1
|
Angelin J, Kavitha M. Structural characterization and in vitro anti-inflammatory activity of exopolysaccharide produced by Pediococcus pentosaceus 4412. Int Immunopharmacol 2025; 150:114301. [PMID: 39970712 DOI: 10.1016/j.intimp.2025.114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Probiotic-derived exopolysaccharides (EPSs) exert significant beneficial effects by regulating the human immune system. In this study, EPS-4412 was extracted from Pediococcus pentosaceus 4412, which was isolated from fermented Manilkara zapota juice. After purification by ion exchange and gel filtration chromatography, its average molecular mass and total carbohydrate content were measured to be 74 kDa and 95.6 ± 0.28 %, respectively. EPS-4412 was characterized as a neutral heteropolysaccharide, primarily composed of mannose with traces of glucose and rhamnose, in a molar ratio of 90.5: 3.48:1, as determined by ultra-high-performance liquid chromatography (UPLC). Fourier transform infrared spectroscopy (FTIR) analysis confirmed the presence of functional groups, OH, CH, CO, and C-O-C in EPS-4412. The existence of α- and β-glycosidic linkages, such as →2)-α-D-Manp-(1→, →3)-α-D-Manp-(1→, →6)-α-D-Manp-(1→, →5)-α-D-Manp-(1→, →4)-α-D-Manp-(1→, →6)-α-D-Glcp-(1 → and →2)-β-D-Rhap-(1 → was elucidated using nuclear magnetic resonance (NMR) spectroscopy. EPS-4412 was further characterized as smooth, glossy, irregular, compact, stacked flaky structures, semi-crystalline, and thermally stable at 252.86 °C using analytical techniques like scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). In vitro anti-inflammatory activity on LPS-stimulated macrophages of EPS-4412 manifested the inhibition of proinflammatory cytokines (IL-6 and TNF-α) and stimulation of the anti-inflammatory cytokine IL-10. Hence, EPS-4412 could be potentially used as a natural additive in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- J Angelin
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - M Kavitha
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Kang CE, Kim JH, Lee NK, Paik HD. Paraprobiotic Levilactobacillus brevis KU15151 exhibits antioxidative and anti-inflammatory activities in LPS-induced A549 cells. Microb Pathog 2025; 198:107143. [PMID: 39579943 DOI: 10.1016/j.micpath.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Levilactobacillus brevis KU15151, isolated from kimchi, has been reported in previous studies to possess probiotic properties. Here, we sought to explore the potential of heat-killed L. brevis KU15151 in improving respiratory health by identifying its antioxidant and anti-inflammatory effects in LPS-induced A549 cells. Inactivated L. brevis KU15151 exhibited strong DPPH and ABTS radical-scavenging abilities (48.78 ± 3.95 % and 69.08 ± 1.09 %) and effectively reduced the production of reactive oxygen species (25.32 %). In addition, it was found to have anti-inflammatory effects by inhibiting phosphorylation of ERK 1/2 (0.556), JNK (0.476), p38 MAPK (0.580), p65 (0.579), and IκB-α (1.170), which are involved in MAPK and NF-κB signaling. It also suppressed the mRNA expression of pro-inflammatory cytokines (0.173-0.617), which are important factors in respiratory diseases. IL-6 (19.47 %) and eotaxin (50.19 %) levels were reduced as measured by ELISA. Therefore, heat-killed L. brevis KU15151 is expected to improve respiratory health.
Collapse
Affiliation(s)
- Cho Eun Kang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Ji Hun Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Baek J, Kim BS, Kim Y, Bai J. Safety, Antagonistic Activity, and Probiotic Properties of Lactic Acid Bacteria Isolated from Jeotgal, Korean Fermented Seafoods. J Microbiol Biotechnol 2024; 35:e2411055. [PMID: 39663945 PMCID: PMC11813347 DOI: 10.4014/jmb.2411.11055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Probiotics are in high demand in the health functional food market as they effectively inhibit pathogens and improve host health. Therefore, in order to develop novel probiotic strains, new strains were isolated from various type of jeotgal, traditional Korean fermented seafood products, and their safety and probiotic properties have been evaluated. Based on 16S rRNA gene sequence analysis, six strains (JRD1, Pediococcus pentosaceus; JRD2, Lactiplantibacillus plantarum; JRD6, Pediococcus acidilactici; CLJ21, Lactiplantibacillus plantarum; CLJ24, Pediococcus pentosaceus; CLJ28, Leuconostoc mesenteroides subsp. dextranicum) were selected and subjected to further analysis. As a result, all six strains did not show hemolytic activity, antibiotics resistance, and cell cytotoxicity, confirming that they are safe for human use. Among them, JRD1, JRD6, and CLJ24 exhibited high survival rates under simulated gastrointestinal conditions. Additionally, these three strains demonstrated strong adhesion abilities on HT-29 cells, with values of 6.02, 5.77, and 5.86 log CFU/mL, respectively. Furthermore, JRD1, JRD6, and CLJ24 showed relatively high antagonistic activity against both Salmonella Typhimurium and Staphylococcus aureus through competition, exclusion, and displacement of their adhesion. Interestingly, cell-free supernatants (CFS) from three strains effectively inhibited the growth of both S. Typhimurium and S. aureus. Furthermore, CFS of CLJ24, JRD1, and JRD6 demonstrated anti-inflammatory effects in intestinal epithelial cells. The results suggest that CLJ24, JRD1, and JRD6 have potential to be development as functional probiotic strains with both antibacterial and anti-inflammatory activities.
Collapse
Affiliation(s)
- Jihyeon Baek
- Department of Food Science and Technology, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Bong Sun Kim
- Department of Food Science and Technology, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Yeonju Kim
- Department of Food Science and Technology, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Jaewoo Bai
- Department of Food Science and Technology, Seoul Women’s University, Seoul 01797, Republic of Korea
| |
Collapse
|
4
|
Ranjan A, Arora J, Chauhan A, Basniwal RK, Kumari A, Rajput VD, Prazdnova EV, Ghosh A, Mukerjee N, Mandzhieva SS, Sushkova S, Minkina T, Jindal T. Advances in characterization of probiotics and challenges in industrial application. Biotechnol Genet Eng Rev 2024; 40:3226-3269. [PMID: 36200338 DOI: 10.1080/02648725.2022.2122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
An unbalanced diet and poor lifestyle are common reasons for numerous health complications in humans. Probiotics are known to provide substantial benefits to human health by producing several bioactive compounds, vitamins, short-chain fatty acids and short peptides. Diets that contain probiotics are limited to curd, yoghurt, kefir, kimchi, etc. However, exploring the identification of more potential probiotics and enhancing their commercial application to improve the nutritional quality would be a significant step to utilizing the maximum benefits. The complex evolution patterns among the probiotics are the hurdles in their characterization and adequate application in the industries and dairy products. This article has mainly discussed the molecular methods of characterization that are based on the analysis of ribosomal RNA, whole genome, and protein markers and profiles. It also has critically emphasized the emerging challenges in industrial applications of probiotics.
Collapse
Affiliation(s)
- Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Jayati Arora
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Rupesh Kumar Basniwal
- Amity Institute of Advanced Research and Studies (M&D), Amity University, Noida, India
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgeniya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, New South Wales, Australia
| | - Saglara S Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| |
Collapse
|
5
|
Kong Q, Shang Z, Nawaz S, Liu S, Li J. The Whole-Genome Sequencing and Probiotic Profiling of Lactobacillus reuteri Strain TPC32 Isolated from Tibetan Pig. Nutrients 2024; 16:1900. [PMID: 38931255 PMCID: PMC11206325 DOI: 10.3390/nu16121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Gut microbiota are the microbial organisms that play a pivotal role in intestinal health and during disease conditions. Keeping in view the characteristic functions of gut microbiota, in this study, Lactobacillus reuteri TPC32 (L. reuteri TPC32) was isolated and identified, and its whole genome was analyzed by the Illumina MiSeq sequencing platform. The results revealed that L. reuteri TPC32 had high resistance against acid and bile salts with fine in vitro antibacterial ability. Accordingly, a genome sequence of L. reuteri TPC32 has a total length of 2,214,495 base pairs with a guanine-cytosine content of 38.81%. Based on metabolic annotation, out of 2,212 protein-encoding genes, 118 and 101 were annotated to carbohydrate metabolism and metabolism of cofactors and vitamins, respectively. Similarly, drug-resistance and virulence genes were annotated using the comprehensive antibiotic research database (CARD) and the virulence factor database (VFDB), in which vatE and tetW drug-resistance genes were annotated in L. reuteri TPC32, while virulence genes are not annotated. The early prevention of L. reuteri TPC32 reduced the Salmonella typhimurium (S. Typhimurium) infection in mice. The results show that L. reuteri TPC32 could improve the serum IgM, decrease the intestinal cytokine secretion to relieve intestinal cytokine storm, reinforce the intestinal biochemical barrier function by elevating the sIgA expression, and strengthen the intestinal physical barrier function. Simultaneously, based on the 16S rRNA analysis, the L. reuteri TPC32 results affect the recovery of intestinal microbiota from disease conditions and promote the multiplication of beneficial bacteria. These results provide new insights into the biological functions and therapeutic potential of L. reuteri TPC32 for treating intestinal inflammation.
Collapse
Affiliation(s)
- Qinghui Kong
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China; (Q.K.); (Z.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zhenda Shang
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China; (Q.K.); (Z.S.)
- Xizang Plateau Feed Processing Engineering Research Center, Nyingchi 860000, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Suozhu Liu
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China; (Q.K.); (Z.S.)
- Xizang Plateau Feed Processing Engineering Research Center, Nyingchi 860000, China
| | - Jiakui Li
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China; (Q.K.); (Z.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
6
|
Mumtaz A, Ali A, Batool R, Mughal AF, Ahmad N, Batool Z, Abbas S, Khalid N, Ahmed I. Probing the microbial diversity and probiotic candidates from Pakistani foods: isolation, characterization, and functional profiling. 3 Biotech 2024; 14:60. [PMID: 38318162 PMCID: PMC10838259 DOI: 10.1007/s13205-023-03903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024] Open
Abstract
UNLABELLED Probiotics represent beneficial living microorganisms that confer physiological, nutritional, and functional advantages to human health, holding significant potential for development of functional foods. This research aimed to isolate, identify, and characterize potential probiotic bacterial strains sourced from fermented and non-fermented foods from Pakistan. A total of 341 bacterial strains were isolated from diverse food samples (81) collected from various regions of Pakistan. Strains were identified using 16S rRNA gene sequencing and phylogenetic analysis. The identified strains belonged to genera Bacillus, Staphylococcus, Microbacterium, Shigella, Micrococcus, Enterococcus, Sporosarcina, Paenibacillus, Limosilactobacillus, Kosakonia, Dietzia, Leclercia, Lacticaseibacillus, Levilactobacillus, Kluyvera, Providencia, Enterobacter, Neisseria, Streptococcus, Acinetobacter, Corynebacterium, Pantoea, Mammaliicoccus, Pseudomonas, Burkholderia, and Alkalihalobacillus. Selected strains were chosen for probiotic assessment, employing existing literature as a guideline. Among these selections, six strains exhibited hemolytic activity, and seven strains displayed resistance to multiple antibiotics, prompting their exclusion from subsequent evaluations. The remaining strains demonstrated auto-aggregation capacities spanning 3.39-79.7%, and displayed coaggregation capabilities with reported food-borne pathogens. Furthermore, nine strains exhibited antimicrobial properties against food-borne pathogens. The assessment encompassed diverse characteristics such as cell surface hydrophobicity, survival rates under varying conditions, cholesterol reduction ability, casein digestion capability, and antioxidant activity. Phylogenomic analysis, digital-DNA DNA hybridization (digi-DDH), and average nucleotide identity (ANI) calculations unveiled novel species potentially belonging to the genera Sporosarcina and Dietzia. Based on these findings, we advocate for the consideration of Staphylococcus cohnii subsp. cohnii NCCP-2414, Lacticaseibacillus rhamnosus NCCP-2569 and Levilactobacillus brevis NCCP-2574 as prime probiotic candidates with the potential for integration into formulation of functional foods. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-023-03903-6.
Collapse
Affiliation(s)
- Amer Mumtaz
- Food Science Research Institute (FSRI), National Agricultural Research Centre, Islamabad, 45500 Pakistan
- National Microbial Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, 45500 Pakistan
| | - Ahmad Ali
- National Agricultural Research Centre (NARC), Islamabad, 45500 Pakistan
| | - Rehana Batool
- Food Science Research Institute (FSRI), National Agricultural Research Centre, Islamabad, 45500 Pakistan
| | - Amina F. Mughal
- National Microbial Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, 45500 Pakistan
| | - Nazir Ahmad
- Food Science Research Institute (FSRI), National Agricultural Research Centre, Islamabad, 45500 Pakistan
| | - Zainab Batool
- National Microbial Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, 45500 Pakistan
| | - Saira Abbas
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Nauman Khalid
- Department of Food Science and Technology, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, 54000 Pakistan
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, 59911 United Arab Emirates
| | - Iftikhar Ahmed
- National Microbial Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, 45500 Pakistan
| |
Collapse
|
7
|
Frota EG, Pessoa ARS, Souza de Azevedo POD, Dias M, Veríssimo NVP, Zanin MHA, Tachibana L, de Souza Oliveira RP. Symbiotic microparticles produced through spray-drying-induced in situ alginate crosslinking for the preservation of Pediococcus pentosaceus viability. Int J Biol Macromol 2024; 261:129818. [PMID: 38290636 DOI: 10.1016/j.ijbiomac.2024.129818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Probiotic microorganisms are a promising alternative to antibiotics in preventing and treating bacterial infections. Within the probiotic group, the lactic acid bacteria (LAB)stand out for their health benefits and for being recognized as safe by regulatory agencies. However, these microorganisms are sensitive to various environmental conditions, including the acidic environment of the stomach. Faced with these obstacles, this work aimed to promote the symbiotic microencapsulation of LAB in a composite matrix of alginate and prebiotics to enhance their survival and improve their probiotic activity during gastrointestinal transit. We evaluated the effect of inulin, fructo-oligosaccharides (FOS) and mannan-oligosaccharides (MOS) as prebiotic sources on the growth of Pediococcus pentosaceus LBM34 strain, finding that MOS favored LAB growth and maintenance of microencapsulated cell viability. The symbiotic microparticles were produced using the spray-drying technique with an average size of 10 μm, a smooth surface, and a composition that favored the stabilization of live cells according to the FTIR and the thermal analysis of the material. The best formulation was composed of 1 % of alginate, 10 % MOS and 1 % M10 (% w/v), which presented notable increases in the survival rates of the probiotic strain in both alkaline and acidic conditions. Therefore, this industrially scalable approach to symbiotic LAB microencapsulation can facilitate their growth and colonization within the host. This effort aims to contribute to reducing antibiotic reliance and mitigating the emergence of new zoonotic diseases, which pose significant challenges to public health.
Collapse
Affiliation(s)
- Elionio Galvão Frota
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Amanda Romana Santos Pessoa
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Pamela Oliveira de Souza de Azevedo
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Meriellen Dias
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Nathalia Vieira Porphirio Veríssimo
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo 05508-000, Brazil; Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, 14800-903 Araraquara, SP, Brazil
| | - Maria Helena Ambrosio Zanin
- Institute for Technological Research (IPT), Bionanomanufacturing Nucleus, Prof. Almeida Prado Avenue, 532, Butantã, São Paulo, SP 05508-901, Brazil.
| | - Leonardo Tachibana
- Aquaculture Research Center, Scientific Research of Fisheries Institute/APTA/SAA, São Paulo, Brazil.
| | - Ricardo Pinheiro de Souza Oliveira
- Laboratory of Microbial Biomolecules, School of Pharmaceutical Sciences, University of São Paulo, Rua Do Lago, 250, Cidade Universitária, São Paulo 05508-000, Brazil.
| |
Collapse
|
8
|
Santiago MSA, Avellar MCW, Perobelli JE. Could the gut microbiota be capable of making individuals more or less susceptible to environmental toxicants? Toxicology 2024; 503:153751. [PMID: 38354972 DOI: 10.1016/j.tox.2024.153751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Environmental toxicants are chemical substances capable to impair environmental quality and exert adverse effects on humans and other animals. The main routes of exposure to these pollutants are through the respiratory tract, skin, and oral ingestion. When ingested orally, they will encounter trillions of microorganisms that live in a community - the gut microbiota (GM). While pollutants can disrupt the GM balance, GM plays an essential role in the metabolism and bioavailability of these chemical compounds. Under physiological conditions, strategies used by the GM for metabolism and/or excretion of xenobiotics include reductive and hydrolytic transformations, lyase and functional group transfer reactions, and enzyme-mediated functional transformations. Simultaneously, the host performs metabolic processes based mainly on conjugation, oxidation, and hydrolysis reactions. Thus, due to the broad variety of bacterial enzymes present in GM, the repertoire of microbial transformations of chemicals is considered a key component of the machinery involved in the metabolism of pollutants in humans and other mammals. Among pollutants, metals deserve special attention once contamination by metals is a worldwide problem, and their adverse effects can be observed even at very low concentrations due to their toxic properties. In this review, bidirectional interaction between lead, arsenic, cadmium, and mercury and the host organism and its GM will be discussed given the most recent literature, presenting an analysis of the ability of GM to alter the host organism's susceptibility to the toxic effects of heavy metals, as well as evaluating the extent to which interventions targeting the microbiota could be potential initiatives to mitigate the adverse effects resulting from poisoning by heavy metals. This study is the first to highlight the overlap between some of the bacteria found to be altered by metal exposure and the bacteria that also aid the host organism in the metabolism of these metals. This could be a key factor to determine the beneficial species able to minimize the toxicity of metals in future therapeutic approaches.
Collapse
Affiliation(s)
- Marcella S A Santiago
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil
| | - Maria Christina W Avellar
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Juliana E Perobelli
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil.
| |
Collapse
|
9
|
Ugras S, Fidan A, Yoldas PA. Probiotic potential and wound-healing activity of Pediococcus pentosaceus strain AF2 isolated from Herniaria glabra L. which is traditionally used to make yogurt. Arch Microbiol 2024; 206:115. [PMID: 38383810 DOI: 10.1007/s00203-024-03831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 02/23/2024]
Abstract
Probiotics have been a part of our lives for centuries, primarily through fermented foods. They find applications in various fields such as food, healthcare, and agriculture. Nowadays, their utilization is expanding, highlighting the importance of discovering new bacterial strains with probiotic properties suitable for diverse applications. In this study, our aim was to isolate new probiotic bacteria. Herniaria glabra L., a plant traditionally used for yogurt making in some regions and recognized in official medicine in many countries, was chosen as the source for obtaining probiotic bacteria. We conducted bacterial isolation from the plant, molecularly identified the isolated bacteria using 16S rRNA sequencing, characterized their probiotic properties, and assessed their wound-healing effects. As a result of these studies, we identified the bacterium isolated from the plant as Pediococcus pentosaceus strain AF2. We found that the strain AF2 exhibited high resistance to conditions within the gastrointestinal tract. Our reliability analysis showed that the isolate had γ-hemolytic activity and displayed sensitivity to certain tested antibiotics. At the same time, AF2 did not show gelatinase and DNase activity. We observed that the strain AF2 produced metabolites with inhibitory activity against E. coli, B. subtilis, P. vulgaris, S. typhimurium, P. aeruginosa, K. pneumoniae, E. cloacae, and Y. pseudotuberculosis. The auto-aggregation value of the strain AF2 was calculated at 73.44%. Coaggregation values against E. coli and L. monocytogenes bacteria were determined to be 56.8% and 57.38%, respectively. Finally, we tested the wound-healing effect of the strain AF2 with cell culture studies and found that the strain AF2 promoted wound healing.
Collapse
Affiliation(s)
- Serpil Ugras
- Department of Biology, Faculty of Art and Science, Duzce University, Duzce, 81620, Türkiye.
| | - Aysenur Fidan
- Department of Biology, Graduate School, Duzce University, Duzce, 81620, Türkiye
| | - Pinar Agyar Yoldas
- Duzce University, Traditional and Complementary Medicine Applied and Research Center, Duzce, Türkiye
| |
Collapse
|
10
|
Akinyemi MO, Ogunremi OR, Adeleke RA, Ezekiel CN. Probiotic Potentials of Lactic Acid Bacteria and Yeasts from Raw Goat Milk in Nigeria. Probiotics Antimicrob Proteins 2024; 16:163-180. [PMID: 36520357 DOI: 10.1007/s12602-022-10022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Probiotic microorganisms are incorporated in foods due to their numerous health benefits. We investigated lactic acid bacteria (LAB) and yeasts isolated from goat milk in Nigeria for novel probiotic strains. In this study, a total of 27 LAB and 23 yeast strains were assessed for their probiotic potentials. Only six LAB strains (Weissella cibaria GM 93m3, Weissella confusa GM 92m1, Pediococcus acidilactici GM 18a, Pediococcus pentosaceus GM 23d, Lactiplantibacillus pentosus GM 102s4, Limosilactobacillus fermentum GM 30m1) and four yeast strains (Candida tropicalis 12a, C. tropicalis 33d, Diutina rugosa 53b, and D. rugosa 77a) identified using partial 16S and 26S rDNA sequencing, respectively, showed survival at pH 2.5, 0.3% bile salt, and simulated gastrointestinal conditions and possessed auto-aggregative and hydrophobic properties, thus satisfying key in vitro criteria as probiotics. All LAB strains showed coaggregation properties and antimicrobial activities against pathogens. Pediococcus pentosaceus GM 23d recorded the strongest coaggregation percentage (34-94%) against 14 pathogens, while W. cibaria GM 93m3 showed the least (6-57%) against eight of the 14 pathogens. The whole cell and extracellular extracts of LAB and yeast strains, with the exception of D. rugosa 77a, had either 2,2-diphenyl-1-picryl-hydrazyl and/or hydroxyl radical scavenging activity. In conclusion, all six LAB and four yeast strains are important probiotic candidates that can be further investigated for use as functional starter cultures.
Collapse
Affiliation(s)
- Muiz O Akinyemi
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Omotade R Ogunremi
- Department of Biological Sciences, First Technical University, Ibadan, Oyo State, Nigeria
| | - Rasheed A Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria.
| |
Collapse
|
11
|
Wu CM, Yang CY. Impacts of Ultrasonic Treatment for Black Soybean Okara Culture Medium Containing Choline Chloride on the β-Glucosidase Activity of Lactiplantibacillus plantarum BCRC 10357. Foods 2023; 12:3781. [PMID: 37893674 PMCID: PMC10606564 DOI: 10.3390/foods12203781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The effects of ultrasonic treatment for the culture medium of solid black soybean okara with choline chloride (ChCl) on the survival and β-glucosidase activity of Lactiplantibacillus plantarum BCRC 10357 (Lp-BCRC10357) were investigated. A mixture of 3% dried black soybean okara in de Man-Rogosa-Sharpe (w/v) was used as the Oka medium. With ultrasonic treatment (40 kHz/300 W) of the Oka medium at 60 °C for 3 h before inoculation, the β-glucosidase activity of Lp-BCRC10357 at 12 h and 24 h of incubation amounted to 13.35 and 15.50 U/mL, respectively, which was significantly larger than that (12.58 U/mL at 12 h and 2.86 U/mL at 24 h) without ultrasonic treatment of the medium. This indicated that ultrasonic treatment could cause the microstructure of the solid black soybean okara to be broken, facilitating the transport of ingredients and Lp-BCRC10357 into the internal structure of the okara for utilization. For the effect of ChCl (1, 3, or 5%) added to the Oka medium (w/v) with ultrasonic treatment before inoculation, using 1% ChCl in the Oka medium could stimulate the best response of Lp-BCRC10357 with the highest β-glucosidase activity of 19.47 U/mL in 12 h of incubation, showing that Lp-BCRC10357 had a positive response when confronting the extra ChCl that acted as an osmoprotectant and nano-crowder in the extracellular environment. Furthermore, the Oka medium containing 1% ChCl with ultrasonic treatment led to higher β-glucosidase activity of Lp-BCRC10357 than that without ultrasonic treatment, demonstrating that the ultrasonic treatment could enhance the contact of ChCl and Lp-BCRC10357 to regulate the physiological behavior for the release of enzymes. In addition, the analysis of the isoflavone content and antioxidant activity of the fermented product revealed that the addition of 1% ChCl in the Oka medium with ultrasonic treatment before inoculation allowed a higher enhancement ratio for the biotransformation of isoflavone glycosides to their aglycones, with a slight enhancement in the antioxidant activity at 24 h of fermentation. This study developed a methodology by combining ultrasonic treatment with a limited amount of ChCl to allow the culture medium to acclimate Lp-BCRC10357 and release high levels of β-glucosidase, and this approach has the potential to be used in the fermentation of okara-related products as nutritional supplements in foods.
Collapse
Affiliation(s)
| | - Chun-Yao Yang
- Department of Food Science, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang District, New Taipei City 242062, Taiwan;
| |
Collapse
|
12
|
Sreepathi N, Kumari VBC, Huligere SS, Al-Odayni AB, Lasehinde V, Jayanthi MK, Ramu R. Screening for potential novel probiotic Levilactobacillus brevis RAMULAB52 with antihyperglycemic property from fermented Carica papaya L. Front Microbiol 2023; 14:1168102. [PMID: 37408641 PMCID: PMC10318367 DOI: 10.3389/fmicb.2023.1168102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
Probiotics are live microorganisms with various health benefits when consumed in appropriate amounts. Fermented foods are a rich source of these beneficial organisms. This study aimed to investigate the probiotic potential of lactic acid bacteria (LAB) isolated from fermented papaya (Carica papaya L.) through in vitro methods. The LAB strains were thoroughly characterized, considering their morphological, physiological, fermentative, biochemical, and molecular properties. The LAB strain's adherence and resistance to gastrointestinal conditions, as well as its antibacterial and antioxidant capabilities, were examined. Moreover, the strains were tested for susceptibility against specific antibiotics, and safety evaluations encompassed the hemolytic assay and DNase activity. The supernatant of the LAB isolate underwent organic acid profiling (LCMS). The primary objective of this study was to assess the inhibitory activity of α-amylase and α-glucosidase enzymes, both in vitro and in silico. Gram-positive strains that were catalase-negative and carbohydrate fermenting were selected for further analysis. The LAB isolate exhibited resistance to acid bile (0.3% and 1%), phenol (0.1% and 0.4%), and simulated gastrointestinal juice (pH 3-8). It demonstrated potent antibacterial and antioxidant abilities and resistance to kanamycin, vancomycin, and methicillin. The LAB strain showed autoaggregation (83%) and adhesion to chicken crop epithelial cells, buccal epithelial cells, and HT-29 cells. Safety assessments indicated no evidence of hemolysis or DNA degradation, confirming the safety of the LAB isolates. The isolate's identity was confirmed using the 16S rRNA sequence. The LAB strain Levilactobacillus brevis RAMULAB52, derived from fermented papaya, exhibited promising probiotic properties. Moreover, the isolate demonstrated significant inhibition of α-amylase (86.97%) and α-glucosidase (75.87%) enzymes. In silico studies uncovered that hydroxycitric acid, one of the organic acids derived from the isolate, interacted with crucial amino acid residues of the target enzymes. Specifically, hydroxycitric acid formed hydrogen bonds with key amino acid residues, such as GLU233 and ASP197 in α-amylase, and ASN241, ARG312, GLU304, SER308, HIS279, PRO309, and PHE311 in α-glucosidase. In conclusion, Levilactobacillus brevis RAMULAB52, isolated from fermented papaya, possesses promising probiotic properties and exhibits potential as an effective remedy for diabetes. Its resistance to gastrointestinal conditions, antibacterial and antioxidant abilities, adhesion to different cell types, and significant inhibition of target enzymes make it a valuable candidate for further research and potential application in the field of probiotics and diabetes management.
Collapse
Affiliation(s)
- Navya Sreepathi
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - V. B. Chandana Kumari
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Abdel-Basit Al-Odayni
- Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Victor Lasehinde
- Department of Biology, Washington University, St. Louis, MO, United States
| | - M. K. Jayanthi
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
13
|
Kocabay S. Evaluation of probiotic properties of Levilactobacillus brevis isolated from hawthorn vinegar. Arch Microbiol 2023; 205:258. [PMID: 37286902 DOI: 10.1007/s00203-023-03599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Probiotic microorganisms are increasing their interest today due to the benefits they provide to humans. Vinegar is the process of processing foods containing carbohydrates that can be fermented by acetic acid bacteria and yeasts. Hawthorn vinegar is also important in terms of amino acids, aromatic compounds, organic acids, vitamins and minerals it contains. Depending on the variety of microorganisms in it, the content of hawthorn vinegar changes, especially its biological activity. Bacteria were isolated from handmade hawthorn vinegar obtained in this study. After performing its genotypic characterization, it has been tested that it can grow in low pH environment, survive in artificial gastric and small intestinal fluid, survive against bile acids, surface adhesion characteristics, antibiotic susceptibility, adhesion, and degrade various cholesterol precursors. According to the results obtained, the studied isolate is Levilactobacillus brevis, it can reproduce best at pH 6.3, survives 72.22% in simulated gastric juice, 69.59% in small intestinal fluid, and 97% adhesion to HTC-116. Partially reproduces even in the presence of 2% ox-bile, surface hydrophobicity is 46.29% for n-hexadecane. It has been determined that it can degrade 4 different cholesterol precursors except for Sodium thioglycolate and is generally resistant to antibiotics except for CN30 and N30. Considering the experimental findings of Levilactobacillus brevis isolated from hawthorn vinegar for the first time, it can be said that Levilactobacillus brevis has probiotic properties.
Collapse
Affiliation(s)
- Samet Kocabay
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Inonu University , Malatya, Turkey.
| |
Collapse
|
14
|
Liu Y, Zhu D, Liu J, Sun X, Gao F, Duan H, Dong L, Wang X, Wu C. Pediococcus pentosaceus PR-1 modulates high-fat-died-induced alterations in gut microbiota, inflammation, and lipid metabolism in zebrafish. Front Nutr 2023; 10:1087703. [PMID: 36819708 PMCID: PMC9929557 DOI: 10.3389/fnut.2023.1087703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Obesity is a health issue worldwide. This study aimed to evaluate the beneficial effects of Pediococcus pentococcus PR-1 on the modulating of gut microbiota, inflammation and lipid metabolism in high-fat-diet (HFD)-fed zebrafish. Methods Adult zebrafish were fed a commercial (C), high fat (H, 25% fat), probiotic (P, 106 CFU/g), or high fat with probiotic (HP) diets twice daily for 5 weeks. Gut microbiota were analysed using 16S rRNA gene sequencing. Gene expressions of intestinal cytokine, intestinal TJ protein, and liver lipid metabolism were analysed by quantitative real-time polymerase chain reaction. Biochemical and histological analysis were also performed. Results and discussion P. pentosaceus PR-1 reduced body weight and BMI, indicating its anti-obesity effect. The 16S rRNA sequencing results showed HFD induced a distinct gut microbiota structure from C group, which was restored by probiotic. P. pentosaceus PR-1 improved gut health by decreasing the abundance of Ralstonia and Aeromonas which were increased induced by HFD. Moreover, probiotic restored abundance of Fusobacteria, Cetobacterium and Plesiomonas, which were decreased in HFD-fed zebrafish. The results of quantitative real-time polymerase chain reaction showed probiotic suppressed HFD-induced inflammation by decreasing the expressions of IL-1b and IL-6. Levels of hepatic TNF-α, IL-1ß, and IL-6 were reduced by probiotic in HFD-fed zebrafish. Probiotic also ameliorated gut barrier function by increasing the expressions of occludin, Claudin-1, and ZO-1. Probiotic exerted anti-adipogenic activity through regulating the expressions of SREBP1, FAS and LEPTIN. Levels of hepatic triglyceride, total cholesterol, low density lipoprotein were also reduced by probiotic. Histological analysis showed probiotic alleviated liver steatosis and injury induced by HFD. P. pentosaceus PR-1 might be useful as a dietary health supplement, especially for reducing obesity.
Collapse
Affiliation(s)
- Yue Liu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,*Correspondence: Yue Liu ✉
| | - Danxu Zhu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jiwen Liu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Xiaoxia Sun
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Feng Gao
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Huiping Duan
- Department of Internal Medicine, Fourth People's Hospital of Taiyuan, Taiyuan, China
| | - Lina Dong
- Central Laboratory, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China,Changxin Wu ✉
| |
Collapse
|
15
|
Liu Q, Jian W, Wang L, Yang S, Niu Y, Xie S, Hayer K, Chen K, Zhang Y, Guo Y, Tu Z. Alleviation of DSS-induced colitis in mice by a new-isolated Lactobacillus acidophilus C4. Front Microbiol 2023; 14:1137701. [PMID: 37152759 PMCID: PMC10157218 DOI: 10.3389/fmicb.2023.1137701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Probiotic is adjuvant therapy for traditional drug treatment of ulcerative colitis (UC). In the present study, Lactobacillus acidophilus C4 with high acid and bile salt resistance has been isolated and screened, and the beneficial effect of L. acidophilus C4 on Dextran Sulfate Sodium (DSS)-induced colitis in mice has been evaluated. Our data showed that oral administration of L. acidophilus C4 remarkably alleviated colitis symptoms in mice and minimized colon tissue damage. Methods To elucidate the underlying mechanism, we have investigated the levels of inflammatory cytokines and intestinal tight junction (TJ) related proteins (occludin and ZO-1) in colon tissue, as well as the intestinal microbiota and short-chain fatty acids (SCFAs) in feces. Results Compared to the DSS group, the inflammatory cytokines IL-1β, IL-6, and TNF-α in L. acidophilus C4 group were reduced, while the antioxidant enzymes superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) were found to be elevated. In addition, proteins linked to TJ were elevated after L. acidophilus C4 intervention. Further study revealed that L. acidophilus C4 reversed the decrease in intestinal microbiota diversity caused by colitis and promoted the levels of SCFAs. Discussion This study demonstrate that L. acidophilus C4 effectively alleviated DSS-induced colitis in mice by repairing the mucosal barrier and maintaining the intestinal microecological balance. L. acidophilus C4 could be of great potential for colitis therapy.
Collapse
Affiliation(s)
- Qianqian Liu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Wenwen Jian
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Shenglin Yang
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Yutian Niu
- International Medical College, Chongqing Medical University, Chongqing, China
| | - ShuaiJing Xie
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Kim Hayer
- Leicester Medical School, University of Leicester, Leicester, United Kingdom
| | - Kun Chen
- College of Foreign Languages, Chongqing Medical University, Chongqing, China
| | - Yi Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yanan Guo
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Zeng Tu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
- *Correspondence: Zeng Tu,
| |
Collapse
|
16
|
Escobar-Sánchez M, Carrasco-Navarro U, Juárez-Castelán C, Lozano-Aguirre Beltrán L, Pérez-Chabela ML, Ponce-Alquicira E. Probiotic Properties and Proteomic Analysis of Pediococcus pentosaceus 1101. Foods 2022; 12:foods12010046. [PMID: 36613263 PMCID: PMC9818561 DOI: 10.3390/foods12010046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Pediococcus pentosaceus 1101 was identified by using 16S rRNA and MALDI-Biotyper. The strain was exposed to conditions that resemble the gastrointestinal tract (GT) to evaluate its probiotic properties. That included the growth kinetics, proteolytic and inhibitory activities within a pH range, survival at low pH and in the presence of bile salts, antagonistic activity, cell-adhesion properties, and antibiotic resistance. The evaluation was followed by a genomic and proteomic analysis that involved the identification of proteins obtained under control and gastrointestinal conditions. The strain showed antagonistic activity against Gram-negative and Gram-positive bacteria, high resistance to acidity (87% logarithmic survival rate, pH 2) and bile salts (99% logarithmic survival rate, 0.5% w/v), and hydrophobic binding, as well as sensitivity to penicillin, amoxicillin, and chloramphenicol. On the other hand, P. pentosaceus 1101 has a genome size of 1.76 Mbp, with 1754 coding sequences, 55 rRNAs, and 33 tRNAs. The proteomic analysis showed that 120 proteins were involved in mechanisms in which the strain senses the effects of acid and bile salts. Moreover, the strain produces at least one lytic enzyme (N-acetylmuramoyl-L-alanine amidase; 32 kDa) that may be related to the antimicrobial activity. Therefore, proteins identified might be a key factor when it comes to the adaptation of P. pentosaceus 1101 into the GT and associated with its technological and probiotic properties.
Collapse
Affiliation(s)
- Monserrat Escobar-Sánchez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Ulises Carrasco-Navarro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Carmen Juárez-Castelán
- Cinvestav, Departamento de Genética y Biología Molecular, Ciudad de México 07360, Mexico
| | | | - M. Lourdes Pérez-Chabela
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México 09340, Mexico
- Correspondence: ; Tel.: +52-55-58044600 (ext. 2676)
| |
Collapse
|
17
|
Biswas S, Ray Banerjee E. Probiotic treatment of inflammatory bowel disease: Its extent and intensity. World J Immunol 2022; 12:15-24. [DOI: 10.5411/wji.v12.i2.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/09/2022] [Accepted: 08/17/2022] [Indexed: 02/05/2023] Open
Abstract
Free radicals (reactive oxygen species, superoxides and hydroxyl radicals) lead to the development of oxidative stress because of imbalance in the amount of antioxidants. Continued development of oxidative stress leads to chronic diseases in humans. The instability in the antioxidant activities and accumulation of oxidative stress due to free radicals may occur in diseases like inflammatory bowel disease (IBD). Antioxidants are substances that inhibit or delay the mechanism of oxidation of molecules mediated by free radicals and also transform into lesser-active derivatives. Probiotics are defined as live microorganisms that show beneficial effects on inflamed intestine and balance the inflammatory immune responses in the gut. Probiotic strains have been reported to scavenge hydroxyl radicals and superoxide anions that are abundantly produced during oxidative stress. The most widely studied probiotic strains are Streptococcus, Bifidobacterium and Lactobacillus. Probiotics cultured in broth have shown some amount of antioxidant activities. Fermented milk and soy milk, which possess starter microorganisms (probiotics), tends to increase the antioxidant activities many-fold. This review aims to discuss the in vivo and in vitro antioxidant activities of specific probiotics with various assays with respect to IBD.
Collapse
Affiliation(s)
- Saheli Biswas
- Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Ena Ray Banerjee
- Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| |
Collapse
|
18
|
Kumari VBC, Huligere SS, Ramu R, Naik Bajpe S, Sreenivasa MY, Silina E, Stupin V, Achar RR. Evaluation of Probiotic and Antidiabetic Attributes of Lactobacillus Strains Isolated From Fermented Beetroot. Front Microbiol 2022; 13:911243. [PMID: 35774469 PMCID: PMC9237538 DOI: 10.3389/fmicb.2022.911243] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
Fermented foods are sources of functionally salient microbes. These microbes when ingested can regulate biomolecule metabolism which has a plethora of health benefits. Lactic acid bacteria species (LABs) isolated from fermented beetroot were biochemically characterized and validated using 16s rRNA sequence. Also, an in vitro assay was conducted to confirm the probiotic activity of the isolates. The cell-free supernatant (CS), cell-free extract (CE), and intact cell (IC) were evaluated for α-glucosidase and α-amylase inhibition. The six isolates RAMULAB01–06 were categorized to be Lactobacillus spp. by observing phenotypic and biochemical characters. Molecular validation using 16S rDNA sequencing, followed by homology search in NCBI database, suggested that the isolates are >95% similar to L. paracasei and L. casei. Also, isolates exhibited probiotic potential with a high survival rate (>96%) in the gastrointestinal condition, and adherence capability (>53%), colonization (>86%), antibacterial, and antibiotic activity. The safety assessments expressed that the isolates are safe. The α-glucosidase and α-amylase inhibition by CS, CE, and IC ranged from 3.97 ± 1.42% to 53.91 ± 3.11% and 5.1 ± 0.08% to 57.15 ± 0.56%, respectively. Hence, these species have exceptional antidiabetic potential which could be explicated to its use as a functional food and health-related food products.
Collapse
Affiliation(s)
- V. B. Chandana Kumari
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
| | - Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
- *Correspondence: Ramith Ramu ; orcid.org/0000-0003-2776-5815
| | - Shrisha Naik Bajpe
- Department of Biotechnology, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, India
| | - M. Y. Sreenivasa
- Department of Studies in Microbiology, University of Mysore, Mysore, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery 1, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
| |
Collapse
|
19
|
Kumari V. B. C, Huligere SS, Shbeer AM, Ageel M, M. K. J, S. JC, Ramu R. Probiotic Potential Lacticaseibacillus casei and Limosilactobacillus fermentum Strains Isolated from Dosa Batter Inhibit α-Glucosidase and α-Amylase Enzymes. Microorganisms 2022; 10:1195. [PMID: 35744713 PMCID: PMC9228708 DOI: 10.3390/microorganisms10061195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Fermented food plays a major role in gastrointestinal health, as well as possesses other health benefits, such as beneficiary effects in the management of diabetes. Probiotics are thought to be viable sources for enhancing the microbiome of the human gut. In the present study, using biochemical, physiological, and molecular approaches, the isolated Lactobacillus spp. from dosa batter were identified. The cell-free supernatant (CS), cell-free extract (CE), and intact cells (IC) were evaluated for their inhibitory potential against the carbohydrate hydrolyzing enzymes α-glucosidase and α-amylase. Then, 16S rDNA amplification and sequencing were used to identify the species. A homology search in NCBI database was performed that suggests the isolates are >95% similar to Limosilactobacillus fermentum and Lacticaseibacillus casei. Different standard parameters were used to evaluate the probiotic potential of strains RAMULAB07, RAMULAB08, RAMULAB09, RAMULAB10, RAMULAB11, and RAMULAB12. The strains expressed a significant tolerance to the gastric and intestinal juices with a higher survival rate (>98%). A high adhesion capability was observed by the isolates exhibited through hydrophobicity (>65%), aggregation assays (>75%), and adherence assay on HT-29 cells (>82%) and buccal epithelial cells. In addition, the isolates expressed antibacterial and antibiotic properties. Safety assessments (DNase and hemolytic assay) revealed that the isolates could be classified as safe. α-glucosidase and α-amylase inhibition of the isolates for CS, CE, and IC ranged from 7.50% to 65.01% and 20.21% to 56.91%, respectively. The results suggest that these species have exceptional antidiabetic potential, which may be explained by their use as foods that can have health-enhancing effects beyond basic nutrition.
Collapse
Affiliation(s)
- Chandana Kumari V. B.
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (C.K.V.B.); (S.S.H.)
| | - Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (C.K.V.B.); (S.S.H.)
| | - Abdullah M. Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia; (A.M.S.); (M.A.)
| | - Mohammed Ageel
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia; (A.M.S.); (M.A.)
| | - Jayanthi M. K.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India;
| | - Jagadeep Chandra S.
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India;
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (C.K.V.B.); (S.S.H.)
| |
Collapse
|
20
|
Lactic Acid Bacteria—Ensuring a Safe, Healthy Food Supply for Humankind since the Dawn of Our Civilization. Foods 2022; 11:foods11111579. [PMID: 35681329 PMCID: PMC9180021 DOI: 10.3390/foods11111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
|
21
|
Levilactobacillus brevis KU15151 Inhibits Staphylococcus aureus Lipoteichoic Acid-Induced Inflammation in RAW 264.7 Macrophages. Probiotics Antimicrob Proteins 2022; 14:767-777. [PMID: 35554865 DOI: 10.1007/s12602-022-09949-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Inflammation is a host defense response to harmful agents, such as pathogenic invasion, and is necessary for health. Excessive inflammation may result in the development of inflammatory disorders. Levilactobacillus brevis KU15151 has been reported to exhibit probiotic characteristics and antioxidant activities, but the effect of this strain on inflammatory responses has not been determined. The present study aimed to investigate the anti-inflammatory potential of L. brevis KU15151 in Staphylococcus aureus lipoteichoic acid (aLTA)-induced RAW264.7 macrophages. Treatment with L. brevis KU15151 reduced the production of nitric oxide and prostaglandin E2 by suppressing the expression of inducible nitric oxide synthase and cyclooxygenase-2. Additionally, the production of proinflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-6, and IL-1β, decreased after treatment with L. brevis KU15151 in aLTA-stimulated RAW 264.7 cells. Furthermore, this strain alleviated the activation of nuclear factor-κB and mitogen-activated protein kinase signaling pathways. Moreover, the generation of reactive oxygen species was downregulated by treatment with L. brevis KU15151. These results demonstrate that L. brevis KU15151 possesses an inhibitory effect against aLTA-mediated inflammation and may be employed as a functional probiotic for preventing inflammatory disorders.
Collapse
|
22
|
Kim WJ, Hyun JH, Lee NK, Paik HD. Protective Effects of a Novel Lactobacillus brevis Strain with Probiotic Characteristics against Staphylococcus aureus Lipoteichoic Acid-Induced Intestinal Inflammatory Response. J Microbiol Biotechnol 2022; 32:205-211. [PMID: 34750285 PMCID: PMC9628842 DOI: 10.4014/jmb.2110.10034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
Probiotics can effectively modulate host immune responses and prevent gastrointestinal diseases. The objective of this study was to investigate the probiotic characteristics of Lactobacillus brevis KU15152 isolated from kimchi and its protective potential against intestinal inflammation induced by Staphylococcus aureus lipoteichoic acid (aLTA). L. brevis KU15152 exhibited a high survival rate in artificial gastric and bile environments. Additionally, the adhesion capability of the strain to HT-29 cells was higher than that of L. rhamnosus GG. L. brevis KU15152 did not produce harmful enzymes, such as β-glucuronidase, indicating that it could be used as a potential probiotic. The anti-inflammatory potential of L. brevis KU15152 was determined in HT-29 cells. Treatment with L. brevis KU15152 suppressed the production of interleukin-8 without inducing significant cytotoxicity. The downregulatory effects of L. brevis KU15152 were involved in the suppression of nuclear factor-kappa B activation mediated by the extracellular signal-regulated kinase and Akt signaling pathways. Collectively, these data suggest that L. brevis KU15152 can be used in developing therapeutic and prophylactic products to manage and treat aLTA-induced intestinal damage.
Collapse
Affiliation(s)
- Won-Ju Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Jun-Hyun Hyun
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-2049-6011 E-mail:
| |
Collapse
|
23
|
Nag D, Goel A, Padwad Y, Singh D. In Vitro Characterisation Revealed Himalayan Dairy Kluyveromyces marxianus PCH397 as Potential Probiotic with Therapeutic Properties. Probiotics Antimicrob Proteins 2022; 15:761-773. [PMID: 35040023 DOI: 10.1007/s12602-021-09874-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/27/2022]
Abstract
Recently, probiotics have gained much attention for their roles against various clinical conditions. Obesity is a worldwide health problem that triggers various other major complications like type 2 diabetes (T2D) and cancers, including colorectal cancer (CRC). Earlier, Kluyveromyces marxianus PCH397 isolated from yak (Bos grunniens) milk has been characterised by us for its efficient β-galactosidase-producing ability, an important probiotic property. In the present study, yeast PCH397 has been evaluated for various parameters for its probiotic use. PCH397 exhibited tolerance to GI tract conditions (low pH, pancreatin, pepsin, and bile salts) with 78 to 99% survivability, possessed around 81% cell surface hydrophobicity, and 96% autoaggregation ability. The cell-free extract (CFE) and cell-free supernatant (CFS) from PCH397 improved insulin sensitisation by enhancing 2-NBDG (a glucose analogue) uptake in 3T3-L1 adipocytes, an approach useful in T2D treatment. They also exhibited lower intracellular lipid accumulation, triglyceride storage, and reactive oxygen species in differentiated adipocytes, indicating their anti-adipogenic ability. Also, CFE and intact cells (ICs) exhibited 73.33 ± 1.11% and 34.88 ± 2.80% DPPH radical scavenging activity, respectively. Furthermore, CFS showed a cytotoxic effect on SW-480 colorectal cancer (CRC) cells and induced the cell cycle phase arrest after 24 h of treatment. In conclusion, these results demonstrate that K. marxianus PCH397 could be used as a potential probiotic yeast and presents a therapeutic potential against obesity, T2D, and colon cancer.
Collapse
Affiliation(s)
- Deepika Nag
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India
| | - Abhishek Goel
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Yogendra Padwad
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
24
|
Sankarapandian V, Venmathi Maran BA, Rajendran RL, Jogalekar MP, Gurunagarajan S, Krishnamoorthy R, Gangadaran P, Ahn BC. An Update on the Effectiveness of Probiotics in the Prevention and Treatment of Cancer. Life (Basel) 2022; 12:59. [PMID: 35054452 PMCID: PMC8779143 DOI: 10.3390/life12010059] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Probiotics are living microbes that play a significant role in protecting the host in various ways. Gut microbiota is one of the key players in maintaining homeostasis. Cancer is considered one of the most significant causes of death worldwide. Although cancer treatment has received much attention in recent years, the number of people suffering from neoplastic syndrome continues to increase. Despite notable improvements in the field of cancer therapy, tackling cancer has been challenging due to the multiple properties of cancer cells and their ability to evade the immune system. Probiotics alter the immunological and cellular responses by enhancing the epithelial barrier and stimulating the production of anti-inflammatory, antioxidant, and anticarcinogenic compounds, thereby reducing cancer burden and growth. The present review focuses on the various mechanisms underlying the role of probiotics in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Vidya Sankarapandian
- Department of Microbiology, Srimad Andavan Arts and Science College, Bharathidasan University, Trichy 620005, India;
| | | | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA;
| | - Sridharan Gurunagarajan
- Department of Biochemistry, Srimad Andavan Arts and Science College, Bharathidasan University, Trichy 620005, India;
| | - Rajapandiyan Krishnamoorthy
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 4545, Saudi Arabia;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
25
|
Qi Y, Huang L, Zeng Y, Li W, Zhou D, Xie J, Xie J, Tu Q, Deng D, Yin J. Pediococcus pentosaceus: Screening and Application as Probiotics in Food Processing. Front Microbiol 2021; 12:762467. [PMID: 34975787 PMCID: PMC8716948 DOI: 10.3389/fmicb.2021.762467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria (LAB) are vital probiotics in the food processing industry, which are widely spread in food additives and products, such as meat, milk, and vegetables. Pediococcus pentosaceus (P. pentosaceus), as a kind of LAB, has numerous probiotic effects, mainly including antioxidant, cholesterol-lowering, and immune effects. Recently, the applications in the probiotic- fermentation products have attracted progressively more attentions. However, it is necessary to screen P. pentosaceus with abundant functions from diverse sources due to the limitation about the source and species of P. pentosaceus. This review summarized the screening methods of P. pentosaceus and the exploration methods of probiotic functions in combination with the case study. The screening methods included primary screening and rescreening including gastric acidity resistance, bile resistance, adhesion, antibacterial effects, etc. The application and development prospects of P. pentosaceus were described in detail, and the shortcomings in the practical application of P. pentosaceus were evaluated to make better application of P. pentosaceus in the future.
Collapse
Affiliation(s)
- Yining Qi
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Le Huang
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Yan Zeng
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Wen Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Diao Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | | | - Junyan Xie
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Qiang Tu,
| | - Dun Deng
- Tangrenshen Group Co., Ltd., Zhuzhou, China
- Dun Deng,
| | - Jia Yin
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
- Jia Yin,
| |
Collapse
|
26
|
How Y, Pui L. Survivability of microencapsulated probiotics in nondairy beverages: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuhsuan How
- Department of Food Science with Nutrition, Faculty of Applied Sciences UCSI University Wilayah Persekutuan Kuala Lumpur Malaysia
| | - Liewphing Pui
- Department of Food Science with Nutrition, Faculty of Applied Sciences UCSI University Wilayah Persekutuan Kuala Lumpur Malaysia
| |
Collapse
|
27
|
Antioxidant and Anti-Inflammatory Properties of Probiotic Candidate Strains Isolated during Fermentation of Agave ( Agave angustifolia Haw). Microorganisms 2021; 9:microorganisms9051063. [PMID: 34069080 PMCID: PMC8156479 DOI: 10.3390/microorganisms9051063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/21/2022] Open
Abstract
Agave species are a source of diverse products for human use, such as food, fiber, and beverages, which include mezcal, a distilled beverage produced by spontaneous fermentation. Agave is an excellent source of high amounts of sugars, minerals, and phenolic compounds, which favor the growth of lactic acid bacteria (LAB) and yeast communities. In this work, 20 promising LAB strains with probiotic characteristics were isolated from the agave fermentation stage in mezcal production. The strains belonged to Lactobacillus plantarum (15), Lactobacillus rhamnosus (2), Enterococcus faecium (2), and Lactococcus lactis (1). These isolates were characterized for their resistance under gastrointestinal conditions, such as lysozyme, acid pH, and bile salts. In addition, the adherence of these LABs to human intestinal epithelial cells (Caco-2 and HT-29 cells) was tested in vitro and their antioxidant and immunomodulatory profile was determined using cellular models. Lactobacillus rhamnosus LM07 and Lactobacillus plantarum LM17 and LM19 strains were selected for their antioxidant properties, and their capacities in an oxidative stress model in intestinal epithelial cells IECs (Caco-2 and HT-29 cells) in the presence of hydrogen peroxide were evaluated. Interestingly, Lactobacillus rhamnosus LM07 and Lactobacillus plantarum LM17 and LM19 strains showed anti-inflammatory properties in TNF-α-stimulated HT-29 cells. Subsequently, bacterial strains exhibiting antioxidant and anti-inflammatory properties were tested in vivo in a mouse model with dinitrobenzene sulfonic acid (DNBS)-induced chronic colitis. Weight loss, intestinal permeability, and cytokine profiles were measured in mice as indicators of inflammation. One of the selected strains, Lactobacillus plantarum LM17, improved the health of the mice, as observed by reduced weight loss, and significantly decreased intestinal permeability. Altogether, our results demonstrate the potential of LAB (and lactobacilli in particular) isolated from the agave fermentation stage in mezcal production. Lactobacillus rhamnosus LM07 and Lactobacillus plantarum LM17 strains represent potential candidates for developing new probiotic supplements to treat inflammatory bowel disease (IBD).
Collapse
|
28
|
Ayyash MM, Abdalla AK, AlKalbani NS, Baig MA, Turner MS, Liu SQ, Shah NP. Invited review: Characterization of new probiotics from dairy and nondairy products-Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. J Dairy Sci 2021; 104:8363-8379. [PMID: 33934857 DOI: 10.3168/jds.2021-20398] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The selection of potential probiotic strains that possess the physiological capacity of performing successfully in the gastrointestinal tract (GIT) is a critical challenge. Probiotic microorganisms must tolerate the deleterious effects of various stresses to survive passage and function in the human GIT. Adhesion to the intestinal mucosa is also an important aspect. Recently, numerous studies have been performed concerning the selection and evaluation of novel probiotic microorganisms, mainly probiotic bacteria isolated from dairy and nondairy products. Therefore, it would be crucial to critically review the assessment methods employed to select the potential probiotics. This article aims to review and discuss the recent approaches, methods used for the selection, and outcomes of the evaluation of novel probiotic strains with the main purpose of supporting future probiotic microbial assessment studies. The findings and approaches used for assessing acid tolerance, bile metabolism and tolerance, and adhesion capability are the focus of this review. In addition, probiotic bile deconjugation and bile salt hydrolysis are explored. The selection of a new probiotic strain has mainly been based on the in vitro tolerance of physiologically related stresses including low pH and bile, to ensure that the potential probiotic microorganism can survive the harsh conditions of the GIT. However, the varied experimental conditions used in these studies (different types of media, bile, pH, and incubation time) hamper the comparison of the results of these investigations. Therefore, standardization of experimental conditions for characterizing and selecting probiotics is warranted.
Collapse
Affiliation(s)
- Mutamed M Ayyash
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates.
| | - Abdelmoneim K Abdalla
- Food Science Department, College of Agriculture, South Valley University, 83523 Qena, Egypt
| | - Nadia S AlKalbani
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mohd Affan Baig
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mark S Turner
- School of Agriculture and Food Sciences, The University of Queensland (UQ), Brisbane, QLD 4072, Australia
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2 117542, Singapore
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| |
Collapse
|
29
|
Microbiological and Chemical Properties of Chokeberry Juice Fermented by Novel Lactic Acid Bacteria with Potential Probiotic Properties during Fermentation at 4 °C for 4 Weeks. Foods 2021; 10:foods10040768. [PMID: 33916805 PMCID: PMC8065681 DOI: 10.3390/foods10040768] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
On the frame of this research survey, a novel potentially probiotic strain (Lactobacillus paracasei SP5) recently isolated from kefir grains was evaluated for chokeberry juice fermentation. Chokeberry juice was retrieved from the variety Aronia melanocarpa, a plant known to provide small, dark berries and to be one of the richest sources of antioxidants. The juice was subsequently fermented inoculating L. paracasei SP5 for 48 h at 30 °C. The fermented juices were left at 4 °C and tested regarding microbiological and physicochemical characteristics for 4 weeks. The potentially probiotic strain was proved capable of performing lactic acid fermentation at 30 °C. Cell viability of L. paracasei was detected in high levels during fermentation and the whole storage period, while the fermented juice showed higher levels of viability in juice with 40.3 g/L of initial sugar concentration. No ethanol was detected in the final fermented juice. Fermented chokeberry juice was characterized by aromatic desirable volatiles, which were retained in adequate levels for the whole storage period. Specifically, the occurrence of organic esters detected in fermented juices is considered as positive evidence of the provision of fruity and floral notes to the final product. During storage, total phenolics content and antioxidant activity were observed in higher levels in fermented chokeberry juice compared with non-fermented juice. Subsequently, fermentation of chokeberry juice by potentially probiotic lactic acid bacteria could provide high industrialization potential, providing the market with a nutritional beverage of good volatile quality with an enhanced shelf-life compared with an unfermented fresh juice.
Collapse
|
30
|
Tsui CY, Yang CY. Evaluation of Semi-Solid-State Fermentation of Elaeocarpus serratus L. Leaves and Black Soymilk by Lactobacillus plantarum on Bioactive Compounds and Antioxidant Capacity. Foods 2021; 10:foods10040704. [PMID: 33810370 PMCID: PMC8065616 DOI: 10.3390/foods10040704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Elaeocarpus serratus L. leaves (EL) containing phenolic compounds and flavonoids, including myricitrin with pharmacological properties, could be valorized as nutritional additive in foods. In this study, the semi-solid-state fermentation of EL and black soymilk (BS) by Lactobacillus plantarum BCRC 10357 was investigated. Without adding EL in MRS medium, the β-glucosidase activity of L. plantarum quickly reduced to 2.33 ± 0.15 U/mL in 36 h of fermentation; by using 3% EL, the stability period of β-glucosidase activity was prolonged as 12.94 ± 0.69 U/mL in 12 h to 13.71 ± 0.94 in 36 h, showing positive response of the bacteria encountering EL. Using L. plantarum to ferment BS with 3% EL, the β-glucosidase activity increased to 23.78 ± 1.34 U/mL in 24 h, and in the fermented product extract (FPE), the content of myricitrin (2297.06 μg/g-FPE) and isoflavone aglycones (daidzein and genistein, 474.47 μg/g-FPE) at 48 h of fermentation were 1.61-fold and 1.95-fold of that before fermentation (at 0 h), respectively. Total flavonoid content, myricitrin, and ferric reducing antioxidant power in FPE using BS and EL were higher than that using EL alone. This study developed the potential fermented product of black soymilk using EL as a nutritional supplement with probiotics.
Collapse
Affiliation(s)
- Chia-Yu Tsui
- Department of Food Science, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang District, New Taipei City 242062, Taiwan
| | - Chun-Yao Yang
- Department of Food Science, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang District, New Taipei City 242062, Taiwan
| |
Collapse
|
31
|
Pimentel TC, Costa WKAD, Barão CE, Rosset M, Magnani M. Vegan probiotic products: A modern tendency or the newest challenge in functional foods. Food Res Int 2021; 140:110033. [DOI: 10.1016/j.foodres.2020.110033] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
|
32
|
Park E, Kim KT, Choi M, Lee Y, Paik HD. In Vivo Evaluation of Immune-Enhancing Activity of Red Gamju Fermented by Probiotic Levilactobacillus brevis KU15154 in Mice. Foods 2021; 10:253. [PMID: 33530528 PMCID: PMC7912586 DOI: 10.3390/foods10020253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/29/2022] Open
Abstract
The purpose of this study was to evaluate the immune-enhancing effect of red gamju fermented with Levilactobacillus brevis KU15154, isolated from kimchi, as a biofunctional beverage using mice. Thirty-two mice were used, and after a 2-week feeding, the growth, cytokine and immunoglobulin production, and immune-related cell activation (phagocytes and natural killer [NK] cells) of the mice were evaluated. The red gamju- (SR) and fermented red gamju- (FSR) treated groups had 3.5-4.0-fold greater T-cell proliferation ability than the negative control group. IFN-γ production in the FSR group (15.5 ± 1.2 mg/mL) was significantly higher (p < 0.05) than that in the SR group (12.5 ± 1.8 mg/mL). The FSR group (502.6 ± 25.8 μg/mL) also showed higher IgG production levels than the SR group (412.2 ± 44.8 μg/mL). The activity of NK cells treated with FSR was also greater than that of cells treated with SR but it was not significant (p ≤ 0.05). Further, the phagocytic activity of peritoneal macrophages was higher in both SR and FSR groups than in the control group but was not significantly different (p < 0.05) between the SR and FSR groups. In conclusion, L. brevis KU15154 may be applied in the fermentation of bioactive food products, such as beverages or pharmaceutical industries, to potentially improve immunity.
Collapse
Affiliation(s)
- Eunju Park
- Department of Food Nutrition, Kyungnam University, Changwon 51767, Korea; (E.P.); (M.C.); (Y.L.)
| | - Kee-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
| | - Mijoo Choi
- Department of Food Nutrition, Kyungnam University, Changwon 51767, Korea; (E.P.); (M.C.); (Y.L.)
| | - Yunjung Lee
- Department of Food Nutrition, Kyungnam University, Changwon 51767, Korea; (E.P.); (M.C.); (Y.L.)
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
33
|
Plessas S, Kiousi DE, Rathosi M, Alexopoulos A, Kourkoutas Y, Mantzourani I, Galanis A, Bezirtzoglou E. Isolation of a Lactobacillus paracasei Strain with Probiotic Attributes from Kefir Grains. Biomedicines 2020; 8:biomedicines8120594. [PMID: 33322295 PMCID: PMC7764135 DOI: 10.3390/biomedicines8120594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Κefir is a rich source of potentially probiotic bacteria. In the present study, firstly, in vitro screening for probiotic characteristics of ten lactic acid bacteria (LAB) isolated from kefir grains was performed. Strain AGR 4 was selected for further studies. Molecular characterization of strain AGR 4, confirmed that AGR 4 belongs to the Lactobacillus paracasei (reclassified to Lacticaseibacillus paracasei subsp. paracasei) species. Further testing revealed that L. paracasei AGR 4 displayed adhesion capacity on human adenocarcinoma cells, HT-29, similar to that of the reference strain, L. casei ATCC 393. In addition, the novel strain exerted significant time- and dose-dependent antiproliferative activity against HT-29 cells and human melanoma cell line, A375, as demonstrated by the sulforhodamine B cytotoxicity assay. Flow cytometry analysis was employed to investigate the mechanism of cellular death; however, it was found that AGR 4 did not act by inducing cell cycle arrest and/or apoptotic cell death. Taken together, these findings promote the probiotic character of the newly isolated strain L. paracasei AGR 4, while further studies are needed for the detailed description of its biological properties.
Collapse
Affiliation(s)
- Stavros Plessas
- Laboratory of Food Processing, Faculty of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece; (A.A.); (I.M.)
- Correspondence: ; Tel./Fax: +30-25520-41141
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (M.R.); (A.G.)
| | - Marina Rathosi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (M.R.); (A.G.)
| | - Athanasios Alexopoulos
- Laboratory of Food Processing, Faculty of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece; (A.A.); (I.M.)
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Ioanna Mantzourani
- Laboratory of Food Processing, Faculty of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece; (A.A.); (I.M.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (M.R.); (A.G.)
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|