1
|
Liu W, Wu N, Peng B, Li T, Ren L, Li B, Song Y. Characterization of metabolites of ganoderic acids extract from Ganoderma lucidum in rats using UHPLC-MS/MS. J Pharm Biomed Anal 2025; 258:116764. [PMID: 39999522 DOI: 10.1016/j.jpba.2025.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Ganoderic acids, the primary active compound cluster in Ganoderma lucidum (Chinese name: Lingzhi), one of the most reputed herbal medicines, play a crucial role in its immunomodulatory, anti-inflammatory, and anticancer properties. To reveal the existence forms of this chemical cluster in rat, we characterized the herb-derived compounds following the oral administration of the ganoderic acids extract (GAE). Moreover, we conducted metabolite characterization for both ganoderic acid A (GAA) and ganoderic acid B (GAB) in parallel to explore the metabolic pathways for ganoderic acids. The biological samples, including bile, plasma, urine, and feces, were analyzed by UHPLC-MS/MS. After carefully summarizing the mass fragmentation rules of ganoderic acids, a total of thirteen and eleven were identified after oral administration of GAA and GAB, respectively, through converting MS/MS spectra into chemical structures. Oxidation, reduction, hydroxylation, glucuronidation and sulfation were proposed as the primary biotransformation routes, and thereof, hydroxylation accounted for more metabolite generation. Through applying mass fragmentation rules and the metabolic knowledge, 107 metabolites, in total, were identified as GAE-derived components in rat. The obtained results provided important information towards the therapeutical forms of GAE in vivo, and moreover, offered guidelines for metabolite characterization of, but not limited to, triterpenoids.
Collapse
Affiliation(s)
- Wenjing Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nian Wu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bo Peng
- Amway (China) Botanical Research Center, Wuxi 214011, China
| | - Ting Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Luyao Ren
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201508, China.
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
2
|
Liang Z, Chen S, Zhang X, Li J, Guo W, Ni L, Lv X. The Protective Effect of Limosilactobacillus fermentum FZU501 Against Alcohol-Induced Liver Injury in Mice via Gut Microbiota-Liver Axis. Foods 2025; 14:1054. [PMID: 40232069 PMCID: PMC11942275 DOI: 10.3390/foods14061054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
As a probiotic strain isolated from Hongqu rice wine (a traditional Chinese fermented food), Limosilactobacillus fermentum FZU501 (designated as Lf) demonstrates exceptional gastric acid and bile salt tolerance, showing potential application as a functional food. The aim of this study was to investigate the protective effect of dietary Lf intervention on alcohol-induced liver injury (ALI) in mice. The results demonstrated that oral administration of Lf effectively ameliorated alcohol-induced lipid metabolism disorders by reducing the serum levels of TC, TG and LDL-C and increasing the serum levels of HDL-C. In addition, oral administration of Lf effectively prevented alcohol-induced liver damage by increasing the hepatic activities of antioxidant enzymes (CAT, SOD, GSH-Px) and alcohol-metabolizing enzymes (ADH and ALDH). Interestingly, 16S amplicon sequencing showed that oral administration of Lf increased the number of Prevotella, Lachnospiraceae_NK4A136_group and Lactobacillus, but decreased the proportion of Faecalibaculum, Adlercreutzia and Alistipes in the intestines of mice that consumed excessive alcohol, which was highly associated with improved liver function. As revealed by liver untargeted metabolomics studies, oral Lf clearly changed liver metabolic profiles, with the signature biomarkers mainly involving purine metabolism, taurine metabolism, tryptophan, alanine, aspartic acid and glutamate metabolism, etc. Additionally, Lf intervention regulated liver gene transcription in over-drinking mice for cholesterol metabolism, bile acid metabolism, fatty acid β-oxidation, alcohol metabolism and oxidative stress. Taken together, the above research results provide solid scientific support for the biological activity of Lf in ameliorating alcohol-induced liver metabolism disorder and intestinal microbiota imbalance.
Collapse
Affiliation(s)
- Zihua Liang
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Z.L.); (S.C.); (X.Z.); (J.L.); (W.G.); (L.N.)
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Shiyun Chen
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Z.L.); (S.C.); (X.Z.); (J.L.); (W.G.); (L.N.)
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Xiangchen Zhang
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Z.L.); (S.C.); (X.Z.); (J.L.); (W.G.); (L.N.)
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Jiayi Li
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Z.L.); (S.C.); (X.Z.); (J.L.); (W.G.); (L.N.)
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Weiling Guo
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Z.L.); (S.C.); (X.Z.); (J.L.); (W.G.); (L.N.)
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Z.L.); (S.C.); (X.Z.); (J.L.); (W.G.); (L.N.)
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Z.L.); (S.C.); (X.Z.); (J.L.); (W.G.); (L.N.)
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| |
Collapse
|
3
|
Wang J, Xu Q, Lu C, Cao J, Zhuang L, Li Y, Li Z, Song Y, Zhou S, Zhong F, Zhang T, Luo X. Probiotics isolated from the fermented grains of Chinese baijiu alleviate alcohol-induced liver injury by regulating alcohol metabolism and the gut microbiota in mice. Food Funct 2025; 16:2545-2563. [PMID: 40034049 DOI: 10.1039/d4fo03094j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Alcoholic liver disease is one of the diseases with a high mortality rate worldwide, resulting from excessive and chronic alcohol consumption. With the rapid rise of intestinal microbial research, more and more researchers have begun to focus on the role of probiotics in preventing, alleviating or treating diseases. In this study, effects of lactic acid bacteria (LAB), a general type of probiotic, isolated from the fermented grains of Chinese baijiu, on alcohol-induced liver injury and alcohol metabolism were investigated, and the results showed that Lactiplantibacillus pentosus LTJ12, Pediococcus acidilactici LTJ28, Lactiplantibacillus plantarum LTJ30, and Pediococcus acidilactici LTJ32 could prevent drunkenness and sober up, and had a good protective effect on alcoholic liver injury. These LAB, especially Lactiplantibacillus, can reduce the drunken rate and mortality of drinking mice, shorten the sobriety time, decrease the content of ethanol in serum, reduce the activity or content of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), triglyceride (TG) and malondialdehyde (MDA), increase the activity or content of superoxide dismutase (SOD), glutathione (GSH) and nitric oxide (NO), and also improve the activity of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) of the liver. The LAB intervention basically reversed the changes in the mRNA levels of genes related to ethanol/drug metabolism (CYP2E1, ADH1 and ALDH2), antioxidant markers (SOD2 and CAT), cellular inflammation, apoptosis and proliferation (SIRT1, SMYD3 and BRD4) and lipid metabolism (SREBP1 and FASn). In addition, we have found that the regulatory effect of these probiotics may be related to the SMYD3/BRD4 pathway, which needs further detailed research. Besides, the probiotics increased the abundance of gut microbes, restored the imbalance of the intestinal flora caused by alcohol consumption, and regulated the changes in the intestinal short-chain fatty acid content caused by chronic alcohol consumption. These results suggested that these baijiu-derived probiotics can effectively prevent drunkenness and chronic alcoholic liver injury. It is of great significance to provide scientific basis for subsequent research and development of new anti-alcoholism health products based on probiotics and the intestinal microecological regulation mechanism.
Collapse
Affiliation(s)
- Jiali Wang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China.
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qiang Xu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Chengshun Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jun Cao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Lin Zhuang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yuechan Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhongyuan Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yajian Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Feiliang Zhong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Yang J, Zhao J, Zheng T, Zhou J, Zhang H, Zhang Y. A Rapid Quantitative Assessment Method for Liver Damage Effects of Compounds Based on Zebrafish Liver Partition Area Ratio. J Appl Toxicol 2025; 45:503-513. [PMID: 39558222 DOI: 10.1002/jat.4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024]
Abstract
Total liver area is a traditional indicator in evaluating compound liver damage with zebrafish models. However, in some experiments, compounds changed zebrafish liver morphology but total liver area showed no significant difference, indicating it is inaccurate for evaluating compound effects on zebrafish liver damage. Therefore, in this study, transgenic zebrafish Tg(l-fabp:EGFP) labeled with liver cells using green fluorescent protein was used to evaluate compound effects on liver by the liver partition area ratio. The coefficient of variation of the total liver area and the liver partition area ratio of normal zebrafish at different development stages was calculated to determine the precision and dispersion of the liver partition area ratio. Three known hepatotoxic compounds (water extract of psoralea, alcohol, and α-naphthalene isothiocyanate) were used to treat zebrafish, and liver partition area ratio was calculated and verified by liver tissue pathological sections. The Pearson correlation coefficient was used to analyze the correlation between the liver partition area ratio, total liver area, and alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Results showed significant difference in liver partition area ratio between hepatotoxic compound treated group and control group, and it could accurately reflect liver morphology changes. There was a strong correlation between liver partition area ratio and ALT and AST level, whereas that between total liver area and ALT and AST level was low. Therefore, the change in zebrafish liver partition area ratio can be an evaluation indicator for rapid assessment of compound effects on zebrafish liver function damage, more sensitive and accurate than total liver area.
Collapse
Affiliation(s)
- Jing Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jingcheng Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Te Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jiashuo Zhou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Huiwen Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
5
|
Wang X, Wang X, Zhao L, Zhou F. Clinical Evaluation of Ganoderma lucidum Spore Oil for Triglyceride Reduction: A Randomized, Double-Blind, Crossover Study. Nutrients 2025; 17:844. [PMID: 40077714 PMCID: PMC11901880 DOI: 10.3390/nu17050844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Ganoderma lucidum spore oil (GLSO) is widely recognized for its notable medicinal and nutritional properties. This study aimed to systematically evaluate the efficacy and safety of GLSO extract in individuals with dyslipidemia. Methods: In a randomized, double-blind, placebo-controlled trial, 110 participants were enrolled and randomly assigned to either the intervention group or the placebo group. A chi-square test of baseline characteristics confirmed no significant differences in age or sex distribution between the two groups. Results: After 12 weeks of intervention, the intervention group exhibited significantly lower levels of total cholesterol (CHO), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C), alongside significantly higher levels of high-density lipoprotein cholesterol (HDL-C), compared to the placebo group, with all differences reaching statistical significance. Furthermore, the relative percentage changes in lipid parameters also demonstrated significant intergroup differences. Safety analyses revealed that the intervention had no notable effects on renal function parameters, whereas hepatic function parameters showed statistically significant improvement in the intervention group. Conclusions: This study demonstrated that GLSO extract effectively improved lipid profiles and liver function, with a favorable safety and tolerability profile. These findings strongly support the potential clinical application of GLSO extract in the management of dyslipidemia.
Collapse
Affiliation(s)
- Xinyi Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Xufeng Wang
- Capital Healthcare and Nutrition Cuisine Society, Beijing 100082, China;
| | - Liang Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China;
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- China Agricultura University-Sichuan Advanced Agricultural & Industrial Institute, China Agricultural University, Chengdu 611430, China
| |
Collapse
|
6
|
Wang K, Zhang Z, Xu W, Yang S, Zhao J, Wu Z, Zhang W. The Preparation of Black Goji Berry Enzyme and Its Therapeutic Effect on Alcoholic Liver Injury in Mice. Foods 2025; 14:523. [PMID: 39942116 PMCID: PMC11816926 DOI: 10.3390/foods14030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
This study aimed to prepare a black goji berry enzyme (BGBE) using high acyl gellan gum as a substitute for aqueous slurry, followed by fermentation with Saccharomyces cerevisiae (SC) for 48 h, pasteurization, and subsequent fermentation with Lactobacillus plantarum (SC) for 48 h to obtain the optimal BGBE sample. The anthocyanin content and in vitro antioxidant activity were significantly enhanced. The primary objective of this study was to evaluate the potential therapeutic effect of BGBE on alcoholic liver injury (ALD) in mice. An animal model of alcoholic liver injury was established, and the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol (TC), malondialdehyde (MDA), superoxide dismutase (SOD), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase (ALDH) in the serum and liver were analyzed. Furthermore, histopathological examination was performed using hematoxylin-eosin staining. The results indicated that BGBE significantly improved the liver histopathological condition in mice, markedly reducing the serum levels of ALT, AST, TG, TC, and the hepatic MDA levels (p < 0.05), while significantly increasing the levels of SOD, ADH, and ALDH (p < 0.05). The therapeutic effect of BGBE on alcoholic liver injury appears to be associated with its antioxidant properties.
Collapse
Affiliation(s)
- Keshan Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 203009, China; (K.W.); (W.X.); (S.Y.); (J.Z.); (Z.W.)
| | - Zhishan Zhang
- Department of Architectural Environmental Art, Xi’an Academy of Fine Arts, No. 100 South Section of Hanguang Road, Xi’an 710065, China;
| | - Wenge Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 203009, China; (K.W.); (W.X.); (S.Y.); (J.Z.); (Z.W.)
| | - Shuyuan Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 203009, China; (K.W.); (W.X.); (S.Y.); (J.Z.); (Z.W.)
| | - Jing Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 203009, China; (K.W.); (W.X.); (S.Y.); (J.Z.); (Z.W.)
| | - Zeyu Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 203009, China; (K.W.); (W.X.); (S.Y.); (J.Z.); (Z.W.)
| | - Wencheng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 203009, China; (K.W.); (W.X.); (S.Y.); (J.Z.); (Z.W.)
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 420 Feicui Road, Hefei 230001, China
| |
Collapse
|
7
|
Xu B, Wang C, Zhu X, Zhu L, Han G, Cui C. Comprehensive Analysis of Metabolic Changes in Mice Exposed to Corilagin Based on GC-MS Analysis. Drug Des Devel Ther 2025; 19:389-404. [PMID: 39867865 PMCID: PMC11762444 DOI: 10.2147/dddt.s482510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Background Corilagin is widely distributed in various medicinal plants. In recent years, numerous pharmacological activities of Corilagin have been reported, including anti-inflammatory, antiviral, hepatoprotective, anti-tumor, and anti-fibrosis effects. However, there is still a need for systematic metabolomics analysis to further elucidate its mechanisms of action. The aim of this study was to explore the pharmacological mechanism of Corilagin. Methods This study utilized gas chromatography-mass spectrometry (GC-MS) to analyze central target tissues, comprehensively exploring the pharmacological mechanism of Corilagin in mouse models. We identified the differential metabolites by multivariate analyses, which include principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Using MetaboAnalyst 5.0 and the KEGG database was used to depict the 12 key metabolic pathways. Results Compared with the control group, the Corilagin induced 20, 9, 11, 7, 16, 19, 14, 15, and 16 differential metabolites in the intestine, lung, kidney, stomach, heart, liver, hippocampus, cerebral cortex, and serum, respectively. And 12 key pathways involving glucose metabolism, lipid metabolism, and amino acid metabolism were identified following Corilagin treatment. Conclusion This research provides insight into the action mechanism of Corilagin's anti-oxidative, anti-inflammatory, anti-atherosclerotic, hepatoprotective, anti-tumor, and neuroprotective properties.
Collapse
Affiliation(s)
- Biao Xu
- Clinical Medical School, Jining Medical University, Jining, 272067, People’s Republic of China
| | - Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, People’s Republic of China
| | - Xiaodong Zhu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, People’s Republic of China
| | - Li Zhu
- Translational Pharmaceutical Laboratory, Jining No. 1 People’s Hospital, Shandong First Medical University, Jining, 272000, People’s Republic of China
| | - Guangkui Han
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, People’s Republic of China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, People’s Republic of China
| |
Collapse
|
8
|
Wang Q, Wang M, Chen J, Zhang W, Lv X. Ameliorative effects of Bacillus subtilis C10 on alcoholic liver injury in mice. J Food Sci 2024; 89:10018-10034. [PMID: 39581583 DOI: 10.1111/1750-3841.17539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024]
Abstract
Bacillus subtilis has been reported to maintain the homeostasis of intestinal flora. In this study, a mouse model of alcoholic liver injury (ALI) was constructed to study the ameliorative effect of B. subtilis C10 on ALI and to further clarify its mechanism of action. Significant correlations between intestinal flora and biochemical indicators of ALI were found by statistical correlation analysis. Supplementation with B. subtilis C10 modulated the equilibrium of gut flora by reducing the population of detrimental bacteria while enhancing the numbers of beneficial microorganisms, which resulted in an improvement in lipid metabolism and oxidative stress in the liver. The results of RT-qPCR showed that B. subtilis C10 intervention regulated the main regulatory factors of liver lipid metabolism (PPAR-α, SREBP-1c) and interfered with Nrf-2/Ho-1 signal pathway, which in turn ameliorated alcohol-induced lipid metabolism disorder and liver peroxidation stress. In addition, liver metabonomic analysis showed that B. subtilis C10 intervention reduced the production of harmful metabolites and increased beneficial metabolites in the liver, thereby reversing the metabolic disturbances caused by excessive alcohol consumption. KEGG analysis showed that B. subtilis C10 intervention modulated liver metabolic disorders and accelerated lipid metabolism by regulating glutathione metabolic pathway, purine metabolic pathway, pantothenic acid and CoA biosynthesis pathway, ABC transporter protein pathway, and HIF-1 signaling pathway. Taken together, these findings suggest that B. subtilis C10 ameliorates ALI by modifying the structure of intestinal flora and liver metabolic pathways to attenuate alcohol-exposure-induced liver oxidative damage and lipid metabolism abnormalities. PRACTICAL APPLICATION: Bacillus subtilis C10 is an effective probiotic intervention that significantly ameliorated alcoholic liver injury in mice through the gut-liver axis. B. subtilis C10 can be used as a dietary probiotic to develop functional foods with beneficial effects for the population of excessive alcohol consumption.
Collapse
Affiliation(s)
- Qingyun Wang
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Meiting Wang
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Jihong Chen
- College of Marine and Biochemical Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Wen Zhang
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Wu P, Zhang C, Yin Y, Zhang X, Li Q, Yuan L, Sun Y, Zhou S, Ying S, Wu J. Bioactivities and industrial standardization status of Ganoderma lucidum: A comprehensive review. Heliyon 2024; 10:e36987. [PMID: 39435114 PMCID: PMC11492437 DOI: 10.1016/j.heliyon.2024.e36987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 10/23/2024] Open
Abstract
Ganoderma lucidum (GL) is a potent source of bioactive compounds with diverse nutritional and pharmacological benefits. Its popularity as a dietary supplement, herbal remedy, and wellness product is steadily on the rise. Furthermore, the standardized advancement of the GL industry has facilitated reliable sourcing of raw materials and quality control measures, enhancing its utilization and endorsement in the realms of nutritional science and pharmaceutical research. This article provides a comprehensive overview of the recent advancements in research pertaining to the bioactive components of GL, particularly polysaccharides (GLP) and triterpenes (GLTs) as well as highlights the latest findings regarding their beneficial effects on human diseases, including anticancer, antidiabetes, liver protection and other aspects (such as regulating gut microbiota, antioxidant, antimicrobial, antiinflammatory and immune regulation). Furthermore, we summarized the potential applications of GL in the food and pharmaceutical sectors, while also examining the current status of standardization throughout the entire industrial chain of GL, both domestically and internationally. These information offer an insight and guidance for the prospects of industrial development and the innovative advancement of GL within the global health industry.
Collapse
Affiliation(s)
- Peng Wu
- BRICS Standardization (Zhejiang) Research Center, Zhejiang Institute of Quality Sciences, Hangzhou, China
- National Market Regulation Digital Research and Application Technology Innovation Center, Zhejiang Standardization Think Tank, Hangzhou, China
| | - Chengyun Zhang
- Wencheng County Food and Drug Comprehensive Testing Center, Wenzhou, China
| | - Yueyue Yin
- Lishui Institute for Quality Inspection and Testing, Lishui, China
| | | | - Qi Li
- Anhui Guotai Zhongxin Testing Technology Co., Ltd., Hefei, China
| | - Lijingyi Yuan
- BRICS Standardization (Zhejiang) Research Center, Zhejiang Institute of Quality Sciences, Hangzhou, China
- National Market Regulation Digital Research and Application Technology Innovation Center, Zhejiang Standardization Think Tank, Hangzhou, China
| | - Yahe Sun
- BRICS Standardization (Zhejiang) Research Center, Zhejiang Institute of Quality Sciences, Hangzhou, China
- National Market Regulation Digital Research and Application Technology Innovation Center, Zhejiang Standardization Think Tank, Hangzhou, China
| | - Shuhua Zhou
- BRICS Standardization (Zhejiang) Research Center, Zhejiang Institute of Quality Sciences, Hangzhou, China
- National Market Regulation Digital Research and Application Technology Innovation Center, Zhejiang Standardization Think Tank, Hangzhou, China
| | - Shanting Ying
- BRICS Standardization (Zhejiang) Research Center, Zhejiang Institute of Quality Sciences, Hangzhou, China
- National Market Regulation Digital Research and Application Technology Innovation Center, Zhejiang Standardization Think Tank, Hangzhou, China
| | - Jiayan Wu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
10
|
Zhao F, Li M, Luo M, Zhang M, Yuan Y, Niu H, Yue T. The dose-dependent mechanism behind the protective effect of lentinan against acute alcoholic liver injury via proliferating intestinal probiotics. Food Funct 2024; 15:10067-10087. [PMID: 39291630 DOI: 10.1039/d4fo02256d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Acute alcoholic liver injury (AALI) is a widespread disease that can develop into hepatitis, liver fibrosis, and cirrhosis. In severe cases, it can be life-threatening, while drug treatment presents various side effects. This study characterized the structure of natural lentinan (LNT) from the Qinba Mountain area and investigated the protective mechanism of different LNT doses (100 mg kg-1, 200 mg kg-1, and 400 mg kg-1) on AALI. The results showed that LNT was a glucose-dominated pyran polysaccharide with a triple-helical structure and a molecular weight (Mw) of 7.56 × 106 Da. An AALI mouse model showed that all the LNT doses protected liver function, reduced hepatic steatosis, alleviated oxidative stress and inflammatory response, and stimulated probiotic proliferation. Low-dose LNT increased anti-oxidant-associated beneficial bacteria, medium-dose LNT improved liver swelling and promoted anti-oxidant-associated probiotics, and high-dose LNT increased the probiotics that helped protect liver function and anti-oxidant and anti-inflammatory properties. All the LNT doses inhibited pathogenic growth, including Oscillospiraceae, Weeksellaceae, Streptococcaceae, Akkermansiaceae, Morganellaceae, and Proteus. These results indicated that the protective effect of LNT against AALI was mediated by the proliferation of various intestinal probiotics and was related to the consumption doses. These findings offer new strategies for comprehensively utilizing Lentinula edodes from the Qinba Mountain area and preventing AALI using natural food-based substances.
Collapse
Affiliation(s)
- Fangjia Zhao
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Min Li
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Mingyue Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Meng Zhang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Haili Niu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, 710069, China
- Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
- Innovative Transformation Platform of Food Safety and Nutritional Health, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
11
|
Kou RW, Li ZQ, Wang JL, Jiang SQ, Zhang RJ, He YQ, Xia B, Gao JM. Ganoderic Acid A Mitigates Inflammatory Bowel Disease through Modulation of AhR Activity by Microbial Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17912-17923. [PMID: 39078661 DOI: 10.1021/acs.jafc.4c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex gastrointestinal condition influenced by genetic, microbial, and environmental factors, among which the gut microbiota plays a crucial role and has emerged as a potential therapeutic target. Ganoderic acid A (GAA), which is a lanostane triterpenoid compound derived from edible mushroom Ganoderma lucidum, has demonstrated the ability to modulate gut dysbiosis. Thus, we investigated the impact of GAA on IBD using a dextran sodium sulfate (DSS)-induced colitis mouse model. GAA effectively prevented colitis, preserved epithelial and mucus layer integrity, and modulated the gut microbiota. In addition, GAA promoted tryptophan metabolism, especially 3-IAld generation, activated the aryl hydrocarbon receptor (AhR), and induced IL-22 production. Fecal microbiota transplantation validated the mediating role of the gut microbiota in the IBD protection conferred by GAA. Our study suggests that GAA holds potential as a nutritional intervention for ameliorating IBD by influencing the gut microbiota, thereby regulating tryptophan metabolism, enhancing AhR activity, and ultimately improving gut barrier function.
Collapse
Affiliation(s)
- Rong-Wei Kou
- School of Science, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China
| | - Zhi-Qing Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Jia-Lin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Shi-Qi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Rui-Jing Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yang-Qing He
- School of Science, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
12
|
Ni B, Xue K, Wang J, Zhou J, Wang L, Wang X, Liu T, Ye N, Jiang J. Integrating Chinese medicine into mainstream cancer therapies: a promising future. Front Oncol 2024; 14:1412370. [PMID: 38957318 PMCID: PMC11217489 DOI: 10.3389/fonc.2024.1412370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Malignant tumors are complex systemic chronic diseases and one of the major causes of human mortality. Targeted therapy, chemotherapy, immunotherapy, and radiotherapy are examples of mainstream allopathic medicine treatments that effective for intermediate and advanced malignant tumors. The ongoing use of conventional allopathic medicine has resulted in adverse responses and drug resistance, which have hampered its efficacy. As an important component of complementary and alternative medicine, Chinese medicine has been found to have antitumor effects and has played an important role in enhancing the therapeutic sensitivity of mainstream allopathic medicine, reducing the incidence of adverse events and improving immune-related functions. The combined application of adjuvant Chinese medicine and mainstream allopathic medicine has begun to gain acceptance and is gradually used in the field of antitumor therapy. Traditional natural medicines and their active ingredients, as well as Chinese patent medicines, have been proven to have excellent therapeutic efficacy and good safety in the treatment of various malignant tumors. This paper focuses on the mechanism of action and research progress of combining the above drugs with mainstream allopathic medicine to increase therapeutic sensitivity, alleviate drug resistance, reduce adverse reactions, and improve the body's immune function. To encourage the clinical development and use of Chinese herb adjuvant therapy as well as to provide ideas and information for creating safer and more effective anticancer medication combinations, the significant functions of Chinese herb therapies as adjuvant therapies for cancer treatment are described in detail.
Collapse
Affiliation(s)
- Baoyi Ni
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Kaiyuan Xue
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Jilai Zhou
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lankang Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinmiao Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Naijing Ye
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiakang Jiang
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Luo S, Song Y, Zhou Z, Xu XY, Jiang N, Gao YJ, Luo X. Optimization, characterization and evaluation of sodium alginate nanoparticles for Ganoderic acid DM encapsulation: Inhibitory activity on tyrosinase activity and melanin formation. Int J Biol Macromol 2024; 271:132717. [PMID: 38815940 DOI: 10.1016/j.ijbiomac.2024.132717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The efficacy of nanoencapsulation as a technology for enhancing the solubility of active substances has been demonstrated. In this particular investigation, Ganoderic acid DM (GA-DM) was encapsulated within sodium alginate nanoparticles (NPs) using the ionic crosslinking method. The confirmation of the successful loading of GA-DM was ascertained through the analysis of Fourier transform infrared spectrum (FTIR). Empirical evidence derived from the examination of scanning electron microscope (SEM) images, transmission electron microscope (TEM) images, atomic force microscope (AFM) images, and dynamic light scattering (DLS) demonstrated a regular distribution and spherical morphology, with an average particle size of approximately 133 nm. The investigation yielded an encapsulation efficiency of 95.27 ± 0.11 % and a drug loading efficiency of 21.17 ± 0.02 % for the prepared sample. The release kinetics of SGPN was fitted with the Korsmeyer-Peppas kinetic model corresponding to diffusion-controlled release. The incorporation of GA-DM into sodium alginate nanocarriers exhibited a mitigating effect on the cytotoxicity of HaCat and B16, while also demonstrating inhibitory properties against tyrosinase activity and melanin formation.
Collapse
Affiliation(s)
- Shu Luo
- Sichuan Academy of Chinese Medicine Sciences, Fungal Medicine Institute, Fungal Medicine System Research and Development Laboratory, Sichuan Provincial Key Laboratory of Quality and Innovative Chinese Medicine Research, Chengdu, Sichuan Province, China
| | - Yi Song
- Sichuan Academy of Chinese Medicine Sciences, Fungal Medicine Institute, Fungal Medicine System Research and Development Laboratory, Sichuan Provincial Key Laboratory of Quality and Innovative Chinese Medicine Research, Chengdu, Sichuan Province, China
| | - Zhou Zhou
- Sichuan Academy of Chinese Medicine Sciences, Fungal Medicine Institute, Fungal Medicine System Research and Development Laboratory, Sichuan Provincial Key Laboratory of Quality and Innovative Chinese Medicine Research, Chengdu, Sichuan Province, China
| | - Xiao-Yan Xu
- Sichuan Academy of Chinese Medicine Sciences, Fungal Medicine Institute, Fungal Medicine System Research and Development Laboratory, Sichuan Provincial Key Laboratory of Quality and Innovative Chinese Medicine Research, Chengdu, Sichuan Province, China
| | - Nan Jiang
- Sichuan Academy of Chinese Medicine Sciences, Fungal Medicine Institute, Fungal Medicine System Research and Development Laboratory, Sichuan Provincial Key Laboratory of Quality and Innovative Chinese Medicine Research, Chengdu, Sichuan Province, China
| | - Ying-Juan Gao
- Sichuan Academy of Chinese Medicine Sciences, Fungal Medicine Institute, Fungal Medicine System Research and Development Laboratory, Sichuan Provincial Key Laboratory of Quality and Innovative Chinese Medicine Research, Chengdu, Sichuan Province, China
| | - Xia Luo
- Sichuan Academy of Chinese Medicine Sciences, Fungal Medicine Institute, Fungal Medicine System Research and Development Laboratory, Sichuan Provincial Key Laboratory of Quality and Innovative Chinese Medicine Research, Chengdu, Sichuan Province, China..
| |
Collapse
|
14
|
Zhang J, Wang W, Cui X, Zhu P, Li S, Yuan S, Peng D, Peng C. Ganoderma lucidum ethanol extracts ameliorate hepatic fibrosis and promote the communication between metabolites and gut microbiota g_Ruminococcus through the NF-κB and TGF-β1/Smads pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117656. [PMID: 38154526 DOI: 10.1016/j.jep.2023.117656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum, a traditional edible medicinal mushroom, has been widely reported to improve liver diseases as a dietary intervention for people. Ganoderma lucidum extracts, primarily total triterpenoids (GLTTs), are one of the bioactive ingredients that have excellent beneficial effects on hepatic fibrosis. Therefore, its prevention and reversal are particularly critical due to the increasing number of patients with chronic liver diseases worldwide. AIM OF THE STUDY The study aimed to evaluate whether GLTTs had a hepatoprotective effect against hepatic fibrosis through metabolic perturbations and gut microbiota changes and its underlying mechanisms. MATERIALS AND METHODS The compound compositions of GLTTs were quantified, and carbon tetrachloride (CCl4)-induced hepatic fibrosis rats were used to investigate the cause of the improvement in various physiological states with GLTTs treatment, and to determine whether its consequent effect was associated with endogenous metabolites and gut microbiota using UPLC-Q-TOF-MSE metabolomics and 16S rRNA gene sequencing technology. RESULTS GLTTs alleviated physical status, reduced liver pathological indicators, proinflammatory cytokines, and deposition of hepatic collagen fibers via regulating the NF-κB and TGF-β1/Smads pathways. The untargeted metabolomics analysis identified 16 potential metabolites that may be the most relevant metabolites for gut microbiota dysbiosis and the therapeutic effects of GLTTs in hepatic fibrosis. Besides, although GLTTs did not significantly affect the α-diversity indexes, significant changes were observed in the composition of microflora structure. In addition, Spearman analysis revealed strong correlations between endogenous metabolites and gut microbiota g_Ruminococcus with hepatic fibrosis. CONCLUSION GLTTs could provide a potential target for the practical design and application of novel functional food ingredients or drugs in the therapy of hepatic fibrosis.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wen Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xinge Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Pengling Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Siyu Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujie Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Generic Technology Research Center for Anhui TCM Industry, Anhui University of Chinese Medicine, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Rural Revitalization Collaborative Technical Service Center of Anhui Province, Anhui University of Chinese Medicine, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
15
|
Qin X, Fang Z, Zhang J, Zhao W, Zheng N, Wang X. Regulatory effect of Ganoderma lucidum and its active components on gut flora in diseases. Front Microbiol 2024; 15:1362479. [PMID: 38572237 PMCID: PMC10990249 DOI: 10.3389/fmicb.2024.1362479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Driven by the good developmental potential and favorable environment at this stage, Ganoderma lucidum is recognized as a precious large fungus with medicinal and nutritional health care values. Among them, polysaccharides, triterpenoids, oligosaccharides, trace elements, etc. are important bioactive components in G. lucidum. These bioactive components will have an impact on gut flora, thus alleviating diseases such as hyperglycemia, hyperlipidemia and obesity caused by gut flora disorder. While numerous studies have demonstrated the ability of G. lucidum and its active components to regulate gut flora, a systematic review of this mechanism is currently lacking. The purpose of this paper is to summarize the regulatory effects of G. lucidum and its active components on gut flora in cardiovascular, gastrointestinal and renal metabolic diseases, and summarize the research progress of G. lucidum active components in improving related diseases by regulating gut flora. Additionally, review delves into the principle by which G. lucidum and its active components can treat or assist treat diseases by regulating gut flora. The research progress of G. lucidum in intestinal tract and its potential in medicine, health food and clinical application were fully explored for researchers.
Collapse
Affiliation(s)
- Xinjie Qin
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Zinan Fang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Jinkang Zhang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Wenbo Zhao
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Ni Zheng
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Xiaoe Wang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| |
Collapse
|
16
|
Gao T, Fu J, Liu L, Bai J, Lv Y, Zhu Y, Lan Y, Cao X, Feng H, Shen C, Liu S, Zhang S, Guo J. Transcriptome and proteomics conjoint analysis reveal anti-alcoholic liver injury effect of Dianhong Black Tea volatile substances. Food Sci Nutr 2024; 12:313-327. [PMID: 38268900 PMCID: PMC10804116 DOI: 10.1002/fsn3.3763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 01/26/2024] Open
Abstract
Dianhong Black Tea, a fermented tea containing various bioactive ingredients, has been found to have a significant role in alleviating alcoholic liver injury (ALI). One of its main unique components, Dianhong Black Tea volatile substances (DBTVS), may have potential anti-ALI effects. However, its effects and underlying molecular mechanisms are still unknown. In this study, we aimed to investigate the potential of DBTVS as an anti-ALI agent using alcohol-fed rats. We assessed the effect of DBTVS on ALI by analyzing serum transaminase and lipid levels, as well as conducting hematoxylin-eosin and oil red O staining. Additionally, GC-MS was used to detect the components of DBTVS, while transcriptome, proteomics analysis, Western blot, and molecular docking were employed to uncover the underlying mechanisms. Our results demonstrated that DBTVS significantly reduced serum ALT and AST levels and improved lipid metabolism disorders. Moreover, we identified 14 components in DBTVS, with five of them exhibiting strong binding affinity with key proteins. These findings suggested that DBTVS could be a promising agent for the prevention and treatment of ALI. Its potential therapeutic effects may be attributed to its ability to regulate lipid metabolism through the PPAR signaling pathway.
Collapse
Affiliation(s)
- Tinghui Gao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of PharmacyChengdu University of Traditional Chinese MedicineChengduP.R. China
| | - JiaoJiao Fu
- College of Medical TechnologyChengdu University of Traditional Chinese MedicineChengduP.R. China
| | - Lin Liu
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of PharmacyChengdu University of Traditional Chinese MedicineChengduP.R. China
| | - Jing Bai
- College of Medical TechnologyChengdu University of Traditional Chinese MedicineChengduP.R. China
| | - Yangjun Lv
- Hangzhou Tea Research Institute, China CoopHangzhouP.R. China
| | - Yuejin Zhu
- Hangzhou Tea Research Institute, China CoopHangzhouP.R. China
| | - Yu Lan
- Luzhou Laojiao Group Co. Ltd.LuzhouP.R. China
| | | | | | - Caihong Shen
- National Engineering Research Center of Solid‐State BrewingLuzhouP.R. China
| | - Sijing Liu
- College of Medical TechnologyChengdu University of Traditional Chinese MedicineChengduP.R. China
| | - Shikang Zhang
- Hangzhou Tea Research Institute, China CoopHangzhouP.R. China
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of PharmacyChengdu University of Traditional Chinese MedicineChengduP.R. China
- College of Medical TechnologyChengdu University of Traditional Chinese MedicineChengduP.R. China
| |
Collapse
|
17
|
Cui Y, Jing C, Yue Y, Ning M, Chen H, Yuan Y, Yue T. Kefir Ameliorates Alcohol-Induced Liver Injury Through Modulating Gut Microbiota and Fecal Bile Acid Profile in Mice. Mol Nutr Food Res 2024; 68:e2300301. [PMID: 37933689 DOI: 10.1002/mnfr.202300301] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/31/2023] [Indexed: 11/08/2023]
Abstract
SCOPE Alcoholic liver disease (ALD) is the leading cause of liver-related deaths worldwide. Kefir has been studied for its properties of anti-obesity, rebuilding intestinal homeostasis, and alleviating non-alcoholic fatty liver disease. However, the possible role of kefir in the prevention or treatment of ALD has not been carefully considered. Here, it evaluated the protective effects of kefir supplementation on alcohol-induced liver injury. METHODS AND RESULTS C57BL/6J mice are fed to Lieber-DeCarli liquid diet containing alcohol to build ALD mouse model, followed by oral administration with kefir. Results indicate that kefir treatment improves liver pathological changes, decreases the expression levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and inflammatory markers, and increases antioxidant levels. Kefir supplementation also restores the intestinal barrier and altered microbial composition, indicates as increases of Blautia, Bacteroides, and Parasutterella and decreases in the Firmicutes/Bacteroidetes (F/B) ratio and populations of Psychrobacter, Bacillus, and Monoglobus. Moreover, kefir supplementation decreases the levels of total bile acids (BAs) and primary BAs and increases the secondary/primary BA ratio. Gut microbes play a key role in the conversion of primary to secondary fecal BAs. CONCLUSION Kefir can ameliorate ALD through regulating the composition of the gut microbiota.
Collapse
Affiliation(s)
- Yuanyuan Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Chun Jing
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yuan Yue
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Mengge Ning
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
- Xi'an Gaoxin No. 1 High School, Xi'an, 710119, China
| |
Collapse
|
18
|
Fang C, Zhang J, Han J, Lei Y, Cao Z, Pan J, Pan Z, Zhang Z, Qu N, Luo H, Ma Y, Han D. Tiaogan Jiejiu Tongluo Formula attenuated alcohol-induced chronic liver injury by regulating lipid metabolism in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116838. [PMID: 37355081 DOI: 10.1016/j.jep.2023.116838] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tiaogan Jiejiu Tongluo Formula (TJTF), a traditional Chinese medicine formula, is modified from the well-known ancient prescription Danzhi-Xiaoyao Powder (DXP). Owing to its ability to regulate liver, strengthen spleen, detoxicating, and dredge collaterals in Chinese medicine, TJTF is usually used to treat anxiety, hypertension, alcoholic fatty liver disease in clinical application. However, the protective effect and potential molecular mechanism of TJTF on alcoholic liver injury has not fully been clarified. AIM OF THE STUDY To explore the effect of TJTF on chronic alcoholic liver injury and figure out whether its effects were due to the regulation of lipid metabolism. MATERIAL AND METHODS 75 male SD rats were divided into the following five groups, control group, EtOH group, TJTF high dose group, TJTF low dose group and silybin group. Then a chronic alcoholic liver injury model was established by increasing concentration of 56% ethanol in rats. The rats in each TJTF group were given the corresponding dose of TJTF, the rats in the silybin group were given silybin, the rats in the control group and the EtOH group were given distilled water by gavage, once a day for 8 consecutive weeks. The components of TJTF were analyzed by UPLC-Q-TOF-MS. Hematoxylin and Eosin (H&E) was used to assess the severity of liver injury. in the pathological examination. Periodic acid-Schiff (PAS) and oil red O staining were used to evaluate the degree of the liver glycogen accumulation and lipid deposition, respectively. The serum ALT, AST, T-CHO, TG, LDL-C, ADH, HDL-C, and ALDH levels as well as liver tissue GSH, MDA, and SOD levels were analyzed in rats. Immunohistochemistry and western blotting were used to detect lipid metabolism-related proteins expressed in rat liver. RESULTS TJTF significantly alleviated the chronic liver injury caused by alcohol in rats, and enhanced liver function. TJTF significantly decreased AST, ALT, ADH levels and increased ALDH level of serum, and increased GSH, SOD levels and decreased MDA level of liver tissue. In addition, TJTF significantly decreased the serum T-CHO, TG and LDL-C levels and increased HDL-C level in chronic alcoholic liver injury rats by regulating the expression of lipid metabolism associated proteins including p-LKB1, p-AMPKα, p-ACC, FAS, HMGCR, SREBP-1c, PPARα and CPT-1A. The results of western blot and immunohistochemical staining confirmed that TJTF can inhibit lipid production and promote fatty acid oxidation in the liver tissue of chronic alcoholic liver injury rats by activating the LKB1-AMPKα axis and then downregulating the protein expressions of p-ACC, FAS, HMGCR and SREBP-1c, as well as promoting the protein expressions of PPARα and CPT-1A. Meanwhile, TJTF also increased the glycogen content of liver and alleviated the liver damage. CONCLUSION According to current research, TJTF is effective in treating chronic liver damage induced by alcohol in rats. Additionally, TJTF exhibits the protective benefits by modulating LKB1-AMPKα signal axis, which in turn inhibits the synthesis of lipids and promotes the oxidation of fatty acids.
Collapse
Affiliation(s)
- Chunqiu Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, PR China
| | - Jingzhou Zhang
- First Affiliated Hospital, Changchun University of Chinese Medicine, Jilin, PR China
| | - Jiajun Han
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, PR China
| | - Yuting Lei
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, PR China
| | - Zhanhong Cao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, PR China
| | - Jianheng Pan
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, PR China
| | - Zhi Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, PR China
| | - Zhong Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, PR China
| | - Ning Qu
- First Affiliated Hospital, Changchun University of Chinese Medicine, Jilin, PR China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, PR China.
| | - Yan Ma
- Department of Endocrinology and Metabolism, Jilin Province People's Hospital, Jilin, PR China.
| | - Dong Han
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, PR China.
| |
Collapse
|
19
|
Zuo WF, Pang Q, Yao LP, Zhang Y, Peng C, Huang W, Han B. Gut microbiota: A magical multifunctional target regulated by medicine food homology species. J Adv Res 2023; 52:151-170. [PMID: 37269937 PMCID: PMC10555941 DOI: 10.1016/j.jare.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The relationship between gut microbiota and human health has gradually been recognized. Increasing studies show that the disorder of gut microbiota is related to the occurrence and development of many diseases. Metabolites produced by the gut microbiota are responsible for their extensive regulatory roles. In addition, naturally derived medicine food homology species with low toxicity and high efficiency have been clearly defined owing to their outstanding physiological and pharmacological properties in disease prevention and treatment. AIM OF REVIEW Based on supporting evidence, the current review summarizes the representative work of medicine food homology species targeting the gut microbiota to regulate host pathophysiology and discusses the challenges and prospects in this field. It aims to facilitate the understanding of the relationship among medicine food homology species, gut microbiota, and human health and further stimulate the advancement of more relevant research. KEY SCIENTIFIC CONCEPTS OF REVIEW As this review reveals, from the initial practical application to more mechanism studies, the relationship among medicine food homology species, gut microbiota, and human health has evolved into an irrefutable interaction. On the one hand, through affecting the population structure, metabolism, and function of gut microbiota, medicine food homology species maintain the homeostasis of the intestinal microenvironment and human health by affecting the population structure, metabolism, and function of gut microbiota. On the other hand, the gut microbiota is also involved in the bioconversion of the active ingredients from medicine food homology species and thus influences their physiological and pharmacological properties.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lai-Ping Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
20
|
Zhang B, Niu L, Huang X. Lonicera Caerulea Juice Alleviates Alcoholic Liver Disease by Regulating Intestinal Flora and the FXR-FGF15 Signaling Pathway. Nutrients 2023; 15:4025. [PMID: 37764808 PMCID: PMC10534805 DOI: 10.3390/nu15184025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Alcoholic liver disease (ALD) is a growing public health issue with high financial, social, and medical costs. Lonicera caerulea, which is rich in polyphenolic compounds, has been shown to exert anti-oxidative and anti-inflammatory effects. This study aimed to explore the effects and mechanisms of concentrated Lonicera caerulea juice (LCJ) on ALD in mice. ALD was established in mice via gradient alcohol feeding for 30 days. The mice in the experimental group were given LCJ by gavage. The reduction of aspartate transaminase (AST) and alanine transaminase (ALT) in the serum of mice indicated that LCJ has a liver-protective effect. LCJ improved the expression of AMPK, PPARα, and CPT1b in ALD mice to reduce the liver lipid content. Additionally, LCJ increased the expression of farnesoid X receptor (FXR), fibroblast growth factor 15 (FGF15), and fibroblast growth factor receptor 4 (FGFR4), which lowers the expression of cytochrome P450 7A1 (CYP7A1) and lessens bile acid deposition in the liver. In mice, LCJ improved the intestinal barrier by upregulating the expression of mucins and tight junction proteins in the small intestine. Moreover, it accelerated the restoration of microbial homeostasis in both the large and small intestines and increased short-chain fatty acids in the cecum. In conclusion, LCJ alleviates ALD by reducing liver and serum lipid accumulation and modulating the FXR-FGF15 signaling pathway mediated by gut microbes.
Collapse
|
21
|
Li J, Zhang Y, Yu F, Pan Y, Zhang Z, He Y, Yang H, Zhou P. Proteoglycan Extracted from Ganoderma lucidum Ameliorated Diabetes-Induced Muscle Atrophy via the AMPK/SIRT1 Pathway In Vivo and In Vitro. ACS OMEGA 2023; 8:30359-30373. [PMID: 37636971 PMCID: PMC10448640 DOI: 10.1021/acsomega.3c03513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023]
Abstract
Muscle atrophy often occurs in type 2 diabetes (T2D) and leads to an increase in physical disability and insulin resistance. However, there are very few studies that have investigated potential natural products used for this condition. In this study, we demonstrated that FYGL (Fudan-Yueyang-G. lucidum), a proteoglycan extracted from Ganoderma lucidum, ameliorated muscle atrophy in rat and mouse models of diabetes. Histopathological analysis of muscle revealed that oral administration of FYGL significantly prevented reduction of the cross-sectional area of muscle fibers and overexpression of muscle atrophic factors in diabetic rats and mice. Muscle RNA-seq analysis in vivo indicated that FYGL regulated genes related to myogenesis, muscle atrophy, and oxidative phosphorylation. Also, FYGL activated AMPK in vivo. Furthermore, the underlying molecular mechanisms were studied in palmitate-induced C2C12 muscle cells using immunofluorescence staining and Western blotting, which revealed that FYGL inhibited muscle atrophy by stimulating ATP production and activating the AMPK/SIRT1 pathway, thus promoting oxidative metabolism. This result rationalized the in vivo findings. These results suggest FYGL as a promising functional food ingredient for the prevention of T2D-induced muscle atrophy.
Collapse
Affiliation(s)
- Jiaqi Li
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ying Zhang
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Fanzhen Yu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yanna Pan
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zeng Zhang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanming He
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hongjie Yang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ping Zhou
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
22
|
Ahmad MF, Ahmad FA, Zeyaullah M, Alsayegh AA, Mahmood SE, AlShahrani AM, Khan MS, Shama E, Hamouda A, Elbendary EY, Attia KAHA. Ganoderma lucidum: Novel Insight into Hepatoprotective Potential with Mechanisms of Action. Nutrients 2023; 15:1874. [PMID: 37111092 PMCID: PMC10146730 DOI: 10.3390/nu15081874] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Ganoderma lucidum (G. lucidum) has been widely used for its health benefits as an edible and traditional medicinal mushroom for thousands of years in Asian countries. It is currently used as a nutraceutical and functional food owing to its major bioactive compounds, polysaccharides and triterpenoids. G. lucidum exhibits a broad range of hepatoprotective impacts in various liver disorders, such as hepatic cancer, nonalcoholic fatty liver disease (NAFLD), alcohol-induced liver disease, hepatitis B, hepatic fibrosis, and liver injury induced by carbon tetrachloride (CCl4) and α-amanitin. G. lucidum protects the liver through a broad range of mechanisms that include the modulation of liver Phase I and II enzymes, the suppression of β-glucuronidase, antifibrotic and antiviral actions, the regulation of the production of nitric oxide (NO), the maintenance of hepatocellular calcium homeostasis, immunomodulatory activity, and scavenging free radicals. G. lucidum could signify an encouraging approach for the management of various chronic hepatopathies, and its potential mechanisms make it a distinctive agent when used alone or with other drugs and applied as a functional food, nutraceutical supplement, or adjuvant to modern medicine. This review summarizes the hepatoprotective properties of G. lucidum with its various mechanisms of action on different liver ailments. Biologically active substances derived from G. lucidum are still being studied for their potential benefits in treating different liver ailments.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department Forensic Science, School of Engineering and Science, G.D Goenka University, Gurugram 122103, Haryana, India;
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Syed Esam Mahmood
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Mohammad Suhail Khan
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Eman Shama
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Alshaimaa Hamouda
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Kandil Abdel Hai Ali Attia
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
23
|
Zhong Y, Chen Y, Pan Z, Tang K, Zhong G, Guo J, Cui T, Li T, Duan S, Yang X, Gao Y, Wang Q, Zhang D. Ginsenoside Rc, as an FXR activator, alleviates acetaminophen-induced hepatotoxicity via relieving inflammation and oxidative stress. Front Pharmacol 2022; 13:1027731. [PMID: 36278209 PMCID: PMC9585238 DOI: 10.3389/fphar.2022.1027731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Acetaminophen (APAP) intake leads to excessive NAPQI deposition, stimulating inflammatory and oxidative stress and causing fatal liver injury. However, the detailed molecular mechanism involved is unknown, and effective therapeutic approaches remain insufficient. In this study, we discovered that treatment with ginsenoside Rc can prevent the inflammatory response caused by APAP and oxidative stress in mouse primary hepatocytes (MPHs), along with the corresponding changes in related genes. Additionally, Ginsenoside Rc effectively alleviates APAP-induced cellular apoptosis and NAPQI accumulation in MPHs. In vivo, Ginsenoside Rc administration remarkably attenuates APAP-induced hepatotoxicity, repairing liver damage and improving survival. Moreover, Ginsenoside Rc treatment modulates genes involved in APAP metabolism, leading to a decrease in NAPQI and resulting in the alleviation of fatal oxidative stress and inflammatory response after APAP exposure, along with the expression of their related indicators. Furthermore, our RNA-seq and molecular docking analysis implies that FXR expression and FXR transcriptional activity are stimulated by Ginsenoside Rc treatment. Notably, due to the lack of FXR in mice and MPHs, ginsenoside Rc can no longer play its original protective role against hepatotoxicity and cell damage caused by APAP, and it is difficult to improve the corresponding survival rate and prevent hepatic apoptosis, NAPQI generation, fatal oxidative stress, and the inflammatory response induced by APAP and the expression of related genes. In summary, our results indicate that Ginsenoside Rc could act as an effective FXR activator and effectively regulate FXR-induced antioxidant stress and eliminate inflammation while also having an anti-apoptotic function.
Collapse
Affiliation(s)
- Yadi Zhong
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Science and Technology Innovation Center,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingjian Chen
- Science and Technology Innovation Center,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhisen Pan
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaijia Tang
- Science and Technology Innovation Center,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyi Guo
- Science and Technology Innovation Center,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianqi Cui
- Science and Technology Innovation Center,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyao Li
- Science and Technology Innovation Center,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siwei Duan
- Science and Technology Innovation Center,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yong Gao
- Science and Technology Innovation Center,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|