1
|
Ramírez-Patiño R, Avalos-Navarro G, Figuera LE, Varela-Hernández JJ, Bautista-Herrera LA, Muñoz-Valle JF, Gallegos-Arreola MP. Influence of nitric oxide signaling mechanisms in cancer. Int J Immunopathol Pharmacol 2022; 36:3946320221135454. [PMID: 36260949 PMCID: PMC9585559 DOI: 10.1177/03946320221135454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) is a molecule with multiple biological functions that is involved in various pathophysiological processes such as neurotransmission and blood vessel relaxation as well as the endocrine system, immune system, growth factors, and cancer. However, in the carcinogenesis process, it has a dual behavior; at low doses, NO regulates homeostatic functions, while at high concentrations, it promotes tissue damage or acts as an agent for immune defense against microorganisms. Thus, its participation in the carcinogenic process is controversial. Cancer is a multifactorial disease that presents complex behavior. A better understanding of the molecular mechanisms associated with the initiation, promotion, and progression of neoplastic processes is required. Some hypotheses have been proposed regarding the influence of NO in activating oncogenic pathways that trigger carcinogenic processes, because NO might regulate some signaling pathways thought to promote cancer development and more aggressive tumor growth. Additionally, NO inhibits apoptosis of tumor cells, together with the deregulation of proteins that are involved in tissue homeostasis, promoting spreading to other organs and initiating metastatic processes. This paper describes the signaling pathways that are associated with cancer, and how the concentration of NO can serve a beneficial or pathological function in the initiation and promotion of neoplastic events.
Collapse
Affiliation(s)
- R Ramírez-Patiño
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega (CUCIÉNEGA), Universidad de Guadalajara, Ocotlán Jalisco, México
| | - G Avalos-Navarro
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega (CUCIÉNEGA), Universidad de Guadalajara, Ocotlán Jalisco, México
| | - LE Figuera
- División de Génetica, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara Jalisco, México,Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara Jalisco, México
| | - JJ Varela-Hernández
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega (CUCIÉNEGA), Universidad de Guadalajara, Ocotlán Jalisco, México
| | - LA Bautista-Herrera
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingeniería (CUCEI), Universidad de Guadalajara, Guadalajara Jalisco, México
| | - JF Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS) Universidad de Guadalajara, Guadalajara Jalisco, México
| | - MP Gallegos-Arreola
- División de Génetica, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara Jalisco, México,Martha Patricia Gallegos-Arreola, División de Genética CIBO, IMSS, Sierra Mojada 800, Col, Independencia, Guadalajara, Jalisco 44340, México.
| |
Collapse
|
2
|
Camp FA, Brunetti TM, Williams MM, Christenson JL, Sreekanth V, Costello JC, Hay ZLZ, Kedl RM, Richer JK, Slansky JE. Antigens Expressed by Breast Cancer Cells Undergoing EMT Stimulate Cytotoxic CD8 + T Cell Immunity. Cancers (Basel) 2022; 14:4397. [PMID: 36139558 PMCID: PMC9496737 DOI: 10.3390/cancers14184397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Antigenic differences formed by alterations in gene expression and alternative splicing are predicted in breast cancer cells undergoing epithelial to mesenchymal transition (EMT) and the reverse plasticity known as MET. How these antigenic differences impact immune interactions and the degree to which they can be exploited to enhance immune responses against mesenchymal cells is not fully understood. We utilized a master microRNA regulator of EMT to alter mesenchymal-like EO771 mammary carcinoma cells to a more epithelial phenotype. A computational approach was used to identify neoantigens derived from the resultant differentially expressed somatic variants (SNV) and alternative splicing events (neojunctions). Using whole cell vaccines and peptide-based vaccines, we find superior cytotoxicity against the more-epithelial cells and explore the potential of neojunction-derived antigens to elicit T cell responses through experiments designed to validate the computationally predicted neoantigens. Overall, results identify EMT-associated splicing factors common to both mouse and human breast cancer cells as well as immunogenic SNV- and neojunction-derived neoantigens in mammary carcinoma cells.
Collapse
Affiliation(s)
- Faye A. Camp
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Tonya M. Brunetti
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michelle M. Williams
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jessica L. Christenson
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Varsha Sreekanth
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - James C. Costello
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Zachary L. Z. Hay
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ross M. Kedl
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jennifer K. Richer
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jill E. Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Abstract
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease, worldwide. The molecular pathogenesis of NAFLD is complex, involving numerous signalling molecules including microRNAs (miRNAs). Dysregulation of miRNA expression is associated with hepatic inflammation, fibrosis and hepatocellular carcinoma. Although miRNAs are also critical to the cellular response to vitamin D, mediating regulation of the vitamin D receptor (VDR) and vitamin D’s anticancer effects, a role for vitamin D regulated miRNAs in NAFLD pathogenesis has been relatively unexplored. Therefore, this review aimed to critically assess the evidence for a potential subset of miRNAs that are both dysregulated in NAFLD and modulated by vitamin D. Comprehensive review of 89 human studies identified 25 miRNAs found dysregulated in more than one NAFLD study. In contrast, only 17 studies, including a protocol for a trial in NAFLD, had examined miRNAs in relation to vitamin D status, response to supplementation, or vitamin D in the context of the liver. This paper summarises these data and reviews the biological roles of six miRNAs (miR-21, miR-30, miR-34, miR-122, miR-146, miR-200) found dysregulated in multiple independent NAFLD studies. While modulation of miRNAs by vitamin D has been understudied, integrating the data suggests seven vitamin D modulated miRNAs (miR-27, miR-125, miR-155, miR-192, miR-223, miR-375, miR-378) potentially relevant to NAFLD pathogenesis. Our summary tables provide a significant resource to underpin future hypothesis-driven research, and we conclude that the measurement of serum and hepatic miRNAs in response to vitamin D supplementation in larger trials is warranted.
Collapse
|
4
|
Sigurdardottir AK, Jonasdottir AS, Asbjarnarson A, Helgudottir HR, Gudjonsson T, Traustadottir GA. Peroxidasin Enhances Basal Phenotype and Inhibits Branching Morphogenesis in Breast Epithelial Progenitor Cell Line D492. J Mammary Gland Biol Neoplasia 2021; 26:321-338. [PMID: 34964086 PMCID: PMC8858314 DOI: 10.1007/s10911-021-09507-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
The human breast is composed of terminal duct lobular units (TDLUs) that are surrounded by stroma. In the TDLUs, basement membrane separates the stroma from the epithelial compartment, which is divided into an inner layer of luminal epithelial cells and an outer layer of myoepithelial cells. Stem cells and progenitor cells also reside within the epithelium and drive a continuous cycle of gland remodelling that occurs throughout the reproductive period. D492 is an epithelial cell line originally isolated from the stem cell population of the breast and generates both luminal and myoepithelial cells in culture. When D492 cells are embedded into 3D reconstituted basement membrane matrix (3D-rBM) they form branching colonies mimicking the TDLUs of the breast, thereby providing a well-suited in vitro model for studies on branching morphogenesis and breast development. Peroxidasin (PXDN) is a heme-containing peroxidase that crosslinks collagen IV with the formation of sulfilimine bonds. Previous studies indicate that PXDN plays an integral role in basement membrane stabilisation by crosslinking collagen IV and as such contributes to epithelial integrity. Although PXDN has been linked to fibrosis and cancer in some organs there is limited information on its role in development, including in the breast. In this study, we demonstrate expression of PXDN in breast epithelium and stroma and apply the D492 cell line to investigate the role of PXDN in cell differentiation and branching morphogenesis in the human breast. Overexpression of PXDN induced basal phenotype in D492 cells, loss of plasticity and inhibition of epithelial-to-mesenchymal transition as is displayed by complete inhibition of branching morphogenesis in 3D culture. This is supported by results from RNA-sequencing which show significant enrichment in genes involved in epithelial differentiation along with significant negative enrichment of EMT factors. Taken together, we provide evidence for a novel role of PXDN in breast epithelial differentiation and mammary gland development.
Collapse
Affiliation(s)
- Anna Karen Sigurdardottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Arna Steinunn Jonasdottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Arni Asbjarnarson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Hildur Run Helgudottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Haematology, Landspitali - University Hospital, Reykjavik, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
5
|
Angiulli F, Colombo T, Fassetti F, Furfaro A, Paci P. Mining sponge phenomena in RNA expression data. J Bioinform Comput Biol 2021; 20:2150022. [PMID: 34794369 DOI: 10.1142/s0219720021500220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the last few years, the interactions among competing endogenous RNAs (ceRNAs) have been recognized as a key post-transcriptional regulatory mechanism in cell differentiation, tissue development, and disease. Notably, such sponge phenomena substracting active microRNAs from their silencing targets have been recognized as having a potential oncosuppressive, or oncogenic, role in several cancer types. Hence, the ability to predict sponges from the analysis of large expression data sets (e.g. from international cancer projects) has become an important data mining task in bioinformatics. We present a technique designed to mine sponge phenomena whose presence or absence may discriminate between healthy and unhealthy populations of samples in tumoral or normal expression data sets, thus providing lists of candidates potentially relevant in the pathology. With this aim, we search for pairs of elements acting as ceRNA for a given miRNA, namely, we aim at discovering miRNA-RNA pairs involved in phenomena which are clearly present in one population and almost absent in the other one. The results on tumoral expression data, concerning five different cancer types, confirmed the effectiveness of the approach in mining interesting knowledge. Indeed, 32 out of 33 miRNAs and 22 out of 25 protein-coding genes identified as top scoring in our analysis are corroborated by having been similarly associated with cancer processes in independent studies. In fact, the subset of miRNAs selected by the sponge analysis results in a significant enrichment of annotation for the KEGG32 pathway "microRNAs in cancer" when tested with the commonly used bioinformatic resource DAVID. Moreover, often the cancer datasets where our sponge analysis identified a miRNA as top scoring match the one reported already in the pertaining literature.
Collapse
|
6
|
Chao CH, Wang CY, Wang CH, Chen TW, Hsu HY, Huang HW, Li CW, Mai RT. Mutant p53 Attenuates Oxidative Phosphorylation and Facilitates Cancer Stemness through Downregulating miR-200c-PCK2 Axis in Basal-Like Breast Cancer. Mol Cancer Res 2021; 19:1900-1916. [PMID: 34312289 DOI: 10.1158/1541-7786.mcr-21-0098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/17/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
miR-200c is a tumor suppressor miRNA that plays a critical role in regulating epithelial phenotype and cancer stemness. p53 deficiency downregulates the expression of miR-200c and leads to epithelial-mesenchymal transition (EMT) and stemness phenotype, which contributes to the progression of breast cancers. In this study, we demonstrated that CRISPR-mediated knockout (KO) of miR-200c induces metabolic features similar to the metabolic rewiring caused by p53 hot-spot mutations, and that impairing this metabolic reprogramming interferes with miR-200c deficiency-induced stemness and transformation. Moreover, restoring miR-200c expression compromised EMT, stem-cell properties, and the Warburg effect caused by p53 mutations, suggesting that mutant p53 (MTp53) induces EMT-associated phenotypes and metabolic reprogramming by downregulating miR-200c. Mechanistically, decreased expression of PCK2 was observed in miR-200c- and p53-deficient mammary epithelial cells, and forced expression of miR-200c restored PCK2 in p53 mutant-expressing cells. Reduced PCK2 expression not only led to attenuated oxidative phosphorylation (OXPHOS) and increased stemness in normal mammary epithelial cells but also compromised the enhanced OXPHOS and suppression of cancer stemness exerted by miR-200c in p53 mutation-bearing basal-like breast cancer (BLBC) cells. Clinically, PCK2 expression is negatively associated with EMT markers and is downregulated in basal-like subtype and cases with low miR-200c expression or p53 mutation. Notably, low expression of PCK2 is associated with poor overall survival (OS) in patients with breast cancer. IMPLICATIONS: Together, our results suggest that p53 and miR-200c regulate OXPHOS and stem/cancer stemness through PCK2, and loss of the p53-miR-200c-PCK2 axis might provide metabolic advantages that facilitate cancer stemness, leading to the progression of BLBCs.
Collapse
Affiliation(s)
- Chi-Hong Chao
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices, National Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chen-Yun Wang
- Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices, National Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Cing-Hong Wang
- Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices, National Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ting-Wen Chen
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices, National Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Institute of Bioinformatics and Systems Biology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Huai-Yu Hsu
- Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices, National Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hao-Wei Huang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices, National Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ru-Tsun Mai
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices, National Chiao Tung University, Hsinchu, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
7
|
Billa PA, Faulconnier Y, Ye T, Bourdon C, Pires JAA, Leroux C. Nutrigenomic analyses reveal miRNAs and mRNAs affected by feed restriction in the mammary gland of midlactation dairy cows. PLoS One 2021; 16:e0248680. [PMID: 33857151 PMCID: PMC8049318 DOI: 10.1371/journal.pone.0248680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/03/2021] [Indexed: 12/23/2022] Open
Abstract
The objective of this study was to investigate the effects of feed restriction on mammary miRNAs and coding gene expression in midlactation cows. Five Holstein cows and 6 Montbéliarde cows underwent 6 days of feed restriction, during which feed allowance was reduced to meet 50% of their net energy for lactation requirements. Mammary biopsies were performed before and at the end of the restriction period. Mammary miRNA and mRNA analyses were performed using high-throughput sequencing and microarray analyses, respectively. Feed restriction induced a negative energy balance and decreased milk production and fat and protein yields in both breeds. Feed restriction modified the expression of 27 miRNAs and 374 mRNAs in mammary glands from Holstein cows, whereas no significant miRNA change was observed in Montbéliarde cows. Among the 27 differentially expressed miRNAs, 8 miRNAs were associated with dairy QTL. Analysis of target genes indicate that the 8 most abundantly expressed miRNAs control transcripts related to lipid metabolism, mammary remodeling and stress response. A comparison between the mRNAs targeted by the 8 most strongly expressed miRNAs and 374 differentially expressed mRNAs identified 59 mRNAs in common. The bioinformatic analyses of these 59 mRNAs revealed their implication in lipid metabolism and endothelial cell proliferation. These effects of feed restriction on mammary miRNAs and mRNAs observed in Holstein cows suggest a potential role of miRNAs in mammary structure and lipid biosynthesis that could explain changes in milk production and composition.
Collapse
Affiliation(s)
- Pierre-Alexis Billa
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Yannick Faulconnier
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Céline Bourdon
- INRAE, AgroParisTech, Université Paris-Saclay, UMR Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - José A. A. Pires
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Christine Leroux
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
- * E-mail:
| |
Collapse
|
8
|
Nair MG, Somashekaraiah VM, Ramamurthy V, Prabhu JS, Sridhar TS. miRNAs: Critical mediators of breast cancer metastatic programming. Exp Cell Res 2021; 401:112518. [PMID: 33607102 DOI: 10.1016/j.yexcr.2021.112518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
MicroRNA mediated aberrant gene regulation has been implicated in several diseases including cancer. Recent research has highlighted the role of epigenetic modulation of the complex process of breast cancer metastasis by miRNAs. miRNAs play a crucial role in the process of metastatic evolution by facilitating alterations in the phenotype of tumor cells and the tumor microenvironment that promote this process. They act as critical determinants of the multi-step progression starting from carcinogenesis all the way to organotropism. In this review, we focus on the current understanding of the compelling role of miRNAs in breast cancer metastasis.
Collapse
Affiliation(s)
- Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India.
| | | | - Vishakha Ramamurthy
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - T S Sridhar
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| |
Collapse
|
9
|
Li J, Pan C, Tang C, Tan W, Zhang W, Guan J. miR-184 targets TP63 to block idiopathic pulmonary fibrosis by inhibiting proliferation and epithelial-mesenchymal transition of airway epithelial cells. J Transl Med 2021; 101:142-154. [PMID: 32989231 PMCID: PMC7815506 DOI: 10.1038/s41374-020-00487-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 11/09/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) of epithelium and airway epithelial cell proliferation disorder are key events in idiopathic pulmonary fibrosis (IPF) pathogenesis. During EMT, epithelial cell adhesion molecules (EpCAM, such as E-cadherin) are downregulated, cytokeratin cytoskeletal transforms into vimentin-based cytoskeleton, and the epithelial cells acquire mesenchymal morphology. In the present study, we show abnormal upregulation of tumor protein p63 (TP63) and downregulation of miR-184 in IPF. Transforming growth factor beta 1 (TGF-β1) stimulation of BEAS-2B and A549 cell lines significantly increased the protein levels of Tp63, alpha-smooth muscle actin (α-SMA), and vimentin, but decreased EpCAM protein levels, and promoted viability of both BEAS-2B and A549 cell lines. TP63 knockdown in BEAS-2B and A549 cell lines significantly attenuated above-described TGF-β1-induced fibrotic changes. miR-184 targeted TP63 3'-UTR to inhibit Tp63 expression. miR-184 overexpression within BEAS-2B and A549 cell lines also attenuated TGF-β1-induced fibrotic changes. miR-184 overexpression attenuated bleomycin-induced pulmonary fibrosis in mice. Moreover, TP63 overexpression aggravated TGF-β1-stimulated fibrotic alterations within BEAS-2B and A549 cells and significantly reversed the effects of miR-184 overexpression, indicating miR-184 relieves TGF-β1-stimulated fibrotic alterations within BEAS-2B and A549 cells by targeting TP63, while TP63 overexpression reversed miR-184 cellular functions. In conclusion, the miR-184/TP63 axis modulates the TGF-β1-induced fibrotic alterations in epithelial cell lines and bleomycin-induced pulmonary fibrosis in mice. Therefore, these results confirm that the miR-184/TP63 axis is involved in IPF progression.
Collapse
Affiliation(s)
- Jianmin Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| | - Chanyuan Pan
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| | - Chao Tang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| | - Wenwen Tan
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| | - Weiwei Zhang
- Department of Traditional Chinese Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| | - Jing Guan
- Department of Science and Education, The First Hospital of Changsha, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
10
|
Bao J, Li X, Li Y, Huang C, Meng X, Li J. MicroRNA-141-5p Acts as a Tumor Suppressor via Targeting RAB32 in Chronic Myeloid Leukemia. Front Pharmacol 2020; 10:1545. [PMID: 32038235 PMCID: PMC6987442 DOI: 10.3389/fphar.2019.01545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-141-5p (miR-141-5p), an important member of the miR-200 family, has been reported to be involved in cellular proliferation, migration, invasion, and drug resistance in different kinds of human malignant tumors. However, the role and function of miR-141-5p in chronic myeloid leukemia (CML) are unclear. In this current study, we found that the level of miR-141-5p was significantly decreased in peripheral blood cells from CML patients compared with normal blood cells and human leukemic cell line (K562 cells) compared with normal CD34+ cells, but was remarkably elevated in patients after treatment with nilotinib or imatinib. Suppression of miR-141-5p promoted K562 cell proliferation and migration in vitro. As expected, overexpression of miR-141-5p weakened K562 cell proliferation, migration, and promoted cell apoptosis. A xenograft model in nude mice showed that overexpression of miR-141-5p markedly suppressed tumor growth in vivo. Mechanistic studies suggested that RAB32 was the potential target of miR-141-5p, and silencing of RAB32 suppressed the proliferation and migration of K562 cells and promoted cell apoptosis. Taken together, our study demonstrates that miR-141-5p plays an important role in the activation of K562 cells in vitro and may act as a tumor suppressor via targeting RAB32 in the development of CML.
Collapse
Affiliation(s)
- Jing Bao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaofeng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yuhuan Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
11
|
Maleki S, Poujade FA, Bergman O, Gådin JR, Simon N, Lång K, Franco-Cereceda A, Body SC, Björck HM, Eriksson P. Endothelial/Epithelial Mesenchymal Transition in Ascending Aortas of Patients With Bicuspid Aortic Valve. Front Cardiovasc Med 2019; 6:182. [PMID: 31921896 PMCID: PMC6928128 DOI: 10.3389/fcvm.2019.00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is the progressive enlargement of the aorta due to destructive changes in the connective tissue of the aortic wall. Aneurysm development is silent and often first manifested by the drastic events of aortic dissection or rupture. As yet, therapeutic agents that halt or reverse the process of aortic wall deterioration are absent, and the only available therapeutic recommendation is elective prophylactic surgical intervention. Being born with a bicuspid instead of the normal tricuspid aortic valve (TAV) is a major risk factor for developing aneurysm in the ascending aorta later in life. Although the pathophysiology of the increased aneurysm susceptibility is not known, recent studies are suggestive of a transformation of aortic endothelium into a more mesenchymal state i.e., an endothelial-to-mesenchymal transition in these individuals. This process involves the loss of endothelial cell features, resulting in junction instability and enhanced vascular permeability of the ascending aorta that may lay the ground for increased aneurysm susceptibility. This finding differentiates and further emphasizes the specific characteristics of aneurysm development in individuals with a bicuspid aortic valve (BAV). This review discusses the possibility of a developmental fate shared between the aortic endothelium and aortic valves. It further speculates about the impact of aortic endothelium phenotypic shift on aneurysm development in individuals with a BAV and revisits previous studies in the light of the new findings.
Collapse
Affiliation(s)
- Shohreh Maleki
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Flore-Anne Poujade
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Otto Bergman
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Jesper R Gådin
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Nancy Simon
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Karin Lång
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Simon C Body
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hanna M Björck
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Per Eriksson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
12
|
Zeng X, Qu X, Zhao C, Xu L, Hou K, Liu Y, Zhang N, Feng J, Shi S, Zhang L, Xiao J, Guo Z, Teng Y, Che X. FEN1 mediates miR-200a methylation and promotes breast cancer cell growth via MET and EGFR signaling. FASEB J 2019; 33:10717-10730. [PMID: 31266372 DOI: 10.1096/fj.201900273r] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Flap endonuclease 1 (FEN1) is recognized as a pivotal factor in DNA replication, long-patch excision repair, and telomere maintenance. Excessive FEN1 expression has been reported to be closely associated with cancer progression, but the specific mechanism has not yet been explored. In the present study, we demonstrated that FEN1 promoted breast cancer cell proliferation via an epigenetic mechanism of FEN1-mediated up-regulation of DNA methyltransferase (DNMT)1 and DNMT3a. FEN1 was proved to interact with DNMT3a through proliferating cell nuclear antigen (PCNA) to suppress microRNA (miR)-200a-5p expression mediated by methylation. Furthermore, miR-200a-5p was identified to repress breast cancer cell proliferation by inhibiting the expression of its target genes, hepatocyte growth factor (MET), and epidermal growth factor receptor (EGFR). Overall, our data surprisingly demonstrate that FEN1 promotes breast cancer cell growth via the formation of FEN1/PCNA/DNMT3a complex to inhibit miR-200a expression by DNMT-mediated methylation and to recover the target genes expression of miR-200a, MET, and EGFR. The novel epigenetic mechanism of FEN1 on proliferation promotion provides a significant clue that FEN1 might serve as a predictive biomarker and therapeutic target for breast cancer.-Zeng, X., Qu, X., Zhao, C., Xu, L., Hou, K., Liu, Y., Zhang, N., Feng, J., Shi, S., Zhang, L., Xiao, J., Guo, Z., Teng, Y., Che, X. FEN1 mediates miR-200a methylation and promotes breast cancer cell growth via MET and EGFR signaling.
Collapse
Affiliation(s)
- Xue Zeng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Department of Radiotherapy, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Chenyang Zhao
- The Research Center for Medical Genomics, China Medical University, Shenyang, China
| | - Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Na Zhang
- Department of Radiotherapy, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jing Feng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Sha Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Lingyun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Jiawen Xiao
- Department of Medical Oncology, Shenyang Fifth People Hospital, Shenyang, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yuee Teng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Amorim M, Lobo J, Fontes-Sousa M, Estevão-Pereira H, Salta S, Lopes P, Coimbra N, Antunes L, Palma de Sousa S, Henrique R, Jerónimo C. Predictive and Prognostic Value of Selected MicroRNAs in Luminal Breast Cancer. Front Genet 2019; 10:815. [PMID: 31572437 PMCID: PMC6749838 DOI: 10.3389/fgene.2019.00815] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BrC) is the most frequent malignancy and the leading cause of cancer death among women worldwide. Approximately 70% of BrC are classified as luminal-like subtype, expressing the estrogen receptor. One of the most common and effective adjuvant therapies for this BrC subtype is endocrine therapy. However, its effectiveness is limited, with relapse occurring in up to 40% of patients. Because microRNAs have been associated with several mechanisms underlying endocrine resistance and sensitivity, they may serve as predictive and/or prognostic biomarkers in this setting. Hence, the main goal of this study was to investigate whether miRNAs deregulated in endocrine-resistant BrC may be clinically relevant as prognostic and predictive biomarkers in patients treated with adjuvant endocrine therapy. A global expression assay allowed for the identification of microRNAs differentially expressed between luminal BrC patients with or without recurrence after endocrine adjuvant therapy. Then, six microRNAs were chosen for validation using quantitative reverse transcription polymerase chain reaction in a larger set of tissue samples. Thus, miR-30c-5p, miR-30b-5p, miR-182-5p, and miR-200b-3p were found to be independent predictors of clinical benefit from endocrine therapy. Moreover, miR-182-5p and miR-200b-3p displayed independent prognostic value for disease recurrence in luminal BrC patients after endocrine therapy. Our results indicate that selected miRNAs’ panels may constitute clinically useful ancillary tools for management of luminal BrC patients. Nevertheless, additional validation, ideally in a multicentric setting, is required to confirm our findings.
Collapse
Affiliation(s)
- Maria Amorim
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Mário Fontes-Sousa
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Medical Oncology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Helena Estevão-Pereira
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Sofia Salta
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Paula Lopes
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Nuno Coimbra
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Luís Antunes
- Department of Epidemiology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Susana Palma de Sousa
- Department of Medical Oncology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
14
|
YKL-40/CHI3L1 facilitates migration and invasion in HER2 overexpressing breast epithelial progenitor cells and generates a niche for capillary-like network formation. In Vitro Cell Dev Biol Anim 2019; 55:838-853. [PMID: 31482369 PMCID: PMC6881255 DOI: 10.1007/s11626-019-00403-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a developmental event that is hijacked in some diseases such as fibrosis and cancer. In cancer, EMT has been linked to increased invasion and metastasis and is generally associated with a poor prognosis. In this study, we have compared phenotypic and functional differences between two isogenic cell lines with an EMT profile: D492M and D492HER2 that are both derived from D492, a breast epithelial cell line with stem cell properties. D492M is non-tumorigenic while D492HER2 is tumorigenic. Thus, the aim of this study was to analyze the expression profile of these cell lines, identify potential oncogenes, and evaluate their effects on cellular phenotype. We performed transcriptome and secretome analyses of D492M and D492HER2 and verified expression of selected genes at the RNA and protein level. One candidate, YKL-40 (also known as CHI3L1), was selected for further studies due to its differential expression between D492M and D492HER2, being considerably higher in D492HER2. YKL-40 has been linked to chronic inflammation diseases and cancer, yet its function is not fully understood. Knock-down experiments of YKL-40 in D492HER2 resulted in reduced migration and invasion as well as reduced ability to induce angiogenesis in an in vitro assay, plus changes in the EMT-phenotype. In summary, our data suggest that YKL-40 may provide D492HER2 with increased aggressiveness, supporting cancer progression and facilitating angiogenesis.
Collapse
|
15
|
Nourmohammadi B, Tafsiri E, Rahimi A, Nourmohammadi Z, Daneshvar Kakhaki A, Cho W, Karimipoor M. Expression of miR-9 and miR-200c, ZEB1, ZEB2 and E-cadherin in Non-Small Cell Lung Cancers in Iran. Asian Pac J Cancer Prev 2019; 20:1633-1639. [PMID: 31244281 PMCID: PMC7021597 DOI: 10.31557/apjcp.2019.20.6.1633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) exert a critical influence on physiological and pathological processes through post-transcriptional modification of their mRNA targets. They play important roles in tumorigenesis and are considered to be potential diagnostic and prognostic biomarkers with various cancers. MiR-200c and miR-9 are regulatory elements that can have dual impacts as oncogenes and/or tumor suppressor genes. MiR-200c regulates two transcription factors, ZEB1 and ZEB2, while miR-9 is a regulatory factor for the E-cadherin protein which has a critical function in cell-cell junctions and is inhibited by two transcription factors ZEB1 and ZEB2. In this study, expression levels of miR-200c and miR-9, ZEB-1, ZEB-2 and E-cadherin were assessed in 30 non-small cell lung cancers (NSCLCs) by real-time qPCR. MiR-9 was down-regulated significantly in tumor tissues compared to normal adjacent tissues, while there was no significant change in expression level of miR-200c. On the other hand, ZEB1 demonstrated significant increase and ZEB2a decrease at the mRNA level. These results indicate roles for miR-9 and ZEB1 in genesis of lung cancer, although clinico-pathological associations were not evident. Further studies are necessary to assess implications for treatment of lung cancer.
Collapse
Affiliation(s)
- Bahareh Nourmohammadi
- Department of Molecular Medicine, Biotechnology Research center, Pasteur Institute of Iran, Tehran, Iran. ,Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elham Tafsiri
- Department of Molecular Medicine, Biotechnology Research center, Pasteur Institute of Iran, Tehran, Iran.
| | - Amirabbas Rahimi
- Department of Molecular Medicine, Biotechnology Research center, Pasteur Institute of Iran, Tehran, Iran.
| | - Zahra Nourmohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abolghasem Daneshvar Kakhaki
- Tracheal Diseases Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Morteza Karimipoor
- Department of Molecular Medicine, Biotechnology Research center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
16
|
Briem E, Ingthorsson S, Traustadottir GA, Hilmarsdottir B, Gudjonsson T. Application of the D492 Cell Lines to Explore Breast Morphogenesis, EMT and Cancer Progression in 3D Culture. J Mammary Gland Biol Neoplasia 2019; 24:139-147. [PMID: 30684066 DOI: 10.1007/s10911-018-09424-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
The human female breast gland is composed of branching epithelial ducts that extend from the nipple towards the terminal duct lobular units (TDLUs), which are the functional, milk-producing units of the gland and the site of origin of most breast cancers. The epithelium of ducts and TDLUs is composed of an inner layer of polarized luminal epithelial cells and an outer layer of contractile myoepithelial cells, separated from the vascular-rich stroma by a basement membrane. The luminal- and myoepithelial cells share an origin and in recent years, there has been increasing understanding of how these cell types interact and how they contribute to breast cancer. Accumulating evidence links stem/or progenitor cells in the mammary/breast gland to breast cancer. In that regard, much knowledge has been gained from studies in mice due to specific strains that have allowed for gene knock out/in studies and lineage tracing of cellular fates. However, there is a large histologic difference between the human female breast gland and the mouse mammary gland that necessitates that research needs to be done on human material where primary cultures are important due to their close relation to the tissue of origin. However, due to difficulties of long-term cultures and lack of access to material, human cell lines are of great importance to bridge the gap between studies on mouse mammary gland and human primary breast cells. In this review, we describe D492, a breast epithelial progenitor cell line that can generate both luminal- and myoepithelial cells in culture, and in 3D culture it forms branching ducts similar to TDLUs. We have applied D492 and its daughter cell lines to explore cellular and molecular mechanisms of branching morphogenesis and cellular plasticity including EMT and MET. In addition to discussing the application of D492 in studying normal morphogenesis, we will also discuss how this cell line has been used to study breast cancer progression.
Collapse
Affiliation(s)
- Eirikur Briem
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegi 16, 101, Reykjavík, Iceland
| | - Saevar Ingthorsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegi 16, 101, Reykjavík, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegi 16, 101, Reykjavík, Iceland
| | - Bylgja Hilmarsdottir
- Department of Tumor Biology, The Norwegian Radium Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegi 16, 101, Reykjavík, Iceland.
- Department of Laboratory Hematology, Landspitali - University Hospital, Reykjavík, Iceland.
| |
Collapse
|
17
|
Briem E, Budkova Z, Sigurdardottir AK, Hilmarsdottir B, Kricker J, Timp W, Magnusson MK, Traustadottir GA, Gudjonsson T. MiR-203a is differentially expressed during branching morphogenesis and EMT in breast progenitor cells and is a repressor of peroxidasin. Mech Dev 2019; 155:34-47. [PMID: 30508578 DOI: 10.1016/j.mod.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/01/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022]
Abstract
MicroRNAs regulate developmental events such as branching morphogenesis, epithelial to mesenchymal transition (EMT) and its reverse process mesenchymal to epithelial transition (MET). In this study, we performed small RNA sequencing of a breast epithelial progenitor cell line (D492), and its mesenchymal derivative (D492M) cultured in three-dimensional microenvironment. Among the most downregulated miRNAs in D492M was miR-203a, a miRNA that plays an important role in epithelial differentiation. Increased expression of miR-203a was seen in D492, concomitant with increased complexity of branching. When miR-203a was overexpressed in D492M, a partial reversion towards epithelial phenotype was seen. Gene expression analysis of D492M and D492MmiR-203a revealed peroxidasin, a collagen IV cross-linker, as the most significantly downregulated gene in D492MmiR-203a. Collectively, we demonstrate that miR-203a expression temporally correlates with branching morphogenesis and is suppressed in D492M. Overexpression of miR-203a in D492M induces a partial MET and reduces the expression of peroxidasin. Furthermore, we demonstrate that miR-203a is a novel repressor of peroxidasin. MiR-203-peroxidasin axis may be an important regulator in branching morphogenesis, EMT/MET and basement membrane remodeling.
Collapse
Affiliation(s)
- Eirikur Briem
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Zuzana Budkova
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Anna Karen Sigurdardottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Bylgja Hilmarsdottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland; Department of Tumor Biology, The Norwegian Radium Hospital, Oslo, Norway
| | - Jennifer Kricker
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, USA
| | - Magnus Karl Magnusson
- Department of Laboratory Hematology, Landspitali - University Hospital, Iceland; Department of Pharmacology and Toxicology, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland; Department of Laboratory Hematology, Landspitali - University Hospital, Iceland.
| |
Collapse
|
18
|
Zhou S, He Y, Yang S, Hu J, Zhang Q, Chen W, Xu H, Zhang H, Zhong S, Zhao J, Tang J. The regulatory roles of lncRNAs in the process of breast cancer invasion and metastasis. Biosci Rep 2018; 38:BSR20180772. [PMID: 30217944 PMCID: PMC6165837 DOI: 10.1042/bsr20180772] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/03/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022] Open
Abstract
Breast cancer (BC) is the most common cancer and principal cause of death among females worldwide. Invasion and metastasis are major causes which influence the survival and prognosis of BC. Therefore, to understand the molecule mechanism underlying invasion and metastasis is paramount for developing strategies to improve survival and prognosis in BC patients. Recent studies have reported that long non-coding RNAs (lncRNAs) play critical roles in the regulation of BC invasion and metastasis through a variety of molecule mechanisms that endow cells with an aggressive phenotype. In this article, we focused on the function of lncRNAs on BC invasion and metastasis through participating in epithelial-to-mesenchymal transition, strengthening cancer stem cells generation, serving as competing endogenous lncRNAs, influencing multiple signaling pathways as well as regulating expressions of invasion-metastasis related factors, including cells adhesion molecules, extracellular matrix, and matrix metallo-proteinases. The published work described has provided a better understanding of the mechanisms underpinning the contribution of lncRNAs to BC invasion and metastasis, which may lay the foundation for the development of new strategies to prevent BC invasion and metastasis.
Collapse
Affiliation(s)
- Siying Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, P.R. China
| | - Yunjie He
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Sujin Yang
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Jiahua Hu
- The Fourth Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Qian Zhang
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Wei Chen
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Hanzi Xu
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Heda Zhang
- Department of General Surgery, School of Medicine, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, P.R. China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Jianhua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Jinhai Tang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P.R. China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, P.R. China
| |
Collapse
|
19
|
Brown CY, Dayan S, Wong SW, Kaczmarek A, Hope CM, Pederson SM, Arnet V, Goodall GJ, Russell D, Sadlon TJ, Barry SC. FOXP3 and miR-155 cooperate to control the invasive potential of human breast cancer cells by down regulating ZEB2 independently of ZEB1. Oncotarget 2018; 9:27708-27727. [PMID: 29963231 PMCID: PMC6021232 DOI: 10.18632/oncotarget.25523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Control of oncogenes, including ZEB1 and ZEB2, is a major checkpoint for preventing cancer, and loss of this control contributes to many cancers, including breast cancer. Thus tumour suppressors, such as FOXP3, which is mutated or lost in many cancer tissues, play an important role in maintaining normal tissue homeostasis. Here we show for the first time that ZEB2 is selectively down regulated by FOXP3 and also by the FOXP3 induced microRNA, miR-155. Interestingly, neither FOXP3 nor miR-155 directly altered the expression of ZEB1. In breast cancer cells repression of ZEB2, independently of ZEB1, resulted in reduced expression of a mesenchymal marker, Vimentin and reduced invasion. However, there was no de-repression of E-cadherin and migration was enhanced. Small interfering RNAs targeting ZEB2 suggest that this was a direct effect of ZEB2 and not FOXP3/miR-155. In normal human mammary epithelial cells, depletion of endogenous FOXP3 resulted in de-repression of ZEB2, accompanied by upregulated expression of vimentin, increased E-cadherin expression and cell morphological changes. We suggest that FOXP3 may help maintain normal breast epithelial characteristics through regulation of ZEB2, and loss of FOXP3 in breast cancer cells results in deregulation of ZEB2.
Collapse
Affiliation(s)
- Cheryl Y. Brown
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Sonia Dayan
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| | - Soon Wei Wong
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Adrian Kaczmarek
- Research Centre for Reproductive Health, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Christopher M. Hope
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
| | - Stephen M. Pederson
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Victoria Arnet
- Gene Regulation Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, 5006 SA, Australia
| | - Gregory J. Goodall
- Gene Regulation Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, 5006 SA, Australia
| | - Darryl Russell
- Research Centre for Reproductive Health, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Timothy J. Sadlon
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| | - Simon C. Barry
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| |
Collapse
|
20
|
Özdemir T. The impact of mir200 on extracellular matrix topography-guided epithelial-to-mesenchymal transition of prostate cancer cells. Turk J Urol 2018; 45:S30-S35. [PMID: 29875037 DOI: 10.5152/tud.2018.55531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/06/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Epithelial to Mesenchymal Transition (EMT) is an important phenomenon that is recently been recognized to play roles on prostate cancer metastasis through both epigenetic and biochemical signaling pathways. Using tissue engineering tools, we recreated a metastatic tumor niche to study the role of mir200 (a small RNA proven to reverse EMT processes) on extracellular matrix (ECM) fiber diameter guided prostate cancer cell EMT. MATERIAL AND METHODS LNCaP cells were cultured on fibrous scaffolds for 48 hours. Role of fiber diameter (0.5 and 5 μm respectively) on cell morphology, viability, metabolic rate and EMT characteristics was assessed. Finally, the cells on fibers were transfected with a mir200 precursor to study the synergy between substrate topography and epigenetic signals on EMT of LNCaP prostate cancer cells. RESULTS LNCaP cells formed cell clusters on fibers with 0.5 μm diameter while they form spindle shaped single cells possessing mesenchymal-like morphology when they were cultured on 5 μm diameter polymer fibers. The metabolic rate of cells growing on 5 μm fibers showed a substantial increase at 48 hours compared to flat topography or 0.5 μm- diameter fiber topography. LNCaP morphology is significantly different. Epithelial markers were stained positive on cells growing on small fibers while mesenchymal markers were positive on cells growing on large diameter fibers. mir200 did not alter the observed cell morphology on large diameter fibers. CONCLUSION Our results indicate that substrate topography is the governing signal for LNCaP prostate cancer cells to undergo EMT and mir200 did not reverse the EMT morphology on large diameter fibers.
Collapse
Affiliation(s)
- Tuğba Özdemir
- Department of Genetics and Bioengineering, Gaziosmanpaşa University Faculty of Engineering, Tokat, Turkey
| |
Collapse
|
21
|
Guo R, Hao G, Bao Y, Xiao J, Zhan X, Shi X, Luo L, Zhou J, Chen Q, Wei X. MiR-200a negatively regulates TGF-β1-induced epithelial-mesenchymal transition of peritoneal mesothelial cells by targeting ZEB1/2 expression. Am J Physiol Renal Physiol 2018; 314:F1087-F1095. [PMID: 29357421 DOI: 10.1152/ajprenal.00566.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells was recognized as the key process of peritoneal fibrosis, which is a major cause of peritoneal failure related to peritoneal dialysis (PD), mechanisms underlying these processes remain largely unknown. In this study, we found that miR-200a was significantly downregulated in peritoneal tissues with fibrosis in a rat model of PD. In vitro, transforming growth factor (TGF)-β1-induced EMT, identified by de novo expression of α-smooth muscle actin and a loss of E-cadherin in human peritoneal mesothelial cells (HPMCs), was associated with downregulation of miR-200a but upregulation of zinc finger E-box-binding homeobox 1/2 (ZEB1/2), suggesting a close link between miR-200a and ZEB1/2 in TGF-β1-induced EMT. It was further demonstrated that miR-200a was able to bind to the 3′UTR of ZEB1/2, and overexpression of miR-200a blocked TGF-β1-induced upregulation of ZEB1/2 and, therefore, inhibited EMT and collagen expression. In contrast, overexpression ZEB1/2 blocked miR-200a inhibition of EMT and collagen expression in HMPCs. In conclusion, miR-200a could negatively regulate TGF-β1-induced EMT by targeting ZEB1/2 in peritoneal mesothelial cells. Blockade of EMT in HPMCS indicates the therapeutic potential of miR-200a as a treatment for peritoneal fibrosis associated with PD.
Collapse
Affiliation(s)
- Runsheng Guo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guojun Hao
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Nephrology, Zhongshan City People’s Hospital/Zhongshan Hospital of Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Yi Bao
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Xiao
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaojiang Zhan
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xintian Shi
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Laimin Luo
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhou
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qinkai Chen
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xin Wei
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
22
|
Yang J, Zhou CZ, Zhu R, Fan H, Liu XX, Duan XY, Tang Q, Shou ZX, Zuo DM. miR-200b-containing microvesicles attenuate experimental colitis associated intestinal fibrosis by inhibiting epithelial-mesenchymal transition. J Gastroenterol Hepatol 2017; 32:1966-1974. [PMID: 28370348 DOI: 10.1111/jgh.13797] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 03/06/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Epithelial-mesenchymal transition (EMT), characterized by the decrease of E-cadherin (E-Cad) and increase in vimentin and alpha-smooth muscle actin (α-SMA), was demonstrated to participate in inflammatory bowel disease-related fibrosis. miR-200b plays an anti-fibrosis role in inhibiting EMT by targeting ZEB1 and ZEB2. But the stability of exogenous miR-200b in blood limits its application. Microvesicles (MVs), which can transfer miRNAs among cells and prevent them from degradation, may provide an excellent transport system for the delivery of miR-200b in the treatment of fibrosis. METHODS Bone marrow mesenchymal stem cells (BMSCs) were transfected with lentivirus to overexpress miR-200b. The MVs packaged with miRNA-200b were harvested for the anti-fibrotic treatment using in vitro (transforming growth factor beta 1-mediated EMT in intestinal epithelial cells: IEC-6) and in vivo (TNBS-induced intestinal fibrosis in rats) models. The pathological morphology was observed, and the fibrosis related proteins, such as E-Cad, vimentin, α-SMA, ZEB1, and ZEB2, were detected. RESULTS MiR-200b-MVs would significantly reverse the morphology in TGF-β1-treated IEC-6 cells and improve the TNBS-induced colon fibrosis histologically. The treatment of miR-200b-MVs increased miR-200b levels both in the IEC-6 cells and colon, resulting in a significant prevention EMT and alleviation of fibrosis. The expression of E-Cad was increased, and the expressions of vimentin and α-SMA were decreased. ZBE1 and ZEB2, the targets of miR-200b, were also decreased. CONCLUSIONS miR-200b could be transferred from genetically modified BMSCs to the target cells or tissue by MVs. The mechanisms of miR-200b-MVs in inhibiting colonic fibrosis were related to suppressing the development of EMT by targeting ZEB1and ZEB2.
Collapse
Affiliation(s)
- Jia Yang
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-Zhi Zhou
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, The Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Rui Zhu
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Xing Liu
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Yun Duan
- Department of Pharmacy, The Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Qing Tang
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe-Xing Shou
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Mei Zuo
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Li D, Wang H, Song H, Xu H, Zhao B, Wu C, Hu J, Wu T, Xie D, Zhao J, Shen Q, Fang L. The microRNAs miR-200b-3p and miR-429-5p target the LIMK1/CFL1 pathway to inhibit growth and motility of breast cancer cells. Oncotarget 2017; 8:85276-85289. [PMID: 29156719 PMCID: PMC5689609 DOI: 10.18632/oncotarget.19205] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has the worst prognosis of all subtypes of breast cancer (BC), with limited options for conventional therapy and no targeted therapies. MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate gene expression. In this study, we aimed to determine whether two members of the miR-200 family, miR-200b-3p and miR-429-5p, are involved in BC cell proliferation and motility and to elucidate their target genes and pathways. We performed a meta-analysis that reveals down-regulated expression of miR-200b-3p and miR-429-5p in BC tissues and cell lines, consistent with a lower expression of miR-200b-3p and miR-429-5p in MDA-MB-231 and HCC1937 cells than in MCF-7 and MCF-10 cells. Overexpression of miR-200b-3p and miR-429-5p significantly inhibited the proliferation, migration, and invasion of TNBC cells; suppressed the expression of markers for proliferation and metastasis in TNBC cells. We next demonstrated that LIM domain kinase 1 (LIMK1) is a direct target gene of miR-200b-3p and miR-429-5p. Inhibition of LIMK1 reduced the expression and phosphorylation of cofilin 1 (CFL1), which polymerizes and depolymerizes F-actin and G-actin to reorganize cellular actin cytoskeleton. In addition, transfection with mimics for miR-200b-3p and miR-429-5p arrested G2/M and G0/G1 cell cycles respectively, suppressed the expression of the cell cycle–related complexes, cyclin D1/CDK4/CDK6 and cyclin E1/CDK2, in TNBC cells. In conclusion, miR-200b-3p and miR-429-5p suppress proliferation, migration, and invasion in TNBC cells, via the LIMK1/CFL1 pathway. These results provide insight into how specific miRNAs regulate TNBC progression and suggest that the LIMK1/CFL1 pathway is a therapeutic target for treating TNBC.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China.,Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Science, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Hong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China.,Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Science, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Hongming Song
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Hui Xu
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Bingkun Zhao
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Chenyang Wu
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Jiashu Hu
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Tianqi Wu
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Dan Xie
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Junyong Zhao
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Science, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Lin Fang
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| |
Collapse
|
24
|
Kim SH, Bennett PR, Terzidou V. Advances in the role of oxytocin receptors in human parturition. Mol Cell Endocrinol 2017; 449:56-63. [PMID: 28119132 DOI: 10.1016/j.mce.2017.01.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 12/26/2022]
Abstract
Oxytocin (OT) is a neurohypophysial hormone which has been found to play a central role in the regulation of human parturition. The most established role of oxytocin/oxytocin receptor (OT/OTR) system in human parturition is the initiation of uterine contractions, however, recent evidence have demonstrated that it may have a more complex role including initiation of inflammation, regulation of miRNA expression, as well as mediation of other non-classical oxytocin actions via receptor crosstalk with other G protein-coupled receptors (GPCRs). In this review we highlight both established and newly emerging roles of OT/OTR system in human parturition and discuss the expanding potential for OTRs as pharmacological targets in the management of preterm labour.
Collapse
Affiliation(s)
- Sung Hye Kim
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK
| | - Phillip R Bennett
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK
| | - Vasso Terzidou
- Imperial College London, Parturition Research Group, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, Du Cane Road, East Acton, London W12 0NN, UK; Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| |
Collapse
|
25
|
The “good-cop bad-cop” TGF-beta role in breast cancer modulated by non-coding RNAs. Biochim Biophys Acta Gen Subj 2017; 1861:1661-1675. [DOI: 10.1016/j.bbagen.2017.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023]
|
26
|
Ingthorsson S, Briem E, Bergthorsson JT, Gudjonsson T. Epithelial Plasticity During Human Breast Morphogenesis and Cancer Progression. J Mammary Gland Biol Neoplasia 2016; 21:139-148. [PMID: 27815674 PMCID: PMC5159441 DOI: 10.1007/s10911-016-9366-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/23/2016] [Indexed: 01/05/2023] Open
Abstract
Understanding the complex events leading to formation of an epithelial-based organ such as the breast requires a detailed insight into the crosstalk between epithelial and stromal compartments. These interactions occur both through heterotypic cellular interactions and between cells and matrix components. While in vivo models may partially capture these complex interactions, there is a need for in- vitro models to study these events. In this review we discuss cell-cell interactions in breast development focusing on the stem cell niche and branching morphogenesis. Given the recent understanding that the basic developmental events underlying branching morphogenesis are closely related to pathways important to cancer progression, i.e. epithelial plasticity and epithelial to mesenchymal transition (EMT), we will also discuss aspects relevant to cancer progression. In cancer, the adoption of mesenchymal phenotype by the malignant cells allows stromal invasion and subsequent intravasation to blood- or lymphatic vessels, a route that is a prerequisite for metastasis. A number of publications have demonstrated that tumor initiating cells, sometimes referred to as cancer stem cells adapt an EMT phenotype that renders them more resistant to apoptosis and drug therapy. The mechanism behind this phenomenon is currently unknown but this may partially explain relapse in breast cancer patients. Increased understanding of branching morphogenesis in the breast gland and the regulation of EMT and its reverse process mesenchymal to epithelial transition (MET) may hold the keys for future development of methods/drugs that neutralize the invading properties of cancer cells.
Collapse
Affiliation(s)
- Saevar Ingthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Eirikur Briem
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Jon Thor Bergthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
- Department of Laboratory Hematology, Landspitali, University Hospital, Reykjavík, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland.
- Department of Laboratory Hematology, Landspitali, University Hospital, Reykjavík, Iceland.
| |
Collapse
|
27
|
Senfter D, Madlener S, Krupitza G, Mader RM. The microRNA-200 family: still much to discover. Biomol Concepts 2016; 7:311-319. [DOI: 10.1515/bmc-2016-0020] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022] Open
Abstract
AbstractIn the last decade, microRNAs (miRs or miRNAs) became of great interest in cancer research due to their multifunctional and active regulation in a variety of vital cellular processes. In this review, we discuss the miR-200 family, which is composed of five members (miR-141, miR-200a/200b/200c and miR-429). Although being among the best investigated miRNAs in the field, there are still many open issues. Here, we describe the potential role of miR-200 as prognostic and/or predictive biomarker, its influence on motility and cell migration as well as its role in epithelial to mesenchymal transition (EMT) and metastasis formation in different tumour types. Recent studies also demonstrated the influence of miR-200 on drug resistance and described a correlation between miR-200 expression levels and overall survival of patients. Despite intense research in this field, the full role of the miR-200 family in cancer progression and metastasis is not completely understood and seems to differ between different tumour types and different cellular backgrounds. To elucidate these differences further, a finer characterisation of the role of the individual miRNA-200 family members is currently under investigation.
Collapse
Affiliation(s)
- Daniel Senfter
- 1Department of Paediatrics, Molecular Neuro-Oncology Research Unit, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sibylle Madlener
- 1Department of Paediatrics, Molecular Neuro-Oncology Research Unit, Medical University of Vienna, A-1090 Vienna, Austria
| | - Georg Krupitza
- 2Institute of Clinical Pathology, Comprehensive Cancer Center of the Medical University of Vienna, A-1090 Vienna, Austria
| | - Robert M. Mader
- 3Department of Medicine I, Comprehensive Cancer Center of the Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
28
|
Kaban K, Salva E, Akbuga J. The effects of chitosan/miR-200c nanoplexes on different stages of cancers in breast cancer cell lines. Eur J Pharm Sci 2016; 95:103-110. [DOI: 10.1016/j.ejps.2016.05.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 01/31/2023]
|
29
|
Li Y, Zhang Q, Du Z, Lu Z, Liu S, Zhang L, Ding N, Bao B, Yang Y, Xiong Q, Wang H, Zhang Z, Qu H, Jia H, Fang X. MicroRNA 200a inhibits erythroid differentiation by targetingPDCD4andTHRB. Br J Haematol 2016; 176:50-64. [DOI: 10.1111/bjh.14377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/05/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Yanming Li
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Qian Zhang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
| | - Zhenglin Du
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
| | - ZhiChao Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education; College of Life Science and Technology; Centre for Human Genome Research, Huazhong University of Science and Technology; Wuhan China
| | - Shuge Liu
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Lu Zhang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Nan Ding
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Binghao Bao
- Key Laboratory of Molecular Biophysics of Ministry of Education; College of Life Science and Technology; Centre for Human Genome Research, Huazhong University of Science and Technology; Wuhan China
| | - Yadong Yang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Qian Xiong
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
| | - Hai Wang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
- China National Committee for Terms in Sciences and Technologies; Beijing China
| | - Zhaojun Zhang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Hongzhu Qu
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education; College of Life Science and Technology; Centre for Human Genome Research, Huazhong University of Science and Technology; Wuhan China
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| |
Collapse
|
30
|
Asghari F, Haghnavaz N, Baradaran B, Hemmatzadeh M, Kazemi T. Tumor suppressor microRNAs: Targeted molecules and signaling pathways in breast cancer. Biomed Pharmacother 2016; 81:305-317. [DOI: 10.1016/j.biopha.2016.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 12/19/2022] Open
|
31
|
Lo PK, Lee JS, Liang X, Sukumar S. The dual role of FOXF2 in regulation of DNA replication and the epithelial-mesenchymal transition in breast cancer progression. Cell Signal 2016; 28:1502-19. [PMID: 27377963 DOI: 10.1016/j.cellsig.2016.06.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023]
Abstract
Dysregulation of Forkhead-box (FOX) transcription factors is linked to cancers of numerous tissue types. Here, we report that FOXF2 is frequently silenced in luminal-type and HER2-positive breast cancers, but is overexpressed in basal-like breast cancers; thus, FOXF2 appears to play distinct roles in different breast cancer subtypes. Inactivation of FOXF2 in luminal-type and HER2-positive breast cancers is attributable to epigenetic silencing. Silencing of FOXF2 is associated with poor prognosis in luminal-type breast cancer. Ectopic expression of FOXF2 in luminal and HER2-positive breast cancer cells suppresses their tumorigenic properties in vitro and in vivo via inhibition of the CDK2-RB-E2F cascade. The in vivo function of FOXF2 is to maintain the stringency of DNA replication, and its loss triggers dysregulation of DNA replication, which in turn activates the p53 checkpoint pathway. Besides its role in cell cycle regulation, FOXF2 is functionally required for mobility and epithelial-to-mesenchymal transition (EMT) of normal breast epithelial cells. In basal-like breast cancer cells, the cell-cycle function of FOXF2 is impaired. However, the EMT function of FOXF2 is still required for mobility, invasiveness and anchorage-independent growth of basal-like breast cancer cells. Our gene expression profiling studies demonstrate that FOXF2 regulates the expression of genes implicated in cell cycle and EMT regulation. Moreover, FOXF2 is highly co-expressed with basal- and metastasis-related genes in breast cancer. These findings suggest that FOXF2 has a dual role in breast tumorigenesis and functions as either a tumor suppressor or an oncogene depending on the breast tumor subtype.
Collapse
Affiliation(s)
- Pang-Kuo Lo
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ji Shin Lee
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaohui Liang
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saraswati Sukumar
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
32
|
Lane-Donovan C, Desai C, Pohlkamp T, Plautz EJ, Herz J, Stowe AM. Physiologic Reelin does not play a strong role in protection against acute stroke. J Cereb Blood Flow Metab 2016; 36:1295-303. [PMID: 27146512 PMCID: PMC4929708 DOI: 10.1177/0271678x16646386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/25/2016] [Indexed: 11/17/2022]
Abstract
Stroke and Alzheimer's disease, two diseases that disproportionately affect the aging population, share a subset of pathological findings and risk factors. The primary genetic risk factor after age for late-onset Alzheimer's disease, ApoE4, has also been shown to increase stroke risk and the incidence of post-stroke dementia. One mechanism by which ApoE4 contributes to disease is by inducing in neurons a resistance to Reelin, a neuromodulator that enhances synaptic function. Previous studies in Reelin knockout mice suggest a role for Reelin in protection against stroke; however, these studies were limited by the developmental requirement for Reelin in neuronal migration. To address the question of the effect of Reelin loss on stroke susceptibility in an architecturally normal brain, we utilized a novel mouse with induced genetic reduction of Reelin. We found that after transient middle cerebral artery occlusion, mice with complete adult loss of Reelin exhibited a similar level of functional deficit and extent of infarct as control mice. Together, these results suggest that physiological Reelin does not play a strong role in protection against stroke pathology.
Collapse
Affiliation(s)
- Courtney Lane-Donovan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Charisma Desai
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Theresa Pohlkamp
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Erik J Plautz
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA Center for Translational Neurodegeneration Research, Dallas, TX, USA Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA Center for Neuroscience, Department of Neuroanatomy, Albert-Ludwigs-University, Freiburg, Germany
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
33
|
Xie M, Dart DA, Owen S, Wen X, Ji J, Jiang W. Insights into roles of the miR-1, -133 and -206 family in gastric cancer (Review). Oncol Rep 2016; 36:1191-8. [PMID: 27349337 DOI: 10.3892/or.2016.4908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/27/2016] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) remains the third most common cause of cancer deaths worldwide and carries a high rate of metastatic risk contributing to the main cause of treatment failure. An accumulation of data has resulted in a better understanding of the molecular network of GC, however, gaps still exist between the unique bio-resources and clinical application. MicroRNAs are an important part of non-coding RNAs and behave as major regulators of tumour biology, alongside their well-known roles as intrinsic factors of gene expression in cellular processes, via their post-transcriptional regulation of components of signalling pathways in a coordinated manner. Deregulation of the miR-1, -133 and -206 family plays a key role in tumorigenesis, progression, invasion and metastasis. This review aims to provide a summary of recent findings on the miR-1, -133 and -206 family in GC and how this knowledge might be exploited for the development of future miRNA-based therapies for the treatment of GC.
Collapse
Affiliation(s)
- Meng Xie
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Dafydd Alwyn Dart
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Xianzi Wen
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Jiafu Ji
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Wenguo Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| |
Collapse
|
34
|
Rauner G, Barash I. Enrichment for Repopulating Cells and Identification of Differentiation Markers in the Bovine Mammary Gland. J Mammary Gland Biol Neoplasia 2016; 21:41-9. [PMID: 26615610 DOI: 10.1007/s10911-015-9348-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/15/2015] [Indexed: 10/22/2022] Open
Abstract
Elucidating cell hierarchy in the mammary gland is fundamental for understanding the mechanisms governing its normal development and malignant transformation. There is relatively little information on cell hierarchy in the bovine mammary gland, despite its agricultural potential and relevance to breast cancer research. Challenges in bovine-to-mouse xenotransplantation and difficulties obtaining bovine-compatible antibodies hinder the study of mammary stem-cell dynamics in this species. In-vitro indications of distinct bovine mammary epithelial cell populations, sorted according to CD24 and CD49f expression, have been provided. Here, we successfully transplanted these bovine populations into the cleared fat pads of immunocompromised mice, providing in-vivo evidence for the multipotency and self-renewal capabilities of cells that are at the top of the cell hierarchy (termed mammary repopulating units). Additional outgrowths from transplantation, composed exclusively of myoepithelial cells, were indicative of unipotent basal stem cells or committed progenitors. Sorting luminal cells according to E-cadherin revealed three distinct populations: luminal progenitors, and early- and late-differentiating cells. Finally, miR-200c expression was negatively correlated with differentiation levels in both the luminal and basal branches of the bovine mammary cell hierarchy. Together, these experiments provide further evidence for the presence of a regenerative entity in the bovine mammary gland and for the multistage differentiation process within the luminal lineage.
Collapse
Affiliation(s)
- Gat Rauner
- Institute of Animal Science, ARO, The Volcani Center, Bet-Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itamar Barash
- Institute of Animal Science, ARO, The Volcani Center, Bet-Dagan, Israel.
| |
Collapse
|
35
|
Hawa Z, Haque I, Ghosh A, Banerjee S, Harris L, Banerjee SK. The miRacle in Pancreatic Cancer by miRNAs: Tiny Angels or Devils in Disease Progression. Int J Mol Sci 2016; 17:E809. [PMID: 27240340 PMCID: PMC4926343 DOI: 10.3390/ijms17060809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/04/2016] [Accepted: 05/19/2016] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with increasing incidence and high mortality. Surgical resection is the only potentially curative treatment of patients with PDAC. Because of the late presentation of the disease, about 20 percent of patients are candidates for this treatment. The average survival of resected patients is between 12 and 20 months, with a high probability of relapse. Standard chemo and radiation therapies do not offer significant improvement of the survival of these patients. Furthermore, novel treatment options aimed at targeting oncogenes or growth factors in pancreatic cancer have proved unsuccessful. Thereby, identifying new biomarkers that can detect early stages of this disease is of critical importance. Among these biomarkers, microRNAs (miRNAs) have supplied a profitable recourse and become an attractive focus of research in PDAC. MiRNAs regulate many genes involved in the development of PDAC through mRNA degradation or translation inhibition. The possibility of intervention in the molecular mechanisms of miRNAs regulation could begin a new generation of PDAC therapies. This review summarizes the reports describing miRNAs involvement in cellular processes involving pancreatic carcinogenesis and their utility in diagnosis, survival and therapeutic potential in pancreatic cancer.
Collapse
Affiliation(s)
- Zuhair Hawa
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
| | - Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
- Division of Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66205, USA.
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
- Division of Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66205, USA.
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
- Division of Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66205, USA.
| | - LaCoiya Harris
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO 64128, USA.
- Division of Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66205, USA.
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66205, USA.
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS 66205, USA.
| |
Collapse
|
36
|
Gelfand R, Vernet D, Bruhn K, Vadgama J, Gonzalez-Cadavid NF. Long-term exposure of MCF-12A normal human breast epithelial cells to ethanol induces epithelial mesenchymal transition and oncogenic features. Int J Oncol 2016; 48:2399-414. [PMID: 27035792 PMCID: PMC4864041 DOI: 10.3892/ijo.2016.3461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022] Open
Abstract
Alcoholism is associated with breast cancer incidence and progression, and moderate chronic consumption of ethanol is a risk factor. The mechanisms involved in alcohol's oncogenic effects are unknown, but it has been speculated that they may be mediated by acetaldehyde. We used the immortalized normal human epithelial breast cell line MCF-12A to determine whether short- or long-term exposure to ethanol or to acetaldehyde, using in vivo compatible ethanol concentrations, induces their oncogenic transformation and/or the acquisition of epithelial mesenchymal transition (EMT). Cultures of MCF-12A cells were incubated with 25 mM ethanol or 2.5 mM acetaldehyde for 1 week, or with lower concentrations (1.0–2.5 mM for ethanol, 1.0 mM for acetaldehyde) for 4 weeks. In the 4-week incubation, cells were also tested for anchorage-independence, including isolation of soft agar selected cells (SASC) from the 2.5 mM ethanol incubations. Cells were analyzed by immunocytofluorescence, flow cytometry, western blotting, DNA microarrays, RT/PCR, and assays for miRs. We found that short-term exposure to ethanol, but not, in general, to acetaldehyde, was associated with transcriptional upregulation of the metallothionein family genes, alcohol metabolism genes, and genes suggesting the initiation of EMT, but without related phenotypic changes. Long-term exposure to the lower concentrations of ethanol or acetaldehyde induced frank EMT changes in the monolayer cultures and in SASC as demonstrated by changes in cellular phenotype, mRNA expression, and microRNA expression. This suggests that low concentrations of ethanol, with little or no mediation by acetaldehyde, induce EMT and some traits of oncogenic transformation such as anchorage-independence in normal breast epithelial cells.
Collapse
Affiliation(s)
- Robert Gelfand
- Department of Medicine, Charles Drew University (CDU), Los Angeles, CA, USA
| | - Dolores Vernet
- Department of Medicine, Charles Drew University (CDU), Los Angeles, CA, USA
| | - Kevin Bruhn
- Department of Surgery, Los Angeles Biomedical Research Institute (LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jaydutt Vadgama
- Department of Medicine, Charles Drew University (CDU), Los Angeles, CA, USA
| | | |
Collapse
|
37
|
Shi SJ, Wang LJ, Yu B, Li YH, Jin Y, Bai XZ. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget 2016; 6:11652-63. [PMID: 25871474 PMCID: PMC4484483 DOI: 10.18632/oncotarget.3457] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/25/2015] [Indexed: 01/15/2023] Open
Abstract
Trastuzumab resistance is leading cause of mortality in HER2-positive breast cancers, and the role of TGF-β-induced epithelial-mesenchymal transition (EMT) in trastuzumab resistance is well established, but the involvement of lncRNAs in trastuzumab resistance is still unknown. Here, we generated trastuzumab-resistant breast cancer cells with increased invasiveness compared with parental cells, and observed robust epithelial–mesenchymal transition (EMT) and consistently elevated TGF-β signaling in these cells. We identified long noncoding RNA activated by TGF-β (lnc-ATB) was the most remarkably upregulated lncRNA in TR SKBR-3 cells and the tissues of TR breast cancer patients. We found that lnc-ATB could promote trastuzumab resistance and invasion-metastasis cascade in breast cancer by competitively biding miR-200c, up-regulating ZEB1 and ZNF-217, and then inducing EMT. In addition, we also found that the high level of lnc-ATB was correlated with trastuzumab resistance of breast cancer patients. Thus, these findings suggest that lncRNA-ATB, a mediator of TGF-β signaling, could predispose breast cancer patients to EMT and trastuzumab resistance.
Collapse
Affiliation(s)
- Sheng-Jia Shi
- Department of Administration and Department of Aristogenesis, No. 202 Hospital of PLA, No. 5, Shenyang, 110003, Liaoning Province, P.R. China
| | - Li-Juan Wang
- Department of Oncology, the First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, P.R. China
| | - Bo Yu
- Department of Administration and Department of Aristogenesis, No. 202 Hospital of PLA, No. 5, Shenyang, 110003, Liaoning Province, P.R. China
| | - Yun-Hui Li
- Department of Administration and Department of Aristogenesis, No. 202 Hospital of PLA, No. 5, Shenyang, 110003, Liaoning Province, P.R. China
| | - Yong Jin
- Department of Administration and Department of Aristogenesis, No. 202 Hospital of PLA, No. 5, Shenyang, 110003, Liaoning Province, P.R. China
| | - Xiao-Zhong Bai
- Department of Administration and Department of Aristogenesis, No. 202 Hospital of PLA, No. 5, Shenyang, 110003, Liaoning Province, P.R. China
| |
Collapse
|
38
|
Voutsadakis IA. Epithelial-Mesenchymal Transition (EMT) and Regulation of EMT Factors by Steroid Nuclear Receptors in Breast Cancer: A Review and in Silico Investigation. J Clin Med 2016; 5:E11. [PMID: 26797644 PMCID: PMC4730136 DOI: 10.3390/jcm5010011] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022] Open
Abstract
Steroid Nuclear Receptors (SNRs) are transcription factors of the nuclear receptor super-family. Estrogen Receptor (ERα) is the best-studied and has a seminal role in the clinic both as a prognostic marker but also as a predictor of response to anti-estrogenic therapies. Progesterone Receptor (PR) is also used in the clinic but with a more debatable prognostic role and the role of the four other SNRs, ERβ, Androgen Receptor (AR), Glucocorticoid Receptor (GR) and Mineralocorticoid Receptor (MR), is starting only to be appreciated. ERα, but also to a certain degree the other SNRs, have been reported to be involved in virtually every cancer-enabling process, both promoting and impeding carcinogenesis. Epithelial-Mesenchymal Transition (EMT) and the reverse Mesenchymal Epithelial Transition (MET) are such carcinogenesis-enabling processes with important roles in invasion and metastasis initiation but also establishment of tumor in the metastatic site. EMT is governed by several signal transduction pathways culminating in core transcription factors of the process, such as Snail, Slug, ZEB1 and ZEB2, and Twist, among others. This paper will discuss direct regulation of these core transcription factors by SNRs in breast cancer. Interrogation of publicly available databases for binding sites of SNRs on promoters of core EMT factors will also be included in an attempt to fill gaps where other experimental data are not available.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, Department of Internal Medicine, Sault Area Hospital, Sault Ste Marie, ON P6B 0A8, Canada.
- Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, QC P3E 2C6, Canada.
| |
Collapse
|
39
|
HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR. Oncogene 2015; 35:4244-55. [PMID: 26686087 PMCID: PMC4981873 DOI: 10.1038/onc.2015.489] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 02/06/2023]
Abstract
The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal breast epithelium, what effects they have on cellular differentiation and how they participate in neoplastic transformation. D492 is a breast epithelial cell line with stem cell properties that can undergo epithelial to mesenchyme transition (EMT), generate luminal- and myoepithelial cells and form complex branching structures in three-dimensional (3D) culture. Here, we show that overexpression of HER2 in D492 (D492HER2) resulted in EMT, loss of contact growth inhibition and increased oncogenic potential in vivo. HER2 overexpression, furthermore, inhibited endogenous EGFR expression. Re-introducing EGFR in D492HER2 (D492HER2/EGFR) partially reversed the mesenchymal state of the cells, as an epithelial phenotype reappeared both in 3D cultures and in vivo. The D492HER2/EGFR xenografts grow slower than the D492HER2 tumors, while overexpression of EGFR alone (D492EGFR) was not oncogenic in vivo. Consistent with the EGFR-mediated epithelial phenotype, overexpression of EGFR drove the cells toward a myoepithelial phenotype in 3D culture. The effect of two clinically approved anti-HER2 and EGFR therapies, trastuzumab and cetuximab, was tested alone and in combination on D492HER2 xenografts. While trastuzumab had a growth inhibitory effect compared with untreated control, the effect of cetuximab was limited. When administered in combination, the growth inhibitory effect of trastuzumab was less pronounced. Collectively, our data indicate that in HER2-overexpressing D492 cells, EGFR can behave as a tumor suppressor, by pushing the cells towards epithelial differentiation.
Collapse
|
40
|
Basal cells of the human airways acquire mesenchymal traits in idiopathic pulmonary fibrosis and in culture. J Transl Med 2015; 95:1418-28. [PMID: 26390052 DOI: 10.1038/labinvest.2015.114] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/17/2015] [Accepted: 07/29/2015] [Indexed: 11/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with high morbidity and mortality. The cellular source of the fibrotic process is currently under debate with one suggested mechanism being epithelial-to-mesenchymal transition (EMT) in the alveolar region. In this study, we show that airway epithelium overlying fibroblastic foci in IPF contains a layer of p63-positive basal cells while lacking ciliated and goblet cells. This basal epithelium shows increased expression of CK14, Vimentin and N-cadherin while retaining E-cadherin. The underlying fibroblastic foci shows both E- and N-cadherin-positive cells. To determine if p63-positive basal cells were able to undergo EMT in culture, we treated VA10, a p63-positive basal cell line, with the serum replacement UltroserG. A sub-population of treated cells acquired a mesenchymal phenotype, including an E- to N-cadherin switch. After isolation, these cells portrayed a phenotype presenting major hallmarks of EMT (loss of epithelial markers, gain of mesenchymal markers, increased migration and anchorage-independent growth). This phenotypic switch was prevented in p63 knockdown (KD) cells. In conclusion, we show that airway epithelium overlying fibroblastic foci in IPF lacks its characteristic functional identity, shows increased reactivity of basal cells and acquisition of a partial EMT phenotype. This study suggests that some p63-positive basal cells are prone to phenotypic changes and could act as EMT progenitors in IPF.
Collapse
|
41
|
The role of CRKL in breast cancer metastasis: insights from systems biology. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:141-146. [PMID: 28392847 DOI: 10.1007/s11693-015-9180-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
Breast cancer metastasis is a complex and still weakly understood process that involves diverse cellular pathways. It accounts for the majority of deaths from breast cancer. Recently, microRNAs (miRNAs), small non-coding RNAs that regulate gene expression post-transcriptionally, have been shown to be involved in breast cancer metastasis. In particular, in a recent work it has been found that miR-429 may have a role in the inhibition of migration and invasion of breast cancer cells. Its target gene CRKL has been identified as a potential candidate. In this paper, by using systems biology tools we have shown that CRKL is involved in positive regulation of ERK1/2 signaling pathway and contribute to the regulation of LYN through a topological generalization of feed forward loop.
Collapse
|
42
|
Molee P, Adisakwattana P, Reamtong O, Petmitr S, Sricharunrat T, Suwandittakul N, Chaisri U. Up-regulation of AKAP13 and MAGT1 on cytoplasmic membrane in progressive hepatocellular carcinoma: a novel target for prognosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:9796-9811. [PMID: 26617690 PMCID: PMC4637775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/25/2015] [Indexed: 06/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and is associated with high mortality worldwide. The current gold standards for HCC surveillance are detection of serum α-fetoprotein (AFP) and ultrasonography; however, non-specificity of AFP and ultrasonography has frequently been reported. Therefore, alternative tools, especially novel specific tumor markers, are required. In this study, cytoplasmic membrane proteins were isolated from phorbol 12-myristate 13-acetate (PMA)-induced invasive HepG2 cells and identified using nano-scale liquid chromatographic tandem mass spectrometry (NLC-MS/MS) with comparison to non-treated controls. The results showed that two proteins, magnesium transporter protein 1 (MAGT1) and A-kinase anchor protein 13 (AKAP13), were highly expressed in PMA-treated HepG2 cells. This up-regulation was confirmed by real-time RT-PCR, western blot analysis, and immunofluorescent staining studies. Furthermore, evaluation of MAGT1 and AKAP13 expression in clinical HCC tissues by immunohistochemistry suggested that both proteins were strongly expressed in tumor tissues with significantly higher average immunoreactive scores of Remmele and Stegner (IRS) than in non-tumor tissues (P ≤ 0.005). In conclusion, the expression levels of MAGT1 and AKAP13 in HCC may be potential biomarkers for the diagnosis and prognosis of this cancer.
Collapse
Affiliation(s)
- Patamaporn Molee
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol UniversityBangkok 10400, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol UniversityBangkok 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol UniversityBangkok 10400, Thailand
| | - Songsak Petmitr
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol UniversityBangkok 10400, Thailand
| | | | - Nantana Suwandittakul
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol UniversityBangkok 10400, Thailand
| | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol UniversityBangkok 10400, Thailand
| |
Collapse
|
43
|
Lv Z, Li C, Zhang P, Wang Z, Zhang W, Jin CH. MiR-200 modulates coelomocytes antibacterial activities and LPS priming via targeting Tollip in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2015; 45:431-436. [PMID: 25910848 DOI: 10.1016/j.fsi.2015.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/12/2015] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
In order to explore the potential roles of microRNAs (miRNAs) in regulating Toll-like receptor (TLR) pathways, we identified Toll interacting protein as a putative target of miR-200 in Apostichopus japonicus coelomocytes by RNA-seq screening (denoted as AjTollip). The positive expression profiles of miR-200 and AjTollip were detected in both LPS exposure primary coelomocytes and Vibrio splendidus challenge sea cucumber. Co-infection miR-200 mimics significantly elevated the expression of AjTollip and its down-stream molecules. In contrast, miR-200 inhibitor significantly repressed the expression of these TLR-pathway members. More importantly, miR-200 displayed not only to enhance coelomocytes antibacterial activities, but to suppress LPS priming in vitro. Overall, all these results will enhance our understanding on miR-200 regulatory roles in anti-bacterial process in sea cucumber.
Collapse
Affiliation(s)
- Zhimeng Lv
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China.
| | - Pengjuan Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Zhenhui Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| | - Chun-Hua Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China
| |
Collapse
|
44
|
Kong X, Ding X, Li X, Gao S, Yang Q. 53BP1 suppresses epithelial-mesenchymal transition by downregulating ZEB1 through microRNA-200b/429 in breast cancer. Cancer Sci 2015; 106:982-9. [PMID: 26011542 PMCID: PMC4556386 DOI: 10.1111/cas.12699] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/08/2015] [Accepted: 05/17/2015] [Indexed: 12/27/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is an important mechanism of cancer invasion and metastasis. Although p53 binding protein 1 (53BP1) has been implicated in several biological processes, its function in EMT of human cancers has not yet been reported. Here, we show that 53BP1 negatively regulated EMT by modulating ZEB1 through targeting microRNA (miR)-200b and miR-429. Furthermore, 53BP1 promoted ZEB1-mediated upregulation of E-cadherin and also inhibited the expressions of mesenchymal markers, leading to increased migration and invasion in MDA-MB-231 breast cancer cells. Consistently, in MCF-7 breast cancer cells, low 53BP1 expression reduced E-cadherin expression, resulting in increased migration and invasion. These effects were reversed by miR-200b and miR-429 inhibition or overexpression. Sections of tumor xenograft model showed increased ZEB1 expression and decreased E-cadherin expression with the downregulation of 53BP1. In 18 clinical tissue samples, expression of 53BP1 was positively correlated with miR-200b and mir-429 and negatively correlated with ZEB1. It was also found that 53BP1 was associated with lymph node metastasis. Taken together, these results suggest that 53BP1 functioned as a tumor suppressor gene by its novel negative control of EMT through regulating the expression of miR-200b/429 and their target gene ZEB1.
Collapse
Affiliation(s)
- Xiangnan Kong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Xia Ding
- Department of Oncology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaoyan Li
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Sumei Gao
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, China.,Pathology Tissue Bank, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
45
|
Hilmarsdóttir B, Briem E, Sigurdsson V, Franzdóttir SR, Ringnér M, Arason AJ, Bergthorsson JT, Magnusson MK, Gudjonsson T. MicroRNA-200c-141 and ∆Np63 are required for breast epithelial differentiation and branching morphogenesis. Dev Biol 2015; 403:150-61. [PMID: 25967125 DOI: 10.1016/j.ydbio.2015.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 04/18/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
The epithelial compartment of the breast contains two lineages, the luminal- and the myoepithelial cells. D492 is a breast epithelial cell line with stem cell properties that forms branching epithelial structures in 3D culture with both luminal- and myoepithelial differentiation. We have recently shown that D492 undergo epithelial to mesenchymal transition (EMT) when co-cultured with endothelial cells. This 3D co-culture model allows critical analysis of breast epithelial lineage development and EMT. In this study, we compared the microRNA (miR) expression profiles for D492 and its mesenchymal-derivative D492M. Suppression of the miR-200 family in D492M was among the most profound changes observed. Exogenous expression of miR-200c-141 in D492M reversed the EMT phenotype resulting in gain of luminal but not myoepithelial differentiation. In contrast, forced expression of ∆Np63 in D492M restored the myoepithelial phenotype only. Co-expression of miR-200c-141 and ∆Np63 in D492M restored the branching morphogenesis in 3D culture underlining the requirement for both luminal and myoepithelial elements for obtaining full branching morphogenesis in breast epithelium. Introduction of a miR-200c-141 construct in both D492 and D492M resulted in resistance to endothelial induced EMT. In conclusion, our data suggests that expression of miR-200c-141 and ∆Np63 in D492M can reverse EMT resulting in luminal- and myoepithelial differentiation, respectively, demonstrating the importance of these molecules in epithelial integrity in the human breast.
Collapse
Affiliation(s)
- Bylgja Hilmarsdóttir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland; Department of Laboratory Hematology, Landspitali-University Hospital, Iceland
| | - Eirikur Briem
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland; Department of Laboratory Hematology, Landspitali-University Hospital, Iceland
| | - Valgardur Sigurdsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Sigrídur Rut Franzdóttir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Markus Ringnér
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Sweden
| | - Ari Jon Arason
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland; Department of Laboratory Hematology, Landspitali-University Hospital, Iceland
| | - Jon Thor Bergthorsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland; Department of Laboratory Hematology, Landspitali-University Hospital, Iceland
| | - Magnus Karl Magnusson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland; Department of Laboratory Hematology, Landspitali-University Hospital, Iceland; Department of Medical Pharmacology and Toxicology, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland; Department of Laboratory Hematology, Landspitali-University Hospital, Iceland.
| |
Collapse
|