently increasing concern about the effects of glyphosate on human health. The Brazilian Institute for Consumer Protection showed data on the presence of glyphosate in some of Brazil's most consumed ultra-processed products. Currently, regulations on the upper limit for these residues in ultra-processed foods have yet to be established by the National Health Surveillance, and ultra-processed food consumption is independently associated with an increased risk of incident chronic kidney disease. METHODS Since an unbalanced diet can interfere with kidney function, this study aims to investigate the effect of daily intake of 5 mg/kg bw glyphosate in conjunction with a balanced diet and the possible impact on renal function in rats. Kidney function, kidney weight, markers of renal injury, and oxidative stress were evaluated. RESULTS There was a decrease in kidney weight. The main histopathological alterations in renal tissues were vacuolation in the initial stage and upregulation of the kidney injury marker KIM-1. Renal injury is associated with increased production of reactive oxygen species in mitochondria. CONCLUSION This study showed changes in the kidney of rats exposed to a balanced diet with glyphosate, suggesting a potential risk to human kidney. Presumably, ultra-processed food that contain glyphosate can potentiate this risk. The relevance of these results lies in drawing attention to the need to regulate glyphosate concentration in ultra-processed foods in the future.
Collapse
Affiliation(s)
- Bruno Reis Moreira Nacano
- Universidade Cruzeiro do Sul, Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, São Paulo, SP, Brazil
| | | | | | - Rafaela Castino
- Universidade Cruzeiro do Sul, Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, São Paulo, SP, Brazil
| | - Bianca Castino
- Universidade Cruzeiro do Sul, Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, São Paulo, SP, Brazil
| | | | - Eduardo Bondan
- Universidade Paulista, Programa de Pós-Graduação em Patologia Ambiental e Experimental, São Paulo, SP, Brazil
| | - Fernanda Teixeira Borges
- Universidade Cruzeiro do Sul, Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, São Paulo, SP, Brazil
- Universidade Federal São Paulo, Departamento de Medicina, São Paulo, SP, Brazil
| |
Collapse
|
27
|
Fang YW, Wang C, Lin CY. Association between urinary glyphosate levels and hand grip strength in a representative sample of US adults: NHANES 2013-2014. Front Public Health 2024; 12:1352570. [PMID: 38450138 PMCID: PMC10915012 DOI: 10.3389/fpubh.2024.1352570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Glyphosate, a widely utilized herbicide globally, has been linked to various health issues, including cancer, birth abnormalities, and reproductive issues. Additionally, there is growing experimental support indicating potential harm to skeletal muscles. Despite this, the impact of glyphosate on human muscle health remains unclear. Methods We examined information gathered from the 2013-2014 National Health and Nutrition Examination Survey (NHANES), which included 1466 adults aged 18 or older. Our primary aim was to investigate the relationship between glyphosate exposure and hand grip strength, as well as its influence on lean muscle mass. Results and discussion Our investigation uncovered a detrimental correlation between glyphosate exposure and all measures of grip strength, except for the second test of the first hand. Specifically, we observed a statistically significant adverse association between glyphosate exposure and combined grip strength, which is calculated as the sum of the highest readings from both hands (ß coefficient of -2.000, S.E. = 0.891, p = 0.040). We did not observe a significant correlation between glyphosate levels, lean muscle mass, and the likelihood of reaching maximum grip strength meeting sarcopenia criteria. Additionally, we observed an interaction between age and glyphosate, as well as between body mass index (BMI) and glyphosate, concerning the association with combined grip strength. In this comprehensive analysis of NHANES data, our study reveals a potential association between glyphosate exposure and hand grip strength in the adult population. Our findings suggest the need for deeper exploration into the health effects of glyphosate exposure and its impact on muscle strength, shedding light on possible public health concerns.
Collapse
Affiliation(s)
- Yu-Wei Fang
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - ChiKang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chien-Yu Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, Taiwan
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| |
Collapse
|
28
|
Rahman A, Baharlouei P, Koh EHY, Pirvu DG, Rehmani R, Arcos M, Puri S. A Comprehensive Analysis of Organic Food: Evaluating Nutritional Value and Impact on Human Health. Foods 2024; 13:208. [PMID: 38254509 PMCID: PMC10814746 DOI: 10.3390/foods13020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
In recent years, organic agriculture has gained more popularity, yet its approach to food production and its potential impact on consumers' health and various environmental aspects remain to be fully discovered. The goal of organic farming practices is to maintain soil health, sustain ecological systems, maintain fairness in its relationship with the environment and protect the environment in its entirety. Various health benefits have been associated with higher consumption of organic foods. This review identified some of these health benefits, including a reduction in obesity and body mass index (BMI), improvements in blood nutrient composition as well as reductions in maternal obesity and pregnancy-associated preeclampsia risks. Furthermore, organic food consumption can reduce the development of non-Hodgkin lymphoma (NHL) and colorectal cancers. Upon reviewing the existing literature regarding the nutritional value of organic foods, it was found that organic food contained higher levels of iron, magnesium and vitamin C. However, the evidence available to draw definitive causations remains limited due to study biases, short study durations and confounding variables; thus, it cannot be concluded that the organic diet provides any related health benefits. In this review, we provided essential insights and statistical analysis from the evidence available and consider study limitations to evaluate the potential of organic food consumption in positively impacting human health.
Collapse
Affiliation(s)
- Azizur Rahman
- Centre for Climate Change Research, University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (P.B.); (E.H.Y.K.); (D.G.P.); (R.R.); (M.A.); (S.P.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Parnian Baharlouei
- Centre for Climate Change Research, University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (P.B.); (E.H.Y.K.); (D.G.P.); (R.R.); (M.A.); (S.P.)
- Physiology and Human Biology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eleanor Hui Yan Koh
- Centre for Climate Change Research, University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (P.B.); (E.H.Y.K.); (D.G.P.); (R.R.); (M.A.); (S.P.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Diana Gabby Pirvu
- Centre for Climate Change Research, University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (P.B.); (E.H.Y.K.); (D.G.P.); (R.R.); (M.A.); (S.P.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Rameesha Rehmani
- Centre for Climate Change Research, University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (P.B.); (E.H.Y.K.); (D.G.P.); (R.R.); (M.A.); (S.P.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Mateo Arcos
- Centre for Climate Change Research, University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (P.B.); (E.H.Y.K.); (D.G.P.); (R.R.); (M.A.); (S.P.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Simron Puri
- Centre for Climate Change Research, University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (P.B.); (E.H.Y.K.); (D.G.P.); (R.R.); (M.A.); (S.P.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
29
|
Zavala-Robles KG, Ramos-Ibarra JR, Franco Rodriguez NE, Zamudio-Ojeda A, Cavazos-Garduño A, Serrano-Niño JC. Assessment of chitosan-based adsorbents for glyphosate removal. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:62-71. [PMID: 38099739 DOI: 10.1080/03601234.2023.2291980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Exposure to glyphosate produces various toxic effects, due to this, different methods have been evaluated for its elimination. The objective of this work was to formulate chitosan-based adsorbents and evaluate their efficiency in the removal of glyphosate in vitro. Four films were made by varying the weight ratio of silica/chitosan particles, and four sponges were made by varying the chitosan/chitosan ratio in a reticulated manner. Both adsorbents were characterized based on their porosity, water absorption, glyphosate removal, and reusability. It was found that increasing the porosity in both films and sponges resulted in an increase in the adsorption efficiency of glyphosate. The adsorption process exhibited a better fit in both adsorbents to the pseudo-second-order model. The adsorption of glyphosate to the films fit better with the Langmuir model, demonstrating that the process occurs in the form of a monolayer. In the case of sponges, the adsorption of glyphosate fit better with the Freundlich model, indicating that the process takes place in a multilayer form. Finally, when the reusability was evaluated, the adsorbents showed a loss of effectiveness. However, they still proved to be an efficient alternative for the removal of glyphosate in water, providing a cost-effective and environmentally friendly solution.
Collapse
Affiliation(s)
- K G Zavala-Robles
- Maestría en Ciencias en Inocuidad Alimentaria, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - J R Ramos-Ibarra
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - N E Franco Rodriguez
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - A Zamudio-Ojeda
- Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - A Cavazos-Garduño
- Maestría en Ciencias en Inocuidad Alimentaria, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - J C Serrano-Niño
- Maestría en Ciencias en Inocuidad Alimentaria, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| |
Collapse
|
30
|
Ren J, Yu Y, Wang Y, Dong Y, Shen X. Association Between Urinary Glyphosate Exposure and Cognitive Impairment in Older Adults from NHANES 2013-2014. J Alzheimers Dis 2024; 97:609-620. [PMID: 38143355 DOI: 10.3233/jad-230782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Glyphosate is the most commonly used herbicide with potential neurotoxicity. However, limited epidemical evidence is found in the relationship between glyphosate and cognitive impairment, especially in the cognitive-disrupting sensitive elderly populations. OBJECTIVE This study aimed to examine the association of urinary glyphosate exposure with cognitive impairment in the United State (US) older adults. METHODS Cognitive impairment was determined by the following four tests: the Consortium to Establish a Registry for Alzheimer's disease (CERAD) Immediate Recall test (IR), the CERAD Delayed Recall tests (DR), the Animal Fluency (AF) test and the Digit Substitution test (DSST). Survey weighted logistic regression and restricted cubic splines were applied to evaluate and visualize the association between glyphosate and cognitive impairment. RESULTS A total of 465 elderly adults were identified in the National Health and Nutrition Examination Survey (NHANES) 2013-2014 cycle, and among them, 83.87% individuals had detectable urinary levels of glyphosate (0.628 ng/mL in average). After adjusting for the potential covariates, glyphosate was significantly linked to increased DR and AF impairment, and the corresponding ORs were 1.52 (1.01 to 2.30, p = 0.049) and 1.69 (1.11 to 2.59, p = 0.019), respectively. No significant association was identified between glyphosate and IR or DSST impairment. The RCS plot further confirmed the linear and positive relationships between glyphosate and DR and AF impairment. CONCLUSIONS These findings suggested that exposure to glyphosate might be associated with declined cognitive function in the elderly, and it might be prudent to evaluate cognitive outcomes for aged individuals with glyphosate exposures.
Collapse
Affiliation(s)
- Jiawen Ren
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yongquan Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yucheng Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yu Dong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
31
|
Hsiao YC, Johnson G, Yang Y, Liu CW, Feng J, Zhao H, Moy SS, Harper KM, Lu K. Evaluation of neurological behavior alterations and metabolic changes in mice under chronic glyphosate exposure. Arch Toxicol 2024; 98:277-288. [PMID: 37922104 PMCID: PMC11694903 DOI: 10.1007/s00204-023-03622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/05/2023] [Indexed: 11/05/2023]
Abstract
Glyphosate is a widely used active ingredient in agricultural herbicides, inhibiting the biosynthesis of aromatic amino acids in plants by targeting their shikimate pathway. Our gut microbiota also facilitates the shikimate pathway, making it a vulnerable target when encountering glyphosate. Dysbiosis in the gut microbiota may impair the gut-brain axis, bringing neurological outcomes. To evaluate the neurotoxicity and biochemical changes attributed to glyphosate, we exposed mice with the reference dose (RfD) set by the U.S. EPA (1.75 mg/Kg-BW/day) and its hundred-time-equivalence (175 mg/Kg-BW/day) chronically via drinking water, then compared a series of neurobehaviors and their fecal/serum metabolomic profile against the non-exposed vehicles (n = 10/dosing group). There was little alteration in the neurobehavior, including motor activities, social approach, and conditioned fear, under glyphosate exposure. Metabolomic differences attributed to glyphosate were observed in the feces, corresponding to 68 and 29 identified metabolites with dysregulation in the higher and lower dose groups, respectively, compared to the vehicle-control. There were less alterations observed in the serum metabolome. Under 175 mg/Kg-BW/day of glyphosate exposure, the aromatic amino acids (phenylalanine, tryptophan, and tyrosine) were reduced in the feces but not in the serum of mice. We further focused on how tryptophan metabolism was dysregulated based on the pathway analysis, and identified the indole-derivatives were more altered compared to the serotonin and kynurenine derivatives. Together, we obtained a three-dimensional data set that records neurobehavioral, fecal metabolic, and serum biomolecular dynamics caused by glyphosate exposure at two different doses. Our data showed that even under the high dose of glyphosate irrelevant to human exposure, there were little evidence that supported the impairment of the gut-brain axis.
Collapse
Affiliation(s)
- Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Gregory Johnson
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yifei Yang
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jiahao Feng
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Haoduo Zhao
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Sheryl S Moy
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kathryn M Harper
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
32
|
Butovskaya E, Gasparini M, Angelone B, Cancemi G, Tranquillo V, Prestini G, Bosi F, Menotta S. Occurrence of Glyphosate and Other Polar Pesticides in Honey from Lombardy and Emilia-Romagna Regions in Italy: Three-Year Monitoring Results. Foods 2023; 12:4448. [PMID: 38137252 PMCID: PMC10742983 DOI: 10.3390/foods12244448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Intensive agricultural practices, such as pesticides use, may negatively affect bee health and hive products. Glyphosate is one of the most widely used polar pesticides applied in crops for weed control. In this study, honey samples, collected from beekeeping farms located in the Lombardy and Emilia-Romagna regions in Italy in the framework of regional monitoring plans activated from 2020 to 2022, were analyzed for the presence of residues of polar pesticides. The analytical method based on ion chromatography coupled to high-resolution mass spectrometry was applied to quantify glyphosate, glufosinate, ethephon, fosetyl aluminum, and their related metabolites. Residues of glyphosate were detected in around 28% of analyzed honey samples. Observations on the distribution of the honey-production-site locations suggest that honey samples originating from the provinces within the Lombardy region, where the agricultural sector is highly developed, were more affected by glyphosate contamination than the samples collected from the areas with low agricultural activity, where no glyphosate residues were detected over the three years of the monitoring program.
Collapse
Affiliation(s)
- Elena Butovskaya
- Food and Feed Chemistry Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), via A. Bianchi 9, 25124 Brescia, Italy; (M.G.); (B.A.); (G.C.); (S.M.)
| | - Mara Gasparini
- Food and Feed Chemistry Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), via A. Bianchi 9, 25124 Brescia, Italy; (M.G.); (B.A.); (G.C.); (S.M.)
| | - Barbara Angelone
- Food and Feed Chemistry Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), via A. Bianchi 9, 25124 Brescia, Italy; (M.G.); (B.A.); (G.C.); (S.M.)
| | - Gabriella Cancemi
- Food and Feed Chemistry Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), via A. Bianchi 9, 25124 Brescia, Italy; (M.G.); (B.A.); (G.C.); (S.M.)
| | - Vito Tranquillo
- Programmazione dei Servizi e Controllo di Gestione, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), via A. Bianchi 9, 25124 Brescia, Italy;
| | - Giovanni Prestini
- Dipartimento Veterinario e Sicurezza degli Alimenti di Origine Animale, ATS della BRIANZA, Viale Elvezia 2, 20900 Monza, Italy;
| | - Filippo Bosi
- Dipartimento di Sanità Pubblica, Azienda Unità Sanitaria Locale della Romagna–Ravenna, via Fiume Montone Abbandonato 134, 48100 Ravenna, Italy;
| | - Simonetta Menotta
- Food and Feed Chemistry Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), via A. Bianchi 9, 25124 Brescia, Italy; (M.G.); (B.A.); (G.C.); (S.M.)
| |
Collapse
|
33
|
Curl CL, Hyland C, Spivak M, Sheppard L, Lanphear B, Antoniou MN, Ospina M, Calafat AM. The Effect of Pesticide Spray Season and Residential Proximity to Agriculture on Glyphosate Exposure among Pregnant People in Southern Idaho, 2021. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127001. [PMID: 38054699 PMCID: PMC10699167 DOI: 10.1289/ehp12768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Glyphosate is one of the most heavily used pesticides in the world, but little is known about sources of glyphosate exposure in pregnant people living in agricultural regions. OBJECTIVE Our objective was to evaluate glyphosate exposure during pregnancy in relation to residential proximity to agriculture as well as agricultural spray season. METHODS We quantified glyphosate concentrations in 453 urine samples collected biweekly from a cohort of 40 pregnant people in southern Idaho from February through December 2021. We estimated each participant's glyphosate exposure as the geometric mean (GM) of glyphosate concentrations measured in all samples (average n = 11 samples/participant), as well as the GM of samples collected during the pesticide "spray season" (defined as those collected 1 May-15 August; average n = 5 samples/participant) and the "nonspray season" (defined as those collected before 1 May or after 15 August; average n = 6 samples/participant). We defined participants who resided < 0.5 km from an actively cultivated agriculture field to live "near fields" and those residing ≥ 0.5 km from an agricultural field to live "far from fields" (n = 22 and 18, respectively). RESULTS Among participants living near fields, urinary glyphosate was detected more frequently and at significantly increased GM concentrations during the spray season in comparison with the nonspray season (81% vs. 55%; 0.228 μ g / L vs. 0.150 μ g / L , p < 0.001 ). In contrast, among participants who lived far from fields, neither glyphosate detection frequency nor GMs differed in the spray vs nonspray season (66% vs. 64%; 0.154 μ g / L vs. 0.165 μ g / L , p = 0.45 ). Concentrations did not differ by residential proximity to fields during the nonspray season (0.154 μ g / L vs. 0.165 μ g / L , for near vs. far, p = 0.53 ). DISCUSSION Pregnant people living near agriculture fields had significantly increased urinary glyphosate concentrations during the agricultural spray season than during the nonspray season. They also had significantly higher urinary glyphosate concentrations during the spray season than those who lived far from agricultural fields at any time of year, but concentrations did not differ during the nonspray season. These findings suggest that agricultural glyphosate spray is a source of exposure for people living near fields. https://doi.org/10.1289/EHP12768.
Collapse
Affiliation(s)
- Cynthia L. Curl
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
| | - Carly Hyland
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA
- Division of Agriculture and National Resources, University of California, Berkeley, CA, USA
| | - Meredith Spivak
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
| | - Lianne Sheppard
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - Bruce Lanphear
- Simon Fraser University, Vancouver, British Columbia, Canada
| | - Michael N. Antoniou
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King’s College London, London, UK
- Life Sciences and Medicine, Guy’s Hospital, London, UK
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
34
|
Knežević S, Jovanović NT, Vlahović F, Ajdačić V, Costache V, Vidić J, Opsenica I, Stanković D. Direct glyphosate soil monitoring at the triazine-based covalent organic framework with the theoretical study of sensing principle. CHEMOSPHERE 2023; 341:139930. [PMID: 37659506 DOI: 10.1016/j.chemosphere.2023.139930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/27/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Covalent organic frameworks (COFs) are emerging as promising sensing materials due to their controllable structure and function properties, as well as excellent physicochemical characteristics. Here, specific interactions between a triazine-based COF and a mass-used herbicide - glyphosate (GLY) have been utilized to design a disposable sensing platform for GLY detection. This herbicide has been extensively used for decades, however, its harmful environmental impact and toxicity to humans have been recently proven, conditioning the necessity for the strict control and monitoring of its use and its presence in soil, water, and food. Glyphosate is an organophosphorus compound, and its detection in complex matrices usually requires laborious pretreatment. Here, we developed a direct, miniaturized, robust, and green approach for disposable electrochemical sensing of glyphosate, utilizing COF's ability to selectively capture and concentrate negatively charged glyphosate molecules inside its nanopores. This process generates the concentration gradient of GLY, accelerating its diffusion towards the electrode surface. Simultaneously, specific COF-glyphosate binding catalyses the oxidative cleavage of the C-P bond and, together with pore nanoconfinement, enables sensitive glyphosate detection. Detailed sensing principles and selectiveness were scrutinized using DFT-based modelling. The proposed electrochemical method has a linear working range from 0.1 μM to 10 μM, a low limit of detection of 96 nM, and a limit of quantification of 320 nM. The elaborated sensing approach is viable for use in real sample matrices and tested for GLY determination in soil and water samples, without pretreatment, preparation, or purification. The results showed the practical usefulness of the sensor in the real sample analysis and suggested its suitability for possible out-of-laboratory sensing.
Collapse
Affiliation(s)
- Sara Knežević
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | - Nataša Terzić Jovanović
- Scientific Institution, Institute of Chemistry, Technology and Metallurgy, National Institute University of Belgrade, Belgrade, Serbia
| | - Filip Vlahović
- Scientific Institution, Institute of Chemistry, Technology and Metallurgy, National Institute University of Belgrade, Belgrade, Serbia
| | - Vladimir Ajdačić
- Innovative Centre Ltd., Faculty of Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Vlad Costache
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy en Josas, France; MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, INRAE, 78350, Jouy en Josas, France
| | - Jasmina Vidić
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, UMR 1319, 78350 Jouy en Josas, France
| | - Igor Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dalibor Stanković
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; Department of Radioisotopes, "VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
35
|
González-Moscoso M, Meza-Figueroa D, Martínez-Villegas NV, Pedroza-Montero MR. GLYPHOSATE IMPACT on human health and the environment: Sustainable alternatives to replace it in Mexico. CHEMOSPHERE 2023; 340:139810. [PMID: 37598951 DOI: 10.1016/j.chemosphere.2023.139810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Glyphosate is a broad-spectrum, non-selective herbicide used to control weeds and protect agricultural crops, and it is classified as potentially carcinogenic by the International Agency for Research on Cancer. In Mexico, the use of pesticides is a common practice, including glyphosate. However, on December 31st, 2020, the Mexican government decreed the prohibition of this herbicide as of January 2024. In this review, we investigate the association between glyphosate and cancer risk and found that most of the studies focused using animals showing negative effects such as genotoxicity, cytotoxicity and neurotoxicity, some studies used cancer cell lines showing proliferative effects due to glyphosate exposure. To our knowledge, in Mexico, there are no scientific reports on the association of glyphosate with any type of cancer. In addition, we reviewed the toxicological effects of the herbicide glyphosate, and the specific case of the current situation of the use and environmental damage of this herbicide in Mexico. We found that few studies have been published on glyphosate, and that the largest number of publications are from the International Agency for Research on Cancer classification to date. Additionally, we provide data on glyphosate stimulation at low doses as a biostimulant in crops and analytical monitoring techniques for the detection of glyphosates in different matrices. Finally, we have tried to summarize the actions of the Mexican government to seek sustainable alternatives and replace the use of glyphosate, to obtain food free of this herbicide and take care of the health of the population and the environment.
Collapse
Affiliation(s)
- Magín González-Moscoso
- Departamento de Nanotecnología, Universidad Politécnica de Chiapas (UPChiapas), Carretera Tuxtla Gutierrez.-Portillo Zaragoza Km 21+500, Col. Las Brisas, Suchiapa, 29150, Chiapas, Mexico.
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, Hermosillo, 83000, Sonora, Mexico
| | | | - Martín Rafael Pedroza-Montero
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Encinas, Hermosillo, 83000, Sonora, Mexico
| |
Collapse
|
36
|
Chianese T, Cominale R, Scudiero R, Rosati L. Could Exposure to Glyphosate Pose a Risk to the Survival of Wild Animals? A Case Study on the Field Lizard Podarcis siculus. Vet Sci 2023; 10:583. [PMID: 37756105 PMCID: PMC10535126 DOI: 10.3390/vetsci10090583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Soil contaminants (herbicides, pesticides, and heavy metals) are among the main causes of change in terrestrial ecosystems. These substances lead to a general loss of biodiversity, both of flora and fauna and being able to biomagnify and pass through the food chain, they can endanger the survival of terrestrial vertebrates at the top of this chain. This review analyzes the risks associated with exposure to glyphosate, the active principle of many herbicide products, for the reproductive health of the field lizard (Podarcis siculus) potentially exposed to the substance in its natural habitat; therefore, introducing it as a possible model organism. Data demonstrate that glyphosate is toxic for this animal, affecting the health of the reproductive organs, both in males and females, and of the liver, the main detoxifying organ and closely involved in the female reproductive process. Sharing structural and functional characteristics of these organs with many other vertebrates, the information obtained with this reptile represents a wake-up call to consider when analyzing the cost/benefit ratio of glyphosate-based substances. The data clearly demonstrate that the P. siculus lizard can be considered a good target organism to study the reproductive risk assessment and hazards of exposure to soil contaminants on wild terrestrial vertebrates.
Collapse
|
37
|
Le Quilliec E, Fundere A, Al-U’datt DGF, Hiram R. Pollutants, including Organophosphorus and Organochloride Pesticides, May Increase the Risk of Cardiac Remodeling and Atrial Fibrillation: A Narrative Review. Biomedicines 2023; 11:2427. [PMID: 37760868 PMCID: PMC10525278 DOI: 10.3390/biomedicines11092427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac rhythm disorder. Recent clinical and experimental studies reveal that environmental pollutants, including organophosphorus-organochloride pesticides and air pollution, may contribute to the development of cardiac arrhythmias including AF. Here, we discussed the unifying cascade of events that may explain the role of pollutant exposure in the development of AF. Following ingestion and inhalation of pollution-promoting toxic compounds, damage-associated molecular pattern (DAMP) stimuli activate the inflammatory response and oxidative stress that may negatively affect the respiratory, cognitive, digestive, and cardiac systems. Although the detailed mechanisms underlying the association between pollutant exposure and the incidence of AF are not completely elucidated, some clinical reports and fundamental research data support the idea that pollutant poisoning can provoke perturbed ion channel function, myocardial electrical abnormalities, decreased action potential duration, slowed conduction, contractile dysfunction, cardiac fibrosis, and arrhythmias including AF.
Collapse
Affiliation(s)
- Ewen Le Quilliec
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada;
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
| | - Alexia Fundere
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
| | - Doa’a G. F. Al-U’datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Roddy Hiram
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada;
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
| |
Collapse
|
38
|
Chang MH, Chu PL, Wang C, Lin CY. Association between Glyphosate Exposure and Erythrograms in a Representative Sample of US Adults: NHANES 2013-2014. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91207-91215. [PMID: 37474857 DOI: 10.1007/s11356-023-28905-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Glyphosate is the most commonly utilized herbicide globally, and a growing body of experimental research has linked its exposure to red blood cell damage. However, the potential toxicity of glyphosate exposure on erythrocytes in the general population remains poorly understood. Therefore, we analyzed data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES) of 1466 adults (≥ 18 years) to explore the potential relationship between glyphosate exposure and erythrocyte profiles. Our results indicated a significant negative association between urinary glyphosate levels and hemoglobin (Hb) and hematocrit (Hct) in multiple regression analysis, with ß coefficients of -0.157 (S.E. = 0.055, P = 0.012) and -0.431 (S.E. = 0.195, P = 0.043), respectively. Additionally, the odds ratio showed a significant increase in individuals with anemia with a one-unit increase in ln-glyphosate levels (odds ratio = 1.523 (95% CI = 1.301 - 1.783), P < 0.001 in the final model). The negative correlation between glyphosate and Hb was more pronounced in subjects older than 60 years, non-Hispanic white ethnicity, lower income, and those with a body mass index (BMI) < 25 and ≥ 30. In conclusion, our results provide preliminary evidence of a plausible association between glyphosate exposure and anemia in a subset of the adult population in the United States. However, further research is necessary to understand the underlying mechanisms and clinical implications of this association.
Collapse
Affiliation(s)
- Ming-Hao Chang
- Department of Obstetrics and Gynecology, En Chu Kong Hospital, New Taipei City, 237, Taiwan
| | - Pei-Lun Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, 242, Taiwan
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, 242, Taiwan
| | - ChiKang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Chien-Yu Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, 242, Taiwan.
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan.
- Department of Internal Medicine, En Chu Kong Hospital, No. 399, Fuxing Rd., Sanxia Dist., New Taipei City, 237, Taiwan (R.O.C.).
| |
Collapse
|
39
|
Yang Y, Zhou S, Xing Y, Yang G, You M. Impact of pesticides exposure during neurodevelopmental period on autism spectrum disorders - A focus on gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115079. [PMID: 37262968 DOI: 10.1016/j.ecoenv.2023.115079] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Accumulating evidence indicates exposure to pesticides during the crucial neurodevelopmental period increases susceptibility to many diseases, including the neurodevelopmental disorder known as autism spectrum disorder (ASD). In the last few years, it has been hypothesized that gut microbiota dysbiosis is strongly implicated in the aetiopathogenesis of ASD. Recently, new studies have suggested that the gut microbiota may be involved in the neurological and behavioural defects caused by pesticides, including ASD symptoms. This review highlights the available evidence from recent animal and human studies on the relationship between pesticides that have the potential to disturb intestinal microbiota homeostasis, and ASD symptoms. The mechanisms through which gut microbiota dysbiosis may trigger ASD-like behaviours induced by pesticides exposure during the neurodevelopmental period via the altered production of bacterial metabolites (short chain fatty acids, lipids, retinol, and amino acid) are also described. According to recent research, gut microbiota dysbiosis may be a major contributor to the symptoms of ASD associated with pesticides exposure. However, to determine the detailed mechanism of action of gut microbiota on pesticide-induced ASD behaviours, actual population exposure scenarios from epidemiological studies should be used as the basis for the appropriate exposure pattern and dosage to be used in animal studies.
Collapse
Affiliation(s)
- Yongyong Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Shun Zhou
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Ying Xing
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Guanghong Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| | - Mingdan You
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
40
|
Qi L, Li Y, Dong Y, Ma S, Li G. Integrated metabolomics and transcriptomics reveal glyphosate based-herbicide induced reproductive toxicity through disturbing energy and nucleotide metabolism in mice testes. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37087751 DOI: 10.1002/tox.23808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Glyphosate is a widely used herbicide that has deleterious effects on animal reproduction. However, details regarding the systematic mechanisms of glyphosate-induced reproductive toxicity are limited. This study aimed to investigate the toxic effects of glyphosate-based herbicide (GBH) on reproduction in mice exposed to 0 (control group), 50 (low-dose group), 250 (middle-dose group), and 500 (high-dose group) mg/kg/day GBH for 30 days. Toxicological parameters, metabolomics, and transcriptomics were performed to reveal GBH-induced reproductive toxicity. Our findings demonstrated that GBH exposure damaged mitochondrial pyknosis and the nuclear membrane of spermatogonia. GBH triggered a significant increase in sperm malformations in the high-dose group. Omics data showed that GBH impaired the Krebs cycle and respiratory chain, blocked pyruvate metabolism and glycolysis/gluconeogenesis, and influenced the pentose phosphate pathway and nucleotide synthesis and metabolism. Overall, the multi-omics results revealed systematic and comprehensive evidence of the adverse effects of GBH exposure, providing new insights into the reproductive toxicity of organophosphorus pesticides.
Collapse
Affiliation(s)
- Lei Qi
- Department of Nutrition and Food Hygiene, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yupeng Li
- Physical Examination Center, the Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yanmei Dong
- Department of Nutrition and Food Hygiene, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Shuli Ma
- Public Health Experimental Center, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Gang Li
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
41
|
Defarge N, Otto M, Hilbeck A. A Roundup herbicide causes high mortality and impairs development of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161158. [PMID: 36572288 DOI: 10.1016/j.scitotenv.2022.161158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Glyphosate has and is being used extensively in herbicide formulations worldwide. Thus, glyphosate-based herbicides (GBH) substantially add to the environmental load of pesticides and warrant a strict risk assessment. Ecotoxicological testing of herbicides focuses on non-target plants and higher animals while direct effects on arthropods are only cursory tested on the premise of contact exposure. However, oral exposure, as we show in our case, can be highly relevant for systemic pesticides, such as GBH. Specifically, in crop systems including genetically modified crops that are tolerant to GBH, these herbicides and their breakdown products are present both internally and externally of the crop plants and, therefore, are ingested by the crop-associated arthropod fauna. We tested the effects of oral uptake of the Roundup formulation WeatherMax on larvae of the lacewing Chrysoperla carnea, a model organism in ecotoxicity testing programs. Long-term oral exposure of C. carnea larvae throughout its juvenile life stages was tested with concentrations ranging from 0.001 to 1 % dilution, thus, lower than the 1.67 % recommended for field applications. Inhibition of metamorphosis was observable at 0.1 % but at a concentration of 0.5 %, GBH significantly impaired cocoon formation and led to massive lethal malformations. At GBH concentration of 1 % half of the individuals remained permanent larvae and no adult hatched alive. The effects observed followed a clear dose-response relationship. The hazard caused by direct insecticidal action of GHB after oral uptake is highly relevant for the environmental safety and reveals a gap in regulatory risk assessments that should urgently be addressed, specifically in light of the on-going insect decline.
Collapse
Affiliation(s)
- N Defarge
- Swiss Federal Institute of Technology, Institute of Integrative Biology IBZ, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - M Otto
- Federal Agency for Nature Conservation (BfN), Konstantinstrasse 110, DE-53179 Bonn, Germany
| | - A Hilbeck
- Swiss Federal Institute of Technology, Institute of Integrative Biology IBZ, Universitätstrasse 16, CH-8092 Zurich, Switzerland.
| |
Collapse
|
42
|
Glyphosate and Glufosinate Residues in Honey and Other Hive Products. Foods 2023; 12:foods12061155. [PMID: 36981082 PMCID: PMC10048440 DOI: 10.3390/foods12061155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Hive products have numerous beneficial properties; however, the hive’s health is affected by the surrounding environment. The widespread use of herbicides in agriculture, such as glyphosate and glufosinate, has raised alarm among consumers, beekeepers, and environmentalists due to their potential to harm bees and humans through the consumption of bee products. This review aims to provide a comprehensive overview of the presence of glyphosate, glufosinate, and their metabolites in hive products, collecting and comparing available data from peer-reviewed research and surveys conducted across several countries. Moreover, it analyzes and discusses the potential impacts of these substances on human and bee health, analytical aspects, and recent regulatory developments. The data has revealed that these substances can be present in the different matrices tested, but the concentrations found are usually lower than the maximum residue limits set. However, the use of different methodologies with non-uniform analytical performances, together with an incomplete search for regulated analytes, leads to heterogeneity and makes comparisons challenging. In addition to the completion of studies on the toxicology of herbicide active ingredients, further monitoring actions are necessary, harmonizing analytical methodologies and data management procedures.
Collapse
|
43
|
Giacomazzo GE, Paderni D, Giorgi L, Formica M, Mari L, Montis R, Conti L, Macedi E, Valtancoli B, Giorgi C, Fusi V. A New Family of Macrocyclic Polyamino Biphenolic Ligands: Acid-Base Study, Zn(II) Coordination and Glyphosate/AMPA Binding. Molecules 2023; 28:molecules28052031. [PMID: 36903278 PMCID: PMC10003900 DOI: 10.3390/molecules28052031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
In this study, the ligands 23,24-dihydroxy-3,6,9,12-tetraazatricyclo[17.3.1.1(14,18)]eicosatetra-1(23),14,16,18(24),19,21-hexaene, L1, and 26,27-dihidroxy-3,6,9,12,15-pentaazatricyclo[20.3.1.1(17,21)]eicosaepta-1(26),17,19,21(27),22,24-hexaene, L2, were synthesized: they represent a new class of molecules containing a biphenol unit inserted into a macrocyclic polyamine fragment. The previously synthesized L2 is obtained herein with a more advantageous procedure. The acid-base and Zn(II)-binding properties of L1 and L2 were investigated through potentiometric, UV-Vis, and fluorescence studies, revealing their possible use as chemosensors of H+ and Zn(II). The new peculiar design of L1 and L2 afforded the formation in an aqueous solution of stable Zn(II) mono (LogK 12.14 and 12.98 for L1 and L2, respectively) and dinuclear (LogK 10.16 for L2) complexes, which can be in turn exploited as metallo-receptors for the binding of external guests, such as the popular herbicide glyphosate (N-(phosphonomethyl)glycine, PMG) and its primary metabolite, the aminomethylphosphonic acid (AMPA). Potentiometric studies revealed that PMG forms more stable complexes than AMPA with both L1- and L2-Zn(II) complexes, moreover PMG showed higher affinity for L2 than for L1. Fluorescence studies showed instead that the L1-Zn(II) complex could signal the presence of AMPA through a partial quenching of the fluorescence emission. These studies unveiled therefore the utility of polyamino-phenolic ligands in the design of promising metallo-receptors for elusive environmental targets.
Collapse
Affiliation(s)
- Gina Elena Giacomazzo
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Daniele Paderni
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, Via della Stazione 4, 61029 Urbino, Italy
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, Via della Stazione 4, 61029 Urbino, Italy
| | - Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, Via della Stazione 4, 61029 Urbino, Italy
| | - Lorenzo Mari
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Riccardo Montis
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, Via della Stazione 4, 61029 Urbino, Italy
| | - Luca Conti
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Correspondence: (L.C.); (E.M.); (C.G.)
| | - Eleonora Macedi
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, Via della Stazione 4, 61029 Urbino, Italy
- Correspondence: (L.C.); (E.M.); (C.G.)
| | - Barbara Valtancoli
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudia Giorgi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Correspondence: (L.C.); (E.M.); (C.G.)
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, Via della Stazione 4, 61029 Urbino, Italy
| |
Collapse
|
44
|
Qi L, Dong YM, Chao H, Zhao P, Ma SL, Li G. Glyphosate based-herbicide disrupts energy metabolism and activates inflammatory response through oxidative stress in mice liver. CHEMOSPHERE 2023; 315:137751. [PMID: 36608876 DOI: 10.1016/j.chemosphere.2023.137751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Glyphosate, the most widely used herbicide worldwide, has been reported to cause hepatotoxicity. However, these systematic mechanisms remain poorly understood. Here, we investigated the effects of glyphosate-based herbicides (GBH) on liver toxicity in mice exposed to 0, 50, 250, and 500 mg/kg/day GBH for 30 d. Pathological and ultrastructural changes, serum biochemical indicators, oxidative stress state, and transcriptome and key protein alterations were performed to describe the hepatic responses to GBH. GBH induced hepatocytes structural alterations, vacuolation, and inflammatory, mitochondrial swelling and vacuolization; damaged liver function and aggravated oxidative stress; blocked the respiratory chain, promoted gluconeogenesis, fatty acid synthesis and elongation, and activated complement and coagulation cascades system (CCCS) in the liver. Moreover, SOD, H2O2, and MDA were negatively correlated with the CxI and CxIV genes, but positively correlated with the genes in glucolipid metabolism and CCCS pathways; however, the opposite results were observed for CAT, GSH-Px, and T-AOC. Overall, this study revealed the systematic mechanism underlying hepatotoxicity caused by GBH, providing new insights into understanding the hepatotoxicity of organophosphorus pesticide.
Collapse
Affiliation(s)
- Lei Qi
- Department of Nutrition and Food Hygiene, Public Health College, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Yan-Mei Dong
- Department of Nutrition and Food Hygiene, Public Health College, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Hong Chao
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Peng Zhao
- Digital Curriculum Center, Academic Affairs Department, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Shu-Li Ma
- Public Health Experimental Center, Public Health College, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Gang Li
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China.
| |
Collapse
|
45
|
Arrigo E, Gilardi S, Muratori L, Raimondo S, Mancardi D. Biological effects of sub-lethal doses of glyphosate and AMPA on cardiac myoblasts. Front Physiol 2023; 14:1165868. [PMID: 37168227 PMCID: PMC10164986 DOI: 10.3389/fphys.2023.1165868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Glyphosate is the active compound of different non-selective herbicides, being the most used agriculture pesticide worldwide. Glyphosate and AMPA (one of its main metabolites) are common pollutants of water, soil, and food sources such as crops. They can be detected in biological samples from both exposed workers and general population. Despite glyphosate acts as inhibitor of the shikimate pathway, present only in plants and some microorganisms, its safety in mammals is still debated. Acute glyphosate intoxications are correlated to cardiovascular/neuronal damages, but little is known about the effects of the chronic exposure. Methods: We evaluated the direct biological effects of different concentrations of pure glyphosate/AMPA on a rat-derived cell line of cardiomyoblasts (H9c2) in acute (1-2 h) or sub-chronic (24-48 h) settings. We analyzed cell viability/morphology, ROS production and mitochondrial dynamics. Results: Acute exposure to high doses (above 10 mM) of glyphosate and AMPA triggers immediate cytotoxic effects: reduction in cell viability, increased ROS production, morphological alterations and mitochondrial function. When exposed to lower glyphosate concentrations (1 μM-1 mM), H9c2 cells showed only a slight variation in cell viability and ROS production, while mitochondrial dynamic was unvaried. Moreover, the phenotype was completely restored after 48 h of treatment. Surprisingly, the sub-chronic (48 h) treatment with low concentrations (1 μM-1 mM) of AMPA led to a late cytotoxic response, reflected in a reduction in H9c2 viability. Conclusion: The comprehension of the extent of human exposure to these molecules remains pivotal to have a better critical view of the available data.
Collapse
Affiliation(s)
- Elisa Arrigo
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
- *Correspondence: Daniele Mancardi, ; Elisa Arrigo,
| | - Sara Gilardi
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | - Daniele Mancardi
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
- *Correspondence: Daniele Mancardi, ; Elisa Arrigo,
| |
Collapse
|
46
|
Rapid photocatalytic mineralization of glyphosate by Pd@BiVO4/BiOBr nanosheets: Mechanistic studies and degradation pathways. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
47
|
Chen Y, Chen WJ, Huang Y, Li J, Zhong J, Zhang W, Zou Y, Mishra S, Bhatt P, Chen S. Insights into the microbial degradation and resistance mechanisms of glyphosate. ENVIRONMENTAL RESEARCH 2022; 215:114153. [PMID: 36049517 DOI: 10.1016/j.envres.2022.114153] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate, as one of the broad-spectrum herbicides for controlling annual and perennial weeds, is widely distributed in various environments and seriously threatens the safety of human beings and ecology. Glyphosate is currently degraded by abiotic and biotic methods, such as adsorption, photolysis, ozone oxidation, and microbial degradation. Of these, microbial degradation has become the most promising method to treat glyphosate because of its high efficiency and environmental protection. Microorganisms are capable of using glyphosate as a phosphorus, nitrogen, or carbon source and subsequently degrade glyphosate into harmless products by cleaving C-N and C-P bonds, in which enzymes and functional genes related to glyphosate degradation play an indispensable role. There have been many studies on the abiotic and biotic treatment technologies, microbial degradation pathways and intermediate products of glyphosate, but the related enzymes and functional genes involved in the glyphosate degradation pathways have not been further discussed. There is little information on the resistance mechanisms of bacteria and fungi to glyphosate, and previous investigations of resistance mechanisms have mainly focused on how bacteria resist glyphosate damage. Therefore, this review explores the microorganisms, enzymes and functional genes related to the microbial degradation of glyphosate and discusses the pathways of microbial degradation and the resistance mechanisms of microorganisms to glyphosate. This review is expected to provide reference for the application and improvement of the microbial degradation of glyphosate in microbial remediation.
Collapse
Affiliation(s)
- Yongsheng Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jianfeng Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yi Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, 47906, USA.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
48
|
Yalçin E, Çavuşoğlu K. Spectroscopic contribution to glyphosate toxicity profile and the remedial effects of Momordica charantia. Sci Rep 2022; 12:20020. [PMID: 36414701 PMCID: PMC9681759 DOI: 10.1038/s41598-022-24692-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, the glyphosate toxicity and the toxicity-reducing role of bitter melon extract (Bmex) (Momordica charantia L.) were investigated in Allium cepa L. test material. The toxicity of glyphosate and protective role of Bmex were investigated with the help of physiological (germination, root elongation and weight gain), cytogenetic (mitotic index-MI, micronucleus-MN and chromosomal abnormalities-CAs), biochemical (malondialdehyde-MDA, superoxide dismutase-SOD and catalase-CAT) and anatomical (root meristem cell damage) parameters. The genotoxicity mechanism of glyphosate was elucidated by spectral analysis. A. cepa bulbs were divided into six groups as one control and five applications. Tap water was applied to the bulbs in the control group for 72 h. Glyphosate (500 mg/L) and two different doses of Bmex (350 and 700 mg/L) were applied to the bulbs in the treatment group for 72 h. At the end of the period, the germinated bulbs were prepared for experimental analyses, measurements and observations by applying routine preparation procedures. As a result, glyphosate administration caused a significant (p < 0.05) decrease in all selected physiological parameter values, and significant (p < 0.05) increases in the number of cytogenetic parameters (except MI), the levels of biochemical parameters and the severity of anatomical damage. Glyphosate promoted CAs such as fragment, sticky chromosome, bridge and unequal distribution of chromatin in root tip meristem cells. By spectral analysis, it was determined that glyphosate interacts directly with DNA and causes genotoxicity. It also caused anatomical damages such as epidermis cell damage, cortex cell damage, flattened cell nucleus, binuclear cell and irregular vascular tissue in root tip meristem cells. Co-administration of glyphosate with Bmex at two different doses (350 and 700 mg/L) reduced the toxicity of glyphosate and led to significant (p < 0.05) improvements in the values of all parameters examined. It was determined that this improvement was even more pronounced at 700 mg/L dose of Bmex. As a result, it was determined that glyphosate herbicide caused multi-dimensional toxicity in A. cepa test material, and Bmex reduced the effects of this toxicity due to its antioxidant properties. Therefore, glyphosate dose ranges need to be reconsidered, especially considering non-target organisms in agricultural applications. In addition, antioxidant products such as Bmex should be included in the daily diet in order to reduce the toxic effects of environmental agents such as pesticides.
Collapse
Affiliation(s)
- Emine Yalçin
- Department of Biology, Faculty of Arts and Sciences, Giresun University, 28200, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Arts and Sciences, Giresun University, 28200, Giresun, Turkey.
| |
Collapse
|
49
|
Ogurcovs A, Kadiwala K, Sledevskis E, Krasovska M, Mizers V. Glyphosate Sensor Based on Nanostructured Water-Gated CuO Field-Effect Transistor. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22228744. [PMID: 36433339 PMCID: PMC9697268 DOI: 10.3390/s22228744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 05/31/2023]
Abstract
This research presents a comparative analysis of water-gated thin film transistors based on a copper oxide (CuO) semiconductor in the form of a smooth film and a nanostructured surface. A smooth CuO film was deposited through reactive magnetron sputtering followed by annealing in atmosphere at a temperature of 280 ∘C. Copper oxide nanostructures were obtained by hydrothermal synthesis on a preliminary magnetron sputtered 2 nm thick CuO precursor followed by annealing at 280 ∘C. An X-ray diffraction (XRD) analysis of the samples revealed the presence of a tenorite (CuO) phase with a predominant orientation of (002). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies of the samples revealed a highly developed surface with crystallites having a monoclinic syngony and dimensions of 15-20 nm in thickness, 150 nm in length, and 100 nm in height relative to a 2.5 nm height for the CuO crystallites of the smooth film. Electric measurements of the studied devices revealed typical current-voltage characteristics of semiconductors with predominant hole conductivity. The maximum ON/OFF ratio at a rain-source voltage of 0.4 volts and -1.2 volts on the gate for a smooth film was 102, and for a nanostructured transistor, it was 103. However, a much stronger saturation of the channel was observed for the nanostructured channel than for the smooth film. A test solution containing glyphosate dissolved in deionized water in three different concentrations of 5, 10, and 15 μmol/L was used during the experiments. The principle of operation was based on the preliminary saturation of the solution with Cu ions, followed by the formation of a metal-organic complex alongside glyphate. The glyphosate contents in the analyte led to a decrease in the conductivity of the transistor on the axis of the smooth film. In turn, the opposite effect was observed on the nanostructured surface, i.e., an increase in conductivity was noted upon the introduction of an analyte. Despite this, the overall sensitivity of the nanostructured device was twice as high as that of the device with a thin film channel. The relative changes in the field-effect transistor (FET) conductivity at maximum glyphosate concentrations of 15 μmol/L reached 19.42% for the nanostructured CuO film and 3.3% for the smooth film.
Collapse
Affiliation(s)
- Andrejs Ogurcovs
- Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
| | - Kevon Kadiwala
- Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
| | - Eriks Sledevskis
- G. Liberts’ Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1A, LV-5401 Daugavpils, Latvia
| | - Marina Krasovska
- G. Liberts’ Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1A, LV-5401 Daugavpils, Latvia
| | - Valdis Mizers
- G. Liberts’ Innovative Microscopy Centre, Department of Technology, Institute of Life Sciences and Technology, Daugavpils University, Parades Street 1A, LV-5401 Daugavpils, Latvia
| |
Collapse
|
50
|
Ünlü Endirlik B, Bakır E, Ökçesiz A, Güler A, Hamurcu Z, Eken A, Dreij K, Gürbay A. Investigation of the toxicity of a glyphosate-based herbicide in a human liver cell line: Assessing the involvement of Nrf2 pathway and protective effects of vitamin E and α-lipoic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103999. [PMID: 36252731 DOI: 10.1016/j.etap.2022.103999] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used herbicides all over the world and has gained more attention in recent years because of health safety concerns. In this study, Roundup, one of the most popular glyphosate formulations, was used to evaluate cytotoxic, oxidative stress and apoptosis inducing effects of GBHs in a human hepatocellular cell line (HepG2). Roundup was shown to significantly increase cellular reactive oxygen species (ROS) levels, which lead to activation of the nuclear factor-erythroid-2-related factor 2 (Nrf2) antioxidant defense pathway including reduced levels of heme oxygenase 1 (HO-1). Furthermore, Roundup was found to induce apoptosis and further analysis confirmed involvement of a mitochondrial-dependent pathway verified by increased Bax/Bcl-2 ratios. Investigation of the protective effects of antioxidants vitamin E (Vit E) and α-lipoic acid (LA) against Roundup toxicity showed that both antioxidants significantly reduced the cytotoxicity, ROS formation, HO-1 downregulation, and apoptosis and that Vit E did so more efficiently than LA. In conclusion, our findings highlight the ROS producing and apoptosis inducing effects associated with GBHs, the activation of Nrf2 pathway as a defense mechanism and the protective effects of Vit E and LA against GBH toxicity.
Collapse
Affiliation(s)
- Burcu Ünlü Endirlik
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.
| | - Elçin Bakır
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Aysun Ökçesiz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ahsen Güler
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Zuhal Hamurcu
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey; Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ayşe Eken
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aylin Gürbay
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|