1
|
Chou ST, Chen YH, Chen YH, Tsai YC, Chung YC, Li JP. Safety and antioxidant assessments of BLR-E50, 50% ethanolic extract from red beans co-fermented by Bacillus subtilis and Lactobacillus bulgaricus. Food Chem Toxicol 2025; 197:115261. [PMID: 39828121 DOI: 10.1016/j.fct.2025.115261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Since red beans have poor textural properties, fermentation is commonly used to help produce better pulse products. To obtain BLR-E50, red beans are fermented using a co-culture of Bacillus subtilis and Lactobacillus bulgaricus, followed by extraction with 50% ethanol. The present data demonstrate that BLR-E50 did not exhibit mutagenicity, genotoxicity, or subacute oral toxicity. BLR-E50 showed antioxidant abilities in vitro. Under H2O2-challenged conditions, the dietary addition of BLR-E50 extended the survival time of female Drosophila melanogaster (D. melanogaster). Meanwhile, BLR-E50 modulated the antioxidant system in H2O2-treated D. melanogaster. Oral administration of BLR-E50 also improved motor abilities and reduced tyrosine hydroxylase levels in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration mouse model. Overall, this study presents that BLR-E50 is safe and possesses antioxidant, anti-aging, and neuroprotective capabilities, providing scientific evidence for the potential application of fermented red bean products as antioxidants in future dietary interventions.
Collapse
Affiliation(s)
- Su-Tze Chou
- Department of Food and Nutrition, Providence University, Taichung, 43301, Taiwan
| | - Yi-Hua Chen
- Department of Food and Nutrition, Providence University, Taichung, 43301, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40432, Taiwan
| | - Yu-Chen Tsai
- Department of Life Science, Tunghai University, Taichung, 40799, Taiwan
| | - Yun-Chin Chung
- Department of Food and Nutrition, Providence University, Taichung, 43301, Taiwan
| | - Ju-Pi Li
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
| |
Collapse
|
2
|
Chaipoot S, Wiriyacharee P, Pathomrungsiyounggul P, Kanthakat G, Somjai C, Boonyapranai K, Srinuanpan S, Wongwatcharayothin W, Phongphisutthinant R. Antioxidant Activity and Chemical Alterations of Honeybee Brood Bio-Peptides Interacting with Honey Under Moist-Dried Thermal Aging. Antioxidants (Basel) 2025; 14:254. [PMID: 40227234 PMCID: PMC11939724 DOI: 10.3390/antiox14030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
Edible insect honeybee brood and natural honey are rich in proteins and saccharides, with inherent bioactive properties such as antioxidant activity. To enhance their antioxidative potential under simple thermal conditions, this research employed spontaneous aging via a moist-dried heating process, primarily driven by the Maillard reaction. Honeybee brood bio-peptides (HBb-BPs), produced through Rhizopus oligosporus fermentation, were mixed with honey in varying ratios of 70:30, 50:50, and 30:70 (%w/w). The mixtures underwent interaction under controlled conditions (60 °C for 20 days at ~75% relative humidity). A comparative analysis was performed on the mixtures before and after the thermal interaction, focusing on chemical characterization and antioxidant activity (ABTS, DPPH, and FRAP assays). Results revealed that the post-process mixtures exhibited significantly enhanced antioxidant activity, with higher honey concentrations correlating to greater antioxidative effects. Furthermore, allulose and mannose were detected after processing, while levels of fructose, glucose, and free amino acids decreased. These changes likely indicate the formation of complex compounds, molecular rearrangements, and the production of phenolic compounds that contributed to the increased antioxidative capacity. This study highlights the pivotal role of the Maillard reaction in augmenting antioxidant activity, elucidates changes in sugar-amino acid interactions, and validates the effectiveness of the moist-dried heating process. These findings provide valuable insights for potential future applications of this simple and scalable method.
Collapse
Affiliation(s)
- Supakit Chaipoot
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (P.W.); (S.S.)
| | - Pairote Wiriyacharee
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (P.W.); (S.S.)
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (G.K.)
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand
| | | | - Gochakorn Kanthakat
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (G.K.)
| | - Chalermkwan Somjai
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand
| | - Kongsak Boonyapranai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (P.W.); (S.S.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Rewat Phongphisutthinant
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (P.W.); (S.S.)
| |
Collapse
|
3
|
Ren D, Ren C, Ren J, Li S, Yang X, Li F. Changes in functional activities and volatile flavor compounds of fermented mung beans, cowpeas, and quinoa started with Bacillus amyloliquefaciens SY07. Food Res Int 2025; 201:115636. [PMID: 39849731 DOI: 10.1016/j.foodres.2024.115636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/11/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
In this work, the functional activities including α-glucosidase, α-amylase, angiotensin converting enzyme (ACE) inhibitory activity, and antioxidant activity of mixed grains (mung beans, cowpeas, and quinoa) fermented with Bacillus amyloliquefaciens SY07 were investigated. The volatile flavor of the mixed grains collected every 12 h during 72 h-fermentation were further detected as well. The inhibition on α-glucosidase and α-amylase reached up to 89.34 % and 50.03 % with the sample concentration of 5.17 and 9.38 mg/mL, respectively. Moreover, the ACE inhibitory activity reached to 93.66 % with the sample concentration of 0.59 mg/mL. The antioxidant capacity of the mixed grains, evaluated by ABTS and DPPH radical scavenging capacities and ferric ion reducing power, was also significantly improved (p < 0.05) during fermentation. The maximum of ABTS and DPPH radical scavenging capacities increased to 8.64 and 3.21 mg TE/g DW, respectively, and the maximum ferric ion reducing power reached to 5.73 mg TE/g DW. Twenty-one volatile flavor compounds with odor activity values (OAVs) ≥ 1 were detected, and six key volatile flavor substances were identified by OPLS-DA analysis, namely, isovaleric acid, acetoin, phenylacetic acid, (Z)-2-nonenol, 1-hexanol, and 1-octen-3-ol, with overall strong creamy, sweet, baked-potato, and cocoa flavors upon fermentation. These findings revealed a favorable pathway for B. amyloliquefaciens SY07 to be used to improve the functional and flavor properties of fermented grains, which would also be of great value for further elucidating the mechanism of the formation of the volatile flavor differences and developing novel quality cereal-based products.
Collapse
Affiliation(s)
- Dirong Ren
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China
| | - Chenghuan Ren
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China
| | - Jiamin Ren
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China
| | - Shuwen Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China
| | - Xiya Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China
| | - Fengjuan Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China.
| |
Collapse
|
4
|
Chinma CE, Ezeocha VC, Adedeji OE, Jolayemi OS, Onwuka QI, Ilowefah MA, Adebo JA, Rosell CM, Bamidele OP, Adebo OA. Germinated/fermented legume flours as functional ingredients in wheat-based bread: A review. J Food Sci 2025; 90:e70022. [PMID: 39921303 PMCID: PMC11806283 DOI: 10.1111/1750-3841.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 02/10/2025]
Abstract
Refined wheat breads are consumed throughout the world as an energy-dense staple food. The consumption of refined wheat bread has raised concerns among health-conscious consumers. This has partly stimulated research interest in the inclusion of functional ingredients such as germinated/fermented legume flour in the development of nutritious and healthy breads to drive innovations in the bakery industry and overcome sustainability problems. Nevertheless, the inclusion of germinated/fermented legume flours cannot be a direct replacement of refined wheat, because processing requirements must be met. This critical review analyzes the impact of germinated/fermented legume flour on the rheological characteristics, nutritional quality, health-promoting, and technological properties of wheat-based bread for improved nutrition and health, identifying current challenges. The macroconstituent changes and the increasing enzyme activity produced during germination/fermentation influence the functionality of wheat dough and the resultant bread quality. Substitution of up to 20% germinated legume flour caused detrimental effects on technological properties of the bread, whereas better technological properties were recorded with up to 20% fermented legume flour. Nevertheless, more studies are needed to provide detailed insight on this observation. Germinated/fermented legume flour could serve as a functional ingredient for the development of nutritious and healthy breads. In fact, breads containing germinated/legume flour are rich in quality protein, dietary fiber, micronutrients, phytochemicals, and bioactive constituents and low in glycemic index with improved sensory properties compared to 100% wheat bread. Nonetheless, information on the bioavailability of nutrients in breads containing germinated/fermented legumes using in vivo studies and profiling the metabolites therein are scarce in the literature.
Collapse
Affiliation(s)
- Chiemela Enyinnaya Chinma
- Department of Food Science and TechnologyFederal University of Technology, MinnaMinnaNigeria
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of Johannesburg, Doornfontein CampusJohannesburgGautengSouth Africa
- Africa Center of Excellence for Mycotoxin and Food SafetyFederal University of Technology, MinnaMinnaNigeria
| | - Vanessa Chinelo Ezeocha
- Department of Food Science and TechnologyMichael Okpara University of Agriculture, UmudikeUmudikeNigeria
| | | | | | - Queeneth Ijeoma Onwuka
- Department of Food Science and TechnologyFederal University of Technology, MinnaMinnaNigeria
| | - Muna Abdulsalam Ilowefah
- Department of Food Sience and Technology, Faculty of Food ScienceWadi Alshatti UniversitySabhaLibya
| | - Janet Adeyinka Adebo
- Centre for Cyber‐Physical Food, Energy and Water Systems (CCP‐FEWS)University of JohannesburgJohannesburgSouth Africa
| | - Cristina M. Rosell
- Institute of Agrochemistry and Food Technology (IATA‐CSIC)PaternaSpain
- Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegCanada
| | - Oluwaseun Peter Bamidele
- Department of Food Science and TechnologyUniversity of VendaThohoyandouLimpopo ProvinceSouth Africa
| | - Oluwafemi Ayodeji Adebo
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of Johannesburg, Doornfontein CampusJohannesburgGautengSouth Africa
- Africa Center of Excellence for Mycotoxin and Food SafetyFederal University of Technology, MinnaMinnaNigeria
| |
Collapse
|
5
|
Tomassi E, Arouna N, Brasca M, Silvetti T, de Pascale S, Troise AD, Scaloni A, Pucci L. Fermentation of Whole-Wheat Using Different Combinations of Lactic Acid Bacteria and Yeast: Impact on In Vitro and Ex Vivo Antioxidant Activity. Foods 2025; 14:421. [PMID: 39942014 PMCID: PMC11816817 DOI: 10.3390/foods14030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Cereals are rich in nutrients and bioactive compounds; however, many of these, such as polyphenols, are bound to the cell wall matrix, limiting their bioavailability. This study investigated the use of fermentation to enhance the bioavailability of functional compounds in whole-wheat flour. Given the impact of microbial species on fermentation outcomes, various combinations of lactic acid bacteria and yeast strains were examined. The polyphenol and flavonoid content of different fermented flours was analyzed. Additionally, the antioxidant capacity was assessed using in vitro assays (DPPH, ORAC, and FRAP) and an ex vivo test with human erythrocytes. Fermentation significantly enhanced the release of bioavailable phenolic compounds and flavonoids, with the most significant increases reaching up to 3.4-fold and 2.64-fold, respectively. In particular, the findings highlight the capacity of flour fermented with a combination of K. humilis, F. sanfranciscensis, E. faecium, P. pentosaceus, and L. mesenteroides to enhance antioxidant activity in vitro and to protect human red blood cells from oxidative stress. Furthermore, fermentation increased the production of short-chain fatty acids, notably lactate and acetate, which are widely recognized for their gut health benefits. Overall, this study highlights the effectiveness of targeted fermentation in improving the bioactivity and antioxidant properties of whole-wheat flour.
Collapse
Affiliation(s)
- Elena Tomassi
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy;
| | - Nafiou Arouna
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Milena Brasca
- Institute of Sciences of Food Production (ISPA), Italian National Research Council, 20133 Milan, Italy; (M.B.); (T.S.)
| | - Tiziana Silvetti
- Institute of Sciences of Food Production (ISPA), Italian National Research Council, 20133 Milan, Italy; (M.B.); (T.S.)
| | - Sabrina de Pascale
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy; (S.d.P.); (A.D.T.); (A.S.)
| | - Antonio Dario Troise
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy; (S.d.P.); (A.D.T.); (A.S.)
| | - Andrea Scaloni
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy; (S.d.P.); (A.D.T.); (A.S.)
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy;
| |
Collapse
|
6
|
He M, Peng Q, Xu X, Shi B, Qiao Y. Antioxidant capacities and non-volatile metabolites changes after solid-state fermentation of soybean using oyster mushroom ( Pleurotus ostreatus) mycelium. Front Nutr 2024; 11:1509341. [PMID: 39713777 PMCID: PMC11660803 DOI: 10.3389/fnut.2024.1509341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
Given the abundance of beneficial properties and enzymes secreted by edible oyster mushrooms, their mycelium could serve as a starter for fermented foods to enhance their nutritional and bioactive quality. This study aimed to investigate the effects on the nutritional ingredients, antioxidant activity, and non-volatile metabolites during solid-state fermentation (SSF) of soybeans by Pleurotus ostreatus mycelium. The results indicated that the contents of dietary fiber and starch in fermented soybeans decreased, while the amounts of protein and lipid increased after SSF (P < 0.05). Analysis of the total phenolic content (TPC) and antioxidant activities of the fermented soybeans revealed that the methanolic extracts significantly increased TPC and antioxidant activities against intracellular reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, as well as against DPPH and ABTS radicals in vitro. A total 154 differential metabolites were identified after SSF, and a Spearman correlation study revealed a direct relationship between antioxidant activities and certain metabolites including phenolic compounds, oligopeptides, and free fatty acids etc. Among these metabolites, phenolic compounds produced by the shikimic acid pathway were diverse in variety and had the greatest multiple differences. The study discovered that a potential mechanism involving SSF with P. ostreatus mycelium increased the antioxidant activity of soybeans.
Collapse
Affiliation(s)
| | | | | | | | - Yu Qiao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Zhao L, Liu X, Wang S, Yin Z, An T, Zhang J, Liu Y. Research progress on fermentation-produced plant-derived bioactive peptides. Front Pharmacol 2024; 15:1438947. [PMID: 39703396 PMCID: PMC11655234 DOI: 10.3389/fphar.2024.1438947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
With the advancement of biotechnology and the human pursuit of a healthy lifestyle, investigations on bioactive peptides (BAPs) have received increasing attention. Compared to proteins, BAPs have lower molecular weights and are more easily digested and absorbed by the human body, exhibiting various physiological functions. For instance, they can inhibit the angiotensin-converting enzyme, lower blood pressure, reduce cholesterol, and possess antioxidant, antimicrobial, and antiviral properties. BAPs are major functional food ingredients primarily derived from animals and plants. The latter are particularly favored due to their wide availability, low cost, and diverse bioactivities. In recent years, the research on plant-derived BAPs produced by microbial fermentation has progressed phenomenally. Consequently, this study provides a systematic overview and offers insights into the prospects of fermentation-synthesized plant-derived BAPs, aiming to provide a reference for their subsequent development and utilization.
Collapse
Affiliation(s)
- Lili Zhao
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinhua Liu
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuping Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhicheng Yin
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyue An
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Jiayu Zhang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Ying Liu
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
8
|
Sánchez-Ortiz LK, Sánchez-Quezada V, Gaytán-Martínez M, Cuellar-Nuñez ML, Loarca-Piña G. Influence in physicochemical, nutritional, and antioxidant properties by addition Moringa oleifera leaves in Avena sativa bread. Food Chem 2024; 460:140743. [PMID: 39116777 DOI: 10.1016/j.foodchem.2024.140743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Moringa oleifera leaves have high nutrient valor, physicochemical, and nutraceutical properties and can be used as ingredients to develop wheat-free enrich. The aim was to evaluate nutritional, chemical, and nutraceutical characterization, antioxidant capacity, along physicochemical parameters to develop four oat bread using yeast (PL), xanthan gum (PG), and 2.5% (M2) or 5.0% (M5) of moringa leaves. Morinaga leaves were a source of 23.19% protein, 12.43% ash, and 30.36% dietary fiber. The bread formulations increased the protein content by 25-50%, and decreased lipid in 52.14% compared with commercial bread. For antioxidant capacity, PLM5 had the highest with values of 11.97 mMTE/g (DPPH), 16.06 mMTE/g (ABTS), and 16.38 mMTE/g (FRAP). In the bread with MOLP were identified Epicatechin, rutin, and dihydroxybenzoic acid by HPLC. The bread with a better texture profile was PLM2. The results suggested that moringa leaves used as an oat bread ingredient can enhance the nutritional and nutraceutical content.
Collapse
Affiliation(s)
- L K Sánchez-Ortiz
- PROPAC, Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro., 76010, Mexico
| | - V Sánchez-Quezada
- PROPAC, Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro., 76010, Mexico
| | - M Gaytán-Martínez
- PROPAC, Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro., 76010, Mexico
| | - M L Cuellar-Nuñez
- Facultad de Medicina, Universidad Autónoma de Querétaro, Clavel 200, Prados de la Capilla, Santiago de Querétaro, Querétaro, 76176, Mexico
| | - G Loarca-Piña
- PROPAC, Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro., 76010, Mexico..
| |
Collapse
|
9
|
Don SM, Rambli M, Nore BF. Antioxidant content following fermentation of lemongrass for herbal beverage development. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1-14. [PMID: 39431189 PMCID: PMC11486884 DOI: 10.1007/s13197-024-06005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 10/22/2024]
Abstract
Consumers have increasingly favoured fermented drinks due to their high content of probiotic secondary metabolites. These beverages are believed to possess the capacity to safeguard against non-communicable ailments such as coronary heart disease, cancer, diabetes, antimicrobial infections, and other dietary-related disorders. Lemongrass (Cymbopogon citratus) is a commonly used botanical ingredient in therapeutic tea production. It is renowned for its highly valuable essential oil, which has significant commercial demand. This study examines the functional content and antioxidant effects of fermented beverages derived from lemongrass. We employed the yeast Saccharomyces cerevisiae to carry out the fermentation process on the lemongrass compositions, extending the duration from t = 24 to t = 96 h. We used non-fermented samples as control. This investigation identified numerous active biomolecules and polyphenols in the fermented samples, including flavonoids, tannins, cardiac glycosides, coumarins, terpenoids, steroids, saponins, and reducing sugars. After t = 24 h fermentation, the radical-scavenging activity reached its maximum level of 89.1%, and the antioxidant content reached 13.06 µg/ml, which is equivalent to the amount of ascorbic acid. After t = 36 h fermentation, the total phenolic content reached a concentration of 237.19 µg/ml, while the flavonoid content reached its peak at 55.21 µg/ml after t = 72 h fermentation. Lemongrass fermentation exhibits a wide range of phytochemicals and bioactive components that effectively eliminate free radicals, despite the antioxidant content fluctuation throughout the fermentation period of t = 24 to t = 96 h.
Collapse
Affiliation(s)
- Siti Madihah Don
- Food Science and Technology, School of Applied Sciences and
Mathematics, Universiti Teknologi Brunei, Mukim Gadong A, BE1410 Brunei Darussalam
| | - Masmunira Rambli
- Food Science and Technology, School of Applied Sciences and
Mathematics, Universiti Teknologi Brunei, Mukim Gadong A, BE1410 Brunei Darussalam
| | - Beston Faiek Nore
- Food Science and Technology, School of Applied Sciences and
Mathematics, Universiti Teknologi Brunei, Mukim Gadong A, BE1410 Brunei Darussalam
- Department of Biomedical Sciences, Komar University of Sciences and Technology (KUST), Qliasan St, Sulaymaniyah City, Kurdistan Region 46002 Iraq
| |
Collapse
|
10
|
Qamar H, He R, Li Y, Song M, Deng D, Cui Y, Yu M, Ma X. Metabolome and Metagenome Integration Unveiled Synthesis Pathways of Novel Antioxidant Peptides in Fermented Lignocellulosic Biomass of Palm Kernel Meal. Antioxidants (Basel) 2024; 13:1253. [PMID: 39456506 PMCID: PMC11505245 DOI: 10.3390/antiox13101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Approximately one-third of the entire world's food resources are deemed to be wasted. Palm kernel meal (PKM), a product that is extensively generated by the palm oil industry, exhibits a unique nutrient-rich composition. However, its recycling is seldom prioritized due to numerous factors. To evaluate the impact of enzymatic pretreatment and Lactobacillus plantarum and Lactobacillus reuteri fermentation upon the antioxidant activity of PKM, we implemented integrated metagenomics and metabolomics approaches. The substantially enhanced (p < 0.05) property of free radicals scavenging, as well as total flavonoids and polyphenols, demonstrated that the biotreated PKM exhibited superior antioxidant capacity. Non-targeted metabolomics disclosed that the Lactobacillus fermentation resulted in substantial (p < 0.05) biosynthesis of 25 unique antioxidant biopeptides, along with the increased (p < 0.05) enrichment ratio of the isoflavonoids and secondary metabolites biosynthesis pathways. The 16sRNA sequencing and correlation analysis revealed that Limosilactobacillus reuteri, Pediococcus acidilactici, Lacticaseibacillus paracasei, Pediococcus pentosaceus, Lactiplantibacillus plantarum, Limosilactobacillus fermentum, and polysaccharide lyases had significantly dominated (p < 0.05) proportions in PMEL, and these bacterial species were strongly (p < 0.05) positively interrelated with antioxidants peptides. Fermented PKM improves nutritional value by enhancing beneficial probiotics, enzymes, and antioxidants and minimizing anti-nutritional factors, rendering it an invaluable feed ingredient and gut health promoter for animals, multifunctional food elements, or as an ingredient in sustainable plant-based diets for human utilization, and functioning as a culture substrate in the food sector.
Collapse
Affiliation(s)
- Hammad Qamar
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Rong He
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Yuanfei Li
- Institute of Biological Technology, Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang 330032, China;
| | - Min Song
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
| | - Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (M.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| |
Collapse
|
11
|
Vento M, Della Croce CM, Bellani L, Tassi EL, Echeverria MC, Giorgetti L. Effect of Sprouting, Fermentation and Cooking on Antioxidant Content and Total Antioxidant Activity in Quinoa and Amaranth. Int J Mol Sci 2024; 25:10972. [PMID: 39456755 PMCID: PMC11507448 DOI: 10.3390/ijms252010972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The study of different processing techniques, such as sprouting, cooking and fermentation, can help to develop new products for human health. In this work, raw, cooked and fermented seeds and germinated seeds of Chenopodium quinoa Willd. var. Tunkahuan and Amaranthus caudatus L. var. Alegrìa were compared for the content of antioxidant molecules, total antioxidant capacity and mineral elements. Fermentation was induced spontaneously, with the yeast Saccharomyces cerevisiae, with the bacterium Lactobacillus plantarum and with both microorganisms, for 24 and 48 h. The increase in antioxidant molecules and antioxidant activity was induced by germination, by 24 h of spontaneous fermentation (polyphenols and flavonoids) and by 24 h of L. plantarum fermentation (total antioxidant activity) for both species. Germinated seeds of the two plants showed higher values in respect to seeds of macroelements and microelements. No genotoxic but rather protective effects were determined for seed and germinated seed extracts using the D7 strain of S. cerevisiae, a good tool for the evaluation of protection from oxidative damage induced by radical oxygen species (ROS) in cells and tissues. Therefore, the two varieties could be very suitable for their use in human diet and in supplements, especially as germinated seeds or as fermented foods.
Collapse
Affiliation(s)
- Martina Vento
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy; (M.V.); (C.M.D.C.)
| | - Clara Maria Della Croce
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy; (M.V.); (C.M.D.C.)
| | - Lorenza Bellani
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy; (M.V.); (C.M.D.C.)
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Eliana Lanfranca Tassi
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council, 56124 Pisa, Italy;
| | - Maria Cristina Echeverria
- eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador;
| | - Lucia Giorgetti
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy; (M.V.); (C.M.D.C.)
| |
Collapse
|
12
|
Moiseenko KV, Glazunova OA, Fedorova TV. Fermentation of Rice, Oat, and Wheat Flour by Pure Cultures of Common Starter Lactic Acid Bacteria: Growth Dynamics, Sensory Evaluation, and Functional Properties. Foods 2024; 13:2414. [PMID: 39123605 PMCID: PMC11312058 DOI: 10.3390/foods13152414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Recent consumer demand for non-dairy alternatives has forced many manufacturers to turn their attention to cereal-based non-alcoholic fermented products. In contrast to fermented dairy products, there is no defined and standardized starter culture for manufacturing cereal-based products. Since spontaneous fermentation is rarely suitable for large-scale commercial production, it is not surprising that manufacturers have started to adopt centuries-known dairy starters based on lactic acid bacteria (LABs) for the fermentation of cereals. However, little is known about the fermentation processes of cereals with these starters. In this study, we combined various analytical tools in order to understand how the most common starter cultures of LABs affect the most common types of cereals during fermentation. Specifically, 3% suspensions of rice, oat, and wheat flour were fermented by the pure cultures of 16 LAB strains belonging to five LAB species-Lacticaseibacillus paracasei, Lactobacillus delbrueckii, Lactobacillus helveticus, Streptococcus thermophilus, and Lactococcus lactis. The fermentation process was described in terms of culture growth and changes in the pH, reducing sugars, starch, free proteins, and free phenolic compounds. The organoleptic and rheological features of the obtained fermented products were characterized, and their functional properties, such as their antioxidant capacity and angiotensin-converting enzyme inhibitory activity, were determined.
Collapse
Affiliation(s)
- Konstantin V. Moiseenko
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia; (O.A.G.); (T.V.F.)
| | - Olga A. Glazunova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia; (O.A.G.); (T.V.F.)
| | - Tatyana V. Fedorova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia; (O.A.G.); (T.V.F.)
| |
Collapse
|
13
|
Qamar H, Li Y, He R, Waqas M, Song M, Deng D, Cui Y, Yang P, Liu Z, Qammar B, Asnan M, Xie X, Yu M, Ma X. Integrated Metabolomics and Metagenomics Unveiled Biomarkers of Antioxidant Potential in Fermented Brewer's Grains. Antioxidants (Basel) 2024; 13:872. [PMID: 39061941 PMCID: PMC11274078 DOI: 10.3390/antiox13070872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
About one-third of the global food supply is wasted. Brewers' spent grain (BSG), being produced in enormous amounts by the brewery industry, possesses an eminence nutritional profile, yet its recycling is often neglected for multiple reasons. We employed integrated metagenomics and metabolomics techniques to assess the effects of enzyme treatments and Lactobacillus fermentation on the antioxidant capacity of BSG. The biotreated BSG revealed improved antioxidant capability, as evidenced by significantly increased (p < 0.05) radical scavenging activity and flavonoid and polyphenol content. Untargeted metabolomics revealed that Lactobacillus fermentation led to the prominent synthesis (p < 0.05) of 15 novel antioxidant peptides, as well as significantly higher (p < 0.05) enrichment of isoflavonoid and phenylpropanoid biosynthesis pathways. The correlation analysis demonstrated that Lactiplantibacillus plantarum exhibited strong correlation (p < 0.05) with aucubin and carbohydrate-active enzymes, namely, glycoside hydrolases 25, glycosyl transferases 5, and carbohydrate esterases 9. The fermented BSG has potential applications in the food industry as a culture medium, a functional food component for human consumption, and a bioactive feed ingredient for animals.
Collapse
Affiliation(s)
- Hammad Qamar
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Yuanfei Li
- Institute of Biological Technology, Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang 330032, China;
| | - Rong He
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Muhammad Waqas
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Min Song
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Pan Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | - Zhichang Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
| | | | - Muhammad Asnan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Xiangxue Xie
- Guangdong VTR Bio-Tech Co., Ltd., Zhuhai 519060, China
| | - Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (H.Q.); (R.H.); (M.S.); (D.D.); (Y.C.); (P.Y.); (Z.L.); (M.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural, Maoming 525000, China
| |
Collapse
|
14
|
Alkay Z, Falah F, Cankurt H, Dertli E. Exploring the Nutritional Impact of Sourdough Fermentation: Its Mechanisms and Functional Potential. Foods 2024; 13:1732. [PMID: 38890959 PMCID: PMC11172170 DOI: 10.3390/foods13111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Sourdough fermentation is one of the oldest traditional methods in food technology and occurs as a result of fermentation of flour prepared from grains. The nutritional role of sourdough is related to the final composition of fermented foods prepared through sourdough fermentation, and recently, sourdough has become an important application to improve nutrition characteristics of bread. Thanks to lactic acid bacteria (LAB) presented in sourdough microflora and metabolites partially produced by yeasts, technological and important nutritional features of the bread improve and an increase in shelf life is achieved. In addition, sourdough bread has a low glycemic index value, high protein digestibility, high mineral and antioxidant content, and improved dietary fiber composition, making it more attractive for human nutrition compared to regular bread. When the sourdough process is applied, the chemical and physical properties of fibers vary according to the degree of fermentation, revealing the physiological importance of dietary fiber and its importance to humans' large intestine microbiota. Therefore, taking these approach frameworks into consideration, this review highlights the benefits of sourdough fermentation in increasing nutrient availability and contributing positively to support human health.
Collapse
Affiliation(s)
- Zuhal Alkay
- Food Engineering Department, Faculty of Engineering, Necmettin Erbakan University, Konya 42010, Türkiye;
| | - Fereshteh Falah
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Hasan Cankurt
- Food Technology Department, Safiye Cikrikcioglu Vocational School, Kayseri University, Kayseri 38000, Türkiye;
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campüs, Istanbul 34210, Türkiye
| |
Collapse
|
15
|
Ayed L, M’hir S, Nuzzolese D, Di Cagno R, Filannino P. Harnessing the Health and Techno-Functional Potential of Lactic Acid Bacteria: A Comprehensive Review. Foods 2024; 13:1538. [PMID: 38790838 PMCID: PMC11120132 DOI: 10.3390/foods13101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
This review examines the techno-functional properties of lactic acid bacteria (LABs) in the food industry, focusing on their potential health benefits. We discuss current findings related to the techno-functionality of LAB, which includes acidification, proteolytic and lipolytic features, and a variety of other biochemical activities. These activities include the production of antimicrobial compounds and the synthesis of exopolysaccharides that improve food safety and consumer sensory experience. LABs are also known for their antioxidant abilities, which help reduce oxidative reactions in foods and improve their functional properties. In addition, LABs' role as probiotics is known for their promising effects on gut health, immune system modulation, cholesterol control, and general wellbeing. Despite these advantages, several challenges hinder the effective production and use of probiotic LABs, such as maintaining strain viability during storage and transport as well as ensuring their efficacy in the gastrointestinal tract. Our review identifies these critical barriers and suggests avenues for future research.
Collapse
Affiliation(s)
- Lamia Ayed
- Laboratory of Microbial Ecology and Technology (LETMI), LR05ES08, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, BP 676, Tunis 1080, Tunisia;
| | - Sana M’hir
- Laboratory of Microbial Ecology and Technology (LETMI), LR05ES08, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, BP 676, Tunis 1080, Tunisia;
- Department of Animal Biotechnology, Higher Institute of Biotechnology of Beja, University of Jendouba, BP 382, Beja 9000, Tunisia
| | - Domenico Nuzzolese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (D.N.); (P.F.)
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, 39100 Bolzano, Italy;
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (D.N.); (P.F.)
| |
Collapse
|
16
|
Gabriele M, Cavallero A, Tomassi E, Arouna N, Árvay J, Longo V, Pucci L. Assessment of Sourdough Fermentation Impact on the Antioxidant and Anti-Inflammatory Potential of Pearl Millet from Burkina Faso. Foods 2024; 13:704. [PMID: 38472817 DOI: 10.3390/foods13050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Millet, a gluten-free cereal, has received attention for its environmental friendliness and higher protein content than other grains. It represents a staple food in many African countries, where fermentation is traditionally used for preserving food products and preparing different cereal-based products. This study aimed to assess the impact of sourdough fermentation on bioactive compounds and antioxidant and anti-inflammatory properties of pearl millet from Burkina Faso. Phenolic compounds were investigated spectrophotometrically and by HPLC-DAD. The antioxidant activity of unfermented (MF) and fermented (FeMF) millet was evaluated in vitro by spectrophotometric and fluorometric assays and ex vivo on oxidized human erythrocytes for hemolysis inhibition. Finally, the potential anti-inflammatory effect of FeMF and MF was evaluated on human adenocarcinoma cell line (HT-29) exposed to TNF-α inflammatory stimulus. Results revealed significantly higher levels of polyphenols, flavonoids, and in vitro antioxidant activity following millet fermentation. Notable differences in phenolic composition between FeMF and MF are observed, with fermentation facilitating the release of bioactive compounds such as gallic acid, quercetin, and rutin. A dose-dependent protection against oxidative hemolysis was observed in both FeMF- and MF-pretreated erythrocytes. Similarly, pretreatment with FeMF significantly reduced the levels of inflammatory markers in TNF-α-treated cells, with effects comparable to those of MF. Fermentation with sourdough represents a simple and low-cost method to improve the bioactive compounds content and in vitro antioxidant activity of millet flour with promising nutraceutical potential.
Collapse
Affiliation(s)
- Morena Gabriele
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| | - Andrea Cavallero
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| | - Elena Tomassi
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| | - Nafiou Arouna
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Július Árvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, 949 76 Nitra, Slovakia
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
17
|
Cipollone MA, Abraham AG, Fontana A, Tironi VA. Autochthonous Fermentation as a Means to Improve the Bioaccessibility and Antioxidant Activity of Proteins and Phenolic Compounds of Yellow Pea Flour. Foods 2024; 13:659. [PMID: 38472775 DOI: 10.3390/foods13050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
This study focused on evaluating the potential of the natural fermentation of pea flour to improve the release of antioxidant compounds. Preliminary fermentations of 36.4% w/w flour dispersions were performed in tubes under different conditions (24 and 48 h, 30 and 37 °C). Finally, fermented flours (FFs) were obtained in a bioreactor under two conditions: 1: 36.4% w/w, 24 h, 30 °C (FF1); 2: 14.3% w/w, 24 h, 37 °C (FF2). The pH values decreased to 4.4-4.7, with a predominance of lactic acid bacteria. As in the fermentations in tubes, an increment in the proteolysis degree (TNBS method) (greater for FF2), polypeptide aggregation and a decrease in their solubility, an increase in <2 kDa peptides, and an increase in the Oxygen Radical Absorption Capacity (ORAC) potency of PBS-soluble fractions after fermentation were demonstrated. Also, fermentation increased the proteolysis degree after simulated gastrointestinal digestion (SGID, COST-INFOGEST) with respect to the non-fermented flour digests, with some differences in the molecular composition of the different digests. ORAC and Hydroxyl Radical Averting Capacity (HORAC) potencies increased in all cases. The digest of FF2 (FF2D) presented the greater ORAC value, with higher activities for >4 kDa, as well as for some fractions in the ranges 2-0.3 kDa and <0.10 kDa. Fermentation also increased the 60%-ethanol-extracted phenolic compounds, mainly flavonoids, and the ORAC activity. After SGID, the flavan-3-ols disappeared, but some phenolic acids increased with respect to the flour. Fermentation in condition 2 was considered the most appropriate to obtain a functional antioxidant ingredient.
Collapse
Affiliation(s)
- María Agustina Cipollone
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Universidad Nacional de La Plata (UNLP), 47 y 116, La Plata B1900AJJ, Argentina
| | - Analía G Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Universidad Nacional de La Plata (UNLP), 47 y 116, La Plata B1900AJJ, Argentina
- Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata B1900AJJ, Argentina
| | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza (IBAM), CONICET, Facultad de Ciencias Agrarias (FCA), Universidad Nacional de Cuyo (IBAM-CONICET-FCA-UNCuyo), Almirante Brown 500, Chacras de Coria M5528AHB, Argentina
| | - Valeria A Tironi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Universidad Nacional de La Plata (UNLP), 47 y 116, La Plata B1900AJJ, Argentina
| |
Collapse
|
18
|
Tyliszczak M, Wiatrak B, Danielewski M, Szeląg A, Kucharska AZ, Sozański T. Does a pickle a day keep Alzheimer's away? Fermented food in Alzheimer's disease: A review. Exp Gerontol 2023; 184:112332. [PMID: 37967591 DOI: 10.1016/j.exger.2023.112332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Fermented food is commonly viewed as healthy, mostly due to its probiotic and digestion-enhancing properties and recently it has been examined with regard to the development of new therapeutic and preventive measures for Alzheimer's disease. Fermented food has been shown to have anti-inflammatory and antioxidant properties and to alter the gut microbiota. However, the exact pathogenesis of Alzheimer's disease is still unknown and its connections to systemic inflammation and gut dysbiosis, as potential targets of fermented food, require further investigation. Therefore, to sum up the current knowledge, this article reviews recent research on the pathogenesis of Alzheimer's disease with emphasis on the role of the gut-brain axis and studies examining the use of fermented foods. The analysis of the fermented food research includes clinical and preclinical in vivo and in vitro studies. The fermented food studies have shown promising effects on amyloid-β metabolism, inflammation, and cognitive impairment in animals and humans. Fermented food has great potential in developing new approaches to Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Michał Tyliszczak
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | | | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | - Alicja Z Kucharska
- Department of Fruit, Vegetable, and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wrocław, Poland
| |
Collapse
|
19
|
Cichońska P, Bryś J, Ziarno M. Use of natural biotechnological processes to modify the nutritional properties of bean-based and lentil-based beverages. Sci Rep 2023; 13:16976. [PMID: 37813961 PMCID: PMC10562390 DOI: 10.1038/s41598-023-44239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023] Open
Abstract
The market for plant-based beverages (PBBs) is relatively new; hence, to enable its further development, it is important to use new raw materials and improve production technology. The use of natural biotechnological processes can diversify the segment of PBBs, which may offer products with better functionality than those available in the market. Therefore, the present study aimed to determine the effects of fermentation and germination on the nutritional properties of bean-based beverages (BBs) and lentil-based beverages (LBs). The applied processes significantly (p ≤ 0.05) influenced the characteristics of PBBs. Fermentation improved the antioxidant properties (e.g., by increasing the level of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity by 2-6% and 3-7% for BBs and LBs, respectively) and modified the fatty acid (FA) profile of PBBs. This process increased the share of polyunsaturated FAs in the sn2 position in triacylglycerols, which may promote its absorption in the intestine. The simultaneous use of germination and fermentation was most effective in decreasing oligosaccharide content (< 1.55 mg/kg), which may reduce digestive discomfort after consuming PBBs. We recommend that the designing of innovative legume-based beverages should include the application of fermentation and germination to obtain products with probiotic bacteria and improved nutritional properties.
Collapse
Affiliation(s)
- Patrycja Cichońska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159C St., 020776, Warsaw, Poland.
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Science, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159C St., 020776, Warsaw, Poland
| | - Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159C St., 020776, Warsaw, Poland
| |
Collapse
|
20
|
Torreggiani A, Demarinis C, Pinto D, Papale A, Difonzo G, Caponio F, Pontonio E, Verni M, Rizzello CG. Up-Cycling Grape Pomace through Sourdough Fermentation: Characterization of Phenolic Compounds, Antioxidant Activity, and Anti-Inflammatory Potential. Antioxidants (Basel) 2023; 12:1521. [PMID: 37627516 PMCID: PMC10451973 DOI: 10.3390/antiox12081521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Despite its appealing composition, because it is rich in fibers and polyphenols, grape pomace, the major by-product of the wine industry, is still discarded or used for feed. This study aimed at exploiting grape pomace functional potential through fermentation with lactic acid bacteria (LAB). A systematic approach, including the progressively optimization of the grape pomace substrate, was used, evaluating pomace percentage, pH, and supplementation of nitrogen and carbon sources. When grape pomace was used at 10%, especially without pH correction, LAB cell viability decreased up to 2 log cycles. Hence, the percentage was lowered to 5 or 2.5% and supplementations with carbon and nitrogen sources, which are crucial for LAB metabolism, were considered aiming at obtaining a proper fermentation of the substrate. The optimization of the substrate enabled the comparison of strains performances and allowed the selection of the best performing strain (Lactiplantibacillus plantarum T0A10). A sourdough, containing 5% of grape pomace and fermented with the selected strain, showed high antioxidant activity on DPPH and ABTS radicals and anti-inflammatory potential on Caco2 cells. The anthocyanins profile of the grape pomace sourdough was also characterized, showing qualitative and quantitative differences before and after fermentation. Overall, the grape pomace sourdough showed promising applications as a functional ingredient in bread making.
Collapse
Affiliation(s)
- Andrea Torreggiani
- Department of Environmental Biology, “Sapienza” University of Rome, 00185 Rome, Italy; (A.T.); (C.G.R.)
| | - Chiara Demarinis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (C.D.); (G.D.); (F.C.); (E.P.)
| | - Daniela Pinto
- Human Microbiome Advanced Project, 20129 Milan, Italy; (D.P.); (A.P.)
| | - Angela Papale
- Human Microbiome Advanced Project, 20129 Milan, Italy; (D.P.); (A.P.)
| | - Graziana Difonzo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (C.D.); (G.D.); (F.C.); (E.P.)
| | - Francesco Caponio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (C.D.); (G.D.); (F.C.); (E.P.)
| | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (C.D.); (G.D.); (F.C.); (E.P.)
| | - Michela Verni
- Department of Environmental Biology, “Sapienza” University of Rome, 00185 Rome, Italy; (A.T.); (C.G.R.)
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, “Sapienza” University of Rome, 00185 Rome, Italy; (A.T.); (C.G.R.)
| |
Collapse
|
21
|
Zhang Q, Guo M, Li F, Qin M, Yang Q, Yu H, Xu J, Liu Y, Tong T. Evaluation of Fermented Soybean Meal to Replace a Portion Fish Meal on Growth Performance, Antioxidant Capacity, Immunity, and mTOR Signaling Pathway of Coho Salmon ( Oncorhynchus kisutch). AQUACULTURE NUTRITION 2023; 2023:2558173. [PMID: 37533794 PMCID: PMC10393523 DOI: 10.1155/2023/2558173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023]
Abstract
In this study, we evaluated the effects of fermented soybean meal (FSBM) or/and unfermented SBM replacing a portion of fish meal (FM) on the growth performance, antioxidant capacity, immunity, and mechanistic target of rapamycin (mTOR) signaling pathway of juvenile coho salmon (Oncorhynchus kisutch). Four groups of juvenile coho salmon (initial weight 152.23 ± 3.21 g) in triplicate were fed for 12 weeks on four different iso-nitrogen and iso-lipid experimental diets: G0 diet (28% FM protein, control group), G1 diet (18% FM protein and 10% SBM protein), G2 diet (18% FM protein, 5% SBM protein, and 5% FSBM protein), and G3 diet (18% FM protein and 10% FSBM protein). The main results were compared with the G0 diet; the weight gain rate, specific growth rate, and condition factor of juveniles in G3 were increased significantly (p < 0.05). The content of muscle crude protein, the total protein, glucose, albumin, total cholesterol in serum, and the total antioxidant capacity in the liver of juveniles in G3 was increased significantly (p < 0.05). The activities of pepsin, trypsin, α-amylase, and lipase in the intestine, the superoxide dismutase, catalase, and alkaline phosphatase in the liver of juveniles in G3 were increased significantly (p < 0.05). The expression levels of phosphatidylinositide 3-kinases, serine/threonine kinase, mTOR, and ribosomal protein S6 kinase 1 genes in the liver of juveniles in G3 were upregulated significantly (p < 0.05). The feed coefficient ratio, viscerosomatic index, the contents of muscle moisture, and malondialdehyde in the liver of juveniles in G3 were decreased significantly (p < 0.05). The expression levels of tumor necrosis factor α, interleukin 1β, and interleukin 6 genes in the liver of juveniles in G3 were downregulated significantly (p < 0.05). However, there was no significant effect (p > 0.05) on the survival rate, food intake, and muscle crude lipid and ash of juveniles among the experimental groups. In conclusion, FSBM to replace a portion FM had a positive effect on the growth performance, protein deposition, antioxidant enzyme activity, digestive enzyme activity, protein synthesis, and immune-related genes of juvenile coho salmon.
Collapse
Affiliation(s)
- Qin Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Mengjie Guo
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Fanghui Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Meilan Qin
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Qiuyue Yang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Hairui Yu
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, Weifang University, Weifang 261061, China
| | - Jian Xu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Yongqiang Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Tong Tong
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| |
Collapse
|
22
|
Wan P, Liu H, Zhu Y, Xin H, Ma Y, Chen Z. Effects of Polygonatum sibiricum on Physicochemical Properties, Biological Compounds, and Functionality of Fermented Soymilk. Foods 2023; 12:2715. [PMID: 37509807 PMCID: PMC10379452 DOI: 10.3390/foods12142715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The purpose of this study was to investigate the effects of Polygonatum sibiricum (P. sibiricum) on microbial fermentation, physicochemical properties, and functional properties of fermented soymilk. Three types of fermented soymilk were prepared. The first type was fermented directly from regular soymilk (fermented soymilk, FSM), and the other two were fermented after adding P. sibiricum (P. sibiricum fermented soymilk, P-FSM) or P. sibiricum polysaccharides (P. sibiricum polysaccharides fermented soymilk, PP-FSM). The differences in physical and chemical indexes such as pH value, acidity, and water-holding capacity were mainly compared, and the differences in the contents of functional components such as total phenols, total flavonoids, soy isoflavones, γ-aminobutyric acid, and organic acids were compared. The functionalities of the three samples in terms of antioxidant activity were evaluated, and the relevance of each active substance was explored. Compared with the FSM group, the addition of P. sibiricum and P. sibiricum polysaccharides could not only significantly promote the fermentation of Lactobacillus but also significantly improve the stability of the finished products during storage and prolong the shelf life of the finished product. The conversion rates of glycoside soybean isoflavones in the PP-FSM and P-FSM groups were 73% and 69%, respectively, which were significantly higher than those in the FSM group (64%). At the end of fermentation, the γ-aminobutyric acid contents of the PP-FSM and P-FSM groups were 383.66 ± 1.41 mg/L and 386.27 ± 3.43 mg/L, respectively, while that of the FSM group was only 288.66 ± 3.94 mg/L. There were also great differences in the content and types of organic acids among the three samples, especially lactic acid and acetic acid. By comparing the antioxidant capacity of DPPH (1,1-Diphenyl-2-picrylhydrazyl free radical), AB-TS (2,2'-Azinobis-3-ethylbenzthiazoline-6-sulphonate), and iron chelation, it was found that both PP-FSM and P-FSM were superior to FSM, and the antioxidant capacity had a certain correlation with the contents of total phenols and total flavonoids.
Collapse
Affiliation(s)
- Peng Wan
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China
| | - Han Liu
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China
| | - Yuanyuan Zhu
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China
| | - Haitao Xin
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China
| | - Zhizhou Chen
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
23
|
Moura-Alves M, Esteves A, Ciríaco M, Silva JA, Saraiva C. Antimicrobial and Antioxidant Edible Films and Coatings in the Shelf-Life Improvement of Chicken Meat. Foods 2023; 12:2308. [PMID: 37372519 DOI: 10.3390/foods12122308] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Meat deterioration during processing, distribution, and display can compromise the quality and safety of products, causing several undesirable changes and decreasing products' shelf-life, which has a negative impact on the industry and consumers. In recent years, studies have been carried out using decontamination techniques and new packaging methodologies to overcome deterioration problems, increase sustainability, and reduce waste. Edible films and coatings obtained from biopolymers such as polysaccharides, proteins, and lipids, combined with active compounds, can be an alternative approach. This article focused on recent studies that used alternative biodegradable polymeric matrices in conjunction with natural compounds with antioxidant/antimicrobial activity on chicken meat. Its impact on physicochemical, microbiological, and sensory characteristics was evident, as well as the effect on its shelf-life. In general, different combinations of active edible films or coatings had a positive effect on the chicken meat. Different studies reported that the main results were a decrease in microbial growth and pathogen survival, a slowdown in lipid oxidation evolution, and an improvement in sensory quality and shelf-life (an increase from 4 to 12 days).
Collapse
Affiliation(s)
- Márcio Moura-Alves
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro (UTAD), 5000801 Vila Real, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, 5000801 Vila Real, Portugal
| | - Alexandra Esteves
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro (UTAD), 5000801 Vila Real, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, 5000801 Vila Real, Portugal
| | - Maria Ciríaco
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro (UTAD), 5000801 Vila Real, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, 5000801 Vila Real, Portugal
| | - José A Silva
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro (UTAD), 5000801 Vila Real, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, 5000801 Vila Real, Portugal
| | - Cristina Saraiva
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro (UTAD), 5000801 Vila Real, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, 5000801 Vila Real, Portugal
| |
Collapse
|
24
|
Weng L, Wang Z, Zhuang W, Yang T, Xu X, Liu J, Liu J, Xu Z, Chen R, Wang Q, Wang S, Cai Y, Ying H. Effect of Replacing Fish Meal Using Fermented Soybean Meal on Growth Performance, Intestine Bacterial Diversity, and Key Gene Expression of Largemouth Bass (Micropterus salmoides). FERMENTATION-BASEL 2023; 9:520. [DOI: 10.3390/fermentation9060520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
In China, aquaculture costs have increased because of the increase in fish meal (FM) prices. Plant proteins, such as soybean meal, have the potential to replace FM partially and thus reduce the cost of aquatic feed. In this study, soybean meal (SBM) was fermented using compound microorganisms (lactic acid bacteria, yeast, and Bacillus). Fermented soybean meal (FSBM) replaced FM in the diet. The effect of replacing FM on largemouth bass was comprehensively evaluated at three levels: macro (growth performance), microbial (bacterial diversity and metabolic), and gene (key gene expression) levels. The results showed that FSBM increased the crude protein content by 7.45% and decreased the phytic acid concentration by 48.66% compared with original SBM. Compared with the control, the weight gain rate and feed conversion ratio showed no significant difference (p > 0.05) when the replacement amount of FM was less than 30%. Compared with the 50% FSBM treatment, the 10% and 30% treatments showed more steatosis in the liver slices. Although the replacement of FSBM with less than 30% did not have a significant (p < 0.05) negative impact on body weight, FSBM substitution adversely affected the height and width of the intestinal villi. The expression levels of Hepcidin-1, Hepcidin-2, TGF-β1, and IL-10 in 30% and 50% FSBM treatments were lower than those in the control, whereas the expression levels of SOD1 and SOD2 in 30% FSBM treatment were higher than those in the control group, and the expression level of SOD3a in 30% FSBM treatment was equal to the control. In addition, FSBM substitution could affect the composition of intestinal microorganisms and thus influence metabolic pathways, especially the biosynthesis of amino acids and plant secondary metabolites.
Collapse
Affiliation(s)
- Longfei Weng
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Wei Zhuang
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Tiezhu Yang
- Fishery Biological Engineering Technology Research Center of Henan Province, School of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Xinxin Xu
- College of Fisheries, Henan Normal University, Xinxiang 453000, China
| | - Jinle Liu
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Jixiang Liu
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Zhengzhong Xu
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Ruitao Chen
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Qi Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Hanjie Ying
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
25
|
Yu Q, Qian J, Guo Y, Qian H, Yao W, Cheng Y. Applicable Strains, Processing Techniques and Health Benefits of Fermented Oat Beverages: A Review. Foods 2023; 12:1708. [PMID: 37107502 PMCID: PMC10137769 DOI: 10.3390/foods12081708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Based on the high nutrients of oat and the demand of health-conscious consumers for value-added and functional foods, fermented oat beverages have great market prospects. This review summarizes the applicable strains, processing techniques and health benefits of fermented oat beverages. Firstly, the fermentation characteristics and conditions of the applicable strains are systematically described. Secondly, the advantages of pre-treatment processes such as enzymatic hydrolysis, germination, milling and drying are summarized. Furthermore, fermented oat beverages can increase the nutrient content and reduce the content of anti-nutritional factors, thereby reducing some risk factors related to many diseases such as diabetes, high cholesterol and high blood pressure. This paper discusses the current research status of fermented oat beverages, which has academic significance for researchers interested in the application potential of oat. Future studies on fermenting oat beverages can focus on the development of special compound fermentation agents and the richness of their taste.
Collapse
Affiliation(s)
- Qian Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jiaqin Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yahui Guo
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - He Qian
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weirong Yao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
26
|
Pop OL, Suharoschi R, Socaci SA, Berger Ceresino E, Weber A, Gruber-Traub C, Vodnar DC, Fărcaș AC, Johansson E. Polyphenols—Ensured Accessibility from Food to the Human Metabolism by Chemical and Biotechnological Treatments. Antioxidants (Basel) 2023; 12:antiox12040865. [PMID: 37107240 PMCID: PMC10135483 DOI: 10.3390/antiox12040865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Polyphenols are plant-based compounds famous for their positive impact on both human health and the quality of food products. The benefits of polyphenols are related to reducing cardiovascular diseases, cholesterol management, cancers, and neurological disorders in humans and increasing the shelf life, management of oxidation, and anti-microbial activity in food products. The bioavailability and bio-accessibility of polyphenols are of the highest importance to secure their impact on human and food health. This paper summarizes the current state-of-the-art approaches on how polyphenols can be made more accessible in food products to contribute to human health. For example, by using food processing methods including various technologies, such as chemical and biotechnological treatments. Food matrix design and simulation procedures, in combination with encapsulation of fractionated polyphenols utilizing enzymatic and fermentation methodology, may be the future technologies to tailor specific food products with the ability to ensure polyphenol release and availability in the most suitable parts of the human body (bowl, intestine, etc.). The development of such new procedures for utilizing polyphenols, combining novel methodologies with traditional food processing technologies, has the potential to contribute enormous benefits to the food industry and health sector, not only reducing food waste and food-borne illnesses but also to sustain human health.
Collapse
Affiliation(s)
- Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Elaine Berger Ceresino
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Achim Weber
- Innovation Field Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Carmen Gruber-Traub
- Innovation Field Functional Surfaces and Materials, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| |
Collapse
|
27
|
Ruiz de la Bastida A, Peirotén Á, Langa S, Rodríguez-Mínguez E, Curiel JA, Arqués JL, Landete JM. Fermented soy beverages as vehicle of probiotic lactobacilli strains and source of bioactive isoflavones: A potential double functional effect. Heliyon 2023; 9:e14991. [PMID: 37095934 PMCID: PMC10121624 DOI: 10.1016/j.heliyon.2023.e14991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Soy beverages can be a source of bioactive isoflavones, with potential human health benefits. In this work, the suitability of three Lacticaseibacillus and three Bifidobacterium probiotic strains as functional starters for soy beverage fermentation were evaluated, alongside with the effect of refrigerated storage on the viability of the strains and the isoflavone composition of the fermented beverages. The three bifidobacteria strains suffered a decrease in their viability during refrigeration and only Bifidobacterium breve INIA P734 produced high concentrations of bioactive isoflavones. Meanwhile, L. rhamnosus GG and L. rhamnosus INIA P344 produced high levels of aglycones and, with L. paracasei INIA P272, maintained their viability during the refrigeration period, constituting promising starters to obtain functional soy beverages that could gather the benefits of the bioactive isoflavone aglycones and the probiotic strains. Moreover, the three lactobacilli caused an increase in the antioxidant capacity of the fermented beverages, which was maintained over the refrigerated storage.
Collapse
|
28
|
Langa S, Peirotén Á, Curiel JA, de la Bastida AR, Landete JM. Isoflavone Metabolism by Lactic Acid Bacteria and Its Application in the Development of Fermented Soy Food with Beneficial Effects on Human Health. Foods 2023; 12:1293. [PMID: 36981219 PMCID: PMC10048179 DOI: 10.3390/foods12061293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Isoflavones are phenolic compounds (considered as phytoestrogens) with estrogenic and antioxidant function, which are highly beneficial for human health, especially in the aged population. However, isoflavones in foods are not bioavailable and, therefore, have low biological activity. Additionally, their transformation into bioactive compounds by microorganisms is necessary to obtain bioavailable isoflavones with beneficial effects on human health. Many lactic acid bacteria (LAB) can transform the methylated and glycosylated forms of isoflavones naturally present in foods into more bioavailable aglycones, such as daidzein, genistein and glycitein. In addition, certain LAB strains are capable of transforming isoflavone aglycones into compounds with a greater biological activity, such as dihydrodaidzein (DHD), O-desmethylangolensin (O-DMA), dihydrogenistein (DHG) and 6-hydroxy-O-desmethylangolensin (6-OH-O-DMA). Moreover, Lactococcus garviae 20-92 is able to produce equol. Another strategy in the bioconversion of isoflavones is the heterologous expression of genes from Slackia isoflavoniconvertens DSM22006, which have allowed the production of DHD, DHG, equol and 5-hydroxy-equol in high concentrations by engineered LAB strains. Accordingly, the consequences of isoflavone metabolism by LAB and its application in the development of foods enriched in bioactive isoflavones, as well as health benefits attributed to their consumption, will be addressed in this work.
Collapse
Affiliation(s)
| | | | | | | | - José María Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
29
|
Faizal FA, Ahmad NH, Yaacob JS, Abdul Halim Lim S, Abd Rahim MH. Food processing to reduce antinutrients in plant-based foods. INTERNATIONAL FOOD RESEARCH JOURNAL 2023; 30:25-45. [DOI: 10.47836/ifrj.30.1.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Antinutrients such as phytic acids, tannins, saponin, and enzyme inhibitors are phytochemicals that can decrease the bioavailability of micro- and macronutrients, thus causing them to be unavailable for absorptions in the digestive system. Antinutrients are a major concern especially in countries where plant-based commodities such as wheat, legumes, and cereals are staple foods, for the antinutrients can cause not only mineral deficiencies, but also lead to more serious health issues. Although various thermal and non-thermal processing methods such as cooking, boiling, and fermentation processes have been practiced to decrease the level of antinutrients, these processes may also undesirably influence the final products. More advanced practices, such as ozonation and cold plasma processing (CPP), have been applied to decrease the antinutrients without majorly affecting the physicochemical and nutritional aspects of the commodities post-processing. This review will cover the types of antinutrients that are commonly found in plants, and the available processing methods that can be used, either singly or in combination, to significantly decrease the antinutrients, thus rendering the foods safe for consumption.
Collapse
|
30
|
Sandez Penidez SH, Velasco Manini MA, Gerez CL, Rollan GC. Consortia of lactic acid bacteria strains increase the antioxidant activity and bioactive compounds of quinoa sourdough - based biscuits. World J Microbiol Biotechnol 2023; 39:95. [PMID: 36759385 DOI: 10.1007/s11274-023-03538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
The aim of this work was to use consortia (two or three strains) of lactic acid bacteria (LAB) [Lactiplantibacillus plantarum CRL 1964 and CRL 1973, and Leuconostoc mesenteroides subsp. mesenteroides CRL 2131] to obtain quinoa sourdoughs (QS) for further manufacturing of quinoa sourdough-based biscuits (QB). Microbial grow and acidification were evaluated in QS while antioxidant activity (AOA), total phenolic compounds (TPC) and total flavonoid compounds (TFC) were determined in QS and QB. QS inoculated with LAB consortia respect to monocultures showed higher growth and acidification, AOA (7.9?42.6%), TPC (19.9?35.0%) and TFC (6.1?31.6%). QB prepared with QS inoculated by LAB consortia showed higher AOA (5.0-81.1%), TPC (22.5?57.5%) and TFC (14.0-79.9%) than biscuits inoculated by monocultures sourdoughs. These results were attributed to a synergic effect from LAB consortia. Principal component analysis showed the highest scores of the evaluated characteristics for biscuits made with consortia sourdough of two (CRL1964?+?CRL2131) and three (CRL1964?+?CRL1973?+?CRL2131) strains.
Collapse
Affiliation(s)
- S H Sandez Penidez
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina
| | - M A Velasco Manini
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina
| | - C L Gerez
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina
| | - G C Rollan
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina.
| |
Collapse
|
31
|
Erskine E, Ozkan G, Lu B, Capanoglu E. Effects of Fermentation Process on the Antioxidant Capacity of Fruit Byproducts. ACS OMEGA 2023; 8:4543-4553. [PMID: 36777564 PMCID: PMC9910098 DOI: 10.1021/acsomega.2c07602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
A substantial amount of fruit byproducts is lost annually due to lack of valorization applications at industrial scale, resulting in loss of valuable nutrients as well as immense economic consequences. Studies conducted clearly show that if appropriate and dependable methods are applied, there is the potential to acquire various components that are currently being obtained through synthetic manufacturing from fruit byproducts mostly regarded as waste and utilize them in not only the food industry, but pharmaceutical and cosmetic industries as well. This review aims to provide a concise summary of the recent studies regarding the fermentation of fruit byproducts and how their antioxidant activity is affected during this process.
Collapse
Affiliation(s)
- Ezgi Erskine
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Gulay Ozkan
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Baiyi Lu
- College
of Biosystems and Food Science, Zhejiang
University, Yuhangtang Road 866#, Hangzhou, 310058 Zhejiang, P. R. China
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
32
|
Shori AB, Al-sulbi OS. Antioxidant activity of labneh made from cashew milk and its combination with cow or camel milk using different starter cultures. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:701-709. [PMID: 36712222 PMCID: PMC9873892 DOI: 10.1007/s13197-022-05655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/16/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022]
Abstract
The aim of this study is to investigate the effects of three strains of probiotic Lactobacillus spp. i.e. L. plantarum (S1) L. casei (S2), and/or L. rhamnosus (S3) in co-cultures with Streptococcus thermophiles (St) and L. delbrueckii subsp. lactis (Ll) on the changes of total phenolic and flavonoid contents, and antioxidant activity of concentrated yogurt (labneh; L) made from individual cashew milk (EwM; 100:0 v/v) mixed with/without cow (Co) or camel (Ca) milk (75:25 v/v) during 0, 7, 14, and 21 days of storage. EwML100% S3 showed the highest total phenolic and flavonoid contents during 21 days of storage. Radical scavenging activity was improved in Ew-/Ca-ML (S2, S3, and S4) compared to control (containing St and Ll) on the 0th day. The maximum ferric reducing potential was observed in fresh Ew-/Ca-ML75% S1 (1.6 ± 0.05 mM Fe + 2 E/mL). All the starter cultures enhanced (p < 0.05) the chelating ability of EwML compared to control during the 7th and 14th day of storage. In conclusion, cashew milk labneh mixed with/without cow or camel milk containing probiotic Lactobacillus spp. can strengthen the health-promoting properties with antioxidant activity.
Collapse
Affiliation(s)
- Amal Bakr Shori
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Ohoud Shami Al-sulbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
33
|
Solid-state Fermentation of Cassava (Manihot esculenta) Peels Using Rhizopus Oligosporus: Application of the Fermented Peels in Yeast Production and Characterization of α-amylase Enzyme Produced in the Process. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-022-00582-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Lactic acid fermentation of osmo-dehydrated onion. Food Chem 2023; 399:133954. [DOI: 10.1016/j.foodchem.2022.133954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/01/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022]
|
35
|
Aderinola TA, Duodu KG. Production, health-promoting properties and characterization of bioactive peptides from cereal and legume grains. Biofactors 2022; 48:972-992. [PMID: 36161374 PMCID: PMC9828255 DOI: 10.1002/biof.1889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
The search for bioactive components for the development of functional foods and nutraceuticals has received tremendous attention. This is due to the increasing awareness of their therapeutic potentials, such as antioxidant, anti-inflammatory, antihypertensive, anti-cancer properties, etc. Food proteins, well known for their nutritional importance and their roles in growth and development, are also sources of peptide sequences with bioactive properties and physiological implications. Cereal and legume grains are important staples that are processed and consumed in various forms worldwide. However, they have received little attention compared to other foods. This review therefore is geared towards surveying the literature for an appraisal of research conducted on bioactive peptides in cereal and legume grains in order to identify what the knowledge gaps are. Studies on bioactive peptides from cereal and legume grains are still quite limited when compared to other food items and most of the research already carried out have been done without identifying the sequence of the bioactive peptides. However, the reports on the antioxidative, anticancer/inflammatory, antihypertensive, antidiabetic properties show there is much prospect of obtaining potent bioactive peptides from cereal and legume grains which could be utilized in the development of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Taiwo Ayodele Aderinola
- Department of Food Science and Technology, School of Agriculture and Agricultural TechnologyThe Federal University of TechnologyAkureNigeria
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural SciencesUniversity of PretoriaHatfieldSouth Africa
| | - Kwaku Gyebi Duodu
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural SciencesUniversity of PretoriaHatfieldSouth Africa
| |
Collapse
|
36
|
Fentie EG, Jeong M, Emire SA, Demsash HD, Kim MC, Lim K, Shin JH. Development of mixed starter culture for the fermentation of Ethiopian honey wine, Tej. Sci Rep 2022; 12:13431. [PMID: 35927420 PMCID: PMC9352660 DOI: 10.1038/s41598-022-17594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
Ethiopian honey wine is one of the country's most popular spontaneously fermented traditional alcoholic beverages. However, the final product of this natural fermentation system is frequently of poor and inconsistent quality. Furthermore, it makes the process difficult to predict, control, and correct. Thus, the main aim of this study was to develop a direct fermentation system for Ethiopian honey wine, Tej. After isolating fermentative microbial strains from Tej samples, they were subjected to intensive screening to fit to its purpose. Later, phenotypic and genotypic characterization, and inoculation of isolates to honey-must were performed sequentially. Finally, microbial interaction and physicochemical analysis, including volatile compounds profiling, were done for the inoculated samples. The identified isolates were strains of Saccharomycetaceae and Lactobacillaceae families. These strains showed a good ability to tolerate osmotic stress and a lower pH environment. Tej sample produced by mixed culture inoculation of Saccharomyces and Lactobacillus species showed similar physicochemical, volatile compounds, and sensory attributes values with that of the control sample. Thus, a mixture of Saccharomyces and Lactobacillus strains could be used as a starter culture to produce Ethiopian honey, Tej, without scarifying of its major quality attributes.
Collapse
Affiliation(s)
- Eskindir Getachew Fentie
- College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia.,School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI Street, P.O. Box 385, 16417, Addis Ababa, Ethiopia
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Shimelis Admassu Emire
- School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI Street, P.O. Box 385, 16417, Addis Ababa, Ethiopia
| | - Hundessa Dessalegn Demsash
- School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI Street, P.O. Box 385, 16417, Addis Ababa, Ethiopia
| | - Min-Chul Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyeongmo Lim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
37
|
Paucar-Menacho LM, Castillo-Martínez WE, Simpalo-Lopez WD, Verona-Ruiz A, Lavado-Cruz A, Martínez-Villaluenga C, Peñas E, Frias J, Schmiele M. Performance of Thermoplastic Extrusion, Germination, Fermentation, and Hydrolysis Techniques on Phenolic Compounds in Cereals and Pseudocereals. Foods 2022; 11:foods11131957. [PMID: 35804772 PMCID: PMC9265478 DOI: 10.3390/foods11131957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/17/2022] Open
Abstract
Bioactive compounds, such as phenolic compounds, are phytochemicals found in significant amounts in cereals and pseudocereals and are usually evaluated by spectrophotometric (UV-VIS), HPLC, and LC-MS techniques. However, their bioavailability in grains is quite limited. This restriction on bioavailability and bioaccessibility occurs because they are in conjugated polymeric forms. Additionally, they can be linked through chemical esterification and etherification to macro components. Techniques such as thermoplastic extrusion, germination, fermentation, and hydrolysis have been widely studied to release phenolic compounds in favor of their bioavailability and bioaccessibility, minimizing the loss of these thermosensitive components during processing. The increased availability of phenolic compounds increases the antioxidant capacity and favor their documented health promoting.
Collapse
Affiliation(s)
- Luz María Paucar-Menacho
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Williams Esteward Castillo-Martínez
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Wilson Daniel Simpalo-Lopez
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Anggie Verona-Ruiz
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Alicia Lavado-Cruz
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (C.M.-V.); (E.P.) (J.F.)
| | - Elena Peñas
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (C.M.-V.); (E.P.) (J.F.)
| | - Juana Frias
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (C.M.-V.); (E.P.) (J.F.)
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), MGT-367 Highway-Km 583, No. 5000, Diamantina 39100-000, Brazil
- Correspondence: ; Tel.: +55-38988037758
| |
Collapse
|
38
|
Mencin M, Jamnik P, Mikulič Petkovšek M, Veberič R, Terpinc P. Improving accessibility and bioactivity of raw, germinated and enzymatic-treated spelt (Triticum spelta L.) seed antioxidants by fermentation. Food Chem 2022; 394:133483. [PMID: 35717908 DOI: 10.1016/j.foodchem.2022.133483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/12/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022]
Abstract
Lactic acid, alcoholic, combined and spontaneous fermentation of raw, germinated and enzymatic-treated spelt seeds significantly improved the content of extractable and bound phenolics and considerably increased the extractable:bound ratio, and therefore positively affected the accessibility of the spelt antioxidants. The highest extractable and bound individual phenolic contents and in vitro antioxidant activities of extracts were obtained following fermentation of germinated spelt seeds with Saccharomyces cerevisiae, while for enzymatic-treated seeds, Lactobacillus plantarum (alone or with S. cerevisiae) was the most effective. For extractable phenolics, trans-ferulic acid increased the most in yeast-fermented germinated seeds (2922%); for bound phenolics, cis-ferulic acid showed the greatest relative increase in yeast-fermented raw spelt seeds (466%). Spontaneous fermentation of germinated and enzymatic-treated samples decreased intracellular oxidation most effectively, probably due to apigenin derivatives. Cellular uptake of bound hydroxycinnamic acids was significantly higher than that of extractable hydroxycinnamic acids; however, the latter were more efficient in vivo antioxidants.
Collapse
Affiliation(s)
- Marjeta Mencin
- Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia.
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia.
| | | | - Robert Veberič
- Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia.
| | - Petra Terpinc
- Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia.
| |
Collapse
|
39
|
The regulatory effect of fermented black barley on the gut microbiota and metabolic dysbiosis in mice exposed to cigarette smoke. Food Res Int 2022; 157:111465. [DOI: 10.1016/j.foodres.2022.111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
|
40
|
Lactic acid bacteria based fermentation strategy to improve phenolic bioactive-linked functional qualities of select chickpea (Cicer arietinum L.) varieties. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Zavistanaviciute P, Zokaityte E, Starkute V, Ruzauskas M, Viskelis P, Bartkiene E. Berry By-Products in Combination with Antimicrobial Lactic Acid Bacteria Strains for the Sustainable Formulation of Chewing Candies. Foods 2022; 11:foods11091177. [PMID: 35563900 PMCID: PMC9102268 DOI: 10.3390/foods11091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this research was to develop formulations of chewing candies (CCs) in a sustainable manner by using berry by-products in combination with antimicrobial lactic acid bacteria (LAB) strains. To implement this aim, the optimal quantities of by-products from lyophilised raspberry (Rasp) and blackcurrant (Bcur) from the juice production industry were selected. Prior to use, Lactiplantibacillus plantarum LUHS135, Liquorilactobacillusuvarum LUHS245, Lacticaseibacillusparacasei LUHS244, and Pediococcus acidilactici LUHS29 strains were multiplied in a dairy industry by-product-milk permeate (MP). The antimicrobial activity of the selected ingredients (berry by-products and LAB) was evaluated. Two texture-forming agents were tested for the CC formulations: gelatin (Gl) and agar (Ag). In addition, sugar was replaced with xylitol. The most appropriate formulation of the developed CCs according to the product's texture, colour, total phenolic compound (TPC) content, antioxidant activity, viable LAB count during storage, overall acceptability (OA), and emotions (EMs) induced in consumers was selected. It was established that the tested LAB inhibited three pathogens out of the 11 tested, while the blackcurrant by-products inhibited all 11 tested pathogens. The highest OA was shown for the CC prepared with gelatin in addition to 5 g of Rasp and 5 g of Bcur by-products. The Rasp and LUHS135 formulation showed the highest TPC content (147.16 mg 100 g-1 d.m.), antioxidant activity (88.2%), and LAB count after 24 days of storage (6.79 log10 CFU g-1). Finally, it was concluded that Gl, Rasp and Bcur by-products, and L. plantarum LUHS135 multiplied in MP are promising ingredients for preparing CCs in a sustainable manner; the best CC formula consisted of Gl, Rasp by-products, and LUHS135 and showed the highest OA (score 9.52) and induced the highest intensity of the EM 'happy' (0.231).
Collapse
Affiliation(s)
- Paulina Zavistanaviciute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.S.); (E.B.)
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-655-06461
| | - Egle Zokaityte
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.S.); (E.B.)
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Vytaute Starkute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.S.); (E.B.)
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
- Institute of Microbiology and Virology, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Pranas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno Str. 30, LT-54333 Babtai, Lithuania;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.S.); (E.B.)
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
42
|
Abstract
Fermentation is one of the oldest biotechnological tools employed by mankind. Fermenting food gives them better sensory and nutritional qualities, the latter including vitamins, phenolic compounds, antioxidants, and antimicrobials. Kombucha is the result of the fermentation of a sweetened Camellia sinensis infusion by the action of a symbiotic community of yeasts and bacteria organized in a cellulosic biofilm called SCOBY and has gained great prominence among fermented foods and beverages, with a considerable increase in its popularity in the last decade, both among consumers and within the scientific community. This is explained by the particular functional and microbial characteristics of this beverage, such as its antioxidant and antimicrobial potential, long-term stable microbial communities, its suitability for fermentation under different conditions of time and temperature, and amenability to other carbon sources besides sucrose. Thus, this review aims to present and discuss the functional, microbial, and physicochemical aspects of kombucha fermentation, covering the many challenges that arise in its production, in domestic, commercial, and legislation contexts, and the next steps that need to be taken in order to understand this drink and its complex fermentation process.
Collapse
|
43
|
Novel Bio-Functional Aloe vera Beverages Fermented by Probiotic Enterococcus faecium and Lactobacillus lactis. Molecules 2022; 27:molecules27082473. [PMID: 35458671 PMCID: PMC9029818 DOI: 10.3390/molecules27082473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Aloe vera has been medicinally used for centuries. Its bioactive compounds have been shown to be very effective in the treatment of numerous diseases. In this work, a novel functional beverage was developed and characterized to combine the health benefits of probiotic bacteria with the Aloe vera plant itself. Two Aloe vera juices were obtained by fermentation either by a novel isolated Enterococcus faecium or a commercial Lactococcus lactis. The extraction of Aloe vera biocompounds for further fermentation was optimized. Extraction with water plus cellulase enhanced the carbohydrates and phenolic compounds in the obtained extracts. The biotransformation of the bioactive compounds from the extracts during fermentation was assessed. Both probiotic bacteria were able to grow on the Aloe vera extract. Lactic acid and short-chain fatty acids (SCFA) together with fourteen individual phenolic compounds were quantified in the produced Aloe vera juice, mainly epicatechin, aloin, ellagic acid, and hesperidin. The amount of total phenolic compounds was maintained through fermentation. The antioxidant activity was significantly increased in the produced juice by the ABTS method. The novel produced Aloe vera juice showed great potential as a functional beverage containing probiotics, prebiotics, SCFA, and phenolic compounds in its final composition.
Collapse
|
44
|
Fidan H, Esatbeyoglu T, Simat V, Trif M, Tabanelli G, Kostka T, Montanari C, Ibrahim SA, Özogul F. Recent developments of lactic acid bacteria and their metabolites on foodborne pathogens and spoilage bacteria: Facts and gaps. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Mahanta S, Sivakumar PS, Parhi P, Mohapatra RK, Dey G, Panda SH, Sireswar S, Panda SK. Sour beer production in India using a coculture of Saccharomyces pastorianus and Lactobacillus plantarum: optimization, microbiological, and biochemical profiling. Braz J Microbiol 2022; 53:947-958. [PMID: 35129817 PMCID: PMC9151955 DOI: 10.1007/s42770-022-00691-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
The study's objective was to develop a co-fermentation process with appropriate fermentation parameters to produce a sour beer (similar to a Belgium sour beer) with an ethanol content of 6-8% (v/v) using a coculture of Saccharomyces pastorianus and Lactobacillus plantarum. Statistical optimization was conducted to determine fermentation conditions to produce a sour beer with ~ 3 mg/mL of lactic acid, similar to the traditional sour beer levels. Studies were conducted on the microbial dynamics and volatile compounds produced during this fermentation and aging process. GC-MS studies revealed the generation of novel bioactive compounds as well as the depletion of some volatile compounds during co-fermentation. The study detailed a 5-day co-fermentation process of S. pastorianus and L. plantarum and a 21-day aging process to prepare a sour beer with biochemical properties along the lines of traditional lambic beers. The interrelationship between the two microorganisms and the biochemical changes in the sour beer fermentation process was elucidated and the sensorial attributes have been described.
Collapse
Affiliation(s)
- Sachin Mahanta
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - P S Sivakumar
- Division of Extension and Social Sciences, Central Tuber Crops Research Institute, Trivandrum, Kerala, India
| | - Pankaj Parhi
- P. G. Department of Chemistry, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Ranjan K Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Gargi Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Smita H Panda
- Department of Zoology, North Orissa University, Mayurbhanj, Odisha, India
| | - Srijita Sireswar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India
| | - Sandeep K Panda
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
46
|
Garcia HS, Santiago-López L, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Evaluation of a pseudocereal suitability to prepare a functional fermented beverage with epiphytic lactic acid bacteria of Huauzontle (Chenopodium berlandieri spp. nuttalliae). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Physicochemical properties, antioxidant activities and microbial communities of Ethiopian honey wine, Tej. Food Res Int 2022; 152:110765. [DOI: 10.1016/j.foodres.2021.110765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023]
|
48
|
|
49
|
Theoretical investigations on the antioxidant potential of 2,4,5-trihydroxybutyrophenone in different solvents: A DFT approach. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
50
|
Legumes and Legume-Based Beverages Fermented with Lactic Acid Bacteria as a Potential Carrier of Probiotics and Prebiotics. Microorganisms 2021; 10:microorganisms10010091. [PMID: 35056540 PMCID: PMC8779895 DOI: 10.3390/microorganisms10010091] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Fermentation is widely used in the processing of dairy, meat, and plant products. Due to the growing popularity of plant diets and the health benefits of consuming fermented products, there has been growing interest in the fermentation of plant products and the selection of microorganisms suitable for this process. The review provides a brief overview of lactic acid bacteria (LAB) and their use in fermentation of legumes and legume-based beverages. Its scope also extends to prebiotic ingredients present in legumes and legume-based beverages that can support the growth of LAB. Legumes are a suitable matrix for the production of plant-based beverages, which are the most popular products among dairy alternatives. Legumes and legume-based beverages have been successfully fermented with LAB. Legumes are a natural source of ingredients with prebiotic properties, including oligosaccharides, resistant starch, polyphenols, and isoflavones. These compounds provide a broad range of important physiological benefits, including anti-inflammatory and immune regulation, as well as anti-cancer properties and metabolic regulation. The properties of legumes make it possible to use them to create synbiotic food, which is a source of probiotics and prebiotics.
Collapse
|