1
|
Miller BR, Gonzaga-Jauregui C, Brigatti KW, de Jong J, Breese RS, Ko SY, Puffenberger EG, Van Hout C, Young M, Luna VM, Staples J, First MB, Gregoire HJ, Dwork AJ, Pefanis E, McCarthy S, Brydges S, Rojas J, Ye B, Stahl E, Di Gioia SA, Hen R, Elwood K, Rosoklija G, Li D, Mellis S, Carey D, Croll SD, Overton JD, Macdonald LE, Economides AN, Shuldiner AR, Chuhma N, Rayport S, Amin N, Kushner SA, Alessandri-Haber N, Markx S, Strauss KA. A rare variant in GPR156 associated with depression in a Mennonite pedigree causes habenula hyperactivity and stress sensitivity in mice. Proc Natl Acad Sci U S A 2025; 122:e2404754122. [PMID: 40228124 DOI: 10.1073/pnas.2404754122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 02/25/2025] [Indexed: 04/16/2025] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. Risk for MDD is heritable, and the genetic structure of founder populations enables investigation of rare susceptibility alleles with large effect. In an extended Old Order Mennonite family cohort, we identified a rare missense variant in GPR156 (c.1599G>T, p.Glu533Asp) associated with a two-fold increase in the relative risk of MDD. GPR156 is an orphan G protein-coupled receptor localized in the medial habenula, a region implicated in mood regulation. Insertion of a human sequence containing c.1599G>T into the murine Gpr156 locus induced medial habenula hyperactivity and abnormal stress-related behaviors. This work reveals a human variant that is associated with depression, implicates GPR156 as a target for mood regulation, and introduces informative murine models for investigating the pathophysiology and treatment of affective disorders.
Collapse
Affiliation(s)
- Bradley R Miller
- Department of Psychiatry, Columbia University, New York, NY 10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032
| | - Claudia Gonzaga-Jauregui
- Regeneron Genetics Center, Tarrytown, NY 10591
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, Mexico
| | | | - Job de Jong
- Department of Psychiatry, Columbia University, New York, NY 10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| | - Robert S Breese
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY 10591
| | - Seung Yeon Ko
- Department of Psychiatry, Columbia University, New York, NY 10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032
| | | | - Cristopher Van Hout
- Regeneron Genetics Center, Tarrytown, NY 10591
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, Mexico
| | - Millie Young
- Clinic for Special Children, Gordonville, PA 17529
| | - Victor M Luna
- Department of Neural Sciences, Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| | | | - Michael B First
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Hilledna J Gregoire
- Department of Psychiatry, Columbia University, New York, NY 10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, NY 10032
| | | | | | | | - Jose Rojas
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY 10591
| | - Bin Ye
- Regeneron Genetics Center, Tarrytown, NY 10591
| | - Eli Stahl
- Regeneron Genetics Center, Tarrytown, NY 10591
| | | | - René Hen
- Department of Psychiatry, Columbia University, New York, NY 10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032
| | | | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Dadong Li
- Regeneron Genetics Center, Tarrytown, NY 10591
| | - Scott Mellis
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY 10591
| | | | - Susan D Croll
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY 10591
| | | | | | - Aris N Economides
- Regeneron Genetics Center, Tarrytown, NY 10591
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY 10591
| | | | - Nao Chuhma
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| | - Stephen Rayport
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| | - Najaf Amin
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Columbia University, New York, NY 10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032
| | | | - Sander Markx
- Department of Psychiatry, Columbia University, New York, NY 10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| | - Kevin A Strauss
- Clinic for Special Children, Gordonville, PA 17529
- Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA 17602
- Departments of Pediatrics and Molecular, Cell and Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA 01655
| |
Collapse
|
2
|
Bi Z, Li H, Liang Y, Sun D, Liu S, Chen W, Leng L, Song C, Zhang S, Cong Z, Chen S. Emerging paradigms for target discovery of traditional medicines: A genome-wide pan-GPCR perspective. Innovation (N Y) 2025; 6:100774. [PMID: 40098666 PMCID: PMC11910885 DOI: 10.1016/j.xinn.2024.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/22/2024] [Indexed: 03/19/2025] Open
Abstract
Traditional medicines serve not only as an integral part of medical treatments prescribed by healthcare providers but also as a fundamental reservoir for novel molecular scaffolds. However, gaps remain in our understanding of the mechanisms underlying their activity. A superfamily of membrane proteins, G protein-coupled receptors (GPCRs), have been demonstrated to be potential targets for several compounds isolated from traditional medicines. Given that GPCRs serve as targets for approximately one-third of all marketed drugs, they may be compelling targets for repurposing traditional medicines. Despite this potential, research investigating their activity or potential ligands across GPCRome, the library of human GPCRs, is scarce. Drawing on the functional and structural knowledge presently available, this review contemplates prospective trends in GPCR drug discovery, proposes innovative strategies for investigating traditional medicines, and highlights ligand screening approaches for identifying novel drug-like molecules. To discover bioactive molecules from traditional medicines that either directly bind to GPCRs or indirectly modify their function, a genome-wide pan-GPCR drug discovery platform was designed for the identification of bioactive components and targets, and the evaluation of their pharmacological profiles. This platform aims to aid the exploration of all-sided relations between traditional medicines and GPCRome using advanced high-throughput screening techniques. We present various approaches used by many, including ourselves, to illuminate the previously unexplored aspects of traditional medicines and GPCRs.
Collapse
Affiliation(s)
- Zenghao Bi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huan Li
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuting Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dan Sun
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Songxin Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sanyin Zhang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhaotong Cong
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Qiao X, Li X, Zhang M, Liu N, Wu Y, Lu S, Chen T. Targeting cryptic allosteric sites of G protein-coupled receptors as a novel strategy for biased drug discovery. Pharmacol Res 2025; 212:107574. [PMID: 39755133 DOI: 10.1016/j.phrs.2024.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and are highly effective targets for therapeutic drugs. GPCRs couple different downstream effectors, including G proteins (such as Gi/o, Gs, G12, and Gq) and β-arrestins (such as β-arrestin 1 and β-arrestin 2) to mediate diverse cellular and physiological responses. Biased signaling allows for the specific activation of certain pathways from the full range of receptors' signaling capabilities. Targeting more variable allosteric sites, which are spatially different from the highly conserved orthosteric sites, represents a novel approach in biased GPCR drug discovery, leading to innovative strategies for targeting GPCRs. Notably, the emergence of cryptic allosteric sites on GPCRs has expanded the repertoire of available drug targets and improved receptor subtype selectivity. Here, we conduct a summary of recent progress in the structural determination of cryptic allosteric sites on GPCRs and elucidate the biased signaling mechanisms induced by allosteric modulators. Additionally, we discuss means to identify cryptic allosteric sites and design biased allosteric modulators based on cryptic allosteric sites through structure-based drug design, which is an advanced pharmacotherapeutic approach for treating GPCR-associated diseases.
Collapse
Affiliation(s)
- Xin Qiao
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Mingyang Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yanmei Wu
- Department of General Surgery, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
| | - Shaoyong Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
4
|
Choi SY, Ahn SY, Jo D, Kim OY, Song J. Oligonol enhances brain cognitive function in high-fat diet-fed mice. Biomed Pharmacother 2024; 179:117322. [PMID: 39191029 DOI: 10.1016/j.biopha.2024.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, is well recognized for its antioxidant properties, blood glucose regulation, and fat mass reduction capability. However, its effect on the central nervous system remains unclear. Here, we investigated the effects of oligonol on brain in a high-fat diet (HFD) fed mouse model, and SH-SY5Y neuronal cells and primary cultured cortical neuron under insulin resistance conditions. HFD mice were orally administered oligonol (20 mg/kg) daily, and SH-SY5Y cells and primary cortical neurons were pretreated with 500 ng/mL oligonol under in vitro insulin resistance conditions. Our findings revealed that oligonol administration reduced blood glucose levels and improved spatial memory function in HFD mice. In vitro data demonstrated that oligonol protected neuronal cells and enhanced neural structure against insulin resistance. We confirmed RNA sequencing in the oligonol-pretreated insulin-resistant SH-SY5Y neuronal cells. Our RNA-sequencing data indicated that oligonol contributes to metabolic signaling and neurite outgrowth. In conclusion, our study provides insights into therapeutic potential of oligonol with respect to preventing neuronal cell damage and improving neural structure and cognitive function in HFD mice.
Collapse
Affiliation(s)
- Seo Yoon Choi
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| | - Seo Yeon Ahn
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| | - Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan, Republic of Korea; Department of Health Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| |
Collapse
|
5
|
Keifi Bajestani A, Alavi MS, Etemad L, Roohbakhsh A. Role of orphan G-protein coupled receptors in tissue ischemia: A comprehensive review. Eur J Pharmacol 2024; 978:176762. [PMID: 38906238 DOI: 10.1016/j.ejphar.2024.176762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Ischemic events lead to many diseases and deaths worldwide. Ischemia/reperfusion (I/R) occurs due to reduced blood circulation in tissues followed by blood reflow. Reoxygenation of ischemic tissues is characterized by oxidative stress, inflammation, energy distress, and endoplasmic reticulum stress. There are still no adequate clinical protocols or pharmacological approaches to address the consequences of I/R damage. G protein-coupled receptors (GPCRs) are important therapeutic targets. They compose a large family of seven transmembrane-spanning proteins that are involved in many biological functions. Orphan GPCRs are a large subgroup of these receptors expressed in different organs. In the present review, we summarized the literature regarding the role of orphan GPCRs in I/R in different organs. We focused on the effect of these receptors on modulating cellular and molecular processes underlying ischemia including apoptosis, inflammation, and autophagy. The study showed that GPR3, GPR4, GPR17, GPR30, GPR31, GPR35, GPR37, GPR39, GPR55, GPR65, GPR68, GPR75, GPR81, and GPR91 are involved in ischemic events, mainly in the brain and heart. These receptors offer new possibilities for treating I/R injuries in the body.
Collapse
Affiliation(s)
- Alireza Keifi Bajestani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Qi X, Pan C, Yang J, Liu L, Hao J, Wen Y, Zhang N, Wei W, Cheng B, Cheng S, Zhang F. Disadvantaged social status contributed to sleep disorders: An observational and genome-wide gene-environment interaction analysis. Sleep Health 2024; 10:402-409. [PMID: 38772848 DOI: 10.1016/j.sleh.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Sleep is a natural and essential physiological need for individuals. Our study aimed to research the associations between accumulated social risks and sleep disorders. METHODS In this study, we came up with a polysocial risk score (PsRS), which is a cumulative social risk index composed of 13 social determinants of health. This research includes 239,165 individuals with sleep disorders and social determinants of health data from the UK Biobank cohort. First, logistic regression models were performed to examine the associations of social determinants of health and sleep disorders, including chronotype, narcolepsy, insomnia, snoring, short and long sleep duration. Then, PsRS was calculated based on statistically significant social determinants of health for each sleep disorder. Third, a genome-wide gene-environment interaction study was conducted to explore the interactions between single-nucleotide polymorphisms and PsRS in relation to sleep disorders. RESULTS Higher PsRS scores were associated with worse sleep status, with the adjusted odds ratio (OR) ranging from 1.10 (95% Confidence interval [CI]: 1.09-1.11) to 1.29 (95% CI: 1.27-1.30) for sleep disorders. Emotional stress (OR = 1.36, 95% CI: 1.28-1.43) and not in paid employment (OR = 2.62, 95% CI: 2.51-2.74) were found to have significant contributions for sleep disorders. Moreover, multiple single-nucleotide polymorphisms were discovered to have interactions with PsRS, such as FRAS1 (P = 2.57 × 10-14) and CACNA1A (P = 8.62 × 10-14) for narcolepsy, and ACKR3 (P = 1.24 × 10-8) for long sleep. CONCLUSIONS Our findings suggested that cumulative social risks was associated with sleep disorders, while the interactions between genetic susceptibility and disadvantaged social status are risk factors for the development of sleep disorders.
Collapse
Affiliation(s)
- Xin Qi
- Precision medicine center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Jin Yang
- Precision medicine center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Department of Medical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Jingcan Hao
- Medical department, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
7
|
Fer M, Amalric C, Arban R, Baron L, Ben Hamida S, Breh-Schlanser P, Cui Y, Darcq E, Eickmeier C, Faye V, Franchet C, Frauli M, Halter C, Heyer M, Hoenke C, Hoerer S, Hucke OT, Joseph C, Kieffer BL, Lebrun L, Lotz N, Mayer S, Omrani A, Recolet M, Schaeffer L, Schann S, Schlecker A, Steinberg E, Viloria M, Würstle K, Young K, Zinser A, Montel F, Klepp J. Discovery of BI-9508, a Brain-Penetrant GPR88-Receptor-Agonist Tool Compound for In Vivo Mouse Studies. J Med Chem 2024; 67:11296-11325. [PMID: 38949964 DOI: 10.1021/acs.jmedchem.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Decreased activity and expression of the G-protein coupled receptor GPR88 is linked to many behavior-linked neurological disorders. Published preclinical GPR88 allosteric agonists all have in vivo pharmacokinetic properties that preclude their progression to the clinic, including high lipophilicity and poor brain penetration. Here, we describe our attempts to improve GPR88 agonists' drug-like properties and our analysis of the trade-offs required to successfully target GPR88's allosteric pocket. We discovered two new GPR88 agonists: One that reduced morphine-induced locomotor activity in a murine proof-of-concept study, and the atropoisomeric BI-9508, which is a brain penetrant and has improved pharmacokinetic properties and dosing that recommend it for future in vivo studies in rodents. BI-9508 still suffers from high lipophilicity, and research on this series was halted. Because of its utility as a tool compound, we now offer researchers access to BI-9508 and a negative control free of charge via Boehringer Ingelheim's open innovation portal opnMe.com.
Collapse
Affiliation(s)
| | | | - Roberto Arban
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Luc Baron
- Domain Therapeutics, 67400 Illkirch, France
| | - Sami Ben Hamida
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec H4H 1R3, Canada
- INSERM UMR 1247- Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, 80000 Amiens, France
| | | | - Yunhai Cui
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Emmanuel Darcq
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec H4H 1R3, Canada
- INSERM UMR-S1329, Strasbourg Translational Neuroscience & Psychiatry, University of Strasbourg, Strasbourg 67084, France
| | - Christian Eickmeier
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | | | | | | | | | | | - Christoph Hoenke
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Stefan Hoerer
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Oliver T Hucke
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | | | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec H4H 1R3, Canada
- INSERM UMR-S1329, Strasbourg Translational Neuroscience & Psychiatry, University of Strasbourg, Strasbourg 67084, France
| | | | | | | | - Azar Omrani
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | | | | | | | - Annette Schlecker
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | | | | | - Klaus Würstle
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Kyle Young
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Alexander Zinser
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Florian Montel
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Julian Klepp
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| |
Collapse
|
8
|
Chen L, Du Y, Hu Y, Li XS, Chen Y, Cheng Y. Whole-exome sequencing of individuals from an isolated population under extreme conditions implicates rare risk variants of schizophrenia. Transl Psychiatry 2024; 14:267. [PMID: 38951484 PMCID: PMC11217384 DOI: 10.1038/s41398-024-02984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Schizophrenia (SCZ), which affects approximately 1% of the world's population, is a global public health concern. It is generally considered that the interplay between genes and the environment is important in the onset and/or development of SCZ. Although several whole-exome sequencing studies have revealed rare risk variants of SCZ, no rare coding variants have been strongly replicated. Assessing isolated populations under extreme conditions might lead to the discovery of variants with a recent origin, which are more likely to have a higher frequency than chance to reflect gene-environment interactions. Following this approach, we examined a unique cohort of Tibetans living at an average altitude above 4500 meters. Whole-exome sequencing of 47 SCZ cases and 53 controls revealed 275 potential novel risk variants and two known variants (12:46244485: A/G and 22:18905934: A/G) associated with SCZ that were found in existing databases. Only one gene (C5orf42) in the gene-based statistics surpassed the exome-wide significance in the cohort. Metascape enrichment analysis suggested that novel risk genes were strongly enriched in pathways relevant to hypoxia, neurodevelopment, and neurotransmission. Additionally, 47 new risk genes were followed up in Han sample of 279 patients with SCZ and 95 controls, only BAI2 variant appearing in one case. Our findings suggest that SCZ patients living at high altitudes may have a unique risk gene signature, which may provide additional information on the underlying biology of SCZ, which can be exploited to identify individuals at greater risk of exposure to hypoxia.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xue-Song Li
- The Third People's Hospital of Foshan, Foshan, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, 518055, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China.
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China.
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
- Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
9
|
Chen H, Li J, Cao D, Tang H. Construction of a Prognostic Model for Hepatocellular Carcinoma Based on Macrophage Polarization-Related Genes. J Hepatocell Carcinoma 2024; 11:857-878. [PMID: 38751862 PMCID: PMC11095518 DOI: 10.2147/jhc.s453080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Background The progression of hepatocellular carcinoma (HCC) is related to macrophage polarization (MP). Our aim was to identify genes associated with MP in HCC patients and develop a prognostic model based on these genes. Results We successfully developed a prognostic model consisting of six MP-related genes (SCN4A, EBF3, ADGRB2, HOXD9, CLEC1B, and MSC) to calculate the risk score for each patient. Patients were then classified into high- and low-risk groups based on their median risk score. The performance of the MP-related prognostic model was evaluated using Kaplan-Meier and ROC curves, which yielded favorable results. Additionally, the nomogram demonstrated good clinical effectiveness and displayed consistent survival predictions with actual observations. Gene Set Enrichment Analysis (GSEA) revealed enrichment of pathways related to KRAS signaling downregulation, the G2M checkpoint, and E2F targets in the high-risk group. Conversely, pathways associated with fatty acid metabolism, xenobiotic metabolism, bile acid metabolism, and adipogenesis were enriched in the low-risk group. The risk score positively correlated with the number of invasion-related genes. Immune checkpoint expression differed significantly between the two groups. Patients in the high-risk group exhibited increased sensitivity to mitomycin C, cisplatin, gemcitabine, rapamycin, and paclitaxel, while those in the low-risk group showed heightened sensitivity to doxorubicin. These findings suggest that the high-risk group may have more invasive HCC with greater susceptibility to specific drugs. IHC staining revealed higher expression levels of SCN4A in HCC tissues. Furthermore, experiments conducted on HepG2 cells demonstrated that supernatants from cells with reduced SCN4A expression promoted M2 macrophage polarization marker, CD163 in THP-1 cells. Reduced SCN4A expression induced HCC-related genes, while increased SCN4A expression reduced their expression in HepG2 cells. Conclusion The MP-related prognostic model comprising six MPRGs can effectively predict HCC prognosis, infer invasiveness, and guide drug therapy. SCN4A is identified as a suppressor gene in HCC.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Jianhao Li
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Dan Cao
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
10
|
Padilha M, Ferreira ALL, Normando P, Schincaglia RM, Freire SR, Keller VN, Figueiredo ACC, Yin X, Brennan L, Kac G. Maternal serum amino acids and hydroxylated sphingomyelins at pregnancy are associated with anxiety symptoms during pregnancy and throughout the first year after delivery. J Affect Disord 2024; 351:579-587. [PMID: 38316261 DOI: 10.1016/j.jad.2024.01.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Studies suggest an interplay between maternal metabolome and mental health. OBJECTIVE We investigated the association of maternal serum metabolome at pregnancy with anxiety scores during pregnancy and throughout the first year postpartum. METHODS A prospective cohort of Brazilian women collected 119 serum metabolome at pregnancy (28-38 weeks) and anxiety scores measured by the State-Trait Anxiety Inventory (STAI) at pregnancy (n = 118), 1 (n = 83), 6 (n = 68), and 12 (n = 57) months postpartum. Targeted metabolomics quantified metabolites belonging to amino acids (AA), biogenic amines/amino acid-related compounds, acylcarnitines, lysophosphatidylcholines, diacyl phosphatidylcholines, alkyl:acyl phosphatidylcholines, non-hydroxylated and hydroxylated sphingomyelins [SM(OH)], and hexoses classes. Linear mixed-effect models were used to evaluate the association of metabolites and STAI scores. Hierarchical clustering and principal component analyses were employed to identify clusters and metabolites, which drove their main differences. Multiple comparison-adjusted p-values (q-value) ≤ 0.05 were considered significant. RESULTS AA (β = -1.44) and SM(OH) (β = -1.49) classes showed an association with STAI scores trajectory (q-value = 0.047). Two clusters were identified based on these classes. Women in cluster 2 had decreased AA and SM(OH) concentrations and higher STAI scores (worse symptoms) trajectory (β = 2.28; p-value = 0.041). Isoleucine, leucine, valine, SM(OH) 22:1, 22:2, and 24:1 drove the main differences between the clusters. LIMITATIONS The target semiquantitative metabolome analysis and small sample size limited our conclusions. CONCLUSIONS Our results suggest that AA and SM(OH) during pregnancy play a role in anxiety symptoms throughout the first year postpartum.
Collapse
Affiliation(s)
- Marina Padilha
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ, Brazil
| | - Ana Lorena Lima Ferreira
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ, Brazil
| | - Paula Normando
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ, Brazil
| | - Raquel Machado Schincaglia
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ, Brazil
| | - Samary Rosa Freire
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ, Brazil
| | - Victor Nahuel Keller
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ, Brazil
| | - Amanda Caroline Cunha Figueiredo
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ, Brazil
| | - Xiaofei Yin
- UCD School of Agriculture and Food Science, Conway Institute, UCD Institute of Food and Health, University College Dublin, Ireland
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Conway Institute, UCD Institute of Food and Health, University College Dublin, Ireland
| | - Gilberto Kac
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Shin D, Lee J, Kim Y, Park J, Shin D, Song Y, Joo EJ, Roh S, Lee KY, Oh S, Ahn YM, Rhee SJ, Kim Y. Evaluation of a Nondepleted Plasma Multiprotein-Based Model for Discriminating Psychiatric Disorders Using Multiple Reaction Monitoring-Mass Spectrometry: Proof-of-Concept Study. J Proteome Res 2024; 23:329-343. [PMID: 38063806 DOI: 10.1021/acs.jproteome.3c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Psychiatric evaluation relies on subjective symptoms and behavioral observation, which sometimes leads to misdiagnosis. Despite previous efforts to utilize plasma proteins as objective markers, the depletion method is time-consuming. Therefore, this study aimed to enhance previous quantification methods and construct objective discriminative models for major psychiatric disorders using nondepleted plasma. Multiple reaction monitoring-mass spectrometry (MRM-MS) assays for quantifying 453 peptides in nondepleted plasma from 132 individuals [35 major depressive disorder (MDD), 47 bipolar disorder (BD), 23 schizophrenia (SCZ) patients, and 27 healthy controls (HC)] were developed. Pairwise discriminative models for MDD, BD, and SCZ, and a discriminative model between patients and HC were constructed by machine learning approaches. In addition, the proteins from nondepleted plasma-based discriminative models were compared with previously developed depleted plasma-based discriminative models. Discriminative models for MDD versus BD, BD versus SCZ, MDD versus SCZ, and patients versus HC were constructed with 11 to 13 proteins and showed reasonable performances (AUROC = 0.890-0.955). Most of the shared proteins between nondepleted and depleted plasma models had consistent directions of expression levels and were associated with neural signaling, inflammatory, and lipid metabolism pathways. These results suggest that multiprotein markers from nondepleted plasma have a potential role in psychiatric evaluation.
Collapse
Affiliation(s)
- Dongyoon Shin
- Proteomics Research Team, CHA Institute of Future Medicine, Seongnam 13520, Republic of Korea
| | - Jihyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yeongshin Kim
- Department of Life Science, General Graduate School, CHA University, Seongnam 13488, Republic of Korea
| | - Junho Park
- Proteomics Research Team, CHA Institute of Future Medicine, Seongnam 13520, Republic of Korea
- Department of Life Science, General Graduate School, CHA University, Seongnam 13488, Republic of Korea
| | - Daun Shin
- Department of Psychiatry, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Yoojin Song
- Department of Psychiatry, Kangwon National University Hospital, Chuncheon 24289, Republic of Korea
| | - Eun-Jeong Joo
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
- Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Sungwon Roh
- Department of Psychiatry, Hanyang University Hospital and Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Kyu Young Lee
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
- Department of Psychiatry, Nowon Eulji University Hospital, Seoul 01830, Republic of Korea
| | - Sanghoon Oh
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
- Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Sang Jin Rhee
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Youngsoo Kim
- Proteomics Research Team, CHA Institute of Future Medicine, Seongnam 13520, Republic of Korea
- Department of Life Science, General Graduate School, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
12
|
Hazrati E, Eftekhar SP, Mosaed R, Shiralizadeh Dini S, Namazi M. Understanding the kynurenine pathway: A narrative review on its impact across chronic pain conditions. Mol Pain 2024; 20:17448069241275097. [PMID: 39093627 PMCID: PMC11331475 DOI: 10.1177/17448069241275097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Chronic pain is a debilitating symptom with a significant negative impact on the quality of life and socioeconomic status, particularly among adults and the elderly. Major Depressive Disorder (MDD) stands out as one of the most important comorbid disorders accompanying chronic pain. The kynurenine pathway serves as the primary route for tryptophan degradation and holds critical significance in various biological processes, including the regulation of neurotransmitters, immune responses, cancer development, metabolism, and inflammation. This review encompasses key research studies related to the kynurenine pathway in the context of headache, neuropathic pain, gastrointestinal disorders, fibromyalgia, chronic fatigue syndrome, and MDD. Various metabolites produced in the kynurenine pathway, such as kynurenic acid and quinolinic acid, exhibit neuroprotective and neurotoxic effects, respectively. Recent studies have highlighted the significant involvement of kynurenine and its metabolites in the pathophysiology of pain. Moreover, pharmacological interventions targeting the regulation of the kynurenine pathway have shown therapeutic promise in pain management. Understanding the underlying mechanisms of this pathway presents an opportunity for developing personalized, innovative, and non-opioid approaches to pain treatment. Therefore, this narrative review explores the role of the kynurenine pathway in various chronic pain disorders and its association with depression and chronic pain.
Collapse
Affiliation(s)
- Ebrahim Hazrati
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | | | - Mehrshad Namazi
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Kiriyama Y, Nochi H. The Role of Gut Microbiota-Derived Lithocholic Acid, Deoxycholic Acid and Their Derivatives on the Function and Differentiation of Immune Cells. Microorganisms 2023; 11:2730. [PMID: 38004742 PMCID: PMC10672800 DOI: 10.3390/microorganisms11112730] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
A wide variety and large number of bacterial species live in the gut, forming the gut microbiota. Gut microbiota not only coexist harmoniously with their hosts, but they also induce significant effects on each other. The composition of the gut microbiota can be changed due to environmental factors such as diet and antibiotic intake. In contrast, alterations in the composition of the gut microbiota have been reported in a variety of diseases, including intestinal, allergic, and autoimmune diseases and cancer. The gut microbiota metabolize exogenous dietary components ingested from outside the body to produce short-chain fatty acids (SCFAs) and amino acid metabolites. Unlike SCFAs and amino acid metabolites, the source of bile acids (BAs) produced by the gut microbiota is endogenous BAs from the liver. The gut microbiota metabolize BAs to generate secondary bile acids, such as lithocholic acid (LCA), deoxycholic acid (DCA), and their derivatives, which have recently been shown to play important roles in immune cells. This review focuses on current knowledge of the role of LCA, DCA, and their derivatives on immune cells.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan;
- Institute of Neuroscience, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan;
| |
Collapse
|
14
|
Thakur K, Khan H, Grewal AK, Singh TG. Nuclear orphan receptors: A novel therapeutic agent in neuroinflammation. Int Immunopharmacol 2023; 124:110845. [PMID: 37690241 DOI: 10.1016/j.intimp.2023.110845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023]
Abstract
Orphan receptors constitute a historically varied subsection of a superfamily of nuclear receptors. Nuclear receptors regulate gene expression in response to ligand signals and are particularly alluring therapeutic targets for chronic illnesses. Neuroinflammation and neurodegenerative diseases have been linked to these orphan nuclear receptors. Preclinical and clinical evidence suggests that orphan receptors could serve as future targets in neuroinflammation, such as Parkinson's disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Multiple Sclerosis (MS), and Cerebral Ischemia. Given the therapeutic relevance of certain orphan receptors in a variety of disorders, their potential in neuroinflammation remains unproven. There is substantial evidence that ligand-activated transcription factors have great promise for preventing neurodegenerative and neurological disorders, with certain orphan nuclear receptors i.e., PPARγ, NR4As, and orphan GPCRs holding particularly high potential. Based on previous findings, we attempted to determine the contribution of PPAR, NR4As, and orphan GPCRs-regulated neuroinflammation to the pathogenesis of these disorders and their potential to become novel therapeutic targets.
Collapse
Affiliation(s)
- Kiran Thakur
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | | | | |
Collapse
|
15
|
Khvorykh GV, Sapozhnikov NA, Limborska SA, Khrunin AV. Evaluation of Density-Based Spatial Clustering for Identifying Genomic Loci Associated with Ischemic Stroke in Genome-Wide Data. Int J Mol Sci 2023; 24:15355. [PMID: 37895035 PMCID: PMC10607504 DOI: 10.3390/ijms242015355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The genetic architecture of ischemic stroke (IS), which is one of the leading causes of death worldwide, is complex and underexplored. The traditional approach for associative gene mapping is genome-wide association studies (GWASs), testing individual single-nucleotide polymorphisms (SNPs) across the genomes of case and control groups. The purpose of this research is to develop an alternative approach in which groups of SNPs are examined rather than individual ones. We proposed, validated and applied to real data a new workflow consisting of three key stages: grouping SNPs in clusters, inferring the haplotypes in the clusters and testing haplotypes for the association with phenotype. To group SNPs, we applied the clustering algorithms DBSCAN and HDBSCAN to linkage disequilibrium (LD) matrices, representing pairwise r2 values between all genotyped SNPs. These clustering algorithms have never before been applied to genotype data as part of the workflow of associative studies. In total, 883,908 SNPs and insertion/deletion polymorphisms from people of European ancestry (4929 cases and 652 controls) were processed. The subsequent testing for frequencies of haplotypes restored in the clusters of SNPs revealed dozens of genes associated with IS and suggested the complex role that protocadherin molecules play in IS. The developed workflow was validated with the use of a simulated dataset of similar ancestry and the same sample sizes. The results of classic GWASs are also provided and discussed. The considered clustering algorithms can be applied to genotypic data to identify the genomic loci associated with different qualitative traits, using the workflow presented in this research.
Collapse
Affiliation(s)
| | | | | | - Andrey V. Khrunin
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (G.V.K.); (N.A.S.); (S.A.L.)
| |
Collapse
|
16
|
Bolinger AA, Frazier A, La JH, Allen JA, Zhou J. Orphan G Protein-Coupled Receptor GPR37 as an Emerging Therapeutic Target. ACS Chem Neurosci 2023; 14:3318-3334. [PMID: 37676000 PMCID: PMC11144446 DOI: 10.1021/acschemneuro.3c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are successful druggable targets, making up around 35% of all FDA-approved medications. However, a large number of receptors remain orphaned, with no known endogenous ligand, representing a challenging but untapped area to discover new therapeutic targets. Among orphan GPCRs (oGPCRs) of interest, G protein-coupled receptor 37 (GPR37) is highly expressed in the central nervous system (CNS), particularly in the spinal cord and oligodendrocytes. While its cellular signaling mechanisms and endogenous receptor ligands remain elusive, GPR37 has been implicated in several important neurological conditions, including Parkinson's disease (PD), inflammation, pain, autism, and brain tumors. GPR37 structure, signaling, emerging physiology, and pharmacology are reviewed while integrating a discussion on potential therapeutic indications and opportunities.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew Frazier
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jun-Ho La
- Department of Neurobiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - John A. Allen
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
17
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
18
|
Yang S, Yi L, Xia X, Chen X, Hou X, Zhang L, Yang F, Liao J, Han Z, Fu Y. Transcriptome comparative analysis of amygdala-hippocampus in depression: A rat model induced by chronic unpredictable mild stress (CUMS). J Affect Disord 2023; 334:258-270. [PMID: 37105469 DOI: 10.1016/j.jad.2023.04.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Depression is a common and complex mental disease, and its pathogenesis involves several brain regions. Abnormalities in the amygdala-hippocampal neural circuits have been shown to be involved in depression. However, the underlying molecular mechanisms remain unclear. METHODS A rat model was used to determine the transcriptome changes in the amygdala-hippocampal neural network under chronic unpredictable mild stress (CUMS). Depression-related modules in this neural network were identified using weighted gene co-expression network analysis (WGCNA). Difference and enrichment analyses were used to determine differential gene expression in the two brain regions. RESULTS The modules in the amygdala and hippocampus associated with depression-like behavior contained 363 and 225 genes, respectively. Forty-two differentially expressed genes were identified in the amygdala candidate module and 37 in the hippocampus. Enrichment analysis showed that candidate genes in the amygdala were associated with neuronal myelination and candidate genes in the hippocampus were associated with synaptic transmission. Finally, based on module hub gene statistics, differential gene expression, and protein-protein interaction networks, 11 central genes were found in the amygdala candidate module, and one central gene was found in the hippocampal module. LIMITATIONS Our study was based on a rat CUMS model. Further evidence is needed to prove that our results are applicable to patients with depression. CONCLUSION This study identified critical modules and central genes involved in the amygdala-hippocampal circuit in the context of depression, and may provide further understanding of the pathogenesis of depression and help identify potential targets for antidepressant therapy.
Collapse
Affiliation(s)
- Shu Yang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Yi
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaodi Xia
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaolu Chen
- The First Branch, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiao Hou
- Department of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Longjie Zhang
- Department of Pharmacy, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Fang Yang
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jiaxin Liao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhijie Han
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yixiao Fu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
19
|
Tu W, Zhang Y, Jiang K, Jiang S. Osteocalcin and Its Potential Functions for Preventing Fatty Liver Hemorrhagic Syndrome in Poultry. Animals (Basel) 2023; 13:ani13081380. [PMID: 37106943 PMCID: PMC10135196 DOI: 10.3390/ani13081380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Osteocalcin (OCN) is synthesized and secreted by differentiating osteoblasts. In addition to its role in bone, OCN acts as a hormone in the pancreas, liver, muscle, fat, and other organs to regulate multiple pathophysiological processes including glucose homeostasis and adipic acid metabolism. Fat metabolic disorder, such as excessive fat buildup, is related to non-alcoholic fatty liver disease (NAFLD) in humans. Similarly, fatty liver hemorrhage syndrome (FLHS) is a metabolic disease in laying hens, resulting from lipid accumulation in hepatocytes. FLHS affects hen health with significant impact on poultry egg production. Many studies have proposed that OCN has protective function in mammalian NAFLD, but its function in chicken FLHS and related mechanism have not been completely clarified. Recently, we have revealed that OCN prevents laying hens from FLHS through regulating the JNK pathway, and some pathways related to the disease progression have been identified through both in vivo and vitro investigations. In this view, we discussed the current findings for predicting the strategy for using OCN to prevent or reduce FLHS impact on poultry production.
Collapse
Affiliation(s)
- Wenjun Tu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yuhan Zhang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Kunyu Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Sha Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| |
Collapse
|
20
|
Expression Mapping and Functional Analysis of Orphan G-Protein-Coupled Receptor GPR158 in the Adult Mouse Brain Using a GPR158 Transgenic Mouse. Biomolecules 2023; 13:biom13030479. [PMID: 36979415 PMCID: PMC10046084 DOI: 10.3390/biom13030479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Aberrant expression of G-protein-coupled receptor 158 (GPR158) has been reported to be inextricably linked to a variety of diseases affecting the central nervous system, including Alzheimer’s disease (AD), depression, intraocular pressure, and glioma, but the underlying mechanism remains elusive due to a lack of biological and pharmacological tools to elaborate its preferential cellular distribution and molecular interaction network. To assess the cellular localization, expression, and function of GPR158, we generated an epitope-tagged GPR158 mouse model (GPR158Tag) that exhibited normal motor, cognitive, and social behavior, no deficiencies in social memory, and no anxiety-like behavior compared to C57BL/6J control mice at P60. Using immunofluorescence, we found that GPR158+ cells were distributed in several brain regions including the cerebral cortex, hippocampus, cerebellum, and caudate putamen. Next, using the cerebral cortex of the adult GPR158Tag mice as a representative region, we found that GPR158 was only expressed in neurons, and not in microglia, oligodendrocytes, or astrocytes. Remarkably, the majority of GPR158 was enriched in Camk2a+ neurons whilst limited expression was found in PV+ interneurons. Concomitant 3D co-localization analysis revealed that GPR158 was mainly distributed in the postsynaptic membrane, but with a small portion in the presynaptic membrane. Lastly, via mass spectrometry analysis, we identified proteins that may interact with GPR158, and the relevant enrichment pathways were consistent with the immunofluorescence findings. RNA-seq analysis of the cerebral cortex of the GPR158−/− mice showed that GPR158 and its putative interacting proteins are involved in the chloride channel complex and synaptic vesicle membrane composition. Using these GPR158Tag mice, we were able to accurately label GPR158 and uncover its fundamental function in synaptic vesicle function and memory. Thus, this model will be a useful tool for subsequent biological, pharmacological, and electrophysiological studies related to GPR158.
Collapse
|
21
|
Franchini L, Orlandi C. Probing the orphan receptors: Tools and directions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 195:47-76. [PMID: 36707155 DOI: 10.1016/bs.pmbts.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The endogenous ligands activating a large fraction of the G Protein Coupled Receptor (GPCR) family members have yet to be identified. These receptors are commonly labeled as orphans (oGPCRs), and because of the absence of available pharmacological tools they are currently understudied. Nonetheless, genome wide association studies, together with research using animal models identified many physiological functions regulated by oGPCRs. Similarly, mutations in some oGPCRs have been associated with rare genetic disorders or with an increased risk of developing pathologies. The once underestimated pharmacological potential of targeting oGPCRs is increasingly being exploited by the development of novel tools to understand their biology and by drug discovery endeavors aimed at identifying new modulators of their activity. Here, we summarize recent advancements in the field of oGPCRs and future directions.
Collapse
Affiliation(s)
- Luca Franchini
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
22
|
Bharathi, Roy KK. Structural basis for the binding of a selective inverse agonist AF64394 with the human G-protein coupled receptor 3 (GPR3). J Biomol Struct Dyn 2022; 40:10181-10190. [PMID: 34157950 DOI: 10.1080/07391102.2021.1940282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The orphan class A G-protein coupled receptor 3 (GPR3) is highly expressed in brain and linked with various neuronal functions, and therefore, expected to play a vital role in the progression of Alzheimer's disease. In view of the lack of its experimental structure, we describe herein the three-dimensional structure and conformational dynamics of GPR3 complexed with the inverse agonist AF64394. The GPR3 model was predicted using the Iterative Threading ASSEmbly Refinement (I-TASSER) method. The Induced Fit Docking predicted two unique poses, Pose 1 and Pose 2, for AF64394, and then, molecular dynamics (MD) simulations followed by binding free-energy calculation revealed the Pose 1 as a very stable pose with the least fluctuation during the MD simulation while the Pose 2 underwent a significant fluctuation. The [1,2,4]triazolo[1,5-a]pyrimidine core was engaged in multiple hydrogen bonds (H-bonds), such as a water-mediated H-bond between the triazole nitrogen and T31, two direct H-bonds between the protonated triazole-ring nitrogen and V186 and T279, a direct H-bond between the secondary amine and V187. The phenyl substituent of AF64394 exhibited aromatic π-π stacking interactions with F97, F101, W43 and Y280. AF64394 showed a direct interaction with E28 and polar interactions with H96, T31 and T279. Throughout the MD simulation, the toggle switch residues, F120 and W260, remained in close contact, indicating that the GPR3 conformation represented an inactive state. The 4-(3-chloro-5-isopropoxyphenethyl) group resided near to the toggle switch residues. The insights gained here are expected to be useful in the structure-based design of new ligands targeting GPR3 modulation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bharathi
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Kuldeep K Roy
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Kolkata, India
| |
Collapse
|
23
|
Yao Z, Meng J, Long J, Li L, Qiu W, Li C, Zhang JV, Ren P. Orphan receptor GPR50 attenuates inflammation and insulin signaling in 3T3-L1 preadipocytes. FEBS Open Bio 2022; 13:89-101. [PMID: 36333974 PMCID: PMC9811602 DOI: 10.1002/2211-5463.13516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/06/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
Abstract
Type 2 diabetes (T2DM) is characterized by insulin secretion deficiencies and systemic insulin resistance (IR) in adipose tissue, skeletal muscle, and the liver. Although the mechanism of T2DM is not yet fully known, inflammation and insulin resistance play a central role in the pathogenesis of T2DM. G protein-coupled receptors (GPCRs) are involved in endocrine and metabolic processes as well as many other physiological processes. GPR50 (G protein-coupled receptor 50) is an orphan GPCR that shares the highest sequence homology with melatonin receptors. The aim of this study was to investigate the effect of GPR50 on inflammation and insulin resistance in 3T3-L1 preadipocytes. GPR50 expression was observed to be significantly increased in the adipose tissue of obese T2DM mice, while GPR50 deficiency increased inflammation in 3T3-L1 cells and induced the phosphorylation of AKT and insulin receptor substrate (IRS) 1. Furthermore, GPR50 knockout in the 3T3-L1 cell line suppressed PPAR-γ expression. These data suggest that GPR50 can attenuate inflammatory levels and regulate insulin signaling in adipocytes. Furthermore, the effects are mediated through the regulation of the IRS1/AKT signaling pathway and PPAR-γ expression.
Collapse
Affiliation(s)
- Zhenyu Yao
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Jun Meng
- Department of Pathogenic BiologyShenzhen Center for Disease Control and PreventionChina,Department of Microbiology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Jing Long
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Long Li
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Weicong Qiu
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Cairong Li
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Jian V. Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Pei‐Gen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
24
|
Gutiérrez-Rojas RA, Aguayo-Cerón KA, Vargas-De-León C, Cabrera-Becerra SE, Almanza-Pérez JC, Huang F, Villafaña S, Romero-Nava R. Glycine Effect on the Expression Profile of Orphan Receptors GPR21, GPR26, GPR39, GPR82 and GPR6 in a Model of Inflammation in 3T3-L1 Cells. Life (Basel) 2022; 12:1687. [PMID: 36362842 PMCID: PMC9696036 DOI: 10.3390/life12111687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Chronic or low-grade inflammation is a process where various immune cells are recruited from the periphery into adipose tissue. This event gives rise to localised inflammation, in addition to having a close interaction with cardiometabolic pathologies where the mediation of orphan receptors is observed. The aim of this study was to analyse the participation of the orphan receptors GPR21, GPR39, GPR82 and GPR6 in a chronic inflammatory process in 3T3-L1 cells. The 3T3-L1 cells were stimulated with TNF-α (5 ng/mL) for 60 min as an inflammatory model. Gene expression was measured by RT-qPCR. RESULTS We showed that the inflammatory stimulus of TNF-α in adipocytes decreased the expression of the orphan receptors GPR21, GPR26, GPR39, GPR82 and GPR6, which are related to low-grade inflammation. CONCLUSIONS Our results suggest that GPR21 and GPR82 are modulated by glycine, it shows a possible protective role in the presence of an inflammatory environment in adipocytes, and they could be a therapeutic target to decrease the inflammation in some diseases related to low-grade inflammation such as diabetes, obesity and metabolic syndrome.
Collapse
Affiliation(s)
| | - Karla Aidee Aguayo-Cerón
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Cruz Vargas-De-León
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico
| | - Sandra Edith Cabrera-Becerra
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Julio Cesar Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Ciudad de México 09340, Mexico
| | - Fengyang Huang
- Laboratorio de Investigación en Farmacología, Hospital Infantil de México Federico Gómez (HIMFG), Ciudad de México 06720, Mexico
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Rodrigo Romero-Nava
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
25
|
Ma X, Guo J, Fu Y, Shen C, Jiang P, Zhang Y, Zhang L, Yu Y, Fan J, Chai R. G protein-coupled receptors in cochlea: Potential therapeutic targets for hearing loss. Front Mol Neurosci 2022; 15:1028125. [PMID: 36311029 PMCID: PMC9596917 DOI: 10.3389/fnmol.2022.1028125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
The prevalence of hearing loss-related diseases caused by different factors is increasing worldwide year by year. Currently, however, the patient’s hearing loss has not been effectively improved. Therefore, there is an urgent need to adopt new treatment measures and treatment techniques to help improve the therapeutic effect of hearing loss. G protein-coupled receptors (GPCRs), as crucial cell surface receptors, can widely participate in different physiological and pathological processes, particularly play an essential role in many disease occurrences and be served as promising therapeutic targets. However, no specific drugs on the market have been found to target the GPCRs of the cochlea. Interestingly, many recent studies have demonstrated that GPCRs can participate in various pathogenic process related to hearing loss in the cochlea including heredity, noise, ototoxic drugs, cochlear structure, and so on. In this review, we comprehensively summarize the functions of 53 GPCRs known in the cochlea and their relationships with hearing loss, and highlight the recent advances of new techniques used in cochlear study including cryo-EM, AI, GPCR drug screening, gene therapy vectors, and CRISPR editing technology, as well as discuss in depth the future direction of novel GPCR-based drug development and gene therapy for cochlear hearing loss. Collectively, this review is to facilitate basic and (pre-) clinical research in this area, and provide beneficial help for emerging GPCR-based cochlear therapies.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Jiamin Guo
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yaoyang Fu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cangsong Shen
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Jiang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yuan Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Lei Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yafeng Yu
- First Affiliated Hospital of Soochow University, Soochow, China
- *Correspondence: Yafeng Yu,
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Jiangang Fan,
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Renjie Chai,
| |
Collapse
|
26
|
Su T, Guan Q, Cheng H, Zhu Z, Jiang C, Guo P, Tai Y, Sun H, Wang M, Wei W, Wang Q. Functions of G protein-coupled receptor 56 in health and disease. Acta Physiol (Oxf) 2022; 236:e13866. [PMID: 35959520 DOI: 10.1111/apha.13866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/29/2023]
Abstract
Human G protein-coupled receptor 56 (GPR56) is encoded by gene ADGRG1 from chromosome 16q21 and is homologously encoded in mice, at chromosome 8. Both 687 and 693 splice forms are present in humans and mice. GPR56 has a 381 amino acid-long N-terminal extracellular segment and a GPCR proteolysis site upstream from the first transmembrane domain. GPR56 is mainly expressed in the heart, brain, thyroid, platelets, and peripheral blood mononuclear cells. Accumulating evidence indicates that GPR56 promotes the formation of myelin sheaths and the development of oligodendrocytes in the cerebral cortex of the central nervous system. Moreover, GPR56 contributes to the development and differentiation of hematopoietic stem cells, induces adipogenesis, and regulates the function of immune cells. The lack of GPR56 leads to nervous system dysfunction, platelet disorders, and infertility. Abnormal expression of GPR56 is related to the malignant transformation and tumor metastasis of several cancers including melanoma, neuroglioma, and gastrointestinal cancer. Metabolic disorders and cardiovascular diseases are also associated with dysregulation of GPR56 expression, and GPR56 is involved in the pharmacological resistance to some antidepressant and cancer drug treatments. In this review, the molecular structure, expression profile, and signal transduction of GPR56 are introduced, and physiological and pathological functions of GRP56 are comprehensively summarized. Attributing to its significant biological functions and its long N-terminal extracellular region that interacts with multiple ligands, GPR56 is becoming an attractive therapeutic target in treating neurological and hematopoietic diseases.
Collapse
Affiliation(s)
- Tiantian Su
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Qiuyun Guan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Huijuan Cheng
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Zhenduo Zhu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Chunru Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Paipai Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Hanfei Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Manman Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
27
|
Insights into the Promising Prospect of G Protein and GPCR-Mediated Signaling in Neuropathophysiology and Its Therapeutic Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8425640. [PMID: 36187336 PMCID: PMC9519337 DOI: 10.1155/2022/8425640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are intricately involved in the conversion of extracellular feedback to intracellular responses. These specialized receptors possess a crucial role in neurological and psychiatric disorders. Most nonsensory GPCRs are active in almost 90% of complex brain functions. At the time of receptor phosphorylation, a GPCR pathway is essentially activated through a G protein signaling mechanism via a G protein-coupled receptor kinase (GRK). Dopamine, an important neurotransmitter, is primarily involved in the pathophysiology of several CNS disorders; for instance, bipolar disorder, schizophrenia, Parkinson's disease, and ADHD. Since dopamine, acetylcholine, and glutamate are potent neuropharmacological targets, dopamine itself has potential therapeutic effects in several CNS disorders. GPCRs essentially regulate brain functions by modulating downstream signaling pathways. GPR6, GPR52, and GPR8 are termed orphan GPCRs because they colocalize with dopamine D1 and D2 receptors in neurons of the basal ganglia, either alone or with both receptors. Among the orphan GPCRs, the GPR52 is recognized for being an effective psychiatric receptor. Various antipsychotics like aripiprazole and quetiapine mainly target GPCRs to exert their actions. One of the most important parts of signal transduction is the regulation of G protein signaling (RGS). These substances inhibit the activation of the G protein that initiates GPCR signaling. Developing a combination of RGS inhibitors with GPCR agonists may prove to have promising therapeutic potential. Indeed, several recent studies have suggested that GPCRs represent potentially valuable therapeutic targets for various psychiatric disorders. Molecular biology and genetically modified animal model studies recommend that these enriched GPCRs may also act as potential therapeutic psychoreceptors. Neurotransmitter and neuropeptide GPCR malfunction in the frontal cortex and limbic-related regions, including the hippocampus, hypothalamus, and brainstem, is likely responsible for the complex clinical picture that includes cognitive, perceptual, emotional, and motor symptoms. G protein and GPCR-mediated signaling play a critical role in developing new treatment options for mental health issues, and this study is aimed at offering a thorough picture of that involvement. For patients who are resistant to current therapies, the development of new drugs that target GPCR signaling cascades remains an interesting possibility. These discoveries might serve as a fresh foundation for the creation of creative methods for pharmacologically useful modulation of GPCR function.
Collapse
|
28
|
Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev 2022; 14:679-707. [DOI: 10.1007/s12551-022-00968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/14/2022] Open
|
29
|
Wu HB, Xiao YG, Chen JS, Qiu ZK. The potential mechanism of Bupleurum against anxiety was predicted by network pharmacology study and molecular docking. Metab Brain Dis 2022; 37:1609-1639. [PMID: 35366129 DOI: 10.1007/s11011-022-00970-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 03/21/2022] [Indexed: 01/20/2023]
Abstract
Bupleurum chinense DC. (Chaihu) is a traditional Chinese medicine (TCM) used in the treatment of anxiety. But the anxiolytic mechanisms of bupleurum are still unclear. Therefore, this unknown is predicted by network pharmacology study with molecular docking in the present study. The components of bupleurum were obtained from the databases. Genes associated with components and disease were also provided by databases. Overlapping genes between components and disease were analyzed. The network of medicine-components-targets-disease was constructed, visualized, and analyzed. Protein-protein interaction (PPI), gene ontology (GO), pathway enrichment (KEGG) and molecular docking were conducted to predict the potential mechanisms of bupleurum on anxiety. A total of 9 bioactive components derived from bupleurum with 80 target genes were involved in anxiety. Neurotransmitter receptor activity, G protein-coupled amine receptor activity, regulation of blood circulation, neuroactive ligand-receptor interaction, calcium signaling pathway and salivary secretion may play significant roles in the anxiolytic of bupleurum. Molecular docking implicated that ACHE and MAOA showed high affinity for stigmasterol. Based on network pharmacology study with molecular docking, multi-component-multi-target-multi-pathway action mode of bupleurum on anxiety was elaborated. Stigmasterol might be the core bioactive component, while ACHE and MAOA might be the core target genes in the pharmacological profile of bupleurum on anxiety.
Collapse
Affiliation(s)
- Han-Biao Wu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu-Gang Xiao
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ji-Sheng Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-Kun Qiu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
30
|
Shi Y, Ma X, Wang M, Lan S, Jian H, Wang Y, Wei Q, Zhong F. Comprehensive analyses reveal the carcinogenic and immunological roles of ANLN in human cancers. Cancer Cell Int 2022; 22:188. [PMID: 35568883 PMCID: PMC9107662 DOI: 10.1186/s12935-022-02610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Anillin (ANLN) is an actin-binding protein that is essential for cell division and contributes to cell growth and migration. Although previous studies have shown that ANLN is related to carcinogenesis, no pan-cancer analyses of ANLN have been reported. Accordingly, in this study, we evaluated the carcinogenic roles of ANLN in various cancer types using online databases. Methods We evaluated the potential carcinogenic roles of ANLN using TIMER2 and Gene Expression Omnibus databases with 33 types of cancers. We further investigated the associations of ANLN with patient prognosis, genetic alterations, phosphorylation levels, and immune infiltration in multiple cancers using GEPIA2, cBioPortal, UACLAN, and TIMER2 databases. Additionally, the potential functions of ANLN were explored using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Reverse transcription quantitative polymerase chain reaction and immunohistochemistry were used to determine ANLN mRNA and protein expression in colorectal cancer (CRC), gastric cancer (GC), and hepatocellular carcinoma (HCC) cell lines. Results ANLN was overexpressed in various tumor tissues compared with corresponding normal tissues, and significant correlations between ANLN expression and patient prognosis, genetic alterations, phosphorylation levels, and immune infiltration were noted. Moreover, enrichment analysis suggested that ANLN functionally affected endocytosis, regulation of actin cytoskeleton, and oxytocin signaling pathways. Importantly, ANLN mRNA and protein expression levels were upregulated in gastrointestinal cancers, including CRC, GC, and HCC. Conclusions Our findings suggested that ANLN participated in tumorigenesis and cancer progression and may have applications as a promising biomarker of immune infiltration and prognosis in various cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02610-1.
Collapse
Affiliation(s)
- Yanlong Shi
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, China
| | - Xinyu Ma
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Menglu Wang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Sheng Lan
- The Second Clinical College Clinical Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haokun Jian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yue Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Qian Wei
- School of Nursing, Anhui Medical University, HeFei, Anhui, China
| | - Fei Zhong
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, China.
| |
Collapse
|
31
|
Chen G, Xu J, Inoue A, Schmidt MF, Bai C, Lu Q, Gmeiner P, Liu Z, Du Y. Activation and allosteric regulation of the orphan GPR88-Gi1 signaling complex. Nat Commun 2022; 13:2375. [PMID: 35501348 PMCID: PMC9061749 DOI: 10.1038/s41467-022-30081-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractGPR88 is an orphan class A G-protein-coupled receptor that is highly expressed in the striatum and regulates diverse brain and behavioral functions. Here we present cryo-EM structures of the human GPR88-Gi1 signaling complex with or without a synthetic agonist (1R, 2R)-2-PCCA. We show that (1R, 2R)-2-PCCA is an allosteric modulator binding to a herein identified pocket formed by the cytoplasmic ends of transmembrane segments 5, 6, and the extreme C terminus of the α5 helix of Gi1. We also identify an electron density in the extracellular orthosteric site that may represent a putative endogenous ligand of GPR88. These structures, together with mutagenesis studies and an inactive state model obtained from metadynamics simulations, reveal a unique activation mechanism for GPR88 with a set of distinctive structure features and a water-mediated polar network. Overall, our results provide a structural framework for understanding the ligand binding, activation and signaling mechanism of GPR88, and will facilitate the innovative drug discovery for neuropsychiatric disorders and for deorphanization of this receptor.
Collapse
|
32
|
Qian Z, Liu C, Li H, Yang H, Wu J, Liu J, Li Y, Chen X, Xu J, Li X. Osteocalcin Alleviates Lipopolysaccharide-Induced Acute Inflammation via Activation of GPR37 in Macrophages. Biomedicines 2022; 10:1006. [PMID: 35625743 PMCID: PMC9138386 DOI: 10.3390/biomedicines10051006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
The G protein-coupled receptor 37 (GPR37) has been reported to be expressed in macrophages and the activation of GPR37 by its ligand/agonist, and it can regulate macrophage-associated functions and inflammatory responses. Since our previous work identified that osteocalcin (OCN) acts as an endogenous ligand for GPR37 and can elicit various intracellular signals by interacting with GPR37, we thus hypothesized that OCN may also play a functional role in macrophage through the activation of GPR37. To verify the hypothesis, we conducted a series of in vivo and in vitro studies in lipopolysaccharide (LPS)-challenged mice and primary cultured macrophages. Our results reveal that the OCN gene deletion (OCN-/-) and wild type (WT) mice showed comparable death rates and inflammatory cytokines productions in response to a lethal dose of LPS exposure. However, the detrimental effects caused by LPS were significantly ameliorated by exogenous OCN treatments in both WT and OCN-/- mice. Notably, the protective effects of OCN were absent in GPR37-/- mice. In coordination with the in vivo results, our in vitro studies further illustrated that OCN triggered intracellular responses via GPR37 in peritoneal macrophages by regulating the release of inflammatory factors and macrophage phagocytic function. Finally, we exhibited that the adoptive transfer of OCN-treated macrophages from WT mice significantly inhibits the release of pro-inflammatory cytokines in GPR37-/- mice exposed to LPS. Taken together, these findings suggest a protective role of OCN against LPS-caused acute inflammation, by the activation of GPR37 in macrophages, and provide a potential application of the activation of the OCN/GPR37 regulatory axis as a therapeutic strategy for inflammatory diseases.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (Z.Q.); (C.L.); (H.L.); (H.Y.)
| | - Chunhua Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (Z.Q.); (C.L.); (H.L.); (H.Y.)
| | - Hongchao Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (Z.Q.); (C.L.); (H.L.); (H.Y.)
| | - Haiyang Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (Z.Q.); (C.L.); (H.L.); (H.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhao Wu
- Department of Traditional Chinese Medicine, Shenzhen University General Hospital, Shenzhen 518055, China; (J.W.); (J.L.); (J.X.)
| | - Jing Liu
- Department of Traditional Chinese Medicine, Shenzhen University General Hospital, Shenzhen 518055, China; (J.W.); (J.L.); (J.X.)
| | - Yanjiao Li
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, China;
| | - Jianyang Xu
- Department of Traditional Chinese Medicine, Shenzhen University General Hospital, Shenzhen 518055, China; (J.W.); (J.L.); (J.X.)
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (Z.Q.); (C.L.); (H.L.); (H.Y.)
| |
Collapse
|
33
|
Kim SJ, Woo Y, Kim HJ, Goo BS, Nhung TTM, Lee SA, Suh BK, Mun DJ, Kim JH, Park SK. Retinoic acid-induced protein 14 controls dendritic spine dynamics associated with depressive-like behaviors. eLife 2022; 11:77755. [PMID: 35467532 PMCID: PMC9068211 DOI: 10.7554/elife.77755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/24/2022] [Indexed: 11/24/2022] Open
Abstract
Dendritic spines are the central postsynaptic machinery that determines synaptic function. The F-actin within dendritic spines regulates their dynamic formation and elimination. Rai14 is an F-actin-regulating protein with a membrane-shaping function. Here, we identified the roles of Rai14 for the regulation of dendritic spine dynamics associated with stress-induced depressive-like behaviors. Rai14-deficient neurons exhibit reduced dendritic spine density in the Rai14+/- mouse brain, resulting in impaired functional synaptic activity. Rai14 was protected from degradation by complex formation with Tara, and accumulated in the dendritic spine neck, thereby enhancing spine maintenance. Concurrently, Rai14 deficiency in mice altered gene expression profile relevant to depressive conditions and increased depressive-like behaviors. Moreover, Rai14 expression was reduced in the prefrontal cortex of the mouse stress model, which was blocked by antidepressant treatment. Thus, we propose that Rai14-dependent regulation of dendritic spines may underlie the plastic changes of neuronal connections relevant to depressive-like behaviors.
Collapse
Affiliation(s)
- Soo Jeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyun Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seol-Ae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
34
|
Fu X, Wei S, Wang T, Fan H, Zhang Y, Costa CD, Brandner S, Yang G, Pan Y, He Y, Li N. Research Status of the Orphan G Protein Coupled Receptor 158 and Future Perspectives. Cells 2022; 11:cells11081334. [PMID: 35456013 PMCID: PMC9027133 DOI: 10.3390/cells11081334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) remain one of the most successful targets for therapeutic drugs approved by the US Food and Drug Administration (FDA). Many novel orphan GPCRs have been identified by human genome sequencing and considered as putative targets for refractory diseases. Of note, a series of studies have been carried out involving GPCR 158 (or GPR158) since its identification in 2005, predominantly focusing on the characterization of its roles in the progression of cancer and mental illness. However, advances towards an in-depth understanding of the biological mechanism(s) involved for clinical application of GPR158 are lacking. In this paper, we clarify the origin of the GPR158 evolution in different species and summarize the relationship between GPR158 and different diseases towards potential drug target identification, through an analysis of the sequences and substructures of GPR158. Further, we discuss how recent studies set about unraveling the fundamental features and principles, followed by future perspectives and thoughts, which may lead to prospective therapies involving GPR158.
Collapse
Affiliation(s)
- Xianan Fu
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Shoupeng Wei
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Tao Wang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Hengxin Fan
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Ying Zhang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Clive Da Costa
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK;
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK;
| | - Guang Yang
- Department of Burn and Plastic Surgery, Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518039, China;
| | - Yihang Pan
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Yulong He
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
- Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China
- Correspondence: (Y.H.); (N.L.)
| | - Ningning Li
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
- China-UK Institute for Frontier Science, Shenzhen 518107, China
- Correspondence: (Y.H.); (N.L.)
| |
Collapse
|
35
|
Deo N, Redpath G. Serotonin Receptor and Transporter Endocytosis Is an Important Factor in the Cellular Basis of Depression and Anxiety. Front Cell Neurosci 2022; 15:804592. [PMID: 35280519 PMCID: PMC8912961 DOI: 10.3389/fncel.2021.804592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Depression and anxiety are common, debilitating psychiatric conditions affecting millions of people throughout the world. Current treatments revolve around selective serotonin reuptake inhibitors (SSRIs), yet these drugs are only moderately effective at relieving depression. Moreover, up to 30% of sufferers are SSRI non-responders. Endocytosis, the process by which plasma membrane and extracellular constituents are internalized into the cell, plays a central role in the regulation of serotonin (5-hydroxytryptophan, 5-HT) signaling, SSRI function and depression and anxiety pathogenesis. Despite their therapeutic potential, surprisingly little is known about the endocytosis of the serotonin receptors (5-HT receptors) or the serotonin transporter (SERT). A subset of 5-HT receptors are endocytosed by clathrin-mediated endocytosis following serotonin binding, while for the majority of 5-HT receptors the endocytic regulation is not known. SERT internalizes serotonin from the extracellular space into the cell to limit the availability of serotonin for receptor binding and signaling. Endocytosis of SERT reduces serotonin uptake, facilitating serotonin signaling. SSRIs predominantly inhibit SERT, preventing serotonin uptake to enhance 5-HT receptor signaling, while hallucinogenic compounds directly activate specific 5-HT receptors, altering their interaction with endocytic adaptor proteins to induce alternate signaling outcomes. Further, multiple polymorphisms and transcriptional/proteomic alterations have been linked to depression, anxiety, and SSRI non-response. In this review, we detail the endocytic regulation of 5-HT receptors and SERT and outline how SSRIs and hallucinogenic compounds modulate serotonin signaling through endocytosis. Finally, we will examine the deregulated proteomes in depression and anxiety and link these with 5-HT receptor and SERT endocytosis. Ultimately, in attempting to integrate the current studies on the cellular biology of depression and anxiety, we propose that endocytosis is an important factor in the cellular basis of depression and anxiety. We will highlight how a thorough understanding 5-HT receptor and SERT endocytosis is integral to understanding the biological basis of depression and anxiety, and to facilitate the development of a next generation of specific, efficacious antidepressant treatments.
Collapse
Affiliation(s)
- Nikita Deo
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Gregory Redpath
- European Molecular Biology Lab (EMBL) Australia Node in Single Molecule Science, School of Medical Sciences and the Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Gregory Redpath
| |
Collapse
|
36
|
Liccardo F, Luini A, Di Martino R. Endomembrane-Based Signaling by GPCRs and G-Proteins. Cells 2022; 11:528. [PMID: 35159337 PMCID: PMC8834376 DOI: 10.3390/cells11030528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) and G-proteins have a range of roles in many physiological and pathological processes and are among the most studied signaling proteins. A plethora of extracellular stimuli can activate the GPCR and can elicit distinct intracellular responses through the activation of specific transduction pathways. For many years, biologists thought that GPCR signaling occurred entirely on the plasma membrane. However, in recent decades, many lines of evidence have proved that the GPCRs and G-proteins may reside on endomembranes and can start or propagate signaling pathways through the organelles that form the secretory route. How these alternative intracellular signaling pathways of the GPCR and G-proteins influence the physiological and pathological function of the endomembranes is still under investigation. Here, we review the general role and classification of GPCRs and G-proteins with a focus on their signaling pathways in the membrane transport apparatus.
Collapse
Affiliation(s)
- Federica Liccardo
- Cardiovascular Research Institute, University of California San Francisco (UCSF), 555 Mission Bay Blvd., San Francisco, CA 94158, USA;
| | - Alberto Luini
- Istituto per L’endocrinologia e L’oncologia Sperimentale “Gaetano Salvatore” (IEOS)—Sede Secondaria, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Rosaria Di Martino
- Istituto per L’endocrinologia e L’oncologia Sperimentale “Gaetano Salvatore” (IEOS)—Sede Secondaria, Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
37
|
Jarończyk M, Walory J. Novel Molecular Targets of Antidepressants. Molecules 2022; 27:533. [PMID: 35056845 PMCID: PMC8778443 DOI: 10.3390/molecules27020533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Antidepressants target a variety of proteins in the central nervous system (CNS), the most important belonging to the family of G-protein coupled receptors and the family of neurotransmitter transporters. The increasing number of crystallographic structures of these proteins have significantly contributed to the knowledge of their mechanism of action, as well as to the design of new drugs. Several computational approaches such as molecular docking, molecular dynamics, and virtual screening are useful for elucidating the mechanism of drug action and are important for drug design. This review is a survey of molecular targets for antidepressants in the CNS and computer based strategies to discover novel compounds with antidepressant activity.
Collapse
|
38
|
He S, Deng Z, Li Z, Gao W, Zeng D, Shi Y, Zhao N, Xu F, Li T, Li H, Peng D. Signatures of 4 autophagy-related genes as diagnostic markers of MDD and their correlation with immune infiltration. J Affect Disord 2021; 295:11-20. [PMID: 34391068 DOI: 10.1016/j.jad.2021.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a debilitating mental illness and one of the primary causes of suicide. This study attempted to develop and validate a multigene joint signature for diagnosing MDD based on autophagy-related genes (ARGs) and to explore their biological role in MDD. METHODS We downloaded data from the Gene Expression Omnibus (GEO) database and retrieved ARGs from the Human Autophagy Database. The limma package in R software was used to identify differentially expressed genes (DEGs). We used CIBERSORT to analyze differences in the immune microenvironment between MDD patients and controls. Finally, we examined the correlation between diagnostic markers and infiltrating immune cells to better understand the molecular immune mechanism. RESULTS In this study, we identified 20 differentially expressed ARGs in MDD compared to controls. A signature of 4 autophagy-related genes (GPR18, PDK4, NRG1 and EPHB2) was obtained. ROC analysis showed that our model has good diagnostic performance (AUC=0.779, 95% CI=0.709-0.848). Bioinformatics analysis validated that GPR18 may represent a new candidate gene for MDD. Correlation analysis revealed that GPR18 was positively correlated with regulatory T cells (Treg), CD8+ T cells, naive B cells, and memory B cells and negatively correlated with M0 macrophages and neutrophils in MDD. LIMITATIONS This was a second mining of previously published data sets. Independent studies are warranted to validate and improve the clinical utility of the identified signature. CONCLUSIONS We identified a novel four-ARG gene signature that has good diagnostic performance and identified an association between ARG genes and the immune microenvironment in MDD.
Collapse
Affiliation(s)
- Shen He
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifang Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science&Technology, Wuhan, Hubei, China
| | - Zhao Li
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wenqi Gao
- Institute of Maternal and Child Health, Wuhan Children' s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University&Technology, Wuhan, Hubei, China
| | - Duan Zeng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Shi
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Zhao
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Feikang Xu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an, China
| | - Huafang Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Clinical Research Center for Mental Health, China.
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
39
|
Panigrahy D, Gilligan MM, Serhan CN, Kashfi K. Resolution of inflammation: An organizing principle in biology and medicine. Pharmacol Ther 2021; 227:107879. [PMID: 33915177 DOI: 10.1016/j.pharmthera.2021.107879] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
The resolution of inflammation has emerged as a critical endogenous process that protects host tissues from prolonged or excessive inflammation that can become chronic. Failure of the resolution of inflammation is a key pathological mechanism that drives the progression of numerous inflammation-driven diseases. Essential polyunsaturated fatty acid (PUFA)-derived autacoid mediators termed 'specialized pro-resolving mediators' (SPMs) regulate endogenous resolution programs by limiting further neutrophil tissue infiltration and stimulating local immune cell (e.g., macrophage)-mediated clearance of apoptotic polymorphonuclear neutrophils, cellular debris, and microbes, as well as counter-regulating eicosanoid/cytokine production. The SPM superfamily encompasses lipoxins, resolvins, protectins, and maresins. Our understanding of the resolution phase of acute inflammation has grown exponentially in the past three decades with the discovery of novel pro-resolving lipid mediators, their pro-efferocytosis mechanisms, and their receptors. Technological advancement has further facilitated lipid mediator metabolipidomic based profiling of healthy and diseased human tissues, highlighting the extraordinary therapeutic potential of SPMs across a broad array of inflammatory diseases including cancer. As current front-line cancer therapies such as surgery, chemotherapy, and radiation may induce various unwanted side effects such as robust pro-inflammatory and pro-tumorigenic host responses, characterizing SPMs and their receptors as novel therapeutic targets may have important implications as a new direction for host-targeted cancer therapy. Here, we discuss the origins of inflammation resolution, key discoveries and the failure of resolution mechanisms in diseases with an emphasis on cancer, and future directions focused on novel therapeutic applications for this exciting and rapidly expanding field.
Collapse
Affiliation(s)
- Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Molly M Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York, School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| |
Collapse
|
40
|
Watkins LR, Orlandi C. In vitro profiling of orphan G protein coupled receptor (GPCR) constitutive activity. Br J Pharmacol 2021; 178:2963-2975. [PMID: 33784795 DOI: 10.1111/bph.15468] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Members of the GPCR family are targeted by a significant fraction of the available FDA-approved drugs. However, the physiological role and pharmacological properties of many GPCRs remain unknown, representing untapped potential in drug design. Of particular interest are ~100 less-studied GPCRs known as orphans because their endogenous ligands are unknown. Intriguingly, disease-causing mutations identified in patients, together with animal studies, have demonstrated that many orphan receptors play crucial physiological roles and, thus, represent attractive drug targets. EXPERIMENTAL APPROACH The majority of deorphanized GPCRs demonstrate coupling to Gi/o . However, a limited number of techniques allow the detection of intrinsically small constitutive activity associated with Gi/o protein activation, which represents a significant barrier in our ability to study orphan GPCR signalling. Using luciferase reporter assays, we effectively detected constitutive Gs , Gq and G12/13 protein signalling by unliganded receptors and introducing various G protein chimeras, we provide a novel, highly sensitive tool capable of identifying Gi/o coupling in unliganded orphan GPCRs. KEY RESULTS Using this approach, we measured the constitutive activity of the entire class C GPCR family that includes eight orphan receptors and a subset of 20 prototypical class A GPCR members, including 11 orphans. Excitingly, this approach illuminated the G protein coupling profile of eight orphan GPCRs (GPR22, GPR137b, GPR88, GPR156, GPR158, GPR179, GPRC5D and GPRC6A) previously linked to pathophysiological processes. CONCLUSION AND IMPLICATIONS We provide a new platform that could be utilized in ongoing studies in orphan receptor signalling and de-orphanization efforts.
Collapse
Affiliation(s)
- Lyndsay R Watkins
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
41
|
Tiwari P, Fanibunda SE, Kapri D, Vasaya S, Pati S, Vaidya VA. GPCR signaling: role in mediating the effects of early adversity in psychiatric disorders. FEBS J 2021; 288:2602-2621. [DOI: 10.1111/febs.15738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Praachi Tiwari
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Sashaina E. Fanibunda
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
- Medical Research Centre Kasturba Health Society Mumbai India
| | - Darshana Kapri
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Shweta Vasaya
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Sthitapranjya Pati
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Vidita A. Vaidya
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| |
Collapse
|
42
|
Liu PI, Chang AC, Lai JL, Lin TH, Tsai CH, Chen PC, Jiang YJ, Lin LW, Huang WC, Yang SF, Tang CH. Melatonin interrupts osteoclast functioning and suppresses tumor-secreted RANKL expression: implications for bone metastases. Oncogene 2021; 40:1503-1515. [PMID: 33452455 DOI: 10.1038/s41388-020-01613-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023]
Abstract
Cancer-related bone erosion occurs frequently in bone metastasis and is associated with severe complications such as chronic bone pain, fractures, and lower survival rates. In recognition of the fact that the darkness hormone melatonin is capable of regulating bone homeostasis, we explored its therapeutic potential in bone metastasis. We found that melatonin directly reduces osteoclast differentiation, bone resorption activity and promotes apoptosis of mature osteoclasts. We also observed that melatonin inhibits RANKL production in lung and prostate cancer cells by downregulating the p38 MAPK pathway, which in turn prevents cancer-associated osteoclast differentiation. In lung and prostate bone metastasis models, twice-weekly melatonin treatment markedly reduced tumor volumes and numbers of osteolytic lesions. Melatonin also substantially lowered the numbers of TRAP-positive osteoclasts in tibia bone marrow and RANKL expression in tumor tissue. These findings show promise for melatonin in the treatment of bone metastases.
Collapse
Affiliation(s)
- Po-I Liu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,Department of General Thoracic Surgery, Asia University Hospital, Taichung, Taiwan
| | - An-Chen Chang
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Jiun-Lin Lai
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Tien-Huang Lin
- Department of Urology, Buddhist Tzu Chi General Hospital Taichung Branch, Taichung, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Po-Chun Chen
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Ya-Jing Jiang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Liang-Wei Lin
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan. .,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan. .,School of Medicine, China Medical University, Taichung, Taiwan. .,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan. .,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
43
|
No changes of expression of GPR56 protein in the parietal cortex, cerebellum, and liver from psychiatric disorders. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2020.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
44
|
Török N, Tanaka M, Vécsei L. Searching for Peripheral Biomarkers in Neurodegenerative Diseases: The Tryptophan-Kynurenine Metabolic Pathway. Int J Mol Sci 2020; 21:E9338. [PMID: 33302404 PMCID: PMC7762583 DOI: 10.3390/ijms21249338] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are multifactorial, initiated by a series of the causative complex which develops into a certain clinical picture. The pathogenesis and disease course vary from patient to patient. Thus, it should be likewise to the treatment. Peripheral biomarkers are to play a central role for tailoring a personalized therapeutic plan for patients who suffered from neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, among others. Nevertheless, the use of biomarkers in clinical practice is still underappreciated and data presented in biomarker research for clinical use is still uncompelling, compared to the abundant data available for drug research and development. So is the case with kynurenines (KYNs) and the kynurenine pathway (KP) enzymes, which have been associated with a wide range of diseases including cancer, autoimmune diseases, inflammatory diseases, neurologic diseases, and psychiatric disorders. This review article discusses current knowledge of KP alterations observed in the central nervous system as well as the periphery, its involvement in pathogenesis and disease progression, and emerging evidence of roles of microbiota in the gut-brain axis, searching for practical peripheral biomarkers which ensure personalized treatment plans for neurodegenerative diseases.
Collapse
Affiliation(s)
- Nóra Török
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.T.); (M.T.)
| | - Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.T.); (M.T.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.T.); (M.T.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
45
|
Takahashi Y, Terada T, Muto Y. Systems Level Analysis and Identification of Pathways and Key Genes Associated with Delirium. Genes (Basel) 2020; 11:genes11101225. [PMID: 33086708 PMCID: PMC7590056 DOI: 10.3390/genes11101225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
Delirium is a complex pathophysiological process, and multiple contributing mechanisms have been identified. However, it is largely unclear how the genes associated with delirium contribute and which of them play key roles. In this study, the genes associated with delirium were retrieved from the Comparative Toxicogenomics Database (CTD) and integrated through a protein-protein interaction (PPI) network. Delirium-associated genes formed a highly interconnected PPI subnetwork, indicating a high tendency to interact and agglomerate. Using the Molecular Complex Detection (MCODE) algorithm, we identified the top two delirium-relevant network modules, M1 and M5, that have the most significant enrichments for the delirium-related gene sets. Functional enrichment analysis showed that genes related to neurotransmitter receptor activity were enriched in both modules. Moreover, analyses with genes located in human accelerated regions (HARs) provided evidence that HAR-Brain genes were overrepresented in the delirium-relevant network modules. We found that four of the HAR-Brain genes, namely APP, PLCB1, NPY, and HTR2A, in the M1 module were highly connected and appeared to exhibit hub properties, which might play vital roles in delirium development. Further understanding of the function of the identified modules and member genes could help to identify therapeutic intervention targets and diagnostic biomarkers for delirium.
Collapse
Affiliation(s)
- Yukiko Takahashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1194, Japan; (Y.T.); (T.T.)
- Department of Adult Nursing (Acute phase), Gifu University School of Medicine, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Tomoyoshi Terada
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1194, Japan; (Y.T.); (T.T.)
- Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Yoshinori Muto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1194, Japan; (Y.T.); (T.T.)
- Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu 501-1193, Japan
- Correspondence: ; Tel.: +81-58-293-3241
| |
Collapse
|