1
|
Wu H, Weng R, Li J, Huang Z, Tie X, Li J, Chen K. Self-Assembling protein nanoparticle platform for multivalent antigen delivery in vaccine development. Int J Pharm 2025; 676:125597. [PMID: 40233885 DOI: 10.1016/j.ijpharm.2025.125597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
Nanoparticle vaccines can efficiently and repeatedly display multivalent antigens, thereby improving the targeted delivery of antigens and inducing more durable immune responses, making them an important representative of novel vaccines. The global COVID-19 pandemic has accelerated the development of nanoparticle vaccines, offering a promising solution for the prevention and control of infectious diseases. Currently, the development of nanoparticle vaccines involves the use of various types of nanoparticles, including liposomes, polymers, inorganic materials, and emulsions. Protein nanoparticles candidate vaccines are attracting increasing attention because of their unique antigen presentation methods and self-assembly characteristics during their development, leading to a broad consensus on their promising future. Naturally self-assembling protein nanoparticles, such as ferritin, enhance antigen presentation, which aids in the activation of both humoral and cellular immune responses. This has led to significant advancements in the study of hepatitis B virus. Meanwhile, some synthetically engineered protein nanoparticles, such as mi3, and I53-50, can induce higher antibody titers through chemical conjugation with the SpyTag-SpyCatcher system, thereby providing better immunoprotection and showing promising prospects in the prevention of H1N1 and H3N2 influenza virus infections. This article reviews the unique advantages of protein nanoparticles as antigen delivery platforms, progress made in immunological design mechanisms, advances in the application of related adjuvants in preclinical and clinical trials, and the performance of commonly used computationally designed protein nanoparticles in preclinical trials, with a particular emphasis on the progress in the application of cationic nanoparticle vaccines. The aim is to provide future researchers with effective adjuvant strategies and high-quality selections for computationally designed protein nanoparticles, thereby promoting the clinical trial process of protein nanoparticles vaccines.
Collapse
Affiliation(s)
- Hao Wu
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Ruiqi Weng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jiaxuan Li
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Zhiwei Huang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Xiaotian Tie
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jianhua Li
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, PR China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
| |
Collapse
|
2
|
Ahmed T, Alam KT. Biomimetic Nanoparticle Based Targeted mRNA Vaccine Delivery as a Novel Therapy for Glioblastoma Multiforme. AAPS PharmSciTech 2025; 26:68. [PMID: 39984771 DOI: 10.1208/s12249-025-03065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/06/2025] [Indexed: 02/23/2025] Open
Abstract
The prognosis for patients with glioblastoma multiforme (GBM), an aggressive and deadly brain tumor, is poor due to the limited therapeutic options available. Biomimetic nanoparticles have emerged as a promising vehicle for targeted mRNA vaccine delivery, thanks to recent advances in nanotechnology. This presents a novel treatment method for GBM. This review explores the potential of using biomimetic nanoparticles to improve the specificity and effectiveness of mRNA vaccine against GBM. These nanoparticles can evade immune detection, cross the blood-brain barrier, & deliver mRNA directly to glioma cells by mimicking natural biological structures. This allows glioma cells to produce tumor-specific antigens that trigger strong immune responses against the tumor. This review discusses biomimetic nanoparticle design strategies, which are critical for optimizing transport and ensuring targeted action. These tactics include surface functionalization and encapsulation techniques. It also highlights the ongoing preclinical research and clinical trials that demonstrate the therapeutic advantages and challenges of this strategy. Biomimetic nanoparticles for mRNA vaccine delivery represent a new frontier in GBM treatment, which could impact the management of this deadly disease and improve patient outcomes by integrating cutting-edge nanotechnology with immunotherapy.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Plot 15, Block B, Bashundhara R/A, Dhaka, 1229, Bangladesh.
| | - Kazi Tasnuva Alam
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Plot 15, Block B, Bashundhara R/A, Dhaka, 1229, Bangladesh
| |
Collapse
|
3
|
Zubair M, Hussain S, Ur-Rehman M, Hussain A, Akram ME, Shahzad S, Rauf Z, Mujahid M, Ullah A. Trends in protein derived materials for wound care applications. Biomater Sci 2024; 13:130-160. [PMID: 39569610 DOI: 10.1039/d4bm01099j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Natural resource based polymers, especially those derived from proteins, have attracted significant attention for their potential utilization in advanced wound care applications. Protein based wound care materials provide superior biocompatibility, biodegradability, and other functionalities compared to conventional dressings. The effectiveness of various fabrication techniques, such as electrospinning, phase separation, self-assembly, and ball milling, is examined in the context of developing protein-based materials for wound healing. These methods produce a wide range of forms, including hydrogels, scaffolds, sponges, films, and bioinspired nanomaterials, each designed for specific types of wounds and different stages of healing. This review presents a comprehensive analysis of recent research that investigates the transformation of proteins into materials for wound healing applications. Our focus is on essential proteins, such as keratin, collagen, gelatin, silk, zein, and albumin, and we emphasize their distinct traits and roles in wound care management. Protein-based wound care materials show promising potential in biomedical engineering, offering improved healing capabilities and reduced risks of infection. It is crucial to explore the potential use of these materials in clinical settings while also addressing the challenges that may arise from their commercialization in the future.
Collapse
Affiliation(s)
- Muhammad Zubair
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| | - Saadat Hussain
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Mujeeb- Ur-Rehman
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Muhammad Ehtisham Akram
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Zahid Rauf
- Pakistan Forest Institute (PFI), Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Maria Mujahid
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Aman Ullah
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
4
|
Yamaguchi J, Nishida K, Kobatake E, Mie M. Functional decoration of elastin-like polypeptides-based nanoparticles with a modular assembly via isopeptide bond formation. Biotechnol Lett 2024; 47:6. [PMID: 39609315 DOI: 10.1007/s10529-024-03549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 11/30/2024]
Abstract
Temperature-responsive elastin-like polypeptides (ELPs) exhibit a low critical solution temperature-type phase transition and offer potential as useful materials for the construction of nanoparticles. Herein, we developed a novel decoration method for ELP-based nanoparticles via isopeptide bond formation with the SnoopTag/SnoopCatcher system that is not affected by the heating process required for particle formation. A mixture of a fusion protein of ELP and poly(aspartic acid) (poly(D)), known as ELP-poly(D), and ELP-poly(D) fused with SnoopCatcher (ELP-poly(D)-SnC) formed protein nanoparticles as a result of the temperature responsiveness of ELP, with the resultant nanoparticles displaying the SnoopCatcher binding domain on their surfaces. In the present study, two model proteins fused to SnoopTag were displayed on the surfaces of protein nanoparticles constructed from ELP-poly(D)-SnC and ELP-poly(D). The model proteins are enhanced green fluorescent protein (EGFP) and Renilla luciferace (Rluc), which exhibits luminescent capability and weak thermostability, respectively. EGFP on the particle surface was found to retain 48.7% activity, while Rluc exhibited almost full activity, as calculated from the binding efficiency and nanoparticle activities recovered after purification. ELP-based nanoparticles containing the SnoopTag/SnoopCatcher system offer the opportunity for particle decoration with a wide range of functional proteins via isopeptide bond formation.
Collapse
Affiliation(s)
- Jun Yamaguchi
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Kei Nishida
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Masayasu Mie
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
5
|
Winnicka A, Brzeszczyńska J, Saluk J, Wigner-Jeziorska P. Nanomedicine in Bladder Cancer Therapy. Int J Mol Sci 2024; 25:10388. [PMID: 39408718 PMCID: PMC11476791 DOI: 10.3390/ijms251910388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Bladder cancer (BC) is one of the most common malignant neoplasms of the genitourinary system. Traditional BC therapies include chemotherapy, targeted therapy, and immunotherapy. However, limitations such as lack of specificity, cytotoxicity, and multidrug resistance pose serious challenges to the benefits of BC therapies. Consequently, current studies focus on the search for new therapeutic solutions. In recent years, there has been a growing interest in using nanotechnology in the treatment of both non-invasive (NMIBC) and invasive bladder cancer (MIBC). Nanotechnology is based on the use of both organic molecules (chitosan, liposomes) and inorganic molecules (superparamagnetic iron oxide nanoparticles) as carriers of active substances. The main aim of such molecules is the targeted transport and prolonged retention of the drug in the target tissue, which increases the therapeutic efficacy of the active substance. This review discusses the numerous types of nanoparticles (including chitosan, polymeric nanoparticles, liposomes, and protein nanoparticles), targeting mechanisms, and approved nanotherapeutics with oncological implications in cancer treatment. We also present nanoformulation applications in phototherapy, gene therapy, and immunotherapy. Moreover, we summarise the current perspectives, advantages, and challenges in clinical translation.
Collapse
Affiliation(s)
- Adrianna Winnicka
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Joanna Brzeszczyńska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Paulina Wigner-Jeziorska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland
| |
Collapse
|
6
|
Jung HG, Jeong S, Kang MJ, Hong I, Park YS, Ko E, Kim JO, Choi DY. Molecular Design of Encapsulin Protein Nanoparticles to Display Rotavirus Antigens for Enhancing Immunogenicity. Vaccines (Basel) 2024; 12:1020. [PMID: 39340050 PMCID: PMC11435836 DOI: 10.3390/vaccines12091020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Rotavirus considerably threatens global health, particularly for children <5 years. Current, licensed oral attenuated vaccine formulations have limitations including insufficient efficacy in children in low- and middle-income countries, warranting urgent development of novel vaccines with improved efficacy and safety profiles. Herein, we present a novel approach utilizing an encapsulin (ENC) nanoparticle (NP)-based non-replicating rotavirus vaccine. ENC, originating from bacteria, offers a self-assembling scaffold that displays rotavirus VP8* antigens on its surface. To enhance the correct folding and soluble expression of monomeric antigens and their subsequent assembly into NP, we adopted an RNA-interacting domain (RID) of mammalian transfer RNA synthetase as an expression tag fused to the N-terminus of the ENC-VP8* fusion protein. Using the RID-ENC-VP8* tripartite modular design, insertion of linkers of appropriate length and sequence and the universal T cell epitope P2 remarkably improved the production yield and immunogenicity. Cleavage of the RID rendered a homogenous assembly of ENC-P2-VP8* into protein NPs. Immunization with ENC-P2-VP8* induced markedly higher levels of VP8*-specific antibodies and virus neutralization titers in mice than those induced by P2-VP8* without ENC. Altogether, these results highlight the potential of the designed ENC NP-based rotavirus vaccine as an effective strategy against rotavirus disease to address global health challenges.
Collapse
Affiliation(s)
| | - Seonghun Jeong
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | - Min-Ji Kang
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | - Ingi Hong
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | - Young-Shin Park
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | - Eunbyeol Ko
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | - Jae-Ouk Kim
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | | |
Collapse
|
7
|
Chen S, Li K, Chen X, Lei S, Lin J, Huang P. Reversibly photoswitchable protein assemblies with collagen affinity for in vivo photoacoustic imaging of tumors. SCIENCE ADVANCES 2024; 10:eadn8274. [PMID: 39213344 PMCID: PMC11364091 DOI: 10.1126/sciadv.adn8274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Recent advancements in photoacoustic (PA) imaging have leveraged reversibly photoswitchable chromophores, known for their dual absorbance states, to enhance imaging sensitivity through differential techniques. Yet, their deployment in tumor imaging has faced obstacles in achieving targeted delivery with high efficiency and specificity. Addressing this challenge, we introduce innovative protein assemblies, DrBphP-CBD, by genetically fusing a photosensory module from Deinococcus radiodurans bacterial phytochrome (DrBphP) with a collagen-binding domain (CBD). These protein assemblies form sub-100-nanometer structures composed of 24 DrBphP dimers and 12 CBD trimers, presenting 24 protein subunits. Their affinity for collagens, combined with impressive photoswitching contrast, markedly improves PA imaging precision. In various tumor models, intravenous administration of DrBphP-CBD has demonstrated enhanced tumor targeting and retention, augmenting contrast in PA imaging by minimizing background noise. This strategy underscores the clinical potential of DrBphP-CBD as PA contrast agents, propelling photoswitchable chromoproteins to the forefront of precise cancer diagnosis.
Collapse
Affiliation(s)
| | | | - Xin Chen
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | | | | |
Collapse
|
8
|
Nafeh AAESAEK, Mohamed IMAEA, Foda MF. Ultrasonication-Assisted Green Synthesis and Physicochemical and Cytotoxic Activity Characterization of Protein-Based Nanoparticles from Moringa oleifera Seeds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1254. [PMID: 39120359 PMCID: PMC11313732 DOI: 10.3390/nano14151254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Moringa oleifera (M. oleifera) is globally recognized for its medicinal properties and offers high-quality, protein-rich seeds. This study aimed to explore the potential of M. oleifera seeds as a significant source of protein-based nanoparticles (PBNPs) using the ultrasonication technique after desolvation and to evaluate their cytotoxicity in the human leukemia cell line (THP-1) for the first time. The properties of the PBNPs were confirmed by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). The extracted protein from moringa seed cake flour had a significant protein content of 54.20%, and the resulting PBNPs had an average size of 134.3 ± 0.47 nm with a robust zeta potential of -43.15 mV. Notably, our study revealed that PBNPs exhibited cytotoxic potential at high concentrations, especially against the THP-1 human leukemia cell line, which is widely used to study immunomodulatory properties. The inhibitory effect of PBNPs was quantitatively evidenced by a cytotoxicity assay, which showed that a concentration of 206.5 μg mL-1 (log conc. 2.315) was required to inhibit 50% of biological activity. In conclusion, our findings highlight the potential of M. oleifera seeds as a valuable resource in the innovative field of eco-friendly PBNPs by combining traditional medicinal applications with contemporary advancements in protein nanotechnology. However, further studies are required to ensure their biocompatibility.
Collapse
Affiliation(s)
| | | | - Mohamed Frahat Foda
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Pandey KK, Sahoo BR, Pattnaik AK. Protein Nanoparticles as Vaccine Platforms for Human and Zoonotic Viruses. Viruses 2024; 16:936. [PMID: 38932228 PMCID: PMC11209504 DOI: 10.3390/v16060936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Vaccines are one of the most effective medical interventions, playing a pivotal role in treating infectious diseases. Although traditional vaccines comprise killed, inactivated, or live-attenuated pathogens that have resulted in protective immune responses, the negative consequences of their administration have been well appreciated. Modern vaccines have evolved to contain purified antigenic subunits, epitopes, or antigen-encoding mRNAs, rendering them relatively safe. However, reduced humoral and cellular responses pose major challenges to these subunit vaccines. Protein nanoparticle (PNP)-based vaccines have garnered substantial interest in recent years for their ability to present a repetitive array of antigens for improving immunogenicity and enhancing protective responses. Discovery and characterisation of naturally occurring PNPs from various living organisms such as bacteria, archaea, viruses, insects, and eukaryotes, as well as computationally designed structures and approaches to link antigens to the PNPs, have paved the way for unprecedented advances in the field of vaccine technology. In this review, we focus on some of the widely used naturally occurring and optimally designed PNPs for their suitability as promising vaccine platforms for displaying native-like antigens from human viral pathogens for protective immune responses. Such platforms hold great promise in combating emerging and re-emerging infectious viral diseases and enhancing vaccine efficacy and safety.
Collapse
Affiliation(s)
- Kush K. Pandey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
10
|
Hori M, Steinauer A, Tetter S, Hälg J, Manz EM, Hilvert D. Stimulus-responsive assembly of nonviral nucleocapsids. Nat Commun 2024; 15:3576. [PMID: 38678040 PMCID: PMC11055949 DOI: 10.1038/s41467-024-47808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Controlled assembly of a protein shell around a viral genome is a key step in the life cycle of many viruses. Here we report a strategy for regulating the co-assembly of nonviral proteins and nucleic acids into highly ordered nucleocapsids in vitro. By fusing maltose binding protein to the subunits of NC-4, an engineered protein cage that encapsulates its own encoding mRNA, we successfully blocked spontaneous capsid assembly, allowing isolation of the individual monomers in soluble form. To initiate RNA-templated nucleocapsid formation, the steric block can be simply removed by selective proteolysis. Analyses by transmission and cryo-electron microscopy confirmed that the resulting assemblies are structurally identical to their RNA-containing counterparts produced in vivo. Enzymatically triggered cage formation broadens the range of RNA molecules that can be encapsulated by NC-4, provides unique opportunities to study the co-assembly of capsid and cargo, and could be useful for studying other nonviral and viral assemblies.
Collapse
Affiliation(s)
- Mao Hori
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LIBN, Lausanne, Switzerland
| | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Jamiro Hälg
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Eva-Maria Manz
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
11
|
Nagar N, Naidu G, Mishra A, Poluri KM. Protein-Based Nanocarriers and Nanotherapeutics for Infection and Inflammation. J Pharmacol Exp Ther 2024; 388:91-109. [PMID: 37699711 DOI: 10.1124/jpet.123.001673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Infectious and inflammatory diseases are one of the leading causes of death globally. The status quo has become more prominent with the onset of the coronavirus disease 2019 (COVID-19) pandemic. To combat these potential crises, proteins have been proven as highly efficacious drugs, drug targets, and biomarkers. On the other hand, advancements in nanotechnology have aided efficient and sustained drug delivery due to their nano-dimension-acquired advantages. Combining both strategies together, the protein nanoplatforms are equipped with the advantageous intrinsic properties of proteins as well as nanoformulations, eloquently changing the field of nanomedicine. Proteins can act as carriers, therapeutics, diagnostics, and theranostics in their nanoform as fusion proteins or as composites with other organic/inorganic materials. Protein-based nanoplatforms have been extensively explored to target the major infectious and inflammatory diseases of clinical concern. The current review comprehensively deliberated proteins as nanocarriers for drugs and nanotherapeutics for inflammatory and infectious agents, with special emphasis on cancer and viral diseases. A plethora of proteins from diverse organisms have aided in the synthesis of protein-based nanoformulations. The current study specifically presented the proteins of human and pathogenic origin to dwell upon the field of protein nanotechnology, emphasizing their pharmacological advantages. Further, the successful clinical translation and current bottlenecks of the protein-based nanoformulations associated with the infection-inflammation paradigm have also been discussed comprehensively. SIGNIFICANCE STATEMENT: This review discusses the plethora of promising protein-based nanocarriers and nanotherapeutics explored for infectious and inflammatory ailments, with particular emphasis on protein nanoparticles of human and pathogenic origin with reference to the advantages, ADME (absorption, distribution, metabolism, and excretion parameters), and current bottlenecks in development of protein-based nanotherapeutic interventions.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Goutami Naidu
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Amit Mishra
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| |
Collapse
|
12
|
Nair M, Chandra A, Krishnan A, Chandra A, Basha R, Orimoloye H, Raut S, Gayathri V, Mudgapalli VV, Vishwanatha JK. Protein and peptide nanoparticles for drug delivery applications. NANOSTRUCTURED MATERIALS FOR BIOMEDICAL APPLICATIONS 2024:339-404. [DOI: 10.1016/b978-0-323-90838-2.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Buzas D, Bunzel AH, Staufer O, Milodowski EJ, Edmunds GL, Bufton JC, Vidana Mateo BV, Yadav SKN, Gupta K, Fletcher C, Williamson MK, Harrison A, Borucu U, Capin J, Francis O, Balchin G, Hall S, Vega MV, Durbesson F, Lingappa S, Vincentelli R, Roe J, Wooldridge L, Burt R, Anderson RJL, Mulholland AJ, Bristol UNCOVER Group, Hare J, Bailey M, Davidson AD, Finn A, Morgan D, Mann J, Spatz J, Garzoni F, Schaffitzel C, Berger I. In vitro generated antibodies guide thermostable ADDomer nanoparticle design for nasal vaccination and passive immunization against SARS-CoV-2. Antib Ther 2023; 6:277-297. [PMID: 38075238 PMCID: PMC10702856 DOI: 10.1093/abt/tbad024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 01/10/2024] Open
Abstract
Background Due to COVID-19, pandemic preparedness emerges as a key imperative, necessitating new approaches to accelerate development of reagents against infectious pathogens. Methods Here, we developed an integrated approach combining synthetic, computational and structural methods with in vitro antibody selection and in vivo immunization to design, produce and validate nature-inspired nanoparticle-based reagents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results Our approach resulted in two innovations: (i) a thermostable nasal vaccine called ADDoCoV, displaying multiple copies of a SARS-CoV-2 receptor binding motif derived epitope and (ii) a multivalent nanoparticle superbinder, called Gigabody, against SARS-CoV-2 including immune-evasive variants of concern (VOCs). In vitro generated neutralizing nanobodies and electron cryo-microscopy established authenticity and accessibility of epitopes displayed by ADDoCoV. Gigabody comprising multimerized nanobodies prevented SARS-CoV-2 virion attachment with picomolar EC50. Vaccinating mice resulted in antibodies cross-reacting with VOCs including Delta and Omicron. Conclusion Our study elucidates Adenovirus-derived dodecamer (ADDomer)-based nanoparticles for use in active and passive immunization and provides a blueprint for crafting reagents to combat respiratory viral infections.
Collapse
Affiliation(s)
- Dora Buzas
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Bristol BS8 1TS, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Adrian H Bunzel
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Oskar Staufer
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Bristol BS8 1TS, UK
- Leibniz Institute for New Materials, Helmholtz Institute for Pharmaceutical Research and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| | | | - Grace L Edmunds
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Joshua C Bufton
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | - Kapil Gupta
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- Imophoron Ltd, Science Creates Old Market, Midland Rd, Bristol BS2 0JZ UK
| | | | - Maia K Williamson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Ufuk Borucu
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Julien Capin
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Ore Francis
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Georgia Balchin
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Sophie Hall
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Mirella V Vega
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Fabien Durbesson
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS, Aix-Marseille Université, Marseille, France
| | | | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS, Aix-Marseille Université, Marseille, France
| | - Joe Roe
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Linda Wooldridge
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Rachel Burt
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | | | | | | | - Jonathan Hare
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Andrew D Davidson
- Imophoron Ltd, Science Creates Old Market, Midland Rd, Bristol BS2 0JZ UK
| | - Adam Finn
- Bristol University COVID-19 Emergency Research Group, Bristol BS8 1TH, UK
- Children's Vaccine Centre, Bristol Medical School, Bristol BS2 8EF UK
| | - David Morgan
- Imophoron Ltd, Science Creates Old Market, Midland Rd, Bristol BS2 0JZ UK
| | - Jamie Mann
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Joachim Spatz
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Bristol BS8 1TS, UK
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Frederic Garzoni
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- Bristol University COVID-19 Emergency Research Group, Bristol BS8 1TH, UK
| | - Imre Berger
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Bristol BS8 1TS, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- Bristol University COVID-19 Emergency Research Group, Bristol BS8 1TH, UK
| |
Collapse
|
14
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein-based nanoparticles (part 2): Pharmaceutical applications. Eur J Pharm Sci 2023; 189:106558. [PMID: 37567394 DOI: 10.1016/j.ejps.2023.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Viral protein nanoparticles (ViP NPs) such as virus-like particles and virosomes are structures halfway between viruses and synthetic nanoparticles. The biological nature of ViP NPs endows them with the biocompatibility, biodegradability, and functional properties that many synthetic nanoparticles lack. At the same time, the absence of a viral genome avoids the safety concerns of viruses. Such characteristics of ViP NPs offer a myriad of opportunities for theirapplication at several points across disease development: from prophylaxis to diagnosis and treatment. ViP NPs present remarkable immunostimulant properties, and thus the vaccination field has benefited the most from these platforms capable of overcoming the limitations of both traditional and subunit vaccines. This was reflected in the marketing authorization of several VLP- and virosome-based vaccines. Besides, ViP NPs inherit the ability of viruses to deliver their cargo to target cells. Because of that, ViP NPs are promising candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze the pharmaceutical applications of ViP NPs, describing the products that are commercially available or under clinical evaluation, but also the advances that scientists are making toward the implementation of ViP NPs in other areas of major pharmaceutical interest.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Zhang J, Yang J, Li Q, Peng R, Fan S, Yi H, Lu Y, Peng Y, Yan H, Sun L, Lu J, Chen Z. T Cell Activating Thermostable Self-Assembly Nanoscaffold Tailored for Cellular Immunity Antigen Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303049. [PMID: 37395451 PMCID: PMC10502629 DOI: 10.1002/advs.202303049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 07/04/2023]
Abstract
Antigen delivery based on non-virus-like particle self-associating protein nanoscffolds, such as Aquifex aeolicus lumazine synthase (AaLS), is limited due to the immunotoxicity and/or premature clearance of antigen-scaffold complex resulted from triggering unregulated innate immune responses. Here, using rational immunoinformatics prediction and computational modeling, we screen the T epitope peptides from thermophilic nanoproteins with the same spatial structure as hyperthermophilic icosahedral AaLS, and reassemble them into a novel thermostable self-assembling nanoscaffold RPT that can specifically activate T cell-mediated immunity. Tumor model antigen ovalbumin T epitopes and the severe acute respiratory syndrome coronavirus 2 receptor-binding domain are loaded onto the scaffold surface through the SpyCather/SpyTag system to construct nanovaccines. Compared to AaLS, RPT -constructed nanovaccines elicit more potent cytotoxic T cell and CD4+ T helper 1 (Th1)-biased immune responses, and generate less anti-scaffold antibody. Moreover, RPT significantly upregulate the expression of transcription factors and cytokines related to the differentiation of type-1 conventional dendritic cells, promoting the cross-presentation of antigens to CD8+ T cells and Th1 polarization of CD4+ T cells. RPT confers antigens with increased stability against heating, freeze-thawing, and lyophilization with almost no antigenicity loss. This novel nanoscaffold offers a simple, safe, and robust strategy for boosting T-cell immunity-dependent vaccine development.
Collapse
Affiliation(s)
- Jinsong Zhang
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Jianghua Yang
- Key Laboratory of Livestock Infectious DiseasesMinistry of EducationShenyang Agricultural UniversityShenyang110866China
| | - Qianlin Li
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Ruihao Peng
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Shoudong Fan
- Liaoning Technology Innovation Center of Nanomaterials for Antibiotics Reduction and ReplacementFengcheng118199China
| | - Huaimin Yi
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Yuying Lu
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Yuanli Peng
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Haozhen Yan
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
| | - Lidan Sun
- Key Laboratory of Livestock Infectious DiseasesMinistry of EducationShenyang Agricultural UniversityShenyang110866China
| | - Jiahai Lu
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhen518057China
- Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”Haikou571199China
| | - Zeliang Chen
- One Health Center of Excellence for Research and TrainingSchool of Public HealthSun Yat‐sen UniversityGuangzhou510080China
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological ProductsGuangzhou510080China
- Key Laboratory of Tropical Diseases ControlSun Yat‐sen UniversityMinistry of EducationGuangzhou510080China
- Key Laboratory of Livestock Infectious DiseasesMinistry of EducationShenyang Agricultural UniversityShenyang110866China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous RegionMedical CollegeInner Mongolia Minzu UniversityTongliao028000China
| |
Collapse
|
16
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein nanoparticles (Part 1): Pharmaceutical characteristics. Eur J Pharm Sci 2023; 187:106460. [PMID: 37156338 DOI: 10.1016/j.ejps.2023.106460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
Viral protein nanoparticles fill the gap between viruses and synthetic nanoparticles. Combining advantageous properties of both systems, they have revolutionized pharmaceutical research. Virus-like particles are characterized by a structure identical to viruses but lacking genetic material. Another type of viral protein nanoparticles, virosomes, are similar to liposomes but include viral spike proteins. Both systems are effective and safe vaccine candidates capable of overcoming the disadvantages of both traditional and subunit vaccines. Besides, their particulate structure, biocompatibility, and biodegradability make them good candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze viral protein nanoparticles from a pharmaceutical perspective and examine current research focused on their development process, from production to administration. Advances in synthesis, modification and formulation of viral protein nanoparticles are critical so that large-scale production of viral protein nanoparticle products becomes viable and affordable, which ultimately will increase their market penetration in the future. We will discuss their expression systems, modification strategies, formulation, biopharmaceutical properties, and biocompatibility.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
17
|
João J, Prazeres DMF. Manufacturing of non-viral protein nanocages for biotechnological and biomedical applications. Front Bioeng Biotechnol 2023; 11:1200729. [PMID: 37520292 PMCID: PMC10374429 DOI: 10.3389/fbioe.2023.1200729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Protein nanocages are highly ordered nanometer scale architectures, which are typically formed by homo- or hetero-self-assembly of multiple monomers into symmetric structures of different size and shape. The intrinsic characteristics of protein nanocages make them very attractive and promising as a biological nanomaterial. These include, among others, a high surface/volume ratio, multi-functionality, ease to modify or manipulate genetically or chemically, high stability, mono-dispersity, and biocompatibility. Since the beginning of the investigation into protein nanocages, several applications were conceived in a variety of areas such as drug delivery, vaccine development, bioimaging, biomineralization, nanomaterial synthesis and biocatalysis. The ability to generate large amounts of pure and well-folded protein assemblies is one of the keys to transform nanocages into clinically valuable products and move biomedical applications forward. This calls for the development of more efficient biomanufacturing processes and for the setting up of analytical techniques adequate for the quality control and characterization of the biological function and structure of nanocages. This review concisely covers and overviews the progress made since the emergence of protein nanocages as a new, next-generation class of biologics. A brief outline of non-viral protein nanocages is followed by a presentation of their main applications in the areas of bioengineering, biotechnology, and biomedicine. Afterwards, we focus on a description of the current processes used in the manufacturing of protein nanocages with particular emphasis on the most relevant aspects of production and purification. The state-of-the-art on current characterization techniques is then described and future alternative or complementary approaches in development are also discussed. Finally, a critical analysis of the limitations and drawbacks of the current manufacturing strategies is presented, alongside with the identification of the major challenges and bottlenecks.
Collapse
Affiliation(s)
- Jorge João
- iBB–Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Duarte Miguel F. Prazeres
- iBB–Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Dzuvor CKO, Shanbhag BK, Shen HH, Haritos VS, He L. An Ultrastable Self-Assembled Antibacterial Nanospears Made of Protein. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2302409. [PMID: 37120846 DOI: 10.1002/adma.202302409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/21/2023] [Indexed: 06/15/2023]
Abstract
Protein-based nanomaterials have broad applications in the biomedical and bionanotechnological sectors owing to their outstanding properties such as high biocompatibility and biodegradability, structural stability, sophisticated functional versatility, and being environmentally benign. They have gained considerable attention in drug delivery, cancer therapeutics, vaccines, immunotherapies, biosensing, and biocatalysis. However, so far, in the battle against the increasing reports of antibiotic resistance and emerging drug-resistant bacteria, unique nanostructures of this kind are lacking, hindering their potential next-generation antibacterial agents. Here, the discovery of a class of supramolecular nanostructures with well-defined shapes, geometries, or architectures (termed "protein nanospears") based on engineered proteins, exhibiting exceptional broad-spectrum antibacterial activities, is reported. The protein nanospears are engineered via spontaneous cleavage-dependent or precisely tunable self-assembly routes using mild metal salt-ions (Mg2+ , Ca2+ , Na+ ) as a molecular trigger. The nanospears' dimensions collectively range from entire nano- to micrometer scale. The protein nanospears display exceptional thermal and chemical stability yet rapidly disassemble upon exposure to high concentrations of chaotropes (>1 mm sodium dodecyl sulfate (SDS)). Using a combination of biological assays and electron microscopy imaging, it is revealed that the nanospears spontaneously induce rapid and irreparable damage to bacterial morphology via a unique action mechanism provided by their nanostructure and enzymatic action, a feat inaccessible to traditional antibiotics. These protein-based nanospears show promise as a potent tool to combat the growing threats of resistant bacteria, inspiring a new way to engineer other antibacterial protein nanomaterials with diverse structural and dimensional architectures and functional properties.
Collapse
Affiliation(s)
- Christian K O Dzuvor
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Bhuvana K Shanbhag
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Hsin-Hui Shen
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Victoria S Haritos
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Lizhong He
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| |
Collapse
|
19
|
Ji Y, Liu D, Zhu H, Bao L, Chang R, Gao X, Yin J. Unstructured Polypeptides as a Versatile Drug Delivery Technology. Acta Biomater 2023; 164:74-93. [PMID: 37075961 DOI: 10.1016/j.actbio.2023.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Although polyethylene glycol (PEG), or "PEGylation" has become a widely applied approach for improving the efficiency of drug delivery, the immunogenicity and non-biodegradability of this synthetic polymer have prompted an evident need for alternatives. To overcome these caveats and to mimic PEG -or other natural or synthetic polymers- for the purpose of drug half-life extension, unstructured polypeptides are designed. Due to their tunable length, biodegradability, low immunogenicity and easy production, unstructured polypeptides have the potential to replace PEG as the preferred technology for therapeutic protein/peptide delivery. This review provides an overview of the evolution of unstructured polypeptides, starting from natural polypeptides to engineered polypeptides and discusses their characteristics. Then, it is described that unstructured polypeptides have been successfully applied to numerous drugs, including peptides, proteins, antibody fragments, and nanocarriers, for half-life extension. Innovative applications of unstructured peptides as releasable masks, multimolecular adaptors and intracellular delivery carriers are also discussed. Finally, challenges and future perspectives of this promising field are briefly presented. STATEMENT OF SIGNIFICANCE: : Polypeptide fusion technology simulating PEGylation has become an important topic for the development of long-circulating peptide or protein drugs without reduced activity, complex processes, and kidney injury caused by PEG modification. Here we provide a detailed and in-depth review of the recent advances in unstructured polypeptides. In addition to the application of enhanced pharmacokinetic performance, emphasis is placed on polypeptides as scaffolders for the delivery of multiple drugs, and on the preparation of reasonably designed polypeptides to manipulate the performance of proteins and peptides. This review will provide insight into future application of polypeptides in peptide or protein drug development and the design of novel functional polypeptides.
Collapse
Affiliation(s)
- Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
20
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
21
|
Kobayashi N, Arai R. Protein Cages and Nanostructures Constructed from Protein Nanobuilding Blocks. Methods Mol Biol 2023; 2671:79-94. [PMID: 37308639 DOI: 10.1007/978-1-0716-3222-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein cages and nanostructures are promising biocompatible medical materials, such as vaccines and drug carriers. Recent advances in designed protein nanocages and nanostructures have opened up cutting-edge applications in the fields of synthetic biology and biopharmaceuticals. A simple approach for constructing self-assembling protein nanocages and nanostructures is the design of a fusion protein composed of two different proteins forming symmetric oligomers. In this chapter, we describe the design and methods of protein nanobuilding blocks (PN-Blocks) using a dimeric de novo protein WA20 to construct self-assembling protein cages and nanostructures. A protein nanobuilding block (PN-Block), WA20-foldon, was developed by fusing an intermolecularly folded dimeric de novo protein WA20 and a trimeric foldon domain from bacteriophage T4 fibritin. The WA20-foldon self-assembled into several oligomeric nanoarchitectures in multiples of 6-mer. De novo extender protein nanobuilding blocks (ePN-Blocks) were also developed by fusing tandemly two WA20 with various linkers, to construct self-assembling cyclized and extended chain-like nanostructures. These PN-Blocks would be useful for the construction of self-assembling protein cages and nanostructures and their potential applications in the future.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Ueda, Nagano, Japan.
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan.
| |
Collapse
|
22
|
Ma XY, Hill BD, Hoang T, Wen F. Virus-inspired strategies for cancer therapy. Semin Cancer Biol 2022; 86:1143-1157. [PMID: 34182141 PMCID: PMC8710185 DOI: 10.1016/j.semcancer.2021.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/27/2023]
Abstract
The intentional use of viruses for cancer therapy dates back over a century. As viruses are inherently immunogenic and naturally optimized delivery vehicles, repurposing viruses for drug delivery, tumor antigen presentation, or selective replication in cancer cells represents a simple and elegant approach to cancer treatment. While early virotherapy was fraught with harsh side effects and low response rates, virus-based therapies have recently seen a resurgence due to newfound abilities to engineer and tune oncolytic viruses, virus-like particles, and virus-mimicking nanoparticles for improved safety and efficacy. However, despite their great potential, very few virus-based therapies have made it through clinical trials. In this review, we present an overview of virus-inspired approaches for cancer therapy, discuss engineering strategies to enhance their mechanisms of action, and highlight their application for overcoming the challenges of traditional cancer therapies.
Collapse
Affiliation(s)
- Xiao Yin Ma
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Brett D Hill
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Trang Hoang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
23
|
Yang B, Dong Y, Xu Z, Li X, Wang F, Zhang Y. Improved stability and pharmacokinetics of wogonin through loading into PASylated ferritin. Colloids Surf B Biointerfaces 2022; 216:112515. [PMID: 35512464 DOI: 10.1016/j.colsurfb.2022.112515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022]
Abstract
Wogonin (Wog) plays an important role in human diseases, especially cancer and inflammatory diseases, but its poor solubility, unstable metabolism and low bioavailability greatly limit its application in biomedical fields. Therefore, we developed a temperature-dependent method to encapsulate wogonin into a novel ferritin-based nanocarrier. To improve the loading capacity and stability, the human H chain ferritin (HFtn) was functionalized with a repetitive polypeptide sequence composed of proline (Pro), alanine (Ala), and serine (Ser) in different residues lengths (PAS10 and PAS30). Wogonin loading and release studies demonstrated that the encapsulation efficiency and stability of the PASylated nanocarriers were significantly higher than those of the wild type. PAS-HFtn-Wog exhibited enhanced cytotoxicity to MCF-7 breast cancer cells and HepG2 liver cancer cells. Notably, the PASylated HFtn, especially PAS30-HFtn greatly prolonged the pharmacokinetics of wogonin in the mice bloodstream. Therefore, wogonin-loaded PAS-HFtn may be a promising drug candidate for cancer therapy.
Collapse
Affiliation(s)
- Bingyan Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yixin Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zicheng Xu
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, PR China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
24
|
Cancer nanomedicine: A step towards improving the drug delivery and enhanced efficacy of chemotherapeutic drugs. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Xu Y, Gao M, Zhang Y, Ning L, Zhao D, Ni Y. Cellulose Hollow Annular Nanoparticles Prepared from High-Intensity Ultrasonic Treatment. ACS NANO 2022; 16:8928-8938. [PMID: 35687786 DOI: 10.1021/acsnano.1c11167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cellulose nanomaterials, such as cellulose nanocrystals (CNCs), have received enormous attention in various material research fields due to their unique properties and green/sustainable nature, among other qualities. Herein, we report hollow-type annular cellulose nanocrystals (HTA-CNCs), which are generated by following a high-intensity ultrasonic treatment. The advanced aberration-corrected transmission electron microscopy results reveal that HTA-CNCs exhibit ring structures with a typical diameter of 10.0-30.0 nm, a width of 3.0-4.0 nm, and a thickness of 2.0-5.0 nm, similar to those of elementary crystallites. The X-ray diffraction measurements show that the as-prepared HTA-CNCs maintain the cellulose I structure. The changes in structure and hydrogen-bonding characteristics of HTA-CNCs are further determined based on the FT-IR results after deconvolution fitting, showing that three types of hydrogen bonds decrease and the content of free OH increases in HTA-CNCs compared with those in the original CNCs. Furthermore, molecular dynamics simulation is carried out to support the experimental study. The formation of HTA-CNCs might be attributed to the structural change and entropy increase. The hollow-type annular CNCs may have broad value-added applications as cellulose nanomaterials in different fields.
Collapse
Affiliation(s)
- Yongjian Xu
- College of Light Industry and Energy, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Minlan Gao
- College of Light Industry and Energy, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yongqi Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, YiBin 644000, China
| | - Lulu Ning
- College of Light Industry and Energy, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Deqing Zhao
- College of Bioengineering, Sichuan University of Science and Engineering, YiBin 644000, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
26
|
Wang Y, Douglas T. Bioinspired Approaches to Self-Assembly of Virus-like Particles: From Molecules to Materials. Acc Chem Res 2022; 55:1349-1359. [PMID: 35507643 DOI: 10.1021/acs.accounts.2c00056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ConspectusWhen viewed through the lens of materials science, nature provides a vast library of hierarchically organized structures that serve as inspiration and raw materials for new synthetic materials. The structural organization of complex bioarchitectures with advanced functions arises from the association of building blocks and is strongly supported by ubiquitous mechanisms of self-assembly, where interactions among components result in spontaneous assembly into defined structures. Viruses are exemplary, where a capsid structure, often formed from the self-assembly of many individual protein subunits, serves as a vehicle for the transport and protection of the viral genome. Higher-order assemblies of viral particles are also found in nature with unexpected collective behaviors. When the infectious aspect of viruses is removed, the self-assembly of viral particles and their potential for hierarchical assembly become an inspiration for the design and construction of a new class of functional materials at a range of different length scales.Salmonella typhimurium bacteriophage P22 is a well-studied model for understanding viral self-assembly and the construction of virus-like particle (VLP)-based materials. The formation of cage-like P22 VLP structures results from scaffold protein (SP)-directed self-assembly of coat protein (CP) subunits into icosahedral capsids with encapsulation of SP inside the capsid. Employing the CP-SP interaction during self-assembly, the encapsulation of guest protein cargos inside P22 VLPs can be achieved with control over the composition and the number of guest cargos. The morphology of cargo-loaded VLPs can be altered, along with changes in both the physical properties of the capsid and the cargo-capsid interactions, by mimicking aspects of the infectious P22 viral maturation. The structure of the capsid differentiates the inside cavity from the outside environment and serves as a protecting layer for the encapsulated cargos. Pores in the capsid shell regulate molecular exchange between inside and outside, where small molecules can traverse the capsid freely while the diffusion of larger molecules is limited by the pores. The interior cavity of the P22 capsid can be packed with hundreds of copies of cargo proteins (especially enzymes), enforcing intermolecular proximity, making this an ideal model system in which to study enzymatic catalysis in crowded and confined environments. These aspects highlight the development of functional nanomaterials from individual P22 VLPs, through biomimetic design and self-assembly, resulting in fabrication of nanoreactors with controlled catalytic behaviors.Individual P22 VLPs have been used as building blocks for the self-assembly of higher-order structures. This relies on a balance between the intrinsic interparticle repulsion and a tunable interparticle attraction. The ordering of VLPs within three-dimensional assemblies is dependent on the balance between repulsive and attractive interactions: too strong an attraction results in kinetically trapped disordered structures, while decreasing the attraction can lead to more ordered arrays. These higher-order assemblies display collective behavior of high charge density beyond those of the individual VLPs.The development of synthetic nanomaterials based on P22 VLPs demonstrates how the potential for hierarchical self-assembly can be applied to other self-assembling capsid structures across multiple length scales toward future bioinspired functional materials.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
27
|
Habibi N, Mauser A, Ko Y, Lahann J. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104012. [PMID: 35077010 PMCID: PMC8922121 DOI: 10.1002/advs.202104012] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/12/2021] [Indexed: 05/16/2023]
Abstract
Protein nanoparticles, PNPs, have played a long-standing role in food and industrial applications. More recently, their potential in nanomedicine has been more widely pursued. This review summarizes recent trends related to the preparation, application, and chemical construction of nanoparticles that use proteins as major building blocks. A particular focus has been given to emerging trends related to applications in nanomedicine, an area of research where PNPs are poised for major breakthroughs as drug delivery carriers, particle-based therapeutics or for non-viral gene therapy.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Ava Mauser
- Biointerfaces InstituteDepartment of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Yeongun Ko
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Joerg Lahann
- Biointerfaces InstituteDepartments of Chemical EngineeringMaterial Science and EngineeringBiomedical Engineeringand Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
28
|
Habibi N, Mauser A, Raymond JE, Lahann J. Systematic studies into uniform synthetic protein nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:274-283. [PMID: 35330645 PMCID: PMC8919420 DOI: 10.3762/bjnano.13.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/11/2022] [Indexed: 05/07/2023]
Abstract
Nanoparticles are frequently pursued as drug delivery carriers due to their potential to alter the pharmacological profiles of drugs, but their broader utility in nanomedicine hinges upon exquisite control of critical nanoparticle properties, such as shape, size, or monodispersity. Electrohydrodynamic (EHD) jetting is a probate method to formulate synthetic protein nanoparticles (SPNPs), but a systematic understanding of the influence of crucial processing parameters, such as protein composition, on nanoparticle morphologies is still missing. Here, we address this knowledge gap by evaluating formulation trends in SPNPs prepared by EHD jetting based on a series of carrier proteins and protein blends (hemoglobin, transferrin, mucin, or insulin). In general, blended SPNPs presented uniform populations with minimum diameters between 43 and 65 nm. Size distributions of as-jetted SPNPs approached monodispersity as indicated by polydispersity indices (PDISEM) ranging from 0.11-0.19. Geometric factor analysis revealed high circularities (0.82-0.90), low anisotropy (<1.45) and excellent roundness (0.76-0.89) for all SPNPs prepared via EHD jetting. Tentatively, blended SPNPs displayed higher circularity and lower anisotropy, as compared to single-protein SPNPs. Secondary statistical analysis indicated that blended SPNPs generally present combined features of their constituents, with some properties driven by the dominant protein constituent. Our study suggests SPNPs made from blended proteins can serve as a promising drug delivery carrier owing to the ease of production, the composition versatility, and the control over their size, shape and dispersity.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ava Mauser
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffery E Raymond
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
29
|
Kuruppu AI, Turyanska L, Bradshaw TD, Manickam S, Galhena BP, Paranagama P, De Silva R. Apoferritin and Dps as drug delivery vehicles: Some selected examples in oncology. Biochim Biophys Acta Gen Subj 2022; 1866:130067. [PMID: 34896255 DOI: 10.1016/j.bbagen.2021.130067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND The ideal nanoparticle should be able to encapsulate either pharmaceutical agents or imaging probes so that it could treat or image clinical tumours by targeting the cancer site efficiently. Further, it would be an added advantage if it demonstrates: small size, built in targeting, biocompatibility and biodegradability. Ferritin, which is an endogenous self-assembling protein, stores iron and plays a role in iron homeostasis. When iron atoms are removed apoferritin (AFt) is formed which consists of a hollow shell where it can be used to load guest molecules. Due to its unique architecture, AFt has been investigated as a versatile carrier for tumour theranostic applications. DNA-binding protein from starved cells (Dps), which also belongs to the ferritin family, is a protein found only in prokaryotes. It is used to store iron and protect chromosomes from oxidative damage; because of its architecture, Dps could also be used as a delivery vehicle. CONCLUSIONS Both these nano particles are promising in the field of oncology, especially due to their stability, solubility and biocompatibility features. Further their exterior surface can be modified for better tumour-targeting ability. More studies, are warranted to determine the immunogenicity, biodistribution, and clearance from the body. GENERAL PERSPECTIVE This review discusses a few selected examples of the remarkable in vitro and in vivo studies that have been carried out in the recent past with the use of AFt and Dps in targeting and delivery of various pharmaceutical agents, natural products and imaging probes in the field of oncology.
Collapse
Affiliation(s)
- Anchala I Kuruppu
- Institute for Combinatorial Advanced Research & Education, General Sir John Kotelawala Defence University, Sri Lanka.
| | | | | | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Brunei Darussalam
| | - Bandula Prasanna Galhena
- Department Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Priyani Paranagama
- Department of Chemistry, Faculty of Science, University of Kelaniya, Sri Lanka; Institute of Indigenous Medicine, University of Colombo, Sri Lanka
| | - Ranil De Silva
- Institute for Combinatorial Advanced Research & Education, General Sir John Kotelawala Defence University, Sri Lanka
| |
Collapse
|
30
|
Kaur S, Bari NK, Sinha S. Varying protein architectures in 3-dimensions for scaffolding and modulating properties of catalytic gold nanoparticles. Amino Acids 2022; 54:441-454. [PMID: 35103826 DOI: 10.1007/s00726-022-03127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/13/2022] [Indexed: 11/01/2022]
Abstract
Fabrication and development of nanoscale materials with tunable structural and functional properties require a dynamic arrangement of nanoparticles on architectural templates. The function of nanoparticles not only depends on the property of the nanoparticles but also on their spatial orientations. Proteins with self-assembling properties which can be genetically engineered to varying architectural designs for scaffolds can be used to develop different orientations of nanoparticles in three dimensions. Here, we report the use of naturally self-assembling bacterial micro-compartment shell protein (PduA) assemblies in 2D and its single-point mutant variant (PduA[K26A]) in 3D architectures for the reduction and fabrication of gold nanoparticles. Interestingly, the different spatial organization of gold nanoparticles resulted in a smaller size in the 3D architect scaffold. Here, we observed a two-fold increase in catalytic activity and six-fold higher affinity toward TMB (3,3',5,5'-tetramethylbenzidine) substrate as a measure of higher peroxidase activity (nanozymatic) in the case of PduA[K26A] 3D scaffold. This approach demonstrates that the hierarchical organization of scaffold enables the fine-tuning of nanoparticle properties, thus paving the way toward the design of new nanoscale materials.
Collapse
Affiliation(s)
- Simerpreet Kaur
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab, 140306, India
| | - Naimat K Bari
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab, 140306, India
| | - Sharmistha Sinha
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab, 140306, India.
| |
Collapse
|
31
|
Boyton I, Goodchild SC, Diaz D, Elbourne A, Collins-Praino LE, Care A. Characterizing the Dynamic Disassembly/Reassembly Mechanisms of Encapsulin Protein Nanocages. ACS OMEGA 2022; 7:823-836. [PMID: 35036749 PMCID: PMC8757444 DOI: 10.1021/acsomega.1c05472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 05/22/2023]
Abstract
Encapsulins, self-assembling icosahedral protein nanocages derived from prokaryotes, represent a versatile set of tools for nanobiotechnology. However, a comprehensive understanding of the mechanisms underlying encapsulin self-assembly, disassembly, and reassembly is lacking. Here, we characterize the disassembly/reassembly properties of three encapsulin nanocages that possess different structural architectures: T = 1 (24 nm), T = 3 (32 nm), and T = 4 (42 nm). Using spectroscopic techniques and electron microscopy, encapsulin architectures were found to exhibit varying sensitivities to the denaturant guanidine hydrochloride (GuHCl), extreme pH, and elevated temperature. While all three encapsulins showed the capacity to reassemble following GuHCl-induced disassembly (within 75 min), only the smallest T = 1 nanocage reassembled after disassembly in basic pH (within 15 min). Furthermore, atomic force microscopy revealed that all encapsulins showed a significant loss of structural integrity after undergoing sequential disassembly/reassembly steps. These findings provide insights into encapsulins' disassembly/reassembly dynamics, thus informing their future design, modification, and application.
Collapse
Affiliation(s)
- India Boyton
- School
of Life Sciences, University of Technology
Sydney, Ultimo, New South Wales 2007, Australia
- ARC
Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Sophia C. Goodchild
- Department
of Molecular Sciences, Macquarie University, Macquarie Park, New South
Wales 2109, Australia
| | - Dennis Diaz
- Department
of Molecular Sciences, Macquarie University, Macquarie Park, New South
Wales 2109, Australia
| | - Aaron Elbourne
- School
of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| | - Lyndsey E. Collins-Praino
- Adelaide
Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia
- ARC
Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Andrew Care
- School
of Life Sciences, University of Technology
Sydney, Ultimo, New South Wales 2007, Australia
- ARC
Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
- ARC Centre
of Excellence in Synthetic Biology, Macquarie
University, Macquarie Park, New South Wales 2109, Australia
| |
Collapse
|
32
|
Miao Y, Yang T, Yang S, Yang M, Mao C. Protein nanoparticles directed cancer imaging and therapy. NANO CONVERGENCE 2022; 9:2. [PMID: 34997888 PMCID: PMC8742799 DOI: 10.1186/s40580-021-00293-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Cancer has been a serious threat to human health. Among drug delivery carriers, protein nanoparticles are unique because of their mild and environmentally friendly preparation methods. They also inherit desired characteristics from natural proteins, such as biocompatibility and biodegradability. Therefore, they have solved some problems inherent to inorganic nanocarriers such as poor biocompatibility. Also, the surface groups and cavity of protein nanoparticles allow for easy surface modification and drug loading. Besides, protein nanoparticles can be combined with inorganic nanoparticles or contrast agents to form multifunctional theranostic platforms. This review introduces representative protein nanoparticles applicable in cancer theranostics, including virus-like particles, albumin nanoparticles, silk protein nanoparticles, and ferritin nanoparticles. It also describes the common methods for preparing them. It then critically analyzes the use of a variety of protein nanoparticles in improved cancer imaging and therapy.
Collapse
Affiliation(s)
- Yao Miao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Shuxu Yang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang, China.
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019-5251, USA.
| |
Collapse
|
33
|
Sung HD, Kim N, Lee Y, Lee EJ. Protein-Based Nanoparticle Vaccines for SARS-CoV-2. Int J Mol Sci 2021; 22:13445. [PMID: 34948241 PMCID: PMC8703262 DOI: 10.3390/ijms222413445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
The pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has upended healthcare systems and economies around the world. Rapid understanding of the structural biology and pathogenesis of SARS-CoV-2 has allowed the development of emergency use or FDA-approved vaccines and various candidate vaccines. Among the recently developed SARS-CoV-2 candidate vaccines, natural protein-based nanoparticles well suited for multivalent antigen presentation and enhanced immune stimulation to elicit potent humoral and cellular immune responses are currently being investigated. This mini-review presents recent innovations in protein-based nanoparticle vaccines against SARS-CoV-2. The design and strategy of displaying antigenic domains, including spike protein, receptor-binding domain (RBD), and other domains on the surface of various protein-based nanoparticles and the performance of the developed nanoparticle-based vaccines are highlighted. In the final part of this review, we summarize and discuss recent advances in clinical trials and provide an outlook on protein-based nanoparticle vaccines.
Collapse
Affiliation(s)
- Hyo-Dong Sung
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Nayeon Kim
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Yeram Lee
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
34
|
Abisoye-Ogunniyan A, Carrano IM, Weilhammer DR, Gilmore SF, Fischer NO, Pal S, de la Maza LM, Coleman MA, Rasley A. A Survey of Preclinical Studies Evaluating Nanoparticle-Based Vaccines Against Non-Viral Sexually Transmitted Infections. Front Pharmacol 2021; 12:768461. [PMID: 34899322 PMCID: PMC8662999 DOI: 10.3389/fphar.2021.768461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
A worldwide estimate of over one million STIs are acquired daily and there is a desperate need for effective preventive as well as therapeutic measures to curtail this global health burden. Vaccines have been the most effective means for the control and potential eradication of infectious diseases; however, the development of vaccines against STIs has been a daunting task requiring extensive research for the development of safe and efficacious formulations. Nanoparticle-based vaccines represent a promising platform as they offer benefits such as targeted antigen presentation and delivery, co-localized antigen-adjuvant combinations for enhanced immunogenicity, and can be designed to be biologically inert. Here we discuss promising types of nanoparticles along with outcomes from nanoparticle-based vaccine preclinical studies against non-viral STIs including chlamydia, syphilis, gonorrhea, and recommendations for future nanoparticle-based vaccines against STIs.
Collapse
Affiliation(s)
- Abisola Abisoye-Ogunniyan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Isabella M Carrano
- Department of Plant and Microbial Biology, Rausser College of Natural Resources, University of California, Berkeley, Berkeley, CA, United States
| | - Dina R Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Sean F Gilmore
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicholas O Fischer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Matthew A Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Amy Rasley
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
35
|
Yap KM, Sekar M, Fuloria S, Wu YS, Gan SH, Mat Rani NNI, Subramaniyan V, Kokare C, Lum PT, Begum MY, Mani S, Meenakshi DU, Sathasivam KV, Fuloria NK. Drug Delivery of Natural Products Through Nanocarriers for Effective Breast Cancer Therapy: A Comprehensive Review of Literature. Int J Nanomedicine 2021; 16:7891-7941. [PMID: 34880614 PMCID: PMC8648329 DOI: 10.2147/ijn.s328135] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Despite recent advances in the diagnosis and treatment of breast cancer (BC), it remains a global health issue affecting millions of women annually. Poor prognosis in BC patients is often linked to drug resistance as well as the lack of effective therapeutic options for metastatic and triple-negative BC. In response to these unmet needs, extensive research efforts have been devoted to exploring the anti-BC potentials of natural products owing to their multi-target mechanisms of action and good safety profiles. Various medicinal plant extracts/essential oils and natural bioactive compounds have demonstrated anti-cancer activities in preclinical BC models. Despite the promising preclinical results, however, the clinical translation of natural products has often been hindered by their poor stability, aqueous solubility and bioavailability. There have been attempts to overcome these limitations, particularly via the use of nano-based drug delivery systems (NDDSs). This review highlights the tumour targeting mechanisms of NDDSs, the advantages and disadvantages of the major classes of NDDSs and their current clinical status in BC treatment. Besides, it also discusses the proposed anti-BC mechanisms and nanoformulations of nine medicinal plants' extracts/essential oils and nine natural bioactive compounds; selected via the screening of various scientific databases, including PubMed, Scopus and Google Scholar, based on the following keywords: "Natural Product AND Nanoparticle AND Breast Cancer". Overall, these nanoformulations exhibit improved anti-cancer efficacy against preclinical BC models, with some demonstrating biocompatibility with normal cell lines and mouse models. Further clinical studies are, however, warranted to ascertain their efficacy and biocompatibility in humans.
Collapse
Affiliation(s)
- Kah Min Yap
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Chandrakant Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society’s, Sinhgad Institute of Pharmacy, Narhe, Pune, 411041, India
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Asir-Abha, 61421, Saudi Arabia
| | - Shankar Mani
- Department of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, Karnataka, 571418, India
| | | | | | | |
Collapse
|
36
|
Obata J, Kawakami N, Tsutsumi A, Nasu E, Miyamoto K, Kikkawa M, Arai R. Icosahedral 60-meric porous structure of designed supramolecular protein nanoparticle TIP60. Chem Commun (Camb) 2021; 57:10226-10229. [PMID: 34523636 DOI: 10.1039/d1cc03114g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Supramolecular protein nanoparticles and nanocages have potential in a broad range of applications. Recently, we developed a uniform supramolecular protein nanoparticle, TIP60, symmmetrically self-assembled from fusion proteins of a pentameric Sm-like protein and a dimeric MyoX-coil domain. Herein, we report the icosahedral 60-meric structure of TIP60 solved using single-particle cryo-electron microscopy. Interestingly, the structure revealed 20 regular-triangle-like pores on the surface. TIP60 and its mutants have many modifiable sites on their exterior and interior surfaces. The TIP60 architecture will be useful in the development of biomedical and biochemical nanoparticles/nanocages for future applications.
Collapse
Affiliation(s)
- Junya Obata
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda, Nagano 386-8567, Japan. .,Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Norifumi Kawakami
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Akihisa Tsutsumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Erika Nasu
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Kenji Miyamoto
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda, Nagano 386-8567, Japan. .,Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
37
|
Qu Y, Zhang B, Wang Y, Yin S, Pederick JL, Bruning JB, Sun Y, Middelberg A, Bi J. Immunogenicity study of engineered ferritins with C- and N-terminus insertion of Epstein-Barr nuclear antigen 1 epitope. Vaccine 2021; 39:4830-4841. [PMID: 34284876 DOI: 10.1016/j.vaccine.2021.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022]
Abstract
Human ferritin heavy chain, an example of a protein nanoparticle, has recently been used as a vaccine delivery platform. Human ferritin has advantages of uniform architecture, robust thermal and chemical stabilities, and good biocompatibility and biodegradation. There is however a lack of understanding about the relationship between insertion sites in ferritin (N-terminus and C-terminus) and the corresponding humoral and cell-mediated immune responses. To bridge this gap, we utilized an Epstein-Barr Nuclear Antigen 1 (EBNA1) epitope as a model to produce engineered ferritin-based vaccines E1F1 (N-terminus insertion) and F1E1 (C-terminus insertion) for the prevention of Epstein-Barr virus (EBV) infections. X-ray crystallography confirmed the relative positions of the N-terminus insertion and C-terminus insertion. For N-terminus insertion, the epitopes were located on the exterior surface of ferritin, while for C-terminus insertion, the epitopes were inside the ferritin cage. Based on the results of antigen-specific antibody titers from in-vivo tests, we found that there was no obvious difference on humoral immune responses between N-terminus and C-terminus insertion. We also evaluated splenocyte proliferation and memory lymphocyte T cell differentiation. Both results suggested C-terminus insertion produced a stronger proliferative response and cell-mediated immune response than N-terminus insertion. C-terminus insertion of EBNA1 epitope was also processed more efficiently by dendritic cells (DCs) than N-terminus insertion. This provides new insight into the relationship between the insertion site and immunogenicity of ferritin nanoparticle vaccines.
Collapse
Affiliation(s)
- Yiran Qu
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bingyang Zhang
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yingli Wang
- Shanxi University of Chinese Medicine, Shanxi, China
| | - Shuang Yin
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jordan L Pederick
- Institute for Photonics and Advanced Sensing, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia; Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - John B Bruning
- Institute for Photonics and Advanced Sensing, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia; Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anton Middelberg
- Division of Research and Innovation, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jingxiu Bi
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
38
|
Kumar M, Markiewicz-Mizera J, Janna Olmos JD, Wilk P, Grudnik P, Biela AP, Jemioła-Rzemińska M, Górecki A, Chakraborti S, Heddle JG. A single residue can modulate nanocage assembly in salt dependent ferritin. NANOSCALE 2021; 13:11932-11942. [PMID: 34195748 DOI: 10.1039/d1nr01632f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cage forming proteins have numerous potential applications in biomedicine and biotechnology, where the iron storage ferritin is a widely used example. However, controlling ferritin cage assembly/disassembly remains challenging, typically requiring extreme conditions incompatible with many desirable cargoes, particularly for more fragile biopharmaceuticals. Recently, a ferritin from the hyperthermophile bacterium Thermotoga maritima (TmFtn) has been shown to have reversible assembly under mild conditions, offering greater potential biocompatibility in terms of cargo access and encapsulation. Like Archeoglobus fulgidus ferritin (AfFtn), TmFtn forms 24mer cages mediated by metal ions (Mg2+). We have solved the crystal structure of the wild type TmFtn and several mutants displaying different assembly/disassembly properties. These data combined with other biophysical studies allow us to suggest candidate interfacial amino acids crucial in controlling assembly. This work deepens our understanding of how these ferritin complexes assemble and is a useful step towards production of triggerable ferritins in which these properties can be finely designed and controlled.
Collapse
Affiliation(s)
- Mantu Kumar
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-392 Krakow, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chander S, Kulkarni GT, Dhiman N, Kharkwal H. Protein-Based Nanohydrogels for Bioactive Delivery. Front Chem 2021; 9:573748. [PMID: 34307293 PMCID: PMC8299995 DOI: 10.3389/fchem.2021.573748] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogels possess a unique three-dimensional, cross-linked network of polymers capable of absorbing large amounts of water and biological fluids without dissolving. Nanohydrogels (NGs) or nanogels are composed of diverse types of polymers of synthetic or natural origin. Their combination is bound by a chemical covalent bond or is physically cross-linked with non-covalent bonds like electrostatic interactions, hydrophobic interactions, and hydrogen bonding. Its remarkable ability to absorb water or other fluids is mainly attributed to hydrophilic groups like hydroxyl, amide, and sulphate, etc. Natural biomolecules such as protein- or peptide-based nanohydrogels are an important category of hydrogels which possess high biocompatibility and metabolic degradability. The preparation of protein nanohydrogels and the subsequent encapsulation process generally involve use of environment friendly solvents and can be fabricated using different proteins, such as fibroins, albumin, collagen, elastin, gelatin, and lipoprotein, etc. involving emulsion, electrospray, and desolvation methods to name a few. Nanohydrogels are excellent biomaterials with broad applications in the areas of regenerative medicine, tissue engineering, and drug delivery due to certain advantages like biodegradability, biocompatibility, tunable mechanical strength, molecular binding abilities, and customizable responses to certain stimuli like ionic concentration, pH, and temperature. The present review aims to provide an insightful analysis of protein/peptide nanohydrogels including their preparation, biophysiochemical aspects, and applications in diverse disciplines like in drug delivery, immunotherapy, intracellular delivery, nutraceutical delivery, cell adhesion, and wound dressing. Naturally occurring structural proteins that are being explored in protein nanohydrogels, along with their unique properties, are also discussed briefly. Further, the review also covers the advantages, limitations, overview of clinical potential, toxicity aspects, stability issues, and future perspectives of protein nanohydrogels.
Collapse
Affiliation(s)
- Subhash Chander
- Amity Institute of Phytochemistry and Phytomedicine, Amity University, Noida, India
| | - Giriraj T. Kulkarni
- Amity Institute of Pharmacy, Amity University, Noida, India
- Gokaraju Rangaraju College of Pharmacy, Hyderabad, India
| | | | - Harsha Kharkwal
- Amity Institute of Phytochemistry and Phytomedicine, Amity University, Noida, India
| |
Collapse
|
40
|
Yur D, Lieser RM, Sullivan MO, Chen W. Engineering bionanoparticles for improved biosensing and bioimaging. Curr Opin Biotechnol 2021; 71:41-48. [PMID: 34157601 DOI: 10.1016/j.copbio.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
The importance of bioimaging and biosensing has been clear with the onset of the COVID-19 pandemic. In addition to viral detection, detection of tumors, glucose levels, and microbes is necessary for improved disease treatment and prevention. Bionanoparticles, such as extracellular vesicles and protein nanoparticles, are ideal platforms for biosensing and bioimaging applications because of their propensity for high density surface functionalization and large loading capacity. Scaffolding large numbers of sensing modules and detection modules onto bionanoparticles allows for enhanced analyte affinity and specificity as well as signal amplification for highly sensitive detection even at low analyte concentrations. Here we demonstrate the potential of bionanoparticles for bioimaging and biosensing by highlighting recent examples in literature that utilize protein nanoparticles and extracellular vesicles to generate highly sensitive detection devices with impressive signal amplification.
Collapse
Affiliation(s)
- Daniel Yur
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States
| | - Rachel M Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States.
| |
Collapse
|
41
|
Nguyen B, Tolia NH. Protein-based antigen presentation platforms for nanoparticle vaccines. NPJ Vaccines 2021; 6:70. [PMID: 33986287 PMCID: PMC8119681 DOI: 10.1038/s41541-021-00330-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
Modern vaccine design has sought a minimalization approach, moving to the isolation of antigens from pathogens that invoke a strong neutralizing immune response. This approach has created safer vaccines but may limit vaccine efficacy due to poor immunogenicity. To combat global diseases such as COVID-19, malaria, and AIDS there is a clear urgency for more effective next-generation vaccines. One approach to improve the immunogenicity of vaccines is the use of nanoparticle platforms that present a repetitive array of antigen on its surface. This technology has been shown to improve antigen presenting cell uptake, lymph node trafficking, and B-cell activation through increased avidity and particle size. With a focus on design, we summarize natural platforms, methods of antigen attachment, and advancements in generating self-assembly that have led to new engineered platforms. We further examine critical parameters that will direct the usage and development of more effective platforms.
Collapse
Affiliation(s)
- Brian Nguyen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
42
|
Jenkins MC, Lutz S. Encapsulin Nanocontainers as Versatile Scaffolds for the Development of Artificial Metabolons. ACS Synth Biol 2021; 10:857-869. [PMID: 33769792 DOI: 10.1021/acssynbio.0c00636] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The construction of non-native biosynthetic pathways represents a powerful, modular strategy for the production of valuable synthons and fine chemicals. Accordingly, artificially affixing enzymes that catalyze sequential reactions onto DNAs, proteins, or synthetic scaffolds has proven to be an effective route for generating de novo metabolons with novel functionalities and superior efficiency. In recent years, nanoscale microbial compartments known as encapsulins have emerged as a class of robust and highly engineerable proteinaceous containers with myriad applications in biotechnology and synthetic biology. Herein we report the concurrent surface functionalization and internal packaging of encapsulins from Thermotoga maritima to generate a catalytically competent two-enzyme metabolon. Encapsulins were engineered to covalently sequester up to 60 copies of a dihydrofolate reductase (DHFR) enzyme variant on their exterior surfaces using the SpyCatcher bioconjugation system, while their lumens were packaged with a tetrahydrofolate-dependent demethylase enzyme using short peptide affinity tags abstracted from the encapsulin's native protein cargo. Successful cross-talk between the two colocalized enzymes was confirmed as tetrahydrofolate produced by externally tethered DHFR was capable of driving the demethylation of a lignin-derived aryl substrate by packaged demethylases, albeit slowly. The subsequent introduction of a previously reported pore-enlarging deletion in the encapsulin shell was shown to enhance metabolite exchange such that the encapsulin-based metabolon functioned at speeds equivalent to those of the two enzymes freely dispersed in solution. Our work thus further emphasizes the engineerability of encapsulins and their potential use as flexile scaffolds for biocatalytic applications.
Collapse
Affiliation(s)
- Matthew C. Jenkins
- Department of Chemistry, Emory University, Atlanta, Georgia 30084, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
| | - Stefan Lutz
- Department of Chemistry, Emory University, Atlanta, Georgia 30084, United States
- Codexis Inc., 200 Penobscot Drive, Redwood City, California 94063, United States
| |
Collapse
|
43
|
Kaku TS, Lim S. Protein nanoparticles in molecular, cellular, and tissue imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1714. [PMID: 33821568 DOI: 10.1002/wnan.1714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 01/10/2023]
Abstract
The quest to develop ideal nanoparticles capable of molecular, cellular, and tissue level imaging is ongoing. Since certain imaging probes and nanoparticles face drawbacks such as low aqueous solubility, increased ROS generation leading to DNA damage, apoptosis, and high cellular/organ toxicities, the development of versatile and biocompatible nanocarriers becomes necessary. Protein nanoparticles (PNPs) are one such promising class of nanocarriers that possess most of the desirable properties of an ideal nanocarrier for bioimaging applications. PNPs demonstrate high aqueous solubility, minimal cytotoxicity, and multi-cargo loading capacity. They are also amenable to surface-functionalization, as well as modulation of their hydrophobicity and hydrophilicity. The use of PNPs for bioimaging applications has made rapid advancements in the past two decades. Being comparatively less explored, the field opens up a plethora of opportunities and focus areas to engineer ideal bioimaging protein nanocarriers. The use of PNPs as carriers of their natural ligands as well as other heavy metals and fluorescent probes, along with drug molecules for combined theranostic applications has been reported. In addition, surface functionalization to impart specificity of targeting the PNPs has been shown to reduce nonspecific cellular interactions, thus reducing systemic toxicity. PNPs have been explored for their application in imaging of numerous cancers, cardiovascular diseases as well as imaging of the brain using near infrared fluorescence (NIRF) imaging, magnetic resonance imaging (MRI), X-ray computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT), ultrasound (US), and photoacoustic (PA) imaging. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Tanvi Sushil Kaku
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
44
|
Tummillo KM, Hazlett KR. Co-Opting Host Receptors for Targeted Delivery of Bioconjugates-From Drugs to Bugs. Molecules 2021; 26:molecules26051479. [PMID: 33803208 PMCID: PMC7963163 DOI: 10.3390/molecules26051479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Bioconjugation has allowed scientists to combine multiple functional elements into one biological or biochemical unit. This assembly can result in the production of constructs that are targeted to a specific site or cell type in order to enhance the response to, or activity of, the conjugated moiety. In the case of cancer treatments, selectively targeting chemotherapies to the cells of interest limit harmful side effects and enhance efficacy. Targeting through conjugation is also advantageous in delivering treatments to difficult-to-reach tissues, such as the brain or infections deep in the lung. Bacterial infections can be more selectively treated by conjugating antibiotics to microbe-specific entities; helping to avoid antibiotic resistance across commensal bacterial species. In the case of vaccine development, conjugation is used to enhance efficacy without compromising safety. In this work, we will review the previously mentioned areas in which bioconjugation has created new possibilities and advanced treatments.
Collapse
Affiliation(s)
- Kristen M. Tummillo
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA;
- Admera Health, South Plainfield, NJ 07080, USA
| | - Karsten R.O. Hazlett
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA;
- Correspondence: ; Tel.: +1-518-262-2338
| |
Collapse
|
45
|
Ma Y, Dong Y, Li X, Wang F, Zhang Y. Tumor-Penetrating Peptide-Functionalized Ferritin Enhances Antitumor Activity of Paclitaxel. ACS APPLIED BIO MATERIALS 2021; 4:2654-2663. [DOI: 10.1021/acsabm.0c01613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yuanmeng Ma
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yixin Dong
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Xun Li
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Fei Wang
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yu Zhang
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
46
|
Kalathiya U, Padariya M, Fahraeus R, Chakraborti S, Hupp TR. Multivalent Display of SARS-CoV-2 Spike (RBD Domain) of COVID-19 to Nanomaterial, Protein Ferritin Nanocages. Biomolecules 2021; 11:297. [PMID: 33671255 PMCID: PMC7923090 DOI: 10.3390/biom11020297] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2, or COVID-19, has a devastating effect on our society, both in terms of quality of life and death rates; hence, there is an urgent need for developing safe and effective therapeutics against SARS-CoV-2. The most promising strategy to fight against this deadly virus is to develop an effective vaccine. Internalization of SARS-CoV-2 into the human host cell mainly occurs through the binding of the coronavirus spike protein (a trimeric surface glycoprotein) to the human angiotensin-converting enzyme 2 (ACE2) receptor. The spike-ACE2 protein-protein interaction is mediated through the receptor-binding domain (RBD) of the spike protein. Mutations in the spike RBD can significantly alter interactions with the ACE2 host receptor. Due to its important role in virus transmission, the spike RBD is considered to be one of the key molecular targets for vaccine development. In this study, a spike RBD-based subunit vaccine was designed by utilizing a ferritin protein nanocage as a scaffold. Several fusion protein constructs were designed in silico by connecting the spike RBD via a synthetic linker (different sizes) to different ferritin subunits (H-ferritin and L-ferritin). The stability and the dynamics of the engineered nanocage constructs were tested by extensive molecular dynamics simulation (MDS). Based on our MDS analysis, a five amino acid-based short linker (S-Linker) was the most effective for displaying the spike RBD over the surface of ferritin. The behavior of the spike RBD binding regions from the designed chimeric nanocages with the ACE2 receptor was highlighted. These data propose an effective multivalent synthetic nanocage, which might form the basis for new vaccine therapeutics designed against viruses such as SARS-CoV-2.
Collapse
Affiliation(s)
- Umesh Kalathiya
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (R.F.)
| | - Monikaben Padariya
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (R.F.)
| | - Robin Fahraeus
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (R.F.)
| | | | - Ted R. Hupp
- University of Gdansk, International Centre for Cancer Vaccine Science, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (R.F.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK
| |
Collapse
|
47
|
|
48
|
Wang Y, Uchida M, Waghwani HK, Douglas T. Synthetic Virus-like Particles for Glutathione Biosynthesis. ACS Synth Biol 2020; 9:3298-3310. [PMID: 33232156 DOI: 10.1021/acssynbio.0c00368] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-based nanocompartments found in nature have inspired the development of functional nanomaterials for a range of applications including delivery of catalytic activities with therapeutic effects. As glutathione (GSH) plays a vital role in metabolic adaptation and many diseases are associated with its deficiency, supplementation of GSH biosynthetic activity might be a potential therapeutic when delivered directly to the disease site. Here, we report the successful design and production of active nanoreactors capable of catalyzing the partial or complete pathway for GSH biosynthesis, which was realized by encapsulating essential enzymes of the pathway inside the virus-like particle (VLP) derived from the bacteriophage P22. These nanoreactors are the first examples of nanocages specifically designed for the biosynthesis of oligomeric biomolecules. A dense packing of enzymes is achieved within the cavities of the nanoreactors, which allows us to study enzyme behavior, in a crowded and confined environment, including enzymatic kinetics and protein stability. In addition, the biomedical utility of the nanoreactors in protection against oxidative stress was confirmed using an in vitro cell culture model. Given that P22 VLP capsid was suggested as a potential liver-tropic nanocarrier in vivo, it will be promising to test the efficacy of these GSH nanoreactors as a novel treatment for GSH-deficient hepatic diseases.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Masaki Uchida
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, California 93740, United States
| | - Hitesh Kumar Waghwani
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
49
|
Cai Y, Huang J, Xu H, Zhang T, Cao C, Pan Y. Synthesis, characterization and application of magnetoferritin nanoparticle by using human H chain ferritin expressed by Pichia pastoris. NANOTECHNOLOGY 2020; 31:485709. [PMID: 32931463 DOI: 10.1088/1361-6528/abb15d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein-based nanoparticles have developed rapidly in areas such as drug delivery, biomedical imaging and biocatalysis. Ferritin possesses unique properties that make it attractive as a potential platform for a variety of nanobiotechnological applications. Here we synthesized magnetoferritin (P-MHFn) nanoparticles for the first time by using the human H chain of ferritin that was expressed by Pichia pastoris (P-HFn). Western blot results showed that recombinant P-HFn was successfully expressed after methanol induction. Transmission electron microscopy (TEM) showed the spherical cage-like shape and monodispersion of P-HFn. The synthesized magnetoferritin (P-MHFn) retained the properties of magnetoferritin nanoparticles synthesized using HFn expressed by E. coli (E-MHFn): superparamagnetism under ambient conditions and peroxidase-like activity. It is stable under a wider range of pH values (from 5.0 to 11.0), likely due to post-translational modifications such as N-glycosylation on P-HFn. In vivo near-infrared fluorescence imaging experiments revealed that P-MHFn nanoparticles can accumulate in tumors, which suggests that P-MHFn could be used in tumor imaging and therapy. An acute toxicity study of P-MHFn in Sprague Dawley rats showed no abnormalities at a dose up to 20 mg Fe Kg-1 body weight. Therefore, this study shed light on the development of magnetoferritin nanoparticles using therapeutic HFn expressed by Pichia pastoris for biomedical applications.
Collapse
Affiliation(s)
- Yao Cai
- Biogeomagnetism Group, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China. France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100029, People's Republic of China. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
50
|
Hartzell EJ, Lieser RM, Sullivan MO, Chen W. Modular Hepatitis B Virus-like Particle Platform for Biosensing and Drug Delivery. ACS NANO 2020; 14:12642-12651. [PMID: 32924431 DOI: 10.1021/acsnano.9b08756] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The hepatitis B virus-like particle (HBV VLP) is an attractive protein nanoparticle platform due to the availability of 240 modification sites for engineering purposes. Although direct protein insertion into the surface loop has been demonstrated, this decoration strategy is restricted by the size of the inserted protein moieties. Meanwhile, larger proteins can be decorated using chemical conjugations; yet these approaches perturb the integrity of more delicate proteins and can unfavorably orient the proteins, impairing active surface display. Herein, we aim to create a robust and highly modular method to produce smart HBV-based nanodevices by using the SpyCatcher/SpyTag system, which allows a wide range of peptides and proteins to be conjugated directly and simply onto the modified HBV capsids in a controlled and biocompatible manner. Our technology allows the modular surface modification of HBV VLPs with multiple components, which provides signal amplification, increased targeting avidity, and high therapeutic payload incorporation. We have achieved a yield of over 200 mg/L for these engineered HBV VLPs and demonstrated the flexibility of this platform in both biosensing and drug delivery applications. The ability to decorate over 200 nanoluciferases per VLP improved detection signal by over 1500-fold, such that low nanomolar levels of thrombin could be detected by the naked eye. Meanwhile, a dimeric prodrug-activating enzyme was loaded without cross-linking particles by coexpressing orthogonally labeled monomers. This along with a epidermal growth factor receptor-binding peptide enabled tunable uptake of HBV VLPs into inflammatory breast cancer cells, leading to efficient suicide enzyme delivery and cell killing.
Collapse
Affiliation(s)
- Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Rachel M Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|