1
|
Xu X, Zhang Z, Tian W, Cao M, Wang Z, Li F, Gao T, Cheng M, Xia Y, Shao J, Hai C. Melatonin Increased Autophagy Level to Facilitate Osteogenesis of Inflamed PDLSCs Through TMEM110 Signaling Pathways. J Pineal Res 2025; 77:e70039. [PMID: 40065592 PMCID: PMC11894363 DOI: 10.1111/jpi.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Periodontal ligament stem cells (PDLSCs) bring new hope to patients with poor periodontium recovery and impaired regeneration. However, the complex inflammatory microenvironment continually inhibits stem cell function and hinders stem cell therapy effectiveness. Melatonin is a naturally occurring neurohormone that participates in the regulation of a large spectrum of biological functions. We investigated the effect of melatonin on periodontium regeneration both in vitro and in vivo. The results showed that melatonin promoted periodontitis recovery and enhanced the osteogenesis of inflamed PDLSCs (Inf-PDLSCs) depending on concentrations. Further mechanistic exploration indicated that autophagy activation played a significant role in enhancing the osteogenic differentiation of Inf-PDLSCs after melatonin treatment. Additionally, melatonin-induced upregulation of TEME110 participated in the initiation of autophagy activation and enhancement of osteogenesis in Inf-PDLSCs. Collectively, the results of our study provide evidence that melatonin-mediated osteogenesis of Inf-PDLSCs is important for periodontal tissue regeneration. Moreover, melatonin as a therapeutic drug for periodontitis treatment deserves further investigation.
Collapse
Affiliation(s)
- Xinyue Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical UniversityXi'anP. R. China
- Department of ToxicologyThe Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public HealthThe Fourth Military Medical UniversityXi'anChina
| | - Zhaojia Zhang
- College of Basic MedicineFourth Military Medical UniversityXi'anP. R. China
| | - Wen Tian
- College of Basic MedicineFourth Military Medical UniversityXi'anP. R. China
| | - Meng Cao
- Department of ToxicologyThe Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public HealthThe Fourth Military Medical UniversityXi'anChina
| | - Zhen Wang
- Department of ToxicologyThe Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public HealthThe Fourth Military Medical UniversityXi'anChina
| | - Fei Li
- Department of ToxicologyThe Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public HealthThe Fourth Military Medical UniversityXi'anChina
| | - Tian Gao
- Department of ToxicologyThe Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public HealthThe Fourth Military Medical UniversityXi'anChina
| | - Mengjuan Cheng
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical UniversityXi'anP. R. China
| | - Yunlong Xia
- Department of ToxicologyThe Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public HealthThe Fourth Military Medical UniversityXi'anChina
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'anP. R. China
| | - Jinlong Shao
- Department of PeriodontologySchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinanShandongChina
| | - Chunxu Hai
- Department of ToxicologyThe Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public HealthThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
2
|
Adhikari A, Sapkota M, Savidya RN, Tosin AT, Adam M, Alam MN, Kwon EH, Kang SM, Shaffique S, Lee IJ. Calcium Enhances the Effectiveness of Melatonin in Improving Nutritional Properties of Soybean Sprouts and Germination Under Salt and Cadmium Stress. Int J Mol Sci 2025; 26:878. [PMID: 39940648 PMCID: PMC11816511 DOI: 10.3390/ijms26030878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Salinity and cadmium exposure to agrarian land lowers crop yield and imposes toxicity in the food chain, ultimately affecting sustainable agriculture. Melatonin (Mel) and calcium (Ca) have been reported as potent regulators of plant growth and stress resistance. Based on this scenario, this study investigated the sole and combined effects of Mel and Ca on improving the antioxidant properties, mineral content, germination of sprout, and stress tolerance of soybean seedlings under salt and cadmium (Cd) stress. Optimal doses of 20 µM Mel and 1 mM Ca were identified to enhance sprout quality and seed germination. Treatments with Mel > 20 µM inhibited germination, while the combination of Mel (20 µM) and Ca (1 mM) significantly improved germination, mineral content (Ca, P, K), and antioxidant properties, including DPPH(2,2-Diphenyl-1-picrylhydrazyl) activity, polyphenols, flavonoids, and superoxide dismutase (SOD) activity. However, melatonin > 50 µM could completely cease the sprouting, whereas a Ca concentration of up to 10 mM was observed to be normal in sprouting. Additionally, this combination reduced malondialdehyde (MDA) levels and enhanced the proline, indicating decreased oxidative stress in soybean seedlings under stress conditions. Among various treatments tested, the Mel-Ca combination was most effective in enhancing sprout biomass, antioxidant activity, and seed viability under Salt+Cd stress. These findings underscore the synergistic role of Ca in optimizing melatonin pretreatment for stress mitigation in soybean seeds and also address the precaution for a possible negative impact of melatonin effects.
Collapse
Affiliation(s)
- Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.S.); (R.N.S.); (A.T.T.); (M.A.); (M.N.A.); (E.-H.K.); (S.-M.K.); (S.S.)
| | | | | | | | | | | | | | | | | | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.S.); (R.N.S.); (A.T.T.); (M.A.); (M.N.A.); (E.-H.K.); (S.-M.K.); (S.S.)
| |
Collapse
|
3
|
Erland LA. Views and perspectives on the indoleamines serotonin and melatonin in plants: past, present and future. PLANT SIGNALING & BEHAVIOR 2024; 19:2366545. [PMID: 38899558 PMCID: PMC11195476 DOI: 10.1080/15592324.2024.2366545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
In the decades since their discovery in plants in the mid-to-late 1900s, melatonin (N-acetyl-5-methoxytryptamine) and serotonin (5-methoxytryptamine) have been established as their own class of phytohormone and have become popular targets for examination and study as stress ameliorating compounds. The indoleamines play roles across the plant life cycle from reproduction to morphogenesis and plant environmental perception. There is growing interest in harnessing the power of these plant neurotransmitters in applied and agricultural settings, particularly as we face increasingly volatile climates for food production; however, there is still a lot to learn about the mechanisms of indoleamine action in plants. A recent explosion of interest in these compounds has led to exponential growth in the field of melatonin research in particular. This concept paper aims to summarize the current status of indoleamine research and highlight some emerging trends.
Collapse
|
4
|
Azzeh FS, Kamfar WW, Ghaith MM, Alsafi RT, Shamlan G, Ghabashi MA, Farrash WF, Alyamani RA, Alazzeh AY, Alkholy SO, Bakr ESH, Qadhi AH, Arbaeen AF. Unlocking the health benefits of melatonin supplementation: A promising preventative and therapeutic strategy. Medicine (Baltimore) 2024; 103:e39657. [PMID: 39312371 PMCID: PMC11419438 DOI: 10.1097/md.0000000000039657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Melatonin (MLT) is crucial in controlling human sleep-wake patterns. While it has long been recognized for regulating circadian rhythms, its demonstrated efficacy in managing various diseases has recently gained considerable attention. This review discusses MLT's potential preventative and therapeutic effects on various diseases. Several studies have focused on examining the molecular mechanisms through which MLT brings about its protective or therapeutic effects on various diseases, including cancer, obesity, coronavirus, and cardiovascular diseases. Numerous preventative and therapeutic applications of MLT have been proposed, resulting from its ability to function as an antioxidant, anti-cancer, anti-inflammatory, and immune-regulating agent. There is a need for further research to determine MLT's long-term effects on antioxidant defense systems, its preventative and therapeutic benefits, and its molecular basis.
Collapse
Affiliation(s)
- Firas S. Azzeh
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waad W. Kamfar
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Nutrition and Food Services Department, Almana Hospitals, Aziziah, Dammam, Saudi Arabia
| | - Mazen M. Ghaith
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| | - Radi T. Alsafi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mai A. Ghabashi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wesam F. Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| | - Reema A. Alyamani
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Awfa Y. Alazzeh
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Sarah O. Alkholy
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - El-Sayed H. Bakr
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa H. Qadhi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad F. Arbaeen
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, AL Abdeyah, Makkah, Saudi Arabia
| |
Collapse
|
5
|
Huang H, Wang Q, Tan J, Zeng C, Wang J, Huang J, Hu Y, Wu Q, Wu X, Liu C, Ye X, Fan Y, Sun W, Guo Z, Peng L, Zou L, Xiang D, Song Y, Zheng X, Wan Y. Quinoa greens as a novel plant food: a review of its nutritional composition, functional activities, and food applications. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38993144 DOI: 10.1080/10408398.2024.2370483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Quinoa (Chenopodium quinoa Willd) is widely regarded as a versatile pseudo-cereal native to the Andes Mountains in South America. It has gained global recognition as a superfood due to its rich nutritional profile. While quinoa grains are well-known, there is an undiscovered potential in quinoa greens, such as sprouts, leaves, and microgreens. These verdant parts of quinoa are rich in a diverse array of essential nutrients and bioactive compounds, including proteins, amino acids, bioactive proteins, peptides, polyphenols, and flavonoids. They have powerful antioxidant properties, combat cancer, and help prevent diabetes. Quinoa greens offer comparable or even superior benefits when compared to other sprouts and leafy greens, yet they have not gained widespread recognition. Limited research exists on the nutritional composition and biological activities of quinoa greens, underscoring the necessity for thorough systematic reviews in this field. This review paper aims to highlight the nutritional value, bioactivity, and health potential of quinoa greens, as well as explore their possibilities within the food sector. The goal is to generate interest within the research community and promote further exploration and wider utilization of quinoa greens in diets. This focus may lead to new opportunities for enhancing health and well-being through innovative dietary approaches.
Collapse
Affiliation(s)
- Huange Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jianxin Tan
- Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lasa, China
| | - Chunxiang Zeng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Junying Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhanbin Guo
- College of Agronomy, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Song
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaoqin Zheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
6
|
Kamfar WW, Khraiwesh HM, Ibrahim MO, Qadhi AH, Azhar WF, Ghafouri KJ, Alhussain MH, Aldairi AF, AlShahrani AM, Alghannam AF, Abdulal RH, Al-Slaihat AH, Qutob MS, Elrggal ME, Ghaith MM, Azzeh FS. Comprehensive review of melatonin as a promising nutritional and nutraceutical supplement. Heliyon 2024; 10:e24266. [PMID: 38293391 PMCID: PMC10825492 DOI: 10.1016/j.heliyon.2024.e24266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/05/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Background Melatonin is an indoleamine hormone secreted by the pineal gland at night and has an essential role in regulating human circadian rhythms (the internal 24-h clock) and sleep-wake patterns. However, it has recently gained considerable attention for its demonstrated ability in disease management. This review discusses the major biological activities of melatonin, its metabolites as nutritional supplements, and its bioavailability in food sources. Methods The information acquisition process involved conducting a comprehensive search across academic databases including PubMed, Scopus, Wiley, Embase, and Springer using relevant keywords. Only the most recent, peer-reviewed articles published in the English language were considered for inclusion. Results The molecular mechanisms by which melatonin induces its therapeutic effects have been the subject of various studies. Conclusion While melatonin was initially understood to only regulate circadian rhythms, recent studies indicate that it has a far-reaching effect on various organs and physiological systems, such as immunity, cardiovascular function, antioxidant defense, and lipid hemostasis. As a potent antioxidant, anti-cancer, anti-inflammatory, and immunoregulatory agent, multiple therapeutic applications have been proposed for melatonin.
Collapse
Affiliation(s)
- Waad W. Kamfar
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, UmmAl-Qura University, P.O. Box: 7067, Makkah, Saudi Arabia
- Medical Nutrition and Food Services Department, Almana Hospitals, Aziziah, Dammam, Saudi Arabia
| | - Husam M. Khraiwesh
- Department of Nutrition and Food Processing, Faculty of Agricultural Technology, Al-Balqa’ Applied University, Salt, Jordan
| | - Mohammed O. Ibrahim
- Department of Nutrition and Food Technology, Faculty of Agriculture, Mu'tah University, Karak, Jordan
| | - Alaa H. Qadhi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, UmmAl-Qura University, P.O. Box: 7067, Makkah, Saudi Arabia
| | - Wedad F. Azhar
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, UmmAl-Qura University, P.O. Box: 7067, Makkah, Saudi Arabia
| | - Khloud J. Ghafouri
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, UmmAl-Qura University, P.O. Box: 7067, Makkah, Saudi Arabia
| | - Maha H. Alhussain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah F. Aldairi
- Faculty of Applied Medical Sciences, Department of Clinical Laboratory Sciences, Umm Al-Qura University, Al Abdeyah, Makkah, 7607, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Sciences, College of Applied Medical Sciences, Khamis Mushayt, King Khalid University, Abha, 62561, Saudi Arabia
| | - Abdullah F. Alghannam
- Lifestyle and Health Research Center, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Rwaa H. Abdulal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abed H. Al-Slaihat
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Maysoun S. Qutob
- Clinical Nutrition and Dietetics Department, Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan
| | | | - Mazen M. Ghaith
- Faculty of Applied Medical Sciences, Department of Clinical Laboratory Sciences, Umm Al-Qura University, Al Abdeyah, Makkah, 7607, Saudi Arabia
| | - Firas S. Azzeh
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, UmmAl-Qura University, P.O. Box: 7067, Makkah, Saudi Arabia
| |
Collapse
|
7
|
Maleki S, Razavi SH, Yadav H, Letizia Manca M. New horizon to the world of gut microbiome: seeds germination. Crit Rev Food Sci Nutr 2024; 65:1773-1791. [PMID: 38227048 DOI: 10.1080/10408398.2023.2300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The second brain of humans has been known as the microbiome. The microbiome is a dynamic network composed of commensal bacteria, archaea, viruses, and fungi colonized in the human gastrointestinal tract. They play a vital role in human health by metabolizing components, maturation of the immune system, and taking part in the treatment of various diseases. Two important factors that can affect the gut microbiome's composition and/or function are the food matrix and methods of food processing. Based on scientific research, the consumption of whole grains can make positive changes in the gut microbiota. Seeds contain different microbiota-accessible substrates that can resist digestion in the upper gastrointestinal tract. Seed germination is one of the simplest and newest food processing approaches to improve seeds' bioavailability and overall nutritional value. During germination, the dormant hydrolytic seed's enzymes have been activated and then metabolize the macromolecules. The quality and quantity of bioactive compounds like prebiotics, fiber, phenolic compounds (PC), total free amino acids, and γ-aminobutyric acid (GABA) can increase even up to 4-10 folds in some cases. These components stimulate the survival and growth of healthful bacteria like probiotics and boost their activity. This effect depends on several parameters, e.g., germination environmental conditions. This review aims to provide up-to-date and latest research about promoting bioactive components during seed germination and investigating their impacts on gut microbiota to understand the possible direct and indirect effects of seed germination on the microbiome and human health.
Collapse
Affiliation(s)
- Sima Maleki
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, Faculty of Agriculture Engineering, University of Tehran, Karaj, Iran
| | - Seyed Hadi Razavi
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, Faculty of Agriculture Engineering, University of Tehran, Karaj, Iran
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, and Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
Song J, Ouyang F, Xiong Y, Luo Q, Jiang H, Fan L, Zhang Z. Reassessment of oxidative stress in idiopathic sudden hearing loss and preliminary exploration of the effect of physiological concentration of melatonin on prognosis. Front Neurol 2023; 14:1249312. [PMID: 37745649 PMCID: PMC10511764 DOI: 10.3389/fneur.2023.1249312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND AND PURPOSE The pathogenesis of idiopathic sudden sensorineural hearing loss (ISSNHL) is still unclear, and there is no targeted treatment. This research aimed to verify the role of oxidative stress in ISSNHL and explore whether melatonin has a protective effect on hearing. MATERIALS AND METHODS A total of 43 patients with ISSNHL and 15 healthy controls were recruited to detect the level of melatonin, reactive oxygen species (ROS), and total antioxidant capacity (TAC) in the blood and compared before and after treatment. Multivariate logistic regression models were performed to assess the factors relevant to the occurrence and improvement of ISSNHL. RESULTS The patients with ISSNHL showed significantly higher ROS levels than controls (4.42 ± 4.40 vs. 2.30 ± 0.59; p = 0.031). The levels of basal melatonin were higher (1400.83 ± 784.89 vs. 1095.97 ± 689.08; p = 0.046) and ROS levels were lower (3.05 ± 1.81 vs. 5.62 ± 5.56; p = 0.042) in the effective group as compared with the ineffective group. Logistic regression analysis showed that melatonin (OR = 0.999, 95% CI 0.997-1.000, p = 0.049), ROS (OR = 1.154, 95% CI 1.025-2.236, p = 0.037), and vertigo (OR = 3.011, 95% CI 1.339-26.983, p = 0.019) were independent factors associated with hearing improvement. Besides, the level of melatonin (OR = 0.999, 95% CI 0.998-1.000, p = 0.023) and ROS (OR = 3.248, 95% CI 1.109-9.516, p = 0.032) were associated with the occurrence of ISSNHL. CONCLUSION Our findings may suggest oxidative stress involvement in ISSNHL etiopathogenesis. The level of melatonin and ROS, and vertigo appear to be predictive of the effectiveness of hearing improvement following ISSNHL treatment.
Collapse
Affiliation(s)
- Jianxiong Song
- Department of Otolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fang Ouyang
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuanping Xiong
- Department of Otolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Luo
- Department of Otolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongqun Jiang
- Department of Otolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Fan
- Department of Otolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiyuan Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Cañas S, Rebollo-Hernanz M, Bermúdez-Gómez P, Rodríguez-Rodríguez P, Braojos C, Gil-Ramírez A, Benítez V, Aguilera Y, Martín-Cabrejas MA. Radical Scavenging and Cellular Antioxidant Activity of the Cocoa Shell Phenolic Compounds after Simulated Digestion. Antioxidants (Basel) 2023; 12:antiox12051007. [PMID: 37237874 DOI: 10.3390/antiox12051007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The cocoa industry generates a considerable quantity of cocoa shell, a by-product with high levels of methylxanthines and phenolic compounds. Nevertheless, the digestion process can extensively modify these compounds' bioaccessibility, bioavailability, and bioactivity as a consequence of their transformation. Hence, this work's objective was to assess the influence of simulated gastrointestinal digestion on the concentration of phenolic compounds found in the cocoa shell flour (CSF) and the cocoa shell extract (CSE), as well as to investigate their radical scavenging capacity and antioxidant activity in both intestinal epithelial (IEC-6) and hepatic (HepG2) cells. The CSF and the CSE exhibited a high amount of methylxanthines (theobromine and caffeine) and phenolic compounds, mainly gallic acid and (+)-catechin, which persisted through the course of the simulated digestion. Gastrointestinal digestion increased the antioxidant capacity of the CSF and the CSE, which also displayed free radical scavenging capacity during the simulated digestion. Neither the CSF nor the CSE exhibited cytotoxicity in intestinal epithelial (IEC-6) or hepatic (HepG2) cells. Moreover, they effectively counteracted oxidative stress triggered by tert-butyl hydroperoxide (t-BHP) while preventing the decline of glutathione, thiol groups, superoxide dismutase, and catalase activities in both cell lines. Our study suggests that the cocoa shell may serve as a functional food ingredient for promoting health, owing to its rich concentration of antioxidant compounds that could support combating the cellular oxidative stress associated with chronic disease development.
Collapse
Affiliation(s)
- Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Patricia Bermúdez-Gómez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain
| | - Cheyenne Braojos
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alicia Gil-Ramírez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María A Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
10
|
Grao-Cruces E, Calvo JR, Maldonado-Aibar MD, Millan-Linares MDC, Montserrat-de la Paz S. Mediterranean Diet and Melatonin: A Systematic Review. Antioxidants (Basel) 2023; 12:264. [PMID: 36829823 PMCID: PMC9951922 DOI: 10.3390/antiox12020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The Mediterranean diet (MD) has beneficial effects on human health, which is evidenced by the observation of lower incidence rates of chronic diseases in Mediterranean countries. The MD dietary pattern is rich in antioxidants, such as melatonin, which is a hormone produced mainly by the pineal gland and controls several circadian rhythms. Additionally, melatonin is found in foods, such as fruit and vegetables. The purpose of this systematic review was to assess the melatonin content in Mediterranean foods and to evaluate the influence of the MD on melatonin levels in both humans and model organisms. A comprehensive search was conducted in four databases (PubMed, Scopus, Cochrane Library and Web of Science) and data were extracted. A total of 31 records were chosen. MD-related foods, such as tomatoes, olive oil, red wine, beer, nuts, and vegetables, showed high melatonin contents. The consumption of specific MD foods increases melatonin levels and improves the antioxidant status in plasma.
Collapse
Affiliation(s)
| | | | | | | | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Avenida Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
11
|
Siriparu P, Panyatip P, Pota T, Ratha J, Yongram C, Srisongkram T, Sungthong B, Puthongking P. Effect of Germination and Illumination on Melatonin and Its Metabolites, Phenolic Content, and Antioxidant Activity in Mung Bean Sprouts. PLANTS (BASEL, SWITZERLAND) 2022; 11:2990. [PMID: 36365443 PMCID: PMC9654080 DOI: 10.3390/plants11212990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 05/14/2023]
Abstract
Mung bean (Vigna radiata L.) sprouts are increasingly consumed and have become part of a healthy diet. The sprouts are composed of proteins, carbohydrates, and biochemical compounds. During germination, the phytochemical compounds are significantly elevated, especially under stress conditions such as salinity, drought, extreme temperature, and illumination. The present study examined the effects of light and germination time on the bioactive compounds in mung bean sprout extracts. Mung bean seeds were sprouted under different light exposure conditions, and the phytochemical composition and antioxidant activity of sprout extracts were determined compared to seeds. The results show that tryptophan sharply decreased during germination. On the contrary, melatonin, polyphenols, and total phenolic content (TPC) were elevated with increased germination time, correlated with increased antioxidant activity. Sprouts germinated in the dark presented higher levels of melatonin and TPC compared with those germinated under 12 h light exposure (3.6- and 1.5-fold, respectively). In conclusion, germination can enhance valuable phytochemicals and antioxidant activity of mung bean sprouts. Mung bean sprouts may be a good alternative functional food for promoting human health.
Collapse
Affiliation(s)
- Pimolwan Siriparu
- Master of Sciences Program in Pharmaceutical Chemistry and Natural Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Panyada Panyatip
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand
| | - Thanawat Pota
- Melatonin Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Juthamat Ratha
- Melatonin Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chawalit Yongram
- Division of Cannabis Health Science, College of Allied Health Sciences, Suansunandha Rajabhat University, Samut Songkhram 75000, Thailand
| | - Tarapong Srisongkram
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Bunleu Sungthong
- Integrative Pharmaceuticals and Innovation of Pharmaceutical Technology Research Unit, Faculty of Pharmacy, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Ploenthip Puthongking
- Melatonin Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
12
|
Cañas S, Rebollo-Hernanz M, Braojos C, Benítez V, Ferreras-Charro R, Dueñas M, Aguilera Y, Martín-Cabrejas MA. Gastrointestinal fate of phenolic compounds and amino derivatives from the cocoa shell: An in vitro and in silico approach. Food Res Int 2022; 162:112117. [DOI: 10.1016/j.foodres.2022.112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
13
|
Aziz A, Noreen S, Khalid W, Mubarik F, Niazi MK, Koraqi H, Ali A, Lima CMG, Alansari WS, Eskandrani AA, Shamlan G, AL-Farga A. Extraction of Bioactive Compounds from Different Vegetable Sprouts and Their Potential Role in the Formulation of Functional Foods against Various Disorders: A Literature-Based Review. Molecules 2022; 27:7320. [PMID: 36364145 PMCID: PMC9658993 DOI: 10.3390/molecules27217320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
In this review, we discuss the advantages of vegetable sprouts in the development of food products as well as their beneficial effects on a variety of disorders. Sprouts are obtained from different types of plants and seeds and various types of leafy, root, and shoot vegetables. Vegetable sprouts are enriched in bioactive compounds, including polyphenols, antioxidants, and vitamins. Currently, different conventional methods and advanced technologies are used to extract bioactive compounds from vegetable sprouts. Due to some issues in traditional methods, increasingly, the trend is to use recent technologies because the results are better. Applications of phytonutrients extracted from sprouts are finding increased utility for food processing and shelf-life enhancement. Vegetable sprouts are being used in the preparation of different functional food products such as juices, bread, and biscuits. Previous research has shown that vegetable sprouts can help to fight a variety of chronic diseases such as cancer and diabetes. Furthermore, in the future, more research is needed that explores the extraordinary ways in which vegetable sprouts can be incorporated into green-food processing and preservation for the purpose of enhancing shelf-life and the formation of functional meat products and substitutes.
Collapse
Affiliation(s)
- Afifa Aziz
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sana Noreen
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Waseem Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Fizza Mubarik
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Madiha khan Niazi
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Hyrije Koraqi
- Faculty of Food Science and Biotechnology, UBT-Higher Education Institution, St. Rexhep Krasniqi No. 56, 10000 Pristina, Kosovo
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410017, China
| | | | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| |
Collapse
|
14
|
Minich DM, Henning M, Darley C, Fahoum M, Schuler CB, Frame J. Is Melatonin the "Next Vitamin D"?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients 2022; 14:3934. [PMID: 36235587 PMCID: PMC9571539 DOI: 10.3390/nu14193934] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Melatonin has become a popular dietary supplement, most known as a chronobiotic, and for establishing healthy sleep. Research over the last decade into cancer, Alzheimer's disease, multiple sclerosis, fertility, PCOS, and many other conditions, combined with the COVID-19 pandemic, has led to greater awareness of melatonin because of its ability to act as a potent antioxidant, immune-active agent, and mitochondrial regulator. There are distinct similarities between melatonin and vitamin D in the depth and breadth of their impact on health. Both act as hormones, affect multiple systems through their immune-modulating, anti-inflammatory functions, are found in the skin, and are responsive to sunlight and darkness. In fact, there may be similarities between the widespread concern about vitamin D deficiency as a "sunlight deficiency" and reduced melatonin secretion as a result of "darkness deficiency" from overexposure to artificial blue light. The trend toward greater use of melatonin supplements has resulted in concern about its safety, especially higher doses, long-term use, and application in certain populations (e.g., children). This review aims to evaluate the recent data on melatonin's mechanisms, its clinical uses beyond sleep, safety concerns, and a thorough summary of therapeutic considerations concerning dietary supplementation, including the different formats available (animal, synthetic, and phytomelatonin), dosing, timing, contraindications, and nutrient combinations.
Collapse
Affiliation(s)
- Deanna M. Minich
- Department of Human Nutrition and Functional Medicine, University of Western States, Portland, OR 97213, USA
| | - Melanie Henning
- Department of Sports and Performance Psychology, University of the Rockies, Denver, CO 80202, USA
| | - Catherine Darley
- College of Naturopathic Medicine, National University of Natural Medicine, Portland, OR 97201, USA
| | - Mona Fahoum
- School of Naturopathic Medicine, Bastyr University, Kenmore, WA 98028, USA
| | - Corey B. Schuler
- School of Nutrition, Sonoran University of Health Sciences, Tempe, AZ 85282, USA
- Department of Online Education, Northeast College of Health Sciences, Seneca Falls, NY 13148, USA
| | - James Frame
- Natural Health International Pty., Ltd., Sydney, NSW 2000, Australia
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA
| |
Collapse
|
15
|
Cañas S, Rebollo-Hernanz M, Braojos C, Benítez V, Ferreras-Charro R, Dueñas M, Aguilera Y, Martín-Cabrejas MA. Understanding the Gastrointestinal Behavior of the Coffee Pulp Phenolic Compounds under Simulated Conditions. Antioxidants (Basel) 2022; 11:antiox11091818. [PMID: 36139892 PMCID: PMC9495553 DOI: 10.3390/antiox11091818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/17/2022] Open
Abstract
Numerous residues, such as the coffee pulp, are generated throughout coffee processing. This by-product is a source of antioxidant phytochemicals, including phenolic compounds and caffeine. However, the antioxidant properties of the phenolic compounds from the coffee pulp are physiologically limited to their bioaccessibility, bioavailability, and biotransformation occurring during gastrointestinal digestion. Hence, this study explored the phenolic and caffeine profile in the coffee pulp flour (CPF) and extract (CPE), their intestinal bioaccessibility through in vitro digestion, and their potential bioavailability and colonic metabolism using in silico models. The CPE exhibited a higher concentration of phenolic compounds than the CPF, mainly phenolic acids (protocatechuic, chlorogenic, and gallic acids), followed by flavonoids, particularly quercetin derivatives. Caffeine was found in higher concentrations than phenolic compounds. The antioxidant capacity was increased throughout the digestive process. The coffee pulp matrix influenced phytochemicals’ behavior during gastrointestinal digestion. Whereas individual phenolic compounds generally decreased during digestion, caffeine remained stable. Then, phenolic acids and caffeine were highly bioaccessible, while flavonoids were mainly degraded. As a result, caffeine and protocatechuic acid were the main compounds absorbed in the intestine after digestion. Non-absorbed phenolic compounds might undergo colonic biotransformation yielding small and potentially more adsorbable phenolic metabolites. These results contribute to establishing the coffee pulp as an antioxidant food ingredient since it contains bioaccessible and potentially bioavailable phytochemicals with potential health-promoting properties.
Collapse
Affiliation(s)
- Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Cheyenne Braojos
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Rebeca Ferreras-Charro
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Montserrat Dueñas
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - María A. Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL, UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
- Correspondence:
| |
Collapse
|
16
|
Zhang K, Li H, Zhang T, Wang S, Liu L, Dong X, Cong L, Song H, Wang A, Yang G, Xie H, Wang ZY, Chai M. Comprehensive transcriptomic and metabolomic profiling reveals the differences between alfalfa sprouts germinated with or without light exposure. FRONTIERS IN PLANT SCIENCE 2022; 13:943740. [PMID: 35991407 PMCID: PMC9389271 DOI: 10.3389/fpls.2022.943740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Alfalfa sprouts are among the most nutritionally rich foods, and light exposure is a critical factor in determining their biomass and quality. However, detailed metabolic and molecular differences between yellow and green alfalfa sprouts remain unclear. In this study, comprehensive metabolomic and transcriptomic analyses were integrated to evaluate the nutrient composition of alfalfa sprouts during germination with or without light exposure. Differentially expressed genes and differentially accumulated metabolites in green and yellow alfalfa sprouts were significantly enriched in secondary metabolic pathways, such as the isoflavonoid biosynthesis pathway. Green alfalfa sprouts contained a wide variety of lipids, flavonoids, phenolic acids, and terpenoids, among which the top three upregulated were calycosin, methyl gallate, and epicatechin 3-gallate, whereas yellow alfalfa sprouts contained relatively more isoquercitrin. These results provide new insights into the nutritional value and composition of alfalfa sprouts under different germination regimes.
Collapse
Affiliation(s)
- Kangning Zhang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - He Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Tian Zhang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Shixing Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Liang Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xuyan Dong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lili Cong
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Aihua Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Hongli Xie
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zeng-Yu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Maofeng Chai
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
17
|
Kehinde BA, Majid I, Hussain S. Isolation of bioactive peptides and multiple nutraceuticals of antidiabetic and antioxidant functionalities through sprouting: Recent advances. J Food Biochem 2022; 46:e14317. [PMID: 35867040 DOI: 10.1111/jfbc.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
The employment of proteases directly from enzymes or indirectly from microorganisms during fermentation for the purpose of proteolysis of food proteins has been the conventional trend for the derivation of bioactive peptides from food matrices. However, recent studies have shown that inherent protease enzymes can be activated for this activity for vegetable foods using the sprouting process. The benefits of ease of operation, and reduced processing costs are formidable advantages for the optimal consideration of this technique. On another note, the demand for functional foods with therapeutic health effects has increased in recent years. Globally, plant foods are perceived as dietetic choices bearing sufficient quantities of concomitant nutraceuticals. In this manuscript, the sprouting route for the isolation of peptides and glucosinolates, and for the enhancement of total phenolic contents, polyunsaturated fatty acid profiles, and other bioactive constituents was explored. Advances regarding the phytochemical transformations in the course of sprouting, the therapeutic functionalities, and microbiological safety concerns of vegetable sprouts are delineated. In addition, consumption of vegetable sprouts has been shown to be more efficient in supplying nutraceutical components relative to their unsprouted counterparts. Biochemical mechanisms involving the inhibition of digestive enzymes such as α-amylase, β-glucosidase, and dipeptidyl peptidase IV (DPP-IV), single electron transfer, and metal chelation, for impartation of health benefits, have been reported to occur from bioactive components isolated from vegetable sprouts. PRACTICAL APPLICATIONS: Sprouting initiates proteolysis of vegetable proteins for the release of bioactive peptides. Abiotic stresses can be used as elicitors during the sprouting process to achieve enhanced phytochemical profiles of sprouts. Sprouting is a relatively more convenient approach to the improvement of the health benefits of vegetable foods. Vegetable sprouts are potential for the management of metabolic syndrome disorders.
Collapse
Affiliation(s)
- Bababode Adesegun Kehinde
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Ishrat Majid
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, India
| | - Shafat Hussain
- Department of Fisheries, Government of Jammu and Kashmir, Anantnag, India
| |
Collapse
|
18
|
Rebollo-Hernanz M, Cañas S, Taladrid D, Segovia Á, Bartolomé B, Aguilera Y, Martín-Cabrejas MA. Extraction of phenolic compounds from cocoa shell: Modeling using response surface methodology and artificial neural networks. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118779] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Benítez V, Rebollo-Hernanz M, Aguilera Y, Bejerano S, Cañas S, Martín-Cabrejas MA. Extruded coffee parchment shows enhanced antioxidant, hypoglycaemic, and hypolipidemic properties by releasing phenolic compounds from the fibre matrix. Food Funct 2021; 12:1097-1110. [PMID: 33427263 DOI: 10.1039/d0fo02295k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The dietary fibre and phenolic contents and the functional properties of extruded coffee parchment flour were studied to evaluate its possible use as an ingredient rich in dietary fibre (DF) with potential antioxidant, hypoglycaemic and hypolipidemic properties in extruded products. Coffee parchment flour treated at 160-175 °C and 25% moisture feed showed higher DF (84.3%) and phenolic contents (6.5 mg GAE per g) and antioxidant capacity (32.2 mg TE per g). The extrusion process favoured the release of phenolic compounds from the fibre matrix. Phytochemicals liberated during in vitro simulated digestion exhibited enhanced antioxidant capacity and attenuated reactive oxygen species in intestinal cells (IEC-6). However, the physicochemical and techno-functional properties were just affected by extrusion at high temperature, although extruded coffee parchment flours exhibited lower bulk density and higher swelling capacity than non-extruded ones. Extruded coffee parchment preserved the glucose adsorption capacity and enhanced the α-amylase in vitro inhibitory capacity (up to 81%). Moreover, extruded coffee parchment maintained the ability to delay glucose diffusion and exhibited improved capacity to retard starch digestion in the gastrointestinal tract. The extrusion of coffee parchment flours preserved the cholesterol-binding ability and augmented the capacity of this ingredient to bind bile salts, favouring the inhibition of pancreatic lipase by coffee parchment. These discoveries generate knowledge of the valorisation of coffee parchment as a food dietary fibre ingredient with antioxidant, hypoglycaemic, and hypolipidemic properties that are enhanced by the release of phenolic compounds from the fibre matrix through the production of extruded products.
Collapse
Affiliation(s)
- Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain. and Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain. and Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain. and Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Sheila Bejerano
- Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain. and Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María A Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049, Madrid, Spain. and Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
20
|
Huang JQ, Lu M, Ho CT. Health benefits of dietary chronobiotics: beyond resynchronizing internal clocks. Food Funct 2021; 12:6136-6156. [PMID: 34057166 DOI: 10.1039/d1fo00661d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The internal circadian clock in mammals drives whole-body biological activity rhythms. The clock reflects changes in external signals by controlling enzyme functions and the release of hormones involved in metabolic processes. Thus, misalignments between the circadian clock and an individual's daily schedule are recognized to be related to various metabolic diseases, such as obesity and diabetes. Although evidence has shown the existence of a complex relationship between circadian clock regulation and daily food intake, the regulatory effects of phytochemicals on the circadian clock remain unclarified. To better elucidate these relationships/effects, the circadian system components in mammals, circadian misalignment-related metabolic diseases, circadian rhythm-adjusting phytochemicals (including the heterocycles, acids, flavonoids and others) and the potential mechanisms (including the regulation of clock genes/proteins, metabolites of gut microbiota and secondary metabolites) are reviewed here. The bioactive components of functional foods discussed in this review could be considered potentially effective factors for the prevention and treatment of metabolic disorders related to circadian misalignment.
Collapse
Affiliation(s)
- Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | | | | |
Collapse
|
21
|
Rebollo-Hernanz M, Cañas S, Taladrid D, Benítez V, Bartolomé B, Aguilera Y, Martín-Cabrejas MA. Revalorization of Coffee Husk: Modeling and Optimizing the Green Sustainable Extraction of Phenolic Compounds. Foods 2021; 10:foods10030653. [PMID: 33808664 PMCID: PMC8003551 DOI: 10.3390/foods10030653] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
This study aimed to model and optimize a green sustainable extraction method of phenolic compounds from the coffee husk. Response surface methodology (RSM) and artificial neural networks (ANNs) were used to model the impact of extraction variables (temperature, time, acidity, and solid-to-liquid ratio) on the recovery of phenolic compounds. All responses were fitted to the RSM and ANN model, which revealed high estimation capabilities. The main factors affecting phenolic extraction were temperature, followed by solid-to-liquid ratio, and acidity. The optimal extraction conditions were 100 °C, 90 min, 0% citric acid, and 0.02 g coffee husk mL-1. Under these conditions, experimental values for total phenolic compounds, flavonoids, flavanols, proanthocyanidins, phenolic acids, o-diphenols, and in vitro antioxidant capacity matched with predicted ones, therefore, validating the model. The presence of chlorogenic, protocatechuic, caffeic, and gallic acids and kaemferol-3-O-galactoside was confirmed by UPLC-ESI-MS/MS. The phenolic aqueous extracts from the coffee husk could be used as sustainable food ingredients and nutraceutical products.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (S.C.); (V.B.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain; (D.T.); (B.B.)
| | - Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (S.C.); (V.B.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain; (D.T.); (B.B.)
| | - Diego Taladrid
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain; (D.T.); (B.B.)
| | - Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (S.C.); (V.B.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain; (D.T.); (B.B.)
| | - Begoña Bartolomé
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain; (D.T.); (B.B.)
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (S.C.); (V.B.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain; (D.T.); (B.B.)
- Correspondence:
| | - María A. Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (S.C.); (V.B.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain; (D.T.); (B.B.)
| |
Collapse
|
22
|
Improving Polyphenolic Compounds: Antioxidant Activity in Chickpea Sprouts through Elicitation with Hydrogen Peroxide. Foods 2020; 9:foods9121791. [PMID: 33276547 PMCID: PMC7761555 DOI: 10.3390/foods9121791] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Elicitation appears to be a promising alternative to enhance the bioactive compound content and biological activities of legume sprouts. Multi-response optimization by response surface methodology (RSM) with desirability function (DF) was used to optimize the elicitor concentration (hydrogen peroxide (H2O2)) and germination time in order to maximize total phenolic content (TPC), total flavonoids content (TFC), and antioxidant activity (AOX) of chickpea sprouts. Chemical, antinutritional, and nutraceutical properties of optimized chickpea sprouts (OCS) were also determined. The predicted regression models developed were efficiently fitted to the experimental data. The results of the desirability function revealed that optimum attributes in chickpea sprouts can be achieved by the application of 30 mM H2O2 and 72 h of germination time, with global desirability value D = 0.893. These OCS had higher (p < 0.05) TPC (7.4%), total iso-flavonoids (16.5%), AOX (14.8%), and lower phytic acid (16.1%) and saponins (21.8%) compared to H2O2 non-treated chickpea sprouts. Optimized germination conditions slightly modified the flavonoid profile in chickpea; eight iso-flavonoids were identified in OCS, including formononetin and biochanin A, which were identified as the major compounds. Results from this study support elicitation with H2O2 as an effective approach to improve phytochemical content and antioxidant activity in chickpea sprouts.
Collapse
|
23
|
Kennaway DJ. Melatonin rich foods in our diet: food for thought or wishful thinking? Food Funct 2020; 11:9359-9369. [PMID: 33170194 DOI: 10.1039/d0fo02563a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melatonin continues to generate interest in the scientific community and the general public. In recent years, there has been growing interest in the possibility that melatonin present in human foods may have physiological effects. This has led to the promotion of "melatonin-rich" foods and "phyto-melatonin". The night time secretion of endogenous melatonin from the pineal gland provides a daily circadian signal which is detected by receptors in various tissues. In animals the changing circadian pattern of melatonin secretion across seasons is important to them to program their reproductive behaviours to ensure optimal reproductive success, while in humans it probably plays a prominent role in anchoring sleep to the night period. When melatonin is administered in non-physiological, milligram amounts to humans, the onset of sleep can be manipulated and in larger doses anti-oxidant properties may emerge. Melatonin-rich foods are considered in this context too, but the question remains whether the amounts of melatonin in the food can be expected to be high enough to realistically change sleep or have antioxidant properties. In this review, papers reporting the effects of ingestion of melatonin-rich food on plasma or saliva melatonin or its urinary metabolite are critically evaluated. Unfortunately many of the papers are compromised by poor experimental design and assay methodologies and uncritical evaluation of results. The conclusion drawn from this review is that it is wishful thinking to expect that the amount of melatonin in "melatonin-rich" foods will impact on sleep or have any other physiological impact.
Collapse
Affiliation(s)
- David J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide Health and Medical Science Building, North Terrace, Adelaide, South Australia, Australia.
| |
Collapse
|
24
|
Potue P, Maneesai P, Kukongviriyapan U, Prachaney P, Pakdeechote P. Cratoxylum Formosum extract exhibits antihypertensive effects via suppressing the renin-angiotensin cascade in hypertensive rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
25
|
Peñas E, Martínez-Villaluenga C. Advances in Production, Properties and Applications of Sprouted Seeds. Foods 2020; 9:foods9060790. [PMID: 32560116 PMCID: PMC7353599 DOI: 10.3390/foods9060790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Sprouted grains are widely appreciated food ingredients due to their improved, nutritional, functional, organoleptic and textural properties compared with non-germinated grains. In recent years, sprouting has been explored as a promising green food engineering strategy to improve the nutritional value of grains and the formation of secondary metabolites with potential application in the functional foods, nutraceutical, pharmaceutical and cosmetic markets. However, little attention has been paid to the impact of sprouting on the chemical composition, safety aspects, techno-functional and chemopreventive properties of sprouted seeds and their derived flours and by-products. The six articles included in this Special Issue provide insightful findings on the most recent advances regarding new applications of sprouted seeds or products derived thereof, evaluations of the nutritional value and phytochemical composition of sprouts during production or storage and explorations of their microbiological, bioactive and techno-functional properties.
Collapse
|