1
|
Hajjeh O, Rajab I, Bdair M, Saife S, Zahran A, Nazzal I, AbuZahra MI, Jallad H, Abukhalil MM, Hallak M, Al-Said OS, Al-Braik R, Sawaftah Z, Milhem F, Almur O, Saife S, Aburemaileh M, Abuhilal A. Enteric nervous system dysfunction as a driver of central nervous system disorders: The Forgotten brain in neurological disease. Neuroscience 2025; 572:232-247. [PMID: 40088964 DOI: 10.1016/j.neuroscience.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
The Enteric Nervous System (ENS), often called the "second brain," is a complex network of neurons and glial cells within the gastrointestinal (GI) tract. It functions autonomously while maintaining close communication with the central nervous system (CNS) via the gut-brain axis (GBA). ENS dysfunction plays a crucial role in neurodegenerative and neurodevelopmental disorders, including Parkinson's disease, Alzheimer's disease, and autism spectrum disorder. Disruptions such as altered neurotransmission, gut microbiota imbalance, and neuroinflammation contribute to disease pathogenesis. The GBA enables bidirectional communication through the vagus nerve, gut hormones, immune signaling, and microbial metabolites, linking gut health to neurological function. ENS dysregulation is implicated in conditions like irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), influencing systemic and CNS pathology through neuroinflammation and impaired barrier integrity. This review highlights emerging therapeutic strategies targeting ENS dysfunction, including prebiotics, probiotics, fecal microbiota transplantation (FMT), and vagus nerve stimulation, which offer novel ways to modulate gut-brain interactions. Unlike previous perspectives that view the ENS as a passive disease marker, this review repositions it as an active driver of neurological disorders. By integrating advances in ENS biomarkers, therapeutic targets, and GBA modulation, this article presents a paradigm shift-emphasizing ENS dysfunction as a fundamental mechanism in neurodegeneration and neurodevelopmental disorders. This perspective paves the way for innovative diagnostics, personalized gut-targeted therapies, and a deeper understanding of the ENS's role in brain health and disease.
Collapse
Affiliation(s)
- Orabi Hajjeh
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Islam Rajab
- Internal Medicine Department, St. Joseph's University Medical Center, 703 Main St, Paterson, NJ 07503, USA
| | - Mohammad Bdair
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sarah Saife
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Anwar Zahran
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Iyad Nazzal
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Ibrahem AbuZahra
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Hammam Jallad
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Maram M Abukhalil
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mira Hallak
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Osama S Al-Said
- Department Of Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Rama Al-Braik
- Department Of Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Zaid Sawaftah
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Fathi Milhem
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Omar Almur
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sakeena Saife
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammed Aburemaileh
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Anfal Abuhilal
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| |
Collapse
|
2
|
Gomez-Pinilla F, Myers SK. Traumatic brain injury from a peripheral axis perspective: Uncovering the roles of liver and adipose tissue in temperature regulation. Prog Neurobiol 2025; 247:102733. [PMID: 40032155 DOI: 10.1016/j.pneurobio.2025.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Most current treatments for TBI and other neurological disorders focus on the brain, often overlooking the significant contributions of peripheral organs to disease progression. Emerging evidence suggests that organs such as the liver and adipose tissue play crucial roles in TBI pathogenesis. The liver synthesizes lipids and proteins vital for brain function, while adipose tissue provides hormones and metabolites that influence brain activity. New research indicates that the liver and adipose tissue work in concert with the hypothalamus to regulate essential processes, such as body temperature, which become disrupted in TBI. Additionally, the brain-peripheral axis-a complex network of visceral nerve pathways, hormones, and metabolites-plays a bidirectional role in regulating brain plasticity and function. Understanding how TBI leads to dysregulation of the liver, adipose tissue, and other organs could unlock new therapeutic opportunities for treating TBI and related neurological disorders. The intricate autonomic network involving hypothalamic and enteric neurons, along with visceral nerve pathways and hormones, presents both pathological targets and therapeutic potential. We examine scientific evidence suggesting that correcting disturbances in systemic physiology could enhance the brain's capacity for healing. However, the interdependence of this autonomic network implies that treating dysfunction in one area may affect others. Therefore, we also explore the mechanisms by which diet and exercise can comprehensively impact the brain-peripheral axis, supporting the healing process. CHEMICAL COMPOUNDS: D-Fructose (PubChem CID 2723872); docosahexaenoic acid (PubChem CID 45934466); eicosapentaenoic acid (PubChem 5282847).
Collapse
Affiliation(s)
- F Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Sydney K Myers
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Zhang L, Wei J, Liu X, Li D, Pang X, Chen F, Cao H, Lei P. Gut microbiota-astrocyte axis: new insights into age-related cognitive decline. Neural Regen Res 2025; 20:990-1008. [PMID: 38989933 PMCID: PMC11438350 DOI: 10.4103/nrr.nrr-d-23-01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/04/2024] [Indexed: 07/12/2024] Open
Abstract
With the rapidly aging human population, age-related cognitive decline and dementia are becoming increasingly prevalent worldwide. Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota, microbial metabolites, and the functions of astrocytes. The microbiota-gut-brain axis has been the focus of multiple studies and is closely associated with cognitive function. This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases. This article also summarizes the gut microbiota components that affect astrocyte function, mainly through the vagus nerve, immune responses, circadian rhythms, and microbial metabolites. Finally, this article summarizes the mechanism by which the gut microbiota-astrocyte axis plays a role in Alzheimer's and Parkinson's diseases. Our findings have revealed the critical role of the microbiota-astrocyte axis in age-related cognitive decline, aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.
Collapse
Affiliation(s)
- Lan Zhang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xilei Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fanglian Chen
- Tianjin Neurological Institution, Tianjin Medical University General Hospital, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Yassin LK, Nakhal MM, Alderei A, Almehairbi A, Mydeen AB, Akour A, Hamad MIK. Exploring the microbiota-gut-brain axis: impact on brain structure and function. Front Neuroanat 2025; 19:1504065. [PMID: 40012737 PMCID: PMC11860919 DOI: 10.3389/fnana.2025.1504065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
The microbiota-gut-brain axis (MGBA) plays a significant role in the maintenance of brain structure and function. The MGBA serves as a conduit between the CNS and the ENS, facilitating communication between the emotional and cognitive centers of the brain via diverse pathways. In the initial stages of this review, we will examine the way how MGBA affects neurogenesis, neuronal dendritic morphology, axonal myelination, microglia structure, brain blood barrier (BBB) structure and permeability, and synaptic structure. Furthermore, we will review the potential mechanistic pathways of neuroplasticity through MGBA influence. The short-chain fatty acids (SCFAs) play a pivotal role in the MGBA, where they can modify the BBB. We will therefore discuss how SCFAs can influence microglia, neuronal, and astrocyte function, as well as their role in brain disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD). Subsequently, we will examine the technical strategies employed to study MGBA interactions, including using germ-free (GF) animals, probiotics, fecal microbiota transplantation (FMT), and antibiotics-induced dysbiosis. Finally, we will examine how particular bacterial strains can affect brain structure and function. By gaining a deeper understanding of the MGBA, it may be possible to facilitate research into microbial-based pharmacological interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayishal B. Mydeen
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Nisa K, Arisandi R, Ibrahim N, Hardian H. Harnessing the power of probiotics to enhance neuroplasticity for neurodevelopment and cognitive function in stunting: a comprehensive review. Int J Neurosci 2025; 135:41-51. [PMID: 37963096 DOI: 10.1080/00207454.2023.2283690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Stunting become a global concern because it's not only affecting physical stature, but also affecting on neurodevelopment and cognitive function. These impacts are resulting in long-term consequences especially for human resources, such as poor-quality labor, decreased productivity due to decreasing of health quality, including immunity and cognitive aspect. DISCUSSION This comprehensive review found that based on many studies, there is an altered gut microbiota, or dysbiosis, in stunted children, causing the impairment of brain development through Microbiota-Gut Brain Axis (MGB Axis) mechanism. The administration of probiotics has been known affect MGBA by improving the physical and chemical gut barrier integrity, producing antimicrobial substance to inhibit pathogen, and recovering the healthy gut microbiota. Probiotics, along with healthy gut microbiota, produce SCFAs which have various positive impact on CNS, such as increase neurogenesis, support the development and function of microglia, reduce inflammatory signaling, improve the Blood Brain Barrier's (BBB's) integrity, produce neurotropic factors (e.g. BDNF, GDNF), and promote the formation of new synapse. Probiotics also could induce the production of IGF-1 by intestinal epithelial cells, which functioned as growth factor of multiple body tissues and resulted in improvement of linear growth as well as brain development. CONCLUSION These properties of probiotics made it become the promising and feasible new treatment approach for stunting. But since most of the studies in this field are conducted in animal models, it is necessary to translate animal data into human models and do additional study to identify the numerous components in the MGB axis and the effect of probiotics on human.
Collapse
Affiliation(s)
- Khairun Nisa
- Department of Physiology, University of Lampung, Bandar Lampung, Indonesia
| | - Rizki Arisandi
- Department of Physiology, University of Lampung, Bandar Lampung, Indonesia
| | - Nurhadi Ibrahim
- Department of Medical Physiology and Biophysics, Universitas Indonesia, Depok, Indonesia
| | - Hardian Hardian
- Department of Physiology, University of Diponegoro, Semarang, Indonesia
| |
Collapse
|
6
|
Amaral WZ, Kokroko N, Treangen TJ, Villapol S, Gomez-Pinilla F. Probiotic therapy modulates the brain-gut-liver microbiota axis in a mouse model of traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167483. [PMID: 39209236 PMCID: PMC11526848 DOI: 10.1016/j.bbadis.2024.167483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The interplay between gut microbiota and host health is crucial for maintaining the overall health of the body and brain, and it is even more crucial how changes in the bacterial profile can influence the aftermath of traumatic brain injury (TBI). We studied the effects of probiotic treatment after TBI to identify potential changes in hepatic lipid species relevant to brain function. Bioinformatic analysis of the gut microbiota indicated a significant increase in the Firmicutes/Bacteroidetes ratio in the probiotic-treated TBI group compared to sham and untreated TBI groups. Although strong correlations between gut bacteria and hepatic lipids were found in sham mice, TBI disrupted these links, and probiotic treatment did not fully restore them. Probiotic treatment influenced systemic glucose metabolism, suggesting altered metabolic regulation. Behavioral tests confirmed memory improvement in probiotic-treated TBI mice. While TBI reduced hippocampal mRNA expression of CaMKII and CREB, probiotics reversed these effects yet did not alter BDNF mRNA levels. Elevated pro-inflammatory markers TNF-α and IL1-β in TBI mice were not significantly affected by probiotic treatment, pointing to different mechanisms underlying the probiotic benefits. In summary, our study suggests that TBI induces dysbiosis, alters hepatic lipid profiles, and preemptive administration of Lactobacillus helveticus and Bifidobacterium longum probiotics can counter neuroplasticity deficits and memory impairment. Altogether, these findings highlight the potential of probiotics for attenuating TBI's detrimental cognitive and metabolic effects through gut microbiome modulation and hepatic lipidomic alteration, laying the groundwork for probiotics as a potential TBI therapy.
Collapse
Affiliation(s)
- Wellington Z Amaral
- Departments of Neurosurgery and Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Natalie Kokroko
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Sonia Villapol
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Fernando Gomez-Pinilla
- Departments of Neurosurgery and Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Zhang S, Liu SX, Wu QJ, Wang ZH, Liu H, Xiao P, Lu Y, Dong C, Meng QM. Association between dietary fatty acids and depressive symptoms in Chinese haemodialysis patients: a cross-sectional study. Br J Nutr 2024; 132:935-945. [PMID: 39402756 DOI: 10.1017/s0007114524001570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Depression is highly prevalent in haemodialysis patients, and diet might play an important role. Therefore, we conducted this cross-sectional study to determine the association between dietary fatty acids (FA) consumption and the prevalence of depression in maintenance haemodialysis (MHD) patients. Dietary intake was assessed using a validated FFQ between December 2021 and January 2022. The daily intake of dietary FA was categorised into three groups, and the lowest tertile was used as the reference category. Depression was assessed using the Patient Health Questionnaire-9. Logistic regression and restricted cubic spline (RCS) models were applied to assess the relationship between dietary FA intake and the prevalence of depression. As a result, after adjustment for potential confounders, a higher intake of total FA [odds ratio (OR)T3 vs. T1 = 1·59, 95 % confidence interval (CI) = 1·04, 2·46] and saturated fatty acids (SFA) (ORT3 vs. T1 = 1·83, 95 % CI = 1·19, 2·84) was associated with a higher prevalence of depressive symptoms. Significant positive linear trends were also observed (P < 0·05) except for SFA intake. Similarly, the prevalence of depression in MHD patients increased by 20% (OR = 1.20, 95% CI = 1.01-1.43) for each standard deviation increment in SFA intake. RCS analysis indicated an inverse U-shaped correlation between SFA and depression (P nonlinear > 0·05). Additionally, the sensitivity analysis produced similar results. Furthermore, no statistically significant association was observed in the subgroup analysis with significant interaction. In conclusion, higher total dietary FA and SFA were positively associated with depressive symptoms among MHD patients. These findings inform future research exploring potential mechanism underlying the association between dietary FA and depressive symptoms in MHD patients.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning116033, People's Republic of China
- Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning116033, People's Republic of China
| | - Shu-Xin Liu
- Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning116033, People's Republic of China
- Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning116033, People's Republic of China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning110004, People's Republic of China
| | - Zhi-Hong Wang
- Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning116033, People's Republic of China
- Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning116033, People's Republic of China
| | - Hong Liu
- Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning116033, People's Republic of China
- Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning116033, People's Republic of China
| | - Ping Xiao
- Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning116033, People's Republic of China
- Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning116033, People's Republic of China
| | - Yan Lu
- Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning116033, People's Republic of China
- Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning116033, People's Republic of China
| | - Cui Dong
- Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning116033, People's Republic of China
- Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning116033, People's Republic of China
| | - Qing-Mei Meng
- Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning116033, People's Republic of China
- Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning116033, People's Republic of China
| |
Collapse
|
8
|
Caruso MG, Nicolas S, Lucassen PJ, Mul JD, O’Leary OF, Nolan YM. Ageing, Cognitive Decline, and Effects of Physical Exercise: Complexities, and Considerations from Animal Models. Brain Plast 2024; 9:43-73. [PMID: 38993577 PMCID: PMC11234681 DOI: 10.3233/bpl-230157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 07/13/2024] Open
Abstract
In our ageing global population, the cognitive decline associated with dementia and neurodegenerative diseases represents a major healthcare problem. To date, there are no effective treatments for age-related cognitive impairment, thus preventative strategies are urgently required. Physical exercise is gaining traction as a non-pharmacological approach to promote brain health. Adult hippocampal neurogenesis (AHN), a unique form of brain plasticity which is necessary for certain cognitive functions declines with age and is enhanced in response to exercise. Accumulating evidence from research in rodents suggests that physical exercise has beneficial effects on cognition through its proneurogenic capabilities. Given ethical and technical limitations in human studies, preclinical research in rodents is crucial for a better understanding of such exercise-induced brain and behavioural changes. In this review, exercise paradigms used in preclinical research are compared. We provide an overview of the effects of different exercise paradigms on age-related cognitive decline from middle-age until older-age. We discuss the relationship between the age-related decrease in AHN and the potential impact of exercise on mitigating this decline. We highlight the emerging literature on the impact of exercise on gut microbiota during ageing and consider the role of the gut-brain axis as a future possible strategy to optimize exercise-enhanced cognitive function. Finally, we propose a guideline for designing optimal exercise protocols in rodent studies, which would inform clinical research and contribute to developing preventative strategies for age-related cognitive decline.
Collapse
Affiliation(s)
- Maria Giovanna Caruso
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Paul J. Lucassen
- Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Joram D. Mul
- Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Olivia F. O’Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M. Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| |
Collapse
|
9
|
Feng E, Yang X, Zhao K, Li Y, Zhu H, Wang Z, Zhang Z. Gut microbiota is associated with spatial memory and seed-hoarding behavior of South China field mice ( Apodemus draco). Front Microbiol 2023; 14:1236359. [PMID: 37771706 PMCID: PMC10525317 DOI: 10.3389/fmicb.2023.1236359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
Background Scatter-hoarding animals store food in multiple locations within their home range and rely on spatial memory for subsequent localization and retrieval. The relationship between memory and scatter-hoarding behavior has been widely demonstrated, but the association of gut microbiota with spatial memory and seed-hoarding behavior of animals remains unclear. Methods In this study, by using enclosure behavior tests, memory tests including an object location test (OLT) and a novel object recognition test (NORT), and fecal microbiota transplantation (FMT) experiment, we evaluated the role of gut microbiota in affecting the memory and seed-hoarding behavior of rodents. According to their scatter-hoarding intensity, South China field mice (Apodemus draco) were divided into scatter-hoarding group (SG) and non-scatter-hoarding group (NG). Results We found that the SG performed better than the NG in the NORT. FMT from SG donor mice altered the NG recipient mice's gut microbiota structure. Further tests demonstrated FMT from SG donor mice increased memory of NG recipient mice in laboratory tests and seed larder hoarding intensity of NG recipient mice in enclosures. Conclusion Our results suggest gut microbiota could modulate the memory and seed-hoarding behavior of animals.
Collapse
Affiliation(s)
- Enping Feng
- College of Life Science, Hebei University, Baoding, Hebei Province, China
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xifu Yang
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Kunming Zhao
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Ying Li
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hanyi Zhu
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenshan Wang
- College of Life Science, Hebei University, Baoding, Hebei Province, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Feng P, Zhao S, Zhang Y, Li E. A review of probiotics in the treatment of autism spectrum disorders: Perspectives from the gut–brain axis. Front Microbiol 2023; 14:1123462. [PMID: 37007501 PMCID: PMC10060862 DOI: 10.3389/fmicb.2023.1123462] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023] Open
Abstract
Autism spectrum disorders (ASD) are a class of neurodevelopmental conditions with a large societal impact. Despite existing evidence suggesting a link between ASD pathogenesis and gut–brain axis dysregulation, there is no systematic review of the treatment of probiotics on ASD and its associated gastrointestinal abnormalities based on the gut–brain axis. Therefore, we performed an analysis for ASD based on preclinical and clinical research to give a comprehensive synthesis of published evidence of a potential mechanism for ASD. On the one hand, this review aims to elucidate the link between gastrointestinal abnormalities and ASD. Accordingly, we discuss gut microbiota dysbiosis regarding gut–brain axis dysfunction. On the other hand, this review suggests that probiotic administration to regulate the gut–brain axis might improve gastrointestinal symptoms, restore ASD-related behavioral symptoms, restore gut microbiota composition, reduce inflammation, and restore intestinal barrier function in human and animal models. This review suggests that targeting the microbiota through agents such as probiotics may represent an approach for treating subsets of individuals with ASD.
Collapse
Affiliation(s)
- Pengya Feng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Zhao
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yangyang Zhang
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enyao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Enyao Li,
| |
Collapse
|
11
|
Niebla-Cárdenas A, Bareke H, Juanes-Velasco P, Landeira-Viñuela A, Hernández ÁP, Montalvillo E, Góngora R, Arroyo-Anlló E, Silvia Puente-González A, Méndez-Sánchez R, Fuentes M. Translational research into frailty from bench to bedside: Salivary biomarkers for inflammaging. Exp Gerontol 2023; 171:112040. [PMID: 36455696 DOI: 10.1016/j.exger.2022.112040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Frailty is a complex physiological syndrome associated with adverse ageing and decreased physiological reserves. Frailty leads to cognitive and physical disability and is a significant cause of morbidity, mortality and economic costs. The underlying cause of frailty is multifaceted, including immunosenescence and inflammaging, changes in microbiota and metabolic dysfunction. Currently, salivary biomarkers are used as early predictors for some clinical diseases, contributing to the effective prevention and treatment of diseases, including frailty. Sample collection for salivary analysis is non-invasive and simple, which are paramount factors for testing in the vulnerable frail population. The aim of this review is to describe the current knowledge on the association between frailty and the inflammatory process and discuss methods to identify putative biomarkers in salivary fluids to predict this syndrome. This study describes the relationship between i.-inflammatory process and frailty; ii.-infectious, chronic, skeletal, metabolic and cognitive diseases with inflammation and frailty; iii.-inflammatory biomarkers and salivary fluids. There is a limited number of previous studies focusing on the analysis of inflammatory salivary biomarkers and frailty syndrome; hence, the study of salivary fluids as a source for biomarkers is an open area of research with the potential to address the increasing demands for frailty-associated biomarkers.
Collapse
Affiliation(s)
- Alfonssina Niebla-Cárdenas
- Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Salamanca, 37007 Salamanca, Spain
| | - Halin Bareke
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Institute of Health Sciences, Marmara University, Istanbul, Turkey; Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| | - Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| | - Ángela-Patricia Hernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Department of Pharmaceutical Sciences: Organic Chemistry, Faculty of Pharmacy, University of Salamanca, CIETUS, IBSAL, 37007 Salamanca, Spain
| | - Enrique Montalvillo
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| | - Rafael Góngora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| | - Eva Arroyo-Anlló
- Department of Psychobiology, Neuroscience Institute of Castilla-León, Faculty of Psychology, University of Salamanca, 37007 Salamanca, Spain
| | - Ana Silvia Puente-González
- Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Salamanca, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca. Primary Care, Public Health and Pharmacology Area, 37007 Salamanca, Spain.
| | - Roberto Méndez-Sánchez
- Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Salamanca, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca. Primary Care, Public Health and Pharmacology Area, 37007 Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain.
| |
Collapse
|
12
|
Hammond TC, Messmer S, Frank JA, Lukins D, Colwell R, Lin AL, Pennypacker KR. Gut microbial dysbiosis correlates with stroke severity markers in aged rats. FRONTIERS IN STROKE 2022; 1:1026066. [PMID: 36825211 PMCID: PMC9945937 DOI: 10.3389/fstro.2022.1026066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background An imbalanced gut microbial community, or dysbiosis, has been shown to occur following stroke. It is possible that this dysbiosis negatively impacts stroke recovery and rehabilitation. Species level resolution measurements of the gut microbiome following stroke are needed to develop and test precision interventions such as probiotic or fecal microbiota transplant therapies that target the gut microbiome. Previous studies have used 16S rRNA amplicon sequencing in young male mice to obtain broad profiling of the gut microbiome at the genus level following stroke, but further investigations will be needed with whole genome shotgun sequencing in aged rats of both sexes to obtain species level resolution in a model which will better translate to the demographics of human stroke patients. Methods Thirty-nine aged male and female rats underwent middle cerebral artery occlusion. Fecal samples were collected before stroke and 3 days post stroke to measure gut microbiome. Machine learning was used to identify the top ranked bacteria which were changed following stroke. MRI imaging was used to obtain infarct and edema size and cerebral blood flow (CBF). ELISA was used to obtain inflammatory markers. Results Dysbiosis was demonstrated by an increase in pathogenic bacteria such as Butyricimonas virosa (15.52 fold change, p < 0.0001), Bacteroides vulgatus (7.36 fold change, p < 0.0001), and Escherichia coli (47.67 fold change, p < 0.0001). These bacteria were positively associated with infarct and edema size and with the inflammatory markers Ccl19, Ccl24, IL17a, IL3, and complement C5; they were negatively correlated with CBF. Conversely, beneficial bacteria such as Ruminococcus flavefaciens (0.14 fold change, p < 0.0001), Akkermansia muciniphila (0.78 fold change, p < 0.0001), and Lactobacillus murinus (0.40 fold change, p < 0.0001) were decreased following stroke and associated with all the previous parameters in the opposite direction of the pathogenic species. There were not significant microbiome differences between the sexes. Conclusion The species level resolution measurements found here can be used as a foundation to develop and test precision interventions targeting the gut microbiome following stroke. Probiotics that include Ruminococcus flavefaciens, Akkermansia muciniphila, and Lactobacillus murinus should be developed to target the deficit following stroke to measure the impact on stroke severity.
Collapse
Affiliation(s)
- Tyler C. Hammond
- Lin Brain Lab, Department of Neuroscience, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Sarah Messmer
- Department of Neurology, The Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, United States
| | - Jacqueline A. Frank
- Department of Neurology, The Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, United States
| | - Doug Lukins
- Department of Radiology, University of Kentucky, Lexington, KY, United States
| | | | - Ai-Ling Lin
- Division of Biological Sciences and Institute for Data Science and Informatics, Department of Radiology, University of Missouri, Columbia, MO, United States
| | - Keith R. Pennypacker
- Department of Neurology, The Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
13
|
Mujahid EH, Limoa E, Syamsuddin S, Bahar B, Renaldi R, Aminuddin A, Lisal ST. Effect of Probiotic Adjuvant Therapy on Improvement of Clinical Symptoms & Interleukin 6 Levels in Patients With Schizophrenia. Psychiatry Investig 2022; 19:898-908. [PMID: 36444153 PMCID: PMC9708868 DOI: 10.30773/pi.2022.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/26/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE This study aims to examine the effect of giving probiotic adjuvant therapy on improving clinical symptoms & IL-6 levels in patients with schizophrenia. METHODS This research was a double-blind, placebo-controlled trial conducted at Dadi Psychiatric Hospital, South Sulawesi Province, Indonesia in November-December 2021. The sample of the research was patients with schizophrenia undergoing hospitalization who received therapeutic doses of risperidone with a total of 21 samples in each treatment and control group. Research subjects were measured with Positive and Negative Syndrome Scale (PANSS) at baseline, 2nd, 4th, and 6th weeks. The treatment group received one capsule/12 hours/oral of probiotics for six weeks and the control group received 1 capsule/12 hours/oral placebo for 6 weeks. In addition, two measurements of IL-6 using enzyme-linked immunosorbent assay were performed in both groups, namely at the beginning of week 0 and the end of the 6th week. RESULTS We found the decrease in the PANSS value which described the improvement in clinical symptoms of the schizophrenic group after receiving therapeutic doses of antipsychotics and probiotic capsules or the treatment group as well as the schizophrenia group receiving therapeutic doses of antipsychotics and placebo capsules or the control group. CONCLUSION Improvements in clinical symptoms and decreased levels of IL-6 in the group of patients with schizophrenia who received risperidone with probiotic adjuvant therapy were better than in the group of patients with schizophrenia who received risperidone without probiotics as adjuvant therapy.
Collapse
Affiliation(s)
- Edy Husnul Mujahid
- Department of Psychiatry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.,Indonesia & Faculty of Medicine, Halu Oleo University, Kendari, Indonesia
| | - Erlyn Limoa
- Department of Psychiatry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Saidah Syamsuddin
- Department of Psychiatry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Burhanuddin Bahar
- Faculty of Public Health, Hasanuddin University, Makassar, Indonesia
| | - Rinvil Renaldi
- Department of Psychiatry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Aminuddin Aminuddin
- Department of Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Sonny T Lisal
- Department of Psychiatry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
14
|
Hammond TC, Powell E, Green SJ, Chlipala G, Frank J, Yackzan AT, Yanckello LM, Chang YH, Xing X, Heil S, Springer JE, Pennypacker K, Stromberg A, Sawaki L, Lin AL. Functional recovery outcomes following acute stroke is associated with abundance of gut microbiota related to inflammation, butyrate and secondary bile acid. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:1017180. [PMID: 36386777 PMCID: PMC9644110 DOI: 10.3389/fresc.2022.1017180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
Abstract
Accumulating evidence suggests that gut microbes modulate brain plasticity via the bidirectional gut-brain axis and play a role in stroke rehabilitation. However, the microbial species alterations associated with stroke and their correlation with functional outcome measures following acute stroke remain unknown. Here we measure post-stroke gut dysbiosis and how it correlates with gut permeability and cognitive functions in 12 stroke participants, 18 controls with risk factors for stroke, and 12 controls without risk factors. Stool samples were used to measure the microbiome with whole genome shotgun sequencing and leaky gut markers. We genotyped APOE status and measured diet composition and motor, cognitive, and emotional status using NIH Toolbox. We used linear regression methods to identify gut microbial associations with cognitive and emotional assessments. We did not find significance differences between the two control groups. In contrast, the bacteria populations of the Stroke group were statistically dissimilar from the control groups. Relative abundance analysis revealed notable decreases in butyrate-producing microbial taxa, secondary bile acid-producing taxa, and equol-producing taxa. The Stroke group had higher levels of the leaky gut marker alpha-1-antitrypsin in the stool than either of the groups and several taxa including Roseburia species (a butyrate producer) were negatively correlated with alpha-1-antitrypsin. Stroke participants scored lower on memory testing than those in the two control groups. Stroke participants with more Roseburia performed better on the picture vocabulary task; more Bacteroides uniformis (a butyrate producer) and less Escherichia coli (a pro-inflammatory species) reported higher levels of self-efficacy. Intakes of fiber, fruit and vegetable were lower, but sweetened beverages were higher, in the Stroke group compared with controls. Vegetable consumption was correlated with many bacterial changes among the participants, but only the species Clostridium bolteae, a pro-inflammatory species, was significantly associated with stroke. Our findings indicate that stroke is associated with a higher abundance of proinflammatory species and a lower abundance of butyrate producers and secondary bile acid producers. These altered microbial communities are associated with poorer functional performances. Future studies targeting the gut microbiome should be developed to elucidate whether its manipulation could optimize rehabilitation and boost recovery.
Collapse
Affiliation(s)
- Tyler C. Hammond
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Elizabeth Powell
- Department of Physical Medicine and Rehabilitation, University of Kentucky, Lexington, KY, United States
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, United States
| | - George Chlipala
- Research Informatics Core, University of Illinois Chicago, Chicago, IL, United States
| | - Jacqueline Frank
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Center for Advanced Stroke Science, Department of Neurology, University of Kentucky, Lexington, KY, United States
| | - Andrew T. Yackzan
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Lucille M. Yanckello
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Ya-Hsuan Chang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Xin Xing
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Computer Science, University of Kentucky, Lexington, KY, United States
| | - Sally Heil
- School of Medicine, University of Missouri, Columbia, MO, United States
| | - Joe E. Springer
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Keith Pennypacker
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Center for Advanced Stroke Science, Department of Neurology, University of Kentucky, Lexington, KY, United States
| | - Arnold Stromberg
- Department of Statistics, University of Kentucky, Lexington, KY, United States
| | - Lumy Sawaki
- Department of Physical Medicine and Rehabilitation, University of Kentucky, Lexington, KY, United States
| | - Ai-Ling Lin
- Department of Radiology, University of Missouri, Columbia, MO, United States
- Institute for Data Science & Informatics, University of Missouri, Columbia, MOUnited States
- Department of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
15
|
Saleki K, Banazadeh M, Saghazadeh A, Rezaei N. Aging, testosterone, and neuroplasticity: friend or foe? Rev Neurosci 2022; 34:247-273. [PMID: 36017670 DOI: 10.1515/revneuro-2022-0033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
Abstract
Neuroplasticity or neural plasticity implicates the adaptive potential of the brain in response to extrinsic and intrinsic stimuli. The concept has been utilized in different contexts such as injury and neurological disease. Neuroplasticity mechanisms have been classified into neuroregenerative and function-restoring processes. In the context of injury, neuroplasticity has been defined in three post-injury epochs. Testosterone plays a key yet double-edged role in the regulation of several neuroplasticity alterations. Research has shown that testosterone levels are affected by numerous factors such as age, stress, surgical procedures on gonads, and pharmacological treatments. There is an ongoing debate for testosterone replacement therapy (TRT) in aging men; however, TRT is more useful in young individuals with testosterone deficit and more specific subgroups with cognitive dysfunction. Therefore, it is important to pay early attention to testosterone profile and precisely uncover its harms and benefits. In the present review, we discuss the influence of environmental factors, aging, and gender on testosterone-associated alterations in neuroplasticity, as well as the two-sided actions of testosterone in the nervous system. Finally, we provide practical insights for further study of pharmacological treatments for hormonal disorders focusing on restoring neuroplasticity.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,USERN Office, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| | - Mohammad Banazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, 76169 13555 Kerman, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 14176 13151 Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| |
Collapse
|
16
|
Simpson S, Mclellan R, Wellmeyer E, Matalon F, George O. Drugs and Bugs: The Gut-Brain Axis and Substance Use Disorders. J Neuroimmune Pharmacol 2022; 17:33-61. [PMID: 34694571 PMCID: PMC9074906 DOI: 10.1007/s11481-021-10022-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Substance use disorders (SUDs) represent a significant public health crisis. Worldwide, 5.4% of the global disease burden is attributed to SUDs and alcohol use, and many more use psychoactive substances recreationally. Often associated with comorbidities, SUDs result in changes to both brain function and physiological responses. Mounting evidence calls for a precision approach for the treatment and diagnosis of SUDs, and the gut microbiome is emerging as a contributor to such disorders. Over the last few centuries, modern lifestyles, diets, and medical care have altered the health of the microbes that live in and on our bodies; as we develop, our diets and lifestyle dictate which microbes flourish and which microbes vanish. An increase in antibiotic treatments, with many antibiotic interventions occurring early in life during the microbiome's normal development, transforms developing microbial communities. Links have been made between the microbiome and SUDs, and the microbiome and conditions that are often comorbid with SUDs such as anxiety, depression, pain, and stress. A better understanding of the mechanisms influencing behavioral changes and drug use is critical in developing novel treatments for SUDSs. Targeting the microbiome as a therapeutic and diagnostic tool is a promising avenue of exploration. This review will provide an overview of the role of the gut-brain axis in a wide range of SUDs, discuss host and microbe pathways that mediate changes in the brain's response to drugs, and the microbes and related metabolites that impact behavior and health within the gut-brain axis.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US.
| | - Rio Mclellan
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Emma Wellmeyer
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Frederic Matalon
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| |
Collapse
|
17
|
Can Nutrients and Dietary Supplements Potentially Improve Cognitive Performance Also in Esports? Healthcare (Basel) 2022; 10:healthcare10020186. [PMID: 35206801 PMCID: PMC8872051 DOI: 10.3390/healthcare10020186] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Factors influencing brain function and cognitive performance can be critical to athletic performance of esports athletes. This review aims to discuss the potential beneficial effects of micronutrients, i.e., vitamins, minerals and biologically active substances on cognitive functions of e-athletes. Minerals (iodine, zinc, iron, magnesium) and vitamins (B vitamins, vitamins E, D, and C) are significant factors that positively influence cognitive functions. Prevention of deficiencies of the listed ingredients and regular examinations can support cognitive processes. The beneficial effects of caffeine, creatine, and probiotics have been documented so far. There are many plant products, herbal extracts, or phytonutrients that have been shown to affect precognitive activity, but more research is needed. Beetroot juice and nootropics can also be essential nutrients for cognitive performance. For the sake of players’ eyesight, it would be useful to use lutein, which, in addition to improving vision and protecting against eye diseases, can also affect cognitive functions. In supporting the physical and mental abilities of e-athletes the base is a well-balanced diet with adequate hydration. There is a lack of sufficient evidence that has investigated the relationship between dietary effects and improved performance in esports. Therefore, there is a need for randomized controlled trials involving esports players.
Collapse
|
18
|
Natale NR, Kent M, Fox N, Vavra D, Lambert K. Neurobiological effects of a probiotic-supplemented diet in chronically stressed male Long-Evans rats: Evidence of enhanced resilience. IBRO Neurosci Rep 2021; 11:207-215. [PMID: 34849506 PMCID: PMC8607205 DOI: 10.1016/j.ibneur.2021.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Probiotics that regulate the microbiome-gut-brain axis and provide mental health benefits to the host are referred to as psychobiotics. Preclinical studies have demonstrated psychobiotic effects on early life stress-induced anxiety- and depression-related behavior in rodents; however, the specific mechanisms remain ill-defined. In the current study, we investigated the effects of probiotic supplementation on neurobiological responses to chronic stress in adult male Long-Evans rats. Twenty-four rats were randomly assigned to probiotic (PB) or vehicle control (VEH) groups, then to either chronic unpredictable stress (CUS) or no-stress control (CON) conditions within each group (n = 6/subgroup). We hypothesized that PB supplementation would reduce markers of anxiety and enhance emotional resilience, especially in the CUS animals. In the cognitive uncertainty task, a nonsignificant trend was observed indicating that the PB-supplemented animals spent more time oriented toward the food reward than VEH animals. In the open-field task, CUS-PB animals spent more time in the center of the arena than CUS-VEH animals, an effect not observed between the two CON groups. In the swim task, the PB animals, regardless of stress assignment, exhibited increased floating, suggesting a conserved response in a challenging context. Focusing on the endocrine measures, higher dehydroepiandrosterone (DHEA)-to-corticosterone fecal metabolite ratios, a correlate of emotional resilience, were observed in PB animals. Further, PB animals exhibited reduced microglia immunoreactivity in the basolateral amygdala, possibly indicating a neuroprotective effect of PB supplements in this rodent model. These results provide evidence that PB supplementation interacts with stress exposure to influence adaptive responses associated with endocrine, neural, and behavioral indices of anxiety.
Collapse
Affiliation(s)
- Nick R. Natale
- Dept of Psychology, University of Richmond, VA 23173, USA
| | - Molly Kent
- Dept of Biology, Virginia Military Institute, Lexington, VA 24450, USA
| | - Nathan Fox
- Dept of Psychology, University of Richmond, VA 23173, USA
| | - Dylan Vavra
- Dept of Psychology, University of Richmond, VA 23173, USA
| | - Kelly Lambert
- Dept of Psychology, University of Richmond, VA 23173, USA
| |
Collapse
|
19
|
Glinert A, Turjeman S, Elliott E, Koren O. Microbes, metabolites and (synaptic) malleability, oh my! The effect of the microbiome on synaptic plasticity. Biol Rev Camb Philos Soc 2021; 97:582-599. [PMID: 34734461 PMCID: PMC9298272 DOI: 10.1111/brv.12812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/10/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
The microbiome influences the emotional and cognitive phenotype of its host, as well as the neurodevelopment and pathophysiology of various brain processes and disorders, via the well‐established microbiome–gut–brain axis. Rapidly accumulating data link the microbiome to severe neuropsychiatric disorders in humans, including schizophrenia, Alzheimer's and Parkinson's. Moreover, preclinical work has shown that perturbation of the microbiome is closely associated with social, cognitive and behavioural deficits. The potential of the microbiome as a diagnostic and therapeutic tool is currently undercut by a lack of clear mechanistic understanding of the microbiome–gut–brain axis. This review establishes the hypothesis that the mechanism by which this influence is carried out is synaptic plasticity – long‐term changes to the physical and functional neuronal structures that enable the brain to undertake learning, memory formation, emotional regulation and more. By examining the different constituents of the microbiome–gut–brain axis through the lens of synaptic plasticity, this review explores the diverse aspects by which the microbiome shapes the behaviour and mental wellbeing of the host. Key elements of this complex bi‐directional relationship include neurotransmitters, neuronal electrophysiology, immune mediators that engage with both the central and enteric nervous systems and signalling cascades that trigger long‐term potentiation of synapses. The importance of establishing mechanistic correlations along the microbiome–gut–brain axis cannot be overstated as they hold the potential for furthering current understanding regarding the vast fields of neuroscience and neuropsychiatry. This review strives to elucidate the promising theory of microbiome‐driven synaptic plasticity in the hope of enlightening current researchers and inspiring future ones.
Collapse
Affiliation(s)
- Ayala Glinert
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Evan Elliott
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| |
Collapse
|
20
|
Petrella C, Strimpakos G, Torcinaro A, Middei S, Ricci V, Gargari G, Mora D, De Santa F, Farioli-Vecchioli S. Proneurogenic and neuroprotective effect of a multi strain probiotic mixture in a mouse model of acute inflammation: Involvement of the gut-brain axis. Pharmacol Res 2021; 172:105795. [PMID: 34339837 DOI: 10.1016/j.phrs.2021.105795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
Neuroinflammation can severely affect brain homeostasis and adult hippocampal neurogenesis with detrimental effects on cognitive processes. Brain and gut are intimately connected via the "gut-brain axis", a bidirectional communication system, and the administration of live bacteria (probiotics) has been shown to represent an intriguing approach for the prevention or even the cure of several diseases. In the present study we evaluated the putative neuroprotective effect of 15-days consumption of a multi-strain probiotic formulation based on food-associated strains and human gut bacteria at the dose of 109 CFU/mouse/day in a mouse model of acute inflammation, induced by an intraperitoneal single injection of LPS (0.1 mg/kg) at the end of probiotic administration. The results indicate that the prolonged administration of the multi-strain probiotic formulation not only prevents the LPS-dependent increase of pro-inflammatory cytokines in specific regions of the brain (hippocampus and cortex) and in the gastrointestinal district but also triggers a potent proneurogenic response capable of enhancing hippocampal neurogenesis. This effect is accompanied by a potentiation of intestinal barrier, as documented by the increased epithelial junction expression in the colon. Our hypothesis is that pre-treatment with the multi-strain probiotic formulation helps to create a systemic protection able to counteract or alleviate the effects of LPS-dependent acute pro-inflammatory responses.
Collapse
Affiliation(s)
- Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Policlinico Umberto I, Rome, Italy
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Alessio Torcinaro
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Silvia Middei
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy; European Brain Research Institute (EBRI), Rome, Italy
| | - Valentina Ricci
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Giorgio Gargari
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Diego Mora
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Francesca De Santa
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | | |
Collapse
|
21
|
Canipe LG, Sioda M, Cheatham CL. Diversity of the gut-microbiome related to cognitive behavioral outcomes in healthy older adults. Arch Gerontol Geriatr 2021; 96:104464. [PMID: 34174489 DOI: 10.1016/j.archger.2021.104464] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/24/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022]
Abstract
With the aging of the United States population, age-related cognitive disorders will be more prevalent and will negatively impact society. Differences in factors within and among individuals that influence cognitive decline complicate studies on the topic. One difference among individuals - gut microbiome diversity and composition - changes within the person across their lifespan and varies among individuals. An individual's gut microflora can significantly influence gut-brain communication, brain function, and behavior. Little research has been done to evaluate the gut-brain relation in non-clinical populations, with no previous studies, to our knowledge, in healthy older adults. In the present study, we investigated the relation between microbiome diversity and cognitive decline. The researchers invited sixty-three healthy older adults between 67-83 years of age to provide a fecal sample and complete an electrophysiological assessment of brain potentials (Event-Related Potentials; ERP) and the Cambridge Neuropsychological Test Automated Battery (CANTAB). Electrophysiological and behavioral data were related to alpha diversity, a measure of the variety of species in the gut-microbiome, supporting the hypothesis that a relation exists between gut microbial diversity and cognitive performance in healthy older adults as measured by CANTAB and ERP. To our knowledge, this study is the first to demonstrate the association between ERP outcomes and the gut-microbiome. Our results begin to bridge the gap in our understanding of the connection between behavior and the composition of the gut-microbiome, commonly referred to as the gut-brain connection.
Collapse
Affiliation(s)
- L Grant Canipe
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue Chapel Hill, NC 27599-3270; Department of Psychology & Human Service, Elon University, 100 Campus Drive, CB 2337, Elon, NC 27244.
| | - Michael Sioda
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Bioinformatics Building, 9201 University City Blvd., Charlotte, NC 28223-0001.
| | - Carol L Cheatham
- University of North Carolina at Chapel Hill Nutrition Research Institute, 500 Laureate Way, Rm 1101, Kannapolis NC, USA; Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue Chapel Hill, NC 27599-3270.
| |
Collapse
|
22
|
Bhuiyan P, Chen Y, Karim M, Dong H, Qian Y. Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: Avenues for therapeutic intervention. Brain Res Bull 2021; 172:61-78. [PMID: 33892083 DOI: 10.1016/j.brainresbull.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/02/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
Although the global incidence of neurodegenerative diseases has been steadily increasing, especially in adults, there are no effective therapeutic interventions. Neurodegeneration is a heterogeneous group of disorders that is characterized by the activation of immune cells in the central nervous system (CNS) (e.g., mast cells and microglia) and subsequent neuroinflammation. Mast cells are found in the brain and the gastrointestinal tract and play a role in "tuning" neuroimmune responses. The complex bidirectional communication between mast cells and gut microbiota coordinates various dynamic neuro-cellular responses, which propagates neuronal impulses from the gastrointestinal tract into the CNS. Numerous inflammatory mediators from degranulated mast cells alter intestinal gut permeability and disrupt blood-brain barrier, which results in the promotion of neuroinflammatory processes leading to neurological disorders, thereby offsetting the balance in immune-surveillance. Emerging evidence supports the hypothesis that gut-microbiota exert a pivotal role in inflammatory signaling through the activation of immune and inflammatory cells. Communication between inflammatory cytokines and neurocircuits via the gut-brain axis (GBA) affects behavioral responses, activates mast cells and microglia that causes neuroinflammation, which is associated with neurological diseases. In this comprehensive review, we focus on what is currently known about mast cells and the gut-brain axis relationship, and how this relationship is connected to neurodegenerative diseases. We hope that further elucidating the bidirectional communication between mast cells and the GBA will not only stimulate future research on neurodegenerative diseases but will also identify new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Mazharul Karim
- College of Pharmacy, Western University of Health Science, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|
23
|
Salami M. Interplay of Good Bacteria and Central Nervous System: Cognitive Aspects and Mechanistic Considerations. Front Neurosci 2021; 15:613120. [PMID: 33642976 PMCID: PMC7904897 DOI: 10.3389/fnins.2021.613120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract hosts trillions of microorganisms that is called “gut microbiota.” The gut microbiota is involved in a wide variety of physiological features and functions of the body. Thus, it is not surprising that any damage to the gut microbiota is associated with disorders in different body systems. Probiotics, defined as living microorganisms with health benefits for the host, can support or restore the composition of the gut microbiota. Numerous investigations have proved a relationship between the gut microbiota with normal brain function as well as many brain diseases, in which cognitive dysfunction is a common clinical problem. On the other hand, increasing evidence suggests that the existence of a healthy gut microbiota is crucial for normal cognitive processing. In this regard, interplay of the gut microbiota and cognition has been under focus of recent researches. In the present paper, I review findings of the studies considering beneficial effects of either gut microbiota or probiotic bacteria on the brain cognitive function in the healthy and disease statuses.
Collapse
Affiliation(s)
- Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
24
|
Tavella T, Rampelli S, Guidarelli G, Bazzocchi A, Gasperini C, Pujos-Guillot E, Comte B, Barone M, Biagi E, Candela M, Nicoletti C, Kadi F, Battista G, Salvioli S, O’Toole PW, Franceschi C, Brigidi P, Turroni S, Santoro A. Elevated gut microbiome abundance of Christensenellaceae, Porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut Microbes 2021; 13:1-19. [PMID: 33557667 PMCID: PMC7889099 DOI: 10.1080/19490976.2021.1880221] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/04/2023] Open
Abstract
Aging is accompanied by physiological changes affecting body composition and functionality, including accumulation of fat mass at the expense of muscle mass, with effects upon morbidity and quality of life. The gut microbiome has recently emerged as a key environmental modifier of human health that can modulate healthy aging and possibly longevity. However, its associations with adiposity in old age are still poorly understood. Here we profiled the gut microbiota in a well-characterized cohort of 201 Italian elderly subjects from the NU-AGE study, by 16S rRNA amplicon sequencing. We then tested for association with body composition from dual-energy X-ray absorptiometry (DXA), with a focus on visceral and subcutaneous adipose tissue. Dietary patterns, serum metabolome and other health-related parameters were also assessed. This study identified distinct compositional structures of the elderly gut microbiota associated with DXA parameters, diet, metabolic profiles and cardio-metabolic risk factors.
Collapse
Affiliation(s)
- Teresa Tavella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giulia Guidarelli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Chiara Gasperini
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Estelle Pujos-Guillot
- Université Clermont Auvergne, INRAE, UNH, Plateforme d’Exploration Du Métabolisme, MetaboHUB Clermont, Clermont- Ferrand, France
| | - Blandine Comte
- Université Clermont Auvergne, INRAE, UNH, Plateforme d’Exploration Du Métabolisme, MetaboHUB Clermont, Clermont- Ferrand, France
| | - Monica Barone
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elena Biagi
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudio Nicoletti
- Gut Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
- Department of Experimental and Clinical Medicine, Section of Anatomy, University of Florence, Florence, Italy
| | - Fawzi Kadi
- School of Health Sciences, Örebro University, Örebro, Sweden
| | - Giuseppe Battista
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Paul W. O’Toole
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Department of Applied Mathematics, Institute of Information Technology, Mathematics and Mechanics (ITMM), Lobachevsky State University of Nizhny Novgorod-National Research University (UNN), Nizhny Novgorod, Russia
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Gao H, Song R, Li Y, Zhang W, Wan Z, Wang Y, Zhang H, Han S. Effects of Oat Fiber Intervention on Cognitive Behavior in LDLR -/- Mice Modeling Atherosclerosis by Targeting the Microbiome-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14480-14491. [PMID: 33237770 DOI: 10.1021/acs.jafc.0c05677] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is known that cardiovascular disease can result in cognitive impairment. However, whether oat fiber improves cognitive behavior through a cardiovascular-related mechanism remains unclear. The present work was aimed to elucidate the potential of oat fiber on cognitive behavior by targeting the neuroinflammation signal and microbiome-gut-brain axis in a mouse model of atherosclerosis. Male low-density lipoprotein receptor knock-out (LDLR-/-) mice were treated with a high fat/cholesterol diet without or with 0.8% oat fiber for 14 weeks. Behavioral tests indicated that LDLR-/- mice exhibited a significant cognitive impairment; however, oat fiber can improve cognitive behavior by reducing latency to the platform and increasing the number of crossing and swimming distance in the target quadrant. Oat fiber can inhibit Aβ plaque processing in both the cortex and hippocampus via decreasing the relative protein expression of GFAP and IBα1. Notably, oat fiber inhibited the nod-like receptor family pyrin domain-containing 3 inflammasome activation and blocked the toll-like receptor 4 signal pathway in both the cortex and hippocampus, accompanied by a reduction of circulating serum lipopolysaccharide. In addition, oat fiber raised the expressions of short-chain fatty acid (SCFA) receptors and tight junction proteins (zonula occludens-1 and occludin) and improved intestinal microbiota diversity via increasing the contents of gut metabolites SCFAs. In summary, the present study provided experimental evidence that dietary oat fiber retarded the progression of cognitive impairment in a mouse model of atherosclerosis. Mechanistically, the neuroprotective potential was related to oat fiber and its metabolites SCFAs on the diversity and abundance of gut microbiota that produced anti-inflammatory metabolites, leading to repressed neuroinflammation and reduced gut permeability through the microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Hui Gao
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Ruijuan Song
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Yuezhen Li
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Weiguo Zhang
- Independent Scientist, Irving, Texas 75039, United States
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Ying Wang
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Hong Zhang
- Department of Food and Nutrition, School of Public Health, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009 Jiangsu, P.R. China
| | - Shufen Han
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| |
Collapse
|
26
|
Garcia-Gutierrez E, Narbad A, Rodríguez JM. Autism Spectrum Disorder Associated With Gut Microbiota at Immune, Metabolomic, and Neuroactive Level. Front Neurosci 2020; 14:578666. [PMID: 33117122 PMCID: PMC7578228 DOI: 10.3389/fnins.2020.578666] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
There is increasing evidence suggesting a link between the autism spectrum disorder (ASD) and the gastrointestinal (GI) microbiome. Experimental and clinical studies have shown that patients diagnosed with ASD display alterations of the gut microbiota. These alterations do not only extend to the gut microbiota composition but also to the metabolites they produce, as a result of its connections with diet and the bidirectional interaction with the host. Thus, production of metabolites and neurotransmitters stimulate the immune system and influence the central nervous system (CNS) by stimulation of the vagal nerve, as an example of the gut-brain axis pathway. In this review we compose an overview of the interconnectivity of the different GI-related elements that have been associated with the development and severity of the ASD in patients and animal models. We review potential biomarkers to be used in future studies to unlock further connections and interventions in the treatment of ASD.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Gut Microbes and Health Institute Strategic Program, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Arjan Narbad
- Gut Microbes and Health Institute Strategic Program, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
27
|
Mid-life microbiota crises: middle age is associated with pervasive neuroimmune alterations that are reversed by targeting the gut microbiome. Mol Psychiatry 2020; 25:2567-2583. [PMID: 31092898 DOI: 10.1038/s41380-019-0425-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Male middle age is a transitional period where many physiological and psychological changes occur leading to cognitive and behavioural alterations, and a deterioration of brain function. However, the mechanisms underpinning such changes are unclear. The gut microbiome has been implicated as a key mediator in the communication between the gut and the brain, and in the regulation of brain homeostasis, including brain immune cell function. Thus, we tested whether targeting the gut microbiome by prebiotic supplementation may alter microglia activation and brain function in ageing. Male young adult (8 weeks) and middle-aged (10 months) C57BL/6 mice received diet enriched with a prebiotic (10% oligofructose-enriched inulin) or control chow for 14 weeks. Prebiotic supplementation differentially altered the gut microbiota profile in young and middle-aged mice with changes correlating with faecal metabolites. Functionally, this translated into a reversal of stress-induced immune priming in middle-aged mice. In addition, a reduction in ageing-induced infiltration of Ly-6Chi monocytes into the brain coupled with a reversal in ageing-related increases in a subset of activated microglia (Ly-6C+) was observed. Taken together, these data highlight a potential pathway by which targeting the gut microbiome with prebiotics can modulate the peripheral immune response and alter neuroinflammation in middle age. Our data highlight a novel strategy for the amelioration of age-related neuroinflammatory pathologies and brain function.
Collapse
|
28
|
Jang SH, Woo YS, Lee SY, Bahk WM. The Brain-Gut-Microbiome Axis in Psychiatry. Int J Mol Sci 2020; 21:E7122. [PMID: 32992484 PMCID: PMC7583027 DOI: 10.3390/ijms21197122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Beginning with the concept of the brain-gut axis, the importance of the interaction between the brain and the gastrointestinal tract has been extended to the microbiome with increasing clinical applications. With the recent development of various techniques for microbiome analysis, the number of relevant preclinical and clinical studies on animals and human subjects has rapidly increased. Various psychotic symptoms affect the intestinal microbiome through the hypothalamus-pituitary-adrenal gland axis. Conversely, the intestinal microbiome regulates the gastrointestinal tract environment and affects psychological factors by means of the microorganisms or their metabolites, either acting directly on the brain or through the synthesis of various neurotransmitters. This review discusses the clinical applicability of the brain-gut-microbiome axis and directions for improving psychological symptoms based on the studies published to date.
Collapse
Affiliation(s)
- Seung-Ho Jang
- Department of Psychiatry, School of Medicine, Wonkwang University, Iksan 54538, Korea; (S.-H.J.); (S.-Y.L.)
| | - Young Sup Woo
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea;
| | - Sang-Yeol Lee
- Department of Psychiatry, School of Medicine, Wonkwang University, Iksan 54538, Korea; (S.-H.J.); (S.-Y.L.)
| | - Won-Myong Bahk
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea;
| |
Collapse
|
29
|
Aryal S, Skinner T, Bridges B, Weber JT. The Pathology of Parkinson's Disease and Potential Benefit of Dietary Polyphenols. Molecules 2020; 25:E4382. [PMID: 32987656 PMCID: PMC7582699 DOI: 10.3390/molecules25194382] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by a loss of dopaminergic neurons, leading to bradykinesia, rigidity, tremor at rest, and postural instability, as well as non-motor symptoms such as olfactory impairment, pain, autonomic dysfunction, impaired sleep, fatigue, and behavioral changes. The pathogenesis of PD is believed to involve oxidative stress, disruption to mitochondria, alterations to the protein α-synuclein, and neuroinflammatory processes. There is currently no cure for the disease. Polyphenols are secondary metabolites of plants, which have shown benefit in several experimental models of PD. Intake of polyphenols through diet is also associated with lower PD risk in humans. In this review, we provide an overview of the pathology of PD and the data supporting the potential neuroprotective capacity of increased polyphenols in the diet. Evidence suggests that the intake of dietary polyphenols may inhibit neurodegeneration and the progression of PD. Polyphenols appear to have a positive effect on the gut microbiome, which may decrease inflammation that contributes to the disease. Therefore, a diet rich in polyphenols may decrease the symptoms and increase quality of life in PD patients.
Collapse
Affiliation(s)
| | | | | | - John T. Weber
- School of Pharmacy, Memorial University, St. John’s, NL A1B 3V6, Canada; (S.A.); (T.S.); (B.B.)
| |
Collapse
|
30
|
Kühn F, Adiliaghdam F, Cavallaro PM, Hamarneh SR, Tsurumi A, Hoda RS, Munoz AR, Dhole Y, Ramirez JM, Liu E, Vasan R, Liu Y, Samarbafzadeh E, Nunez RA, Farber MZ, Chopra V, Malo MS, Rahme LG, Hodin RA. Intestinal alkaline phosphatase targets the gut barrier to prevent aging. JCI Insight 2020; 5:134049. [PMID: 32213701 PMCID: PMC7213802 DOI: 10.1172/jci.insight.134049] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Gut barrier dysfunction and gut-derived chronic inflammation play crucial roles in human aging. The gut brush border enzyme intestinal alkaline phosphatase (IAP) functions to inhibit inflammatory mediators and also appears to be an important positive regulator of gut barrier function and microbial homeostasis. We hypothesized that this enzyme could play a critical role in regulating the aging process. We tested the role of several IAP functions for prevention of age-dependent alterations in intestinal homeostasis by employing different loss-of-function and supplementation approaches. In mice, there is an age-related increase in gut permeability that is accompanied by increases in gut-derived portal venous and systemic inflammation. All these phenotypes were significantly more pronounced in IAP-deficient animals. Oral IAP supplementation significantly decreased age-related gut permeability and gut-derived systemic inflammation, resulted in less frailty, and extended lifespan. Furthermore, IAP supplementation was associated with preserving the homeostasis of gut microbiota during aging. These effects of IAP were also evident in a second model system, Drosophilae melanogaster. IAP appears to preserve intestinal homeostasis in aging by targeting crucial intestinal alterations, including gut barrier dysfunction, dysbiosis, and endotoxemia. Oral IAP supplementation may represent a novel therapy to counteract the chronic inflammatory state leading to frailty and age-related diseases in humans.
Collapse
Affiliation(s)
- Florian Kühn
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
- Department of General, Visceral and Transplant Surgery, Hospital of the University of Munich, Munich, Germany
| | - Fatemeh Adiliaghdam
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Paul M. Cavallaro
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Sulaiman R. Hamarneh
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | | | - Alexander R. Munoz
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Yashoda Dhole
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Juan M. Ramirez
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Enyu Liu
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Robin Vasan
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Yang Liu
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Ehsan Samarbafzadeh
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Rocio A. Nunez
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Z. Farber
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Vanita Chopra
- Department of Neurology,, MGH, Harvard Medical School, Boston, Massachusetts, USA
| | - Madhu S. Malo
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Laurence G. Rahme
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard A. Hodin
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Oh JH, Nam TJ, Choi YH. Capsosiphon fulvescens Glycoproteins Enhance Probiotics-Induced Cognitive Improvement in Aged Rats. Nutrients 2020; 12:E837. [PMID: 32245093 PMCID: PMC7146536 DOI: 10.3390/nu12030837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/23/2022] Open
Abstract
Aging-induced cognitive dysfunction can be regulated by probiotics through bidirectional communication with the brain. This study aimed to investigate whether Capsosiphon fulvescens glycoproteins (Cf-hGP) enhanced probiotic-induced improvement of memory in aged rats and the underlying mechanism in the dorsal hippocampus. Cf-hGP were isolated using lectin resin. Cf-hGP (15 mg/kg/day) and/or Lactobacillus plantarum (L. plantarum) (109 CFU/rat/day) were orally administered once a day for 4 weeks. Co-treatment with Cf-hGP and L. plantarum synergistically improved spatial memory in aged rats, which was overturned by functional blocks of brain-derived neurotrophic factor (BDNF) signaling. Increases in BDNF expression and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation were accompanied by mono- and/or co-administration in the dorsal hippocampus, while c-Jun N-terminal kinase (JNK) phosphorylation and glucose-regulated protein 78 expression were decreased. These synergistic effects were downregulated by blocks of BDNF/Nrf2-mediated signaling. In particular, co-treatment, not mono-treatment, reduced phosphorylation of eukaryotic elongation factor 2 (eEF2) regulated by eEF2 kinase and protein phosphatase 2A. Additionally, co-treatment downregulated the interaction between eEF2 kinase and JNK. These data demonstrated that cognitive impairment in aged rats was synergistically diminished by co-treatment with Cf-hGP and L. plantarum through BDNF-mediated regulation of Nrf2 and eEF2 signaling pathways in the dorsal hippocampus.
Collapse
Affiliation(s)
- Jeong Hwan Oh
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea; (J.H.O.); (T.-J.N.)
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea; (J.H.O.); (T.-J.N.)
| | - Youn Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea; (J.H.O.); (T.-J.N.)
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
32
|
Kamimura I, Kaneko R, Morita H, Mogi K, Kikusui T. Microbial colonization history modulates anxiety-like and complex social behavior in mice. Neurosci Res 2020; 168:64-75. [PMID: 32017965 DOI: 10.1016/j.neures.2020.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
Microbiome composition has a pivotal role in neurobehavioral development. However, there is limited information about the role of the microbiome in sociability of mice in complex social contexts. Germ-free (GF) mice were reared in a microbiota-free environment until postnatal day 21 and then transferred to a room containing specific pathogen free (SPF) mice. At 9 weeks old, group social behaviors were measured for three GF mice and three SPF mice unfamiliar to each other. GF mice spent less time in the center area of the arena and there were longer inter-individual distances compared with SPF mice. GF mice also had decreased brain-derived neurotrophic factor (BDNF) and increased ΔFosB mRNA in the prefrontal cortex compared to SPF mice. There were differences in the gut microbiome composition between GF and SPF mice; however, if cohabitating after weaning, then their microbiome composition became equivalent and group differences in behavior and BDNF and ΔFosB mRNA expression disappeared. These results demonstrate that the bacterial community can modulate neural systems that are involved in sociability and anxiety during the developmental period and suggest that sociability and anxiety can be shaped depending on the microbiome environment through interaction with conspecifics.
Collapse
Affiliation(s)
- Itsuka Kamimura
- Department of Animal Science and Biotechnology, Azabu University, Japan
| | - Ryou Kaneko
- Graduate School of Environmental and Life Science, Okayama University, Japan
| | - Hidetoshi Morita
- Graduate School of Environmental and Life Science, Okayama University, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, Azabu University, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, Japan.
| |
Collapse
|
33
|
Schneider F, Horowitz A, Lesch KP, Dandekar T. Delaying memory decline: different options and emerging solutions. Transl Psychiatry 2020; 10:13. [PMID: 32066684 PMCID: PMC7026464 DOI: 10.1038/s41398-020-0697-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022] Open
Abstract
Memory decline can be a devastating disease and increases in aging Western populations. Memory enhancement technologies hold promise for this and other conditions. Approaches include stem cell transplantation, which improved memory in several animal studies as well as vaccination against Alzheimer´s disease (AD) by β-amyloid antibodies. For a positive clinical effect, the vaccine should probably be administered over a long period of time and before amyloid pathologies manifest in the brain. Different drugs, such as erythropoietin or antiplatelet therapy, improve memory in neuropsychiatric diseases or AD or at least in animal studies. Omega-3 polyunsaturated fatty acid-rich diets improve memory through the gut-brain axis by altering the gut flora through probiotics. Sports, dancing, and memory techniques (e.g., Method of Loci) utilize behavioral approaches for memory enhancement, and were effective in several studies. Augmented reality (AR) is an auspicious way for enhancing memory in real time. Future approaches may include memory prosthesis for head-injured patients and light therapy for restoring memory in AD. Memory enhancement in humans in health and disease holds big promises for the future. Memory training helps only in mild or no impairment. Clinical application requires further investigation.
Collapse
Affiliation(s)
- Felicitas Schneider
- grid.8379.50000 0001 1958 8658Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Alan Horowitz
- grid.8379.50000 0001 1958 8658Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Klaus-Peter Lesch
- grid.8379.50000 0001 1958 8658Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany ,grid.448878.f0000 0001 2288 8774Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia ,grid.5012.60000 0001 0481 6099Department of Psychiatry and Psychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074, Würzburg, Germany. .,EMBL, Computational Biology and Structures Program, 69117, Heidelberg, Germany.
| |
Collapse
|
34
|
Talani G, Biggio F, Mostallino MC, Locci V, Porcedda C, Boi L, Saolini E, Piras R, Sanna E, Biggio G. Treatment with gut bifidobacteria improves hippocampal plasticity and cognitive behavior in adult healthy rats. Neuropharmacology 2019; 165:107909. [PMID: 31857091 DOI: 10.1016/j.neuropharm.2019.107909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
At the present time, gut microbiota inspires great interest in the field of neuroscience as a function of its role in normal physiology and involvement in brain function. This aspect suggests a specific gut-brain pathway, mainly modulated by gut microbiota activity. Among the multiple actions controlled by microbiota at the brain level, neuronal plasticity and cognitive function represent two of the most interesting aspects of this cross-talk communication. We address the possible action of two-months implementation of gut Bifidobacteria using a mixture of three different strains (B-MIX) on hippocampal plasticity and related cognitive behavior in adult healthy Sprague Dawley rats. B-MIX treatment increases the hippocampal BDNF with a parallel gain in dendritic spines' density of hippocampal CA1 pyramidal neurons. Electrophysiological experiments revealed a significant increment of HFS-induced LTP formation on the CA1 hippocampal region in B-MIX treated rats. All these effects are accompanied by a better cognitive performance observed in B-MIX treated animals with no impairments in locomotion activity. Therefore, in adult rats, the treatment with different strains of bifidobacteria is able to markedly enhance neuronal plasticity and the CNS function influencing cognitive behavior, an effect that may suggest a potential therapeutic treatment in brain diseases associated with cognitive functions.
Collapse
Affiliation(s)
- G Talani
- Institute of Neuroscience, National Research Council, Italy.
| | - F Biggio
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - M C Mostallino
- Institute of Neuroscience, National Research Council, Italy
| | - V Locci
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - C Porcedda
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - L Boi
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - E Saolini
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - R Piras
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - E Sanna
- Institute of Neuroscience, National Research Council, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - G Biggio
- Institute of Neuroscience, National Research Council, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| |
Collapse
|
35
|
Wang N, Li R, Lin H, Fu C, Wang X, Zhang Y, Su M, Huang P, Qian J, Jiang F, Wang H, Jiang L, Yu X, Liu J, Chen Y, Jiang Q. Enriched taxa were found among the gut microbiota of centenarians in East China. PLoS One 2019; 14:e0222763. [PMID: 31639130 PMCID: PMC6804974 DOI: 10.1371/journal.pone.0222763] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
Background Gut microbiota is closely related to age. Studies from Europe and the U.S. identified featured microbiota in different age groups for the elderly. Asian studies mainly focused on people living in longevity areas. Featured microbiota for the elderly people of different age groups, especially in the centenarian in the general population, has not been well investigated in China. Method We conducted a comparative study by including 198 subjects of three age groups (65–70, 90–99, and 100+ years) in East China. Information regarding age, sex, height, weight, waist circumference, hip circumference, food preference, smoking status and alcohol consumption were collected by using a structured questionnaire. Fecal samples for each participant were collected as well. 16S rRNA gene sequencing were employed to analyze the gut microbiota composition. Logistic regression with LASSO feature selection was used to identify featured taxa in different age groups and to assess their potential interactions with other factors such as lifestyle. Result The gut microbiota of the 90–99 year and 100+ year age groups showed more diversity, robustness, and richness compared with the 65–70 year age group. PCoA analysis showed a clear separation between the 65–70 and 100+ year age groups. At the species level, Bacteroides fragilis, Parabacteroides merdae, Ruminococcus gnavus, Coprococcus and Clostridium perfringens increased, but Bacteroides vulgatus, Ruminococcus sp.5139BFAA and Clostridium sp.AT5 decreased in the 90–99 year age group. The age differences in gut microbiota were similar across the strata of smoking, alcohol consumption status and food preference. Conclusion Our study demonstrated age differences in many aspects of gut microbiota, such as overall diversity, microbiota structure, and relative abundance of key taxa. Moreover, the gut microbiota of centenarian was significantly different from those of younger age groups of the elderly.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Rui Li
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Haijiang Lin
- Taizhou Center for Disease Control and Prevention, Taizhou City, Jiangsu Province, China
| | - Chaowei Fu
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Xuecai Wang
- Taizhou Center for Disease Control and Prevention, Taizhou City, Jiangsu Province, China
| | - Yiming Zhang
- Deqing Center for Disease Control and Prevention, Deqing City, Zhejiang Province, China
| | - Meifang Su
- Yuhuan Center for Disease Control and Prevention, Wenling City, Zhejiang Province, China
| | - Peixin Huang
- Yuhuan Center for Disease Control and Prevention, Wenling City, Zhejiang Province, China
| | - Junhua Qian
- Yuhuan Center for Disease Control and Prevention, Wenling City, Zhejiang Province, China
| | - Feng Jiang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Lufang Jiang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Xin Yu
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Jianxiang Liu
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
36
|
Gu Y, Zheng L, Kumari S, Zhang Q, Liu L, Meng G, Wu H, Bao X, Yao Z, Sun S, Wang X, Zhou M, Jia Q, Song K, Niu K. The relationship between Helicobacter pylori infection and depressive symptoms in the general population in China: The TCLSIH cohort study. Helicobacter 2019; 24:e12632. [PMID: 31332918 DOI: 10.1111/hel.12632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Depressive symptoms are a common, debilitating, and costly public health issue. Helicobacter pylori (H pylori) infection cause changes in the normal physiological state of the gastrointestinal (GI) flora. Although the physiological state of the GI tract is closely related to mental disorders, few population studies have examined the relationship between H pylori infection and depressive symptoms in the general population. The aim of this study was to examine whether H pylori infection is related to depressive symptoms among the general adult population. MATERIALS AND METHODS This cross-sectional study included 5558 inhabitants of Tianjin, China. H pylori infection was diagnosed with the carbon 13 breath test. Depressive symptoms were assessed using the Chinese version of 20-item Self-rating Depression Scale (SDS) with three cutoffs (45, 48, and 50) to indicate elevated depressive symptoms. Multiple logistic regression analysis were conducted to assess the association between H pylori infection and depressive symptoms. RESULTS The prevalence of depressive symptoms (SDS ≥ 45) was 12.7% in men and 17.4% in women. In multivariable models, the odds ratios and 95% confidence interval of having depressive symptoms by H pylori infection were 1.25 (1.01-1.56), 1.46 (1.11-1.91), and 1.46 (1.05-2.06) for three cutoffs: 45, 48, and 50 in women. However, no significant difference was found between H pylori infection and depressive symptoms in men. CONCLUSIONS This study firstly suggested that H pylori infection was related to depressive symptoms in women in the general adult population. Further prospective studies or randomized trials are required to clarify the causality.
Collapse
Affiliation(s)
- Yeqing Gu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Lixiao Zheng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shubham Kumari
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xue Bao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhanxin Yao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Institute of Environmental & Operational Medicine, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Zhou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
37
|
Heyck M, Ibarra A. Microbiota and memory: A symbiotic therapy to counter cognitive decline? Brain Circ 2019; 5:124-129. [PMID: 31620659 PMCID: PMC6785944 DOI: 10.4103/bc.bc_34_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
The process of aging underlies many degenerative disorders that arise in the living body, including gradual neuronal loss of the hippocampus that often leads to decline in both memory and cognition. Recent evidence has shown a significant connection between gut microbiota and brain function, as butyrate production by microorganisms is believed to activate the secretion of brain-derived neurotrophic factor (BDNF). To investigate whether modification of intestinal microbiota could impact cognitive decline in the aging brain, Romo-Araiza et al. conducted a study to test how probiotic and prebiotic supplementation impacted spatial and associative memory in middle-aged rats. Their results showed that rats supplemented with the symbiotic (both probiotic and prebiotic) treatment performed significantly better than other groups in the spatial memory test, though not in that of associative memory. Their data also reported that this improvement correlated with increased levels of BDNF, decreased levels of pro-inflammatory cytokines, and better electrophysiological outcomes in the hippocampi of the symbiotic group. Thus, the results indicated that the progression of cognitive impairment is indeed affected by changes in microbiota induced by probiotics and prebiotics. Potential future applications of these findings center around combatting neurodegeneration and inflammation associated not only with aging but also with the damaging posttraumatic effects of ischemic stroke.
Collapse
Affiliation(s)
- Matthew Heyck
- Department of Neurosurgery and Brain Repair, College of Medicine, University of South Florida Morsani, Tampa, FL, USA
| | - Antonio Ibarra
- Department of Neurosurgery and Brain Repair, Faculty of Health Sciences, Anahuac University, Huixquilucan, Mexico
| |
Collapse
|
38
|
From Probiotics to Psychobiotics: Live Beneficial Bacteria Which Act on the Brain-Gut Axis. Nutrients 2019; 11:nu11040890. [PMID: 31010014 PMCID: PMC6521058 DOI: 10.3390/nu11040890] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
There is an important relationship between probiotics, psychobiotics and cognitive and behavioral processes, which include neurological, metabolic, hormonal and immunological signaling pathways; the alteration in these systems may cause alterations in behavior (mood) and cognitive level (learning and memory). Psychobiotics have been considered key elements in affective disorders and the immune system, in addition to their effect encompassing the regulation of neuroimmune regulation and control axes (the hypothalamic-pituitary-adrenal axis or HPA, the sympathetic-adrenal-medullary axis or SAM and the inflammatory reflex) in diseases of the nervous system. The aim of this review is to summarize the recent findings about psychobiotics, the brain-gut axis and the immune system. The review focuses on a very new and interesting field that relates the microbiota of the intestine with diseases of the nervous system and its possible treatment, in neuroimmunomodulation area. Indeed, although probiotic bacteria will be concentrated after ingestion, mainly in the intestinal epithelium (where they provide the host with essential nutrients and modulation of the immune system), they may also produce neuroactive substances which act on the brain-gut axis.
Collapse
|
39
|
Romo-Araiza A, Gutiérrez-Salmeán G, Galván EJ, Hernández-Frausto M, Herrera-López G, Romo-Parra H, García-Contreras V, Fernández-Presas AM, Jasso-Chávez R, Borlongan CV, Ibarra A. Probiotics and Prebiotics as a Therapeutic Strategy to Improve Memory in a Model of Middle-Aged Rats. Front Aging Neurosci 2018; 10:416. [PMID: 30618722 PMCID: PMC6305305 DOI: 10.3389/fnagi.2018.00416] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with morphological, physiological and metabolic changes, leading to multiorgan degenerative pathologies, such as cognitive function decline. It has been suggested that memory loss also involves a decrease in neurotrophic factors, including brain-derived neurotrophic factor (BDNF). In recent years, microbiota has been proposed as an essential player in brain development, as it is believed to activate BDNF secretion through butyrate production. Thus, microbiota modulation by supplementation with probiotics and prebiotics may impact cognitive decline. This study aimed to evaluate the effects of probiotics and prebiotics supplementation on the memory of middle-aged rats. Sprague-Dawley male rats were randomized in four groups (n = 13 per group): control (water), probiotic (E. faecium), prebiotic (agave inulin), symbiotic (E. faecium + inulin), which were administered for 5 weeks by oral gavage. Spatial and associative memory was analyzed using the Morris Water Maze (MWM) and Pavlovian autoshaping tests, respectively. Hippocampus was obtained to analyze cytokines [interleukin (IL-1β) and tumor necrosis factor (TNF-α)], BDNF and γ-aminobutyric acid (GABA) by enzyme-linked immunosorbent assay (ELISA). Butyrate concentrations were also evaluated in feces. The symbiotic group showed a significantly better performance in MWM (p < 0.01), but not in Pavlovian autoshaping test. It also showed significantly lower concentrations of pro-inflammatory cytokines (p < 0.01) and the reduction in IL-1β correlated with a better performance of the symbiotic group in MWM (p < 0.05). Symbiotic group also showed the highest BDNF and butyrate levels (p < 0.0001). Finally, we compared the electrophysiological responses of control (n = 8) and symbiotic (n = 8) groups. Passive properties of CA1 pyramidal cells (PCs) exhibited changes in response to the symbiotic treatment. Likewise, this group showed an increase in the N-methyl-D-aspartate receptor (NMDA)/AMPA ratio and exhibited robust long-term potentiation (LTP; p < 0.01). Integrated results suggest that symbiotics could improve age-related impaired memory.
Collapse
Affiliation(s)
- Alejandra Romo-Araiza
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Mexico
| | - Gabriela Gutiérrez-Salmeán
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Mexico
| | - Emilio J Galván
- Departamento de Farmacobiología, CINVESTAV Sede Sur, Mexico City, Mexico
| | | | | | - Hector Romo-Parra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Mexico
| | - Valentina García-Contreras
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Mexico
| | | | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Mexico
| |
Collapse
|
40
|
Farioli Vecchioli S, Sacchetti S, Nicolis di Robilant V, Cutuli D. The Role of Physical Exercise and Omega-3 Fatty Acids in Depressive Illness in the Elderly. Curr Neuropharmacol 2018; 16:308-326. [PMID: 28901279 PMCID: PMC5843982 DOI: 10.2174/1570159x15666170912113852] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/20/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023] Open
Abstract
Background: In adulthood, depression is the most common type of mental illness and will be the second leading cause of disease by 2020. Major depression dramatically affects the function of the central nervous system and degrades the quality of life, especially in old age. Several mechanisms underlie the pathophysiology of depressive illness, since it has a multifactorial etiology. Human and an-imal studies have demonstrated that depression is mainly associated with imbalances in neurotransmitters and neurotrophins, hypothalamic-pituitary-adrenal axis alterations, brain volume changes, neurogenesis dysfunction, and dysregulation of in-flammatory pathways. Also the gut microbiota may influence mental health outcomes. Although depression is not a consequence of normal aging, depressive disorders are common in later life, even if often undi-agnosed or mis-diagnosed in old age. When untreated, depression reduces life expectancy, worsens medical illnesses, en-hances health care costs and is the primary cause of suicide among older people. To date, the underpinnings of depression in the elderly are still to be understood, and the pharmacological treatment is the most commonly used therapy. Objective: Since a sedentary lifestyle and poor eating habits have recently emerged as crucial contributors to the genesis and course of depression, in the present review, we have focused on the effects of physical activity and omega-3 fatty acids on depressive illness in the elderly. Results: A growing literature indicates that both exercise and dietary interventions can promote mental health throughout one’s lifespan. Conclusion: There thus emerges the awareness that an active lifestyle and a balanced diet may constitute valid low-cost pre-vention strategies to counteract depressive illness in the elderly.
Collapse
Affiliation(s)
- Stefano Farioli Vecchioli
- Institute of Cell Biology and Neurobiology, CNR/Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Stefano Sacchetti
- Laboratory of Experimental and Behavioral Neurophysiology, Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy.,Department of Psychology, University Sapienza of Rome, Via dei Marsi 78, 00185, Rome, Italy
| | - V Nicolis di Robilant
- Institute of Cell Biology and Neurobiology, CNR/Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Debora Cutuli
- Laboratory of Experimental and Behavioral Neurophysiology, Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy.,Department of Psychology, University Sapienza of Rome, Via dei Marsi 78, 00185, Rome, Italy
| |
Collapse
|
41
|
Ticinesi A, Tana C, Nouvenne A, Prati B, Lauretani F, Meschi T. Gut microbiota, cognitive frailty and dementia in older individuals: a systematic review. Clin Interv Aging 2018; 13:1497-1511. [PMID: 30214170 PMCID: PMC6120508 DOI: 10.2147/cia.s139163] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognitive frailty, defined as the coexistence of mild cognitive impairment symptoms and physical frailty phenotype in older persons, is increasingly considered the main geriatric condition predisposing to dementia. Recent studies have demonstrated that gut microbiota may be involved in frailty physiopathology by promoting chronic inflammation and anabolic resistance. The contribution of gut microbiota to the development of cognitive impairment and dementia is less defined, even though the concept of "gut-brain axis" has been well demonstrated for other neuropsychiatric disorders. The aim of this systematic review was to summarize the current state-of-the-art literature on the gut microbiota alterations associated with cognitive frailty, mild cognitive impairment and dementia and elucidate the effects of pre- or probiotic administration on cognitive symptom modulation in animal models of aging and human beings. We identified 47 papers with original data (31 from animal studies and 16 from human studies) suitable for inclusion according to our aims. We concluded that several observational and intervention studies performed in animal models of dementia (mainly Alzheimer's disease) support the concept of a gut-brain regulation of cognitive symptoms. Modulation of vagal activity and bacterial synthesis of substances active on host neural metabolism, inflammation and amyloid deposition are the main mechanisms involved in this physiopathologic link. Conversely, there is a substantial lack of human data, both from observational and intervention studies, preventing to formulate any clinical recommendation on this topic. Gut microbiota modulation of cognitive function represents, however, a promising area of research for identifying novel preventive and treatment strategies against dementia.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy,
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
- Microbiome Research Hub, University of Parma, Parma, Italy,
| | - Claudio Tana
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
| | - Antonio Nouvenne
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
- Microbiome Research Hub, University of Parma, Parma, Italy,
| | - Beatrice Prati
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
| | - Fulvio Lauretani
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy,
- Geriatric-Rehabilitation Department, Parma University Hospital, Parma, Italy,
- Microbiome Research Hub, University of Parma, Parma, Italy,
| |
Collapse
|
42
|
Pina-Pérez MC, Rivas A, Martínez A, Rodrigo D. Effect of thermal treatment, microwave, and pulsed electric field processing on the antimicrobial potential of açaí (Euterpe oleracea), stevia (Stevia rebaudiana Bertoni), and ginseng (Panax quinquefolius L.) extracts. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Ezcurra M. Dissecting cause and effect in host-microbiome interactions using the combined worm-bug model system. Biogerontology 2018; 19:567-578. [PMID: 29557050 PMCID: PMC6223720 DOI: 10.1007/s10522-018-9752-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
Abstract
High-throughput molecular studies are greatly advancing our knowledge of the human microbiome and its specific role in governing health and disease states. A myriad of ongoing studies aim at identifying links between microbial community disequilibria (dysbiosis) and human diseases. However, due to the inherent complexity and heterogeneity of the human microbiome we need robust experimental models that allow the systematic manipulation of variables to test the multitude of hypotheses arisen from large-scale ‘meta-omic’ projects. The nematode C. elegans combined with bacterial models offers an avenue to dissect cause and effect in host-microbiome interactions. This combined model allows the genetic manipulation of both host and microbial genetics and the use of a variety of tools, to identify pathways affecting host health. A number of recent high impact studies have used C. elegans to identify microbial pathways affecting ageing and longevity, demonstrating the power of the combined C. elegans-bacterial model. Here I will review the current state of the field, what we have learned from using C. elegans to study gut microbiome and host interactions, and the potential of using this model system in the future.
Collapse
Affiliation(s)
- Marina Ezcurra
- Department of Genetics, Evolution and Environment and Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK. .,School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
44
|
Affiliation(s)
- Leszek Szablewski
- Medical University of Warsaw, Department of General Biology and Parasitology, Warsaw, Poland
| |
Collapse
|
45
|
Choi J, Hur TY, Hong Y. Influence of Altered Gut Microbiota Composition on Aging and Aging-Related Diseases. J Lifestyle Med 2018; 8:1-7. [PMID: 29581954 PMCID: PMC5846638 DOI: 10.15280/jlm.2018.8.1.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/13/2017] [Indexed: 12/17/2022] Open
Abstract
The gut microbiota forms a large community that coexists with all species, including humans and rodents. Genome projects have been conducted by many researchers in nearly every country to better understand and treat diseases that lead to death in humans. However, the gut microbiota is known as a "second genome" because it includes microbes, genomic DNA, proteins, and metabolites. A large number of studies have revealed the importance of the gut microbiota. In elderly people, the diversity of the gut microbiota is reduced and there is an increased incidence of degenerative diseases, including Alzheimer's and Parkinson's, and decreased cognitive and memory functions. However, the administration of pre/probiotics can help to improve the symptoms of these diseases. Therefore, we believe that the gut microbiota is important for maintaining homeostasis and diversity, as well as for avoiding gastrointestinal tract-derived diseases and improving health in the elderly population.
Collapse
Affiliation(s)
- Jeonghyun Choi
- Department of Rehabilitation Science, Graduate School, Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Tai-Young Hur
- Animal Biotechnology Division, National Institute of Animal Science, Wanju, Korea
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School, Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea.,Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Korea
| |
Collapse
|
46
|
Athari Nik Azm S, Djazayeri A, Safa M, Azami K, Djalali M, Sharifzadeh M, Vafa M. Probiotics improve insulin resistance status in an experimental model of Alzheimer's disease. Med J Islam Repub Iran 2017; 31:103. [PMID: 29951404 PMCID: PMC6014785 DOI: 10.14196/mjiri.31.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Nowadays, Alzheimer's disease (AD) is considered as Type 3 diabetes in which insulin resistance is the common cause of both diseases. Disruption of insulin signaling cascade and insulin resistance can induce AD; and central insulin resistance causes systemic alterations in serum insulin, FBS levels, and lipid profile. Studies have shown that probiotics (Lactobacillus and Bifidobacterium species) can be used as a nutritional approach to improve these metabolic changes. We assessed the probiotic effect (4 species of Lactobacillus and Bifidobacterium) on insulin resistance biomarkers in an experimental model of AD. Methods: A total of 60 rats were divided into 5 groups: (1) a control group without surgical and dietary intervention; (2) a controlprobiotics group receiving probiotics for 8 weeks, but not receiving any surgical intervention; (3) a group receiving a sham operation in which PBS was injected intrahippocampus but without dietary intervention; (4) an Alzheimer group for which Amyloid-ß (Aß) 1- 42 was injected intrahippocampus but without dietary intervention; (5) and an Alzheimer-probiotics group for which Aß1-42 was injected intrahippocampus and given 2g probiotics for 8 weeks. The FBS levels and lipid profile were measured by a calorimetric method, insulin levels were detected by an ELISA kit, and HOMA-IR was calculated using a formula. ANOVA (one way analysis of variance followed by Bonferroni comparisons post hoc) was used to compare all the variables between groups. Results: Serum glucose, insulin levels, and HOMA-IR index increased in the Alzheimer group compared to the control (p<0.001), while probiotics decreased only insulin level and HOMA-IR index in AP group compared to Alzheimer group (p<0.001). Also, TG levels increased in the Alzheimer group (p<0.001), but no significant difference was detected between Alzheimer and Alzheimerprobiotics group. Conclusion: It seems that probiotics play an effective role in controlling glycemic status of Alzheimer's disease.
Collapse
Affiliation(s)
- Somayeh Athari Nik Azm
- Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolghassem Djazayeri
- Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Cellular and Molecular Research Center and Hematology Department, School of Allied Medical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Kian Azami
- Department of Pharmacology, Pharmaceutical Science Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular-Molecular Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
García-Peña C, Álvarez-Cisneros T, Quiroz-Baez R, Friedland RP. Microbiota and Aging. A Review and Commentary. Arch Med Res 2017; 48:681-689. [PMID: 29229199 DOI: 10.1016/j.arcmed.2017.11.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022]
Abstract
Although there is a consensus that the dominant species that make up the adult microbiota remains unchanged in elderly people, it has been reported that there are significant alterations in the proportion and composition of the different taxa, leading to reduced microbiota diversity, as well as an increase of enteropathogens that may lead to chronic inflammation. The ageing of mucosal immune and motor systems also contributes to these changes. As the individual ages, there is a loss in the number of Peyer's patches, an altered local capacity of T and B cell functions as well as chronic macrophage activation. Also, environment, diet, place of residence and biogeography are regulatory factors of the microbiota. Communication in the gut-brain-axis is regulated by many intermediaries including diverse metabolites of the microbiota. Microbial changes have been observed in several geriatric diseases, like Parkinson's and Alzheimer's. In addition, evidence has shown that individuals with high frailty scores had a significant reduction on lactobacilli species when compared to non-frail individuals. Oral microbiota may be also especially important because of the opportunities for access to the brain through the olfactory nerve at the roof of the nose or through the abundant innervations of the oral cavity by the trigeminal and other cranial nerves. Also, there are an increasing number of reports that have suggested potential mechanisms by which the microbiota promote human health span and aging. The study of the microbiota represents an important advance in the understanding of the aging process.
Collapse
Affiliation(s)
- Carmen García-Peña
- Dirección de Investigación, Instituto Nacional de Geriatría, Ciudad de México, México
| | | | - Ricardo Quiroz-Baez
- Dirección de Investigación, Instituto Nacional de Geriatría, Ciudad de México, México
| | - Robert P Friedland
- Departament of Neurology, School of Medicine, University of Louisville, Kentucky, USA.
| |
Collapse
|
48
|
Chen D, Yang X, Yang J, Lai G, Yong T, Tang X, Shuai O, Zhou G, Xie Y, Wu Q. Prebiotic Effect of Fructooligosaccharides from Morinda officinalis on Alzheimer's Disease in Rodent Models by Targeting the Microbiota-Gut-Brain Axis. Front Aging Neurosci 2017; 9:403. [PMID: 29276488 PMCID: PMC5727096 DOI: 10.3389/fnagi.2017.00403] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
Gut microbiota influences the central nervous system disorders such as Alzheimer's disease (AD). The prebiotics and probiotics can improve the host cognition. A previous study demonstrated that fructooligosaccharides from Morinda officinalis (OMO) exert effective memory improvements in AD-like animals, thereby considered as potential prebiotics; however, the underlying mechanism still remains enigma. Thus, the present study investigated whether OMO is effective in alleviating AD by targeting the microbiota-gut-brain axis. OMO was administered in rats with AD-like symptoms (D-galactose- and Aβ1-42-induced deficient rats). Significant and systematic deterioration in AD-like animals were identified, including learning and memory abilities, histological changes, production of cytokines, and microbial community shifts. Behavioral experiments demonstrated that OMO administration can ameliorate the learning and memory abilities in both AD-like animals significantly. AD parameters showed that OMO administration cannot only improve oxidative stress and inflammation disorder, but also regulate the synthesis and secretion of neurotransmitter. Histological changes indicated that OMO administration ameliorates the swelling of brain tissues, neuronal apoptosis, and down-regulation of the expression of AD intracellular markers (Tau and Aβ1-42). 16S rRNA sequencing of gut microbiota indicated that OMO administration maintains the diversity and stability of the microbial community. In addition, OMO regulated the composition and metabolism of gut microbiota in inflammatory bowel disease (IBD) mice model treated by overdosed antibiotics and thus showed the prebiotic potential. Moreover, gut microbiota plays a major role in neurodevelopment, leading to alterations in gene expression in critical brain and intestinal regions, thereby resulting in perturbation to the programming of normal cognitive behaviors. Taken together, our findings suggest that the therapeutic effect of the traditional medicine, M. officinalis, on various neurological diseases such as AD, is at least partially contributed by its naturally occurring chemical constituent, OMO, via modulating the interaction between gut ecology and brain physiology.
Collapse
Affiliation(s)
- Diling Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Chinese Academy of Sciences, Guangzhou, China
| | - Xin Yang
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Chinese Academy of Sciences, Guangzhou, China
| | - Guoxiao Lai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Chinese Academy of Sciences, Guangzhou, China.,Guangxi University of Chinese Medicine, Nanning, China
| | - Tianqiao Yong
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaocui Tang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Chinese Academy of Sciences, Guangzhou, China
| | - Ou Shuai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, China
| | - Gailian Zhou
- Guangxi University of Chinese Medicine, Nanning, China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
49
|
Solas M, Milagro FI, Ramírez MJ, Martínez JA. Inflammation and gut-brain axis link obesity to cognitive dysfunction: plausible pharmacological interventions. Curr Opin Pharmacol 2017; 37:87-92. [PMID: 29107872 DOI: 10.1016/j.coph.2017.10.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
Obesity prevalence is increasing steadily throughout the world's population in most countries and in parallel the prevalence of metabolic disorders including cardiovascular diseases and type 2 diabetes is also rising, but less is reported about excessive adiposity relationship with poorer cognitive performance, cognitive decline and dementia. Some human clinical studies have evidenced that obesity is related to the risk of the development of mild cognitive impairment, in the form of short-term memory and executive function deficits, as well as dementia and Alzheimer's disease. The precise mechanisms that underlie the connections between obesity and the risk of cognitive impairment are still largely unknown but potential avenues of further research include insulin resistance, the gut-brain axis, and systemic mediators and central inflammation processes. A common feature of metabolic diseases is a chronic and low-grade activation of the inflammatory system. This inflammation may eventually spread from peripheral tissue to the brain, and recent reports suggest that neuroinflammation is an important causal mechanism in cognitive decline. This inflammatory status could be triggered by changes in the gut microbiota composition. Consumption of diets high in fat and sugar influences the microbiota composition, which may lead to an imbalanced microbial population in the gut. Thus, it has recently been hypothesized that the gut microbiota could be part of a mechanistic link between the consumption of high fat and other unbalanced diets and impaired cognition, termed 'gut-brain axis'. The present review will aim at providing an integrative analysis of the effects of obesity and unbalanced diets on cognitive performance and discusses some of the potential mechanisms involved, namely inflammation and changes in gut-brain axis. Moreover, the review aims to analyze anti-inflammatory drugs that have been tested for the treatment of cognition and obesity, recently approved anti-obesity drugs that could also have an impact on central nervous system, and bioactive food compounds that modulate gut microbiota and could have an impact through the gut-brain axis. In this era of precision nutrition medicine, it is imperative to identify the various metabolic-neurocognitive phenotypes in order to understand the processes that drive these diseases so that targeted therapeutic strategies to prevent and successfully manage these complex, multifactorial diseases could be designed and developed.
Collapse
Affiliation(s)
- Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain; CIBERobn, CIBER Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain; IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain; CIBERobn, CIBER Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, Madrid, Spain
| |
Collapse
|
50
|
Hadem IKH, Majaw T, Kharbuli B, Sharma R. Beneficial effects of dietary restriction in aging brain. J Chem Neuroanat 2017; 95:123-133. [PMID: 29031555 DOI: 10.1016/j.jchemneu.2017.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/14/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022]
Abstract
Aging is a multifactorial complex process that leads to the deterioration of biological functions wherein its underlying mechanism is not fully elucidated. It affects the organism at the molecular and cellular level that contributes to the deterioration of structural integrity of the organs. The central nervous system is the most vulnerable organ affected by aging and its effect is highly heterogeneous. Aging causes alteration in the structure, metabolism and physiology of the brain leading to impaired cognitive and motor-neural functions. Dietary restriction (DR), a robust mechanism that extends lifespan in various organisms, ameliorates brain aging by reducing oxidative stress, improving mitochondrial function, activating anti-inflammatory responses, promoting neurogenesis and increasing synaptic plasticity. It also protects and prevents age-related structural changes. DR alleviates many age-associated diseases including neurodegeneration and improves cognitive functions. DR inhibits/activates nutrient signaling cascades such as insulin/IGF-1, mTOR, AMPK and sirtuins. Because of its sensitivity to energy status and hormones, AMPK is considered as the global nutrient sensor. This review will present an elucidative potential role of dietary restriction in the prevention of phenotypic features during aging in brain and its diverse mechanisms.
Collapse
Affiliation(s)
| | - Teikur Majaw
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Babiangshisha Kharbuli
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Ramesh Sharma
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
| |
Collapse
|