1
|
Zhang FY, Fang Y, Zhang CX, Zhang HY, Dong M, Zhang KW, Wu CY, Song HD, Chen G. The effects of disturbance on hypothalamus-pituitary-thyroid axis in zebrafish larvae after exposure to polyvinyl alcohol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117396. [PMID: 39603223 DOI: 10.1016/j.ecoenv.2024.117396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
In recent years, considerable concerns have been raised regarding environmental pollution caused by water-soluble polymers (WSPs). Polyvinyl alcohol (PVA), used in the textile industry and in the manufacture of medical consumables, is one type of WSPs. After use, PVA is discharged and enters aquatic ecosystems, but most of it cannot be completely biodegraded in the environment. In this study, we investigated the effects of PVA on developmental toxicity and thyroid endocrine disruption using a zebrafish (Danio rerio) model. We treated zebrafish embryos with 10 g/L and 5 mg/L PVA for 96 h and found that the proportion of coagulated embryos significantly increased, resulting in a remarkable decrease in hatching rate and larval survival. The body length of zebrafish larvae in the exposed group was remarkably shorter than that of the control group (Control: 3.64 ± 0.03 mm vs. 10 g/L PVA: 3.46 ± 0.03 mm; p=0.001). Compared to the control group, the levels of T3 and T4 in embryos of the exposed group were significantly lower, while thyroid stimulating hormone (TSH) levels were significantly increased. Notable up-regulation of trh, tshβ, and tshr genes, as well as down-regulation of trα , tg, ttr, dio1, and dio2 genes, were observed in embryos of the exposed group. Collectively, these findings suggest that PVA negatively influences the development and function of the thyroid gland during zebrafish embryogenesis. These effects may be partly attributed to the disruption of hypothalamic-pituitary-thyroid (HPT) axis regulation. Therefore, raising awareness about the possible thyroid toxicity associated with PVA is crucial.
Collapse
Affiliation(s)
- Fei-Yang Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China; Department of Endocrinology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| | - Ya Fang
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu, China.
| | - Cao-Xu Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, China.
| | - Hai-Yang Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Mei Dong
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kai-Wen Zhang
- Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
| | - Chen-Yang Wu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China; Department of Endocrinology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| |
Collapse
|
2
|
Liu M, Hu C, Li J, Zhou B, Lam PKS, Chen L. Thyroid Endocrine Disruption and Mechanism of the Marine Antifouling Pollutant 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19189-19198. [PMID: 39344067 DOI: 10.1021/acs.est.4c07614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The antifoulant 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) is an emerging pollutant in the marine environment, which may disrupt the thyroid endocrine system. However, DCOIT toxicity in relation to thyroid endocrine disruption and the underlying mechanisms remains largely unclear. In this study, in vivo, in silico, in vitro, and ex vivo assays were performed to clarify DCOIT's thyroid toxicity. First, marine medaka (Oryzias melastigma) were exposed to environmentally realistic concentrations of DCOIT for an entire life cycle. The results demonstrated that DCOIT exposure potently stimulated the hypothalamic-pituitary-thyroid axis, characterized by hyperthyroidism symptom induction and prevalent key gene and protein upregulation in the brain. Moreover, the in silico and in vitro results evidenced that DCOIT could bind to thyroid hormone receptor β (TRβ) and interact synergistically with triiodothyronine, thus promoting GH3 cell proliferation. The CUT&Tag experiment found that DCOIT interfered with the affinity fingerprint of TRβ to target genes implicated in thyroid hormone signaling cascade regulation. Furthermore, ex vivo, Chem-seq revealed that DCOIT directly bound to the genomic sequences of thyrotropin-releasing hormone receptor b and thyroid-stimulating hormone receptor in marine medaka brain tissues. In conclusion, the current multifaceted evidence confirmed that DCOIT has a strong potency for thyroid endocrine system disruption and provided comprehensive insights into its toxicity mechanisms.
Collapse
Affiliation(s)
- Mengyuan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Jiali Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K S Lam
- Office of the President, Hong Kong Metropolitan University, 30 Good Shepherd Street, Hong Kong SAR, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Niaz K, McAtee D, Adhikari P, Rollefson P, Ateia M, Abdelmoneim A. Assessing the effects of fluorine-free and PFAS-containing firefighting foams on development and behavioral responses using a zebrafish-based platform. CHEMOSPHERE 2024; 365:143361. [PMID: 39303789 DOI: 10.1016/j.chemosphere.2024.143361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Significant progress has been made in developing fluorine-free firefighting foams (F3) as alternatives to perfluoroalkyl substances (PFAS)-containing aqueous film-forming foams (AFFF) to help eliminate the health and environmental concerns linked to PFAS exposure. However, developing viable F3 options hinges on a thorough assessment of potential risks alongside the technical performance evaluations. This study showcases the capability of a zebrafish-based platform to discern the developmental and behavioral toxicities associated with exposure to one AFFF and two F3 formulations. To facilitate direct exposure to the chemicals, embryos were enzymatically dechorionated and then exposed to the diluted formulations (6-120 hours post fertilization (hpf)) at concentrations folding from 0.1% of the manufacturer-recommended working concentrations. The exposure regimen also included daily automated media changes (50%) and mortality assessments (24 and 120 hpf). At 120 hpf, a comprehensive assessment encompassing overall development, prevalence of morphological defects, and behavioral responses to acute stressors (visual, acoustic, and peripheral irritant) was conducted. Exposure to both F3s significantly increased larval mortalities to percentages exceeding 90%, whereas AFFF exposures did not cause any significant effect. Overall development, marked by total larval length, was significantly impacted following exposures to all foams. Behavioral responses to acute stressors were also significantly altered following exposures to both F3s, whereas the AFFF did not alter behavior at the concentrations tested. Our findings demonstrate toxicities associated with tested F3 formulations that encompass several endpoints and highlight the utility of the proposed platform in evaluating the developmental toxicities of current and future foam formulations.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA; Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Demetrius McAtee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Pranup Adhikari
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Patrik Rollefson
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH, 45220, USA.
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
4
|
Zhao X, Meng X, Yang D, Dong S, Xu J, Chen D, Shi Y, Sun Y, Ding G. Thyroid disrupting effects and the developmental toxicity of hexafluoropropylene oxide oligomer acids in zebrafish during early development. CHEMOSPHERE 2024; 361:142462. [PMID: 38815816 DOI: 10.1016/j.chemosphere.2024.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
As perfluorooctanoic acid (PFOA) alternatives, hexafluoropropylene oxide dimeric acid (HFPO-DA) and hexafluoropropylene oxide trimeric acid (HFPO-TA) have been increasingly used and caused considerable water pollution. However, their toxicities to aquatic organisms are still not well known. Therefore, in this study, zebrafish embryos were exposed to PFOA (0, 1.5, 3 and 6 mg/L), HFPO-DA (0, 3, 6 and 12 mg/L) and HFPO-TA (0, 1, 2 and 4 mg/L) to comparatively investigate their thyroid disrupting effects and the developmental toxicity. Results demonstrated that waterborne exposure to PFOA and its two alternatives decreased T4 contents, the heart rate and swirl-escape rate of zebrafish embryos/larvae. The transcription levels of genes related to thyroid hormone regulation (crh), biosynthesis (tpo and tg), function (trα and trβ), transport (transthyretin, ttr), and metabolism (dio1, dio2 and ugt1ab), were differently altered after the exposures, which induced the thyroid disrupting effects and decreased the heart rate. In addition, the transcription levels of some genes related to the nervous system development were also significantly affected, which was associated with the thyroid disrupting effects and consequently affected the locomotor activity of zebrafish. Therefore, HFPO-DA and HFPO-TA could not be safe alternatives to PFOA. Further studies to uncover the underlying mechanisms of these adverse effects are warranted.
Collapse
Affiliation(s)
- Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xianghan Meng
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jianhui Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dezhi Chen
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Ya Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
5
|
Horie Y, Sawada A, Dorcas U, Ramaswamy BR, Iguchi T. Iopanoic acid alters thyroid hormone-related gene expression, thyroid hormone levels, swim bladder inflation, and swimming performance in Japanese medaka. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109930. [PMID: 38663833 DOI: 10.1016/j.cbpc.2024.109930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Disruption of the thyroid hormone system by synthetic chemicals is gaining attention owing to its potential negative effects on organisms. In this study, the effects of the dio-inhibitor iopanoic acid (IOP) on the levels of thyroid hormone and related gene expression, swim bladder inflation, and swimming performance were investigated in Japanese medaka. Iopanoic acid exposure suppressed thyroid-stimulating hormone β (tshβ), tshβ-like, iodotyronin deiodinase 1 (dio1), and dio2 expression, and increased T4 and T3 levels. In addition, IOP exposure inhibited swim bladder inflation, reducing swimming performance. Although adverse outcome pathways of thyroid hormone disruption have been developed using zebrafish, no adverse outcome pathways have been developed using Japanese medaka. This study confirmed that IOP inhibits dio expression (a molecular initiating event), affects T3 and T4 levels (a key event), and reduces swim bladder inflation (a key event) and swimming performance (an adverse outcome) in Japanese medaka.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| | - Ayaka Sawada
- Graduate School of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Uaciquete Dorcas
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Babu Rajendran Ramaswamy
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
6
|
Jiao F, Zhao Y, Limbu SM, Kong L, Zhang D, Liu X, Yang S, Gui W, Rong H. Cyhexatin causes developmental toxic effects by disrupting endocrine system and inducing behavioral inhibition, apoptosis and DNA hypomethylation in zebrafish (Danio rerio) larvae. CHEMOSPHERE 2023; 339:139769. [PMID: 37562506 DOI: 10.1016/j.chemosphere.2023.139769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Cyhexatin (CYT), an organotin acaricide, is extensively utilized in developing countries to mitigate plant diseases caused by mites and minimize agricultural crop losses. However, the comprehensive mechanisms underlying the developmental stage of non-target organisms remain largely unexplored. In this study, zebrafish embryos were firstly exposed to CYT (0.06, 0.12, and 0.20 ng/mL, referred to as CYTL, CYTM, and CYTH, respectively) from 2 hpf (hours post fertilization) to 30 dpf (days post fertilization). No developmental toxicity was observed in the CYTL and CYTM groups, except for induced deformed phenotypes in the CYTM group at 120 hpf. However, exposure to CYTH resulted in significant reductions in spontaneous movement (24 hpf), heart rate (48 hpf), hatching rate (48 and 72 hpf), body weight (30 dpf), whole body length (30 dpf), and locomotion (30 dpf). Additionally, CYTH exposure induced morphological malformations, including spinal curvature, pericardial edema, and tail curvature in zebrafish larvae. Moreover, CYTH treatment induced apoptosis, increased reactive oxygen species (ROS) production, and resulted in significant reductions in free T3, cholesterol, estradiol, and testosterone levels in zebrafish larvae, while free T4 levels were increased. RNA-Seq analysis indicated that CYTH exposure led to significant alterations in the genome-wide gene expression profiles of zebrafish, particularly in the thyroid hormone and steroid biosynthesis signaling pathways, indicating endocrine disruption. Furthermore, CYTH exposure induced global DNA hypomethylation, reduced S-adenosylmethionine (SAM) levels and the SAM/S-adenosylhomocysteine (SAH) ratio, elevated SAH levels, and suppressed the mRNA expression of DNA methyltransferases (DNMTs) while also downregulating DNMT1 at both the gene and protein levels in zebrafish larvae. Overall, this study partially elucidated the developmental toxicity and endocrine disruption caused by CYT in zebrafish, providing evidence of the environmental hazards associated with this acaricide.
Collapse
Affiliation(s)
- Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China
| | - Yang Zhao
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310058, PR China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P. O. Box 60091, Dar es Salaam, Tanzania
| | - Lingfu Kong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Daitao Zhang
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Xianghe Liu
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Sha Yang
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| | - Hua Rong
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China; Xiangyang Polytechnic, Xiangyang, 441050, PR China.
| |
Collapse
|
7
|
Huang Z, Gao J, Chen Y, Huan Z, Liu Y, Zhou T, Dong Z. Toxic effects of bisphenol AF on the embryonic development of marine medaka (Oryzias melastigma). ENVIRONMENTAL TOXICOLOGY 2023; 38:1445-1454. [PMID: 36929865 DOI: 10.1002/tox.23779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 05/18/2023]
Abstract
Bisphenol AF (BPAF), an emerging environmental endocrine disruptor, has been detected in surface waters worldwide and has adverse effects on aquatic organisms. The accumulation of BPAF in oceans and its potential toxic effect on marine organisms are important concerns. In this study, the effects of BPAF (10, 100, 1, and 5 mg/L) on marine medaka (Oryzias melastigma) were evaluated, including effects on the survival rate, heart rate, hatchability, morphology, and gene expression in embryos. The survival rate of marine medaka embryos was significantly lower after treatment with 5 mg/L BPAF than in the solvent control group. Exposure to 1 mg/L and 5 mg/L BPAF significantly reduced hatchability. Low-dose BPAF (10 μg/L) significantly accelerated the heart rate of embryos, while high-dose BPAF (5 mg/L) significantly decreased the heart rate. BPAF exposure also resulted in notochord curvature, pericardial edema, yolk sac cysts, cardiovascular bleeding, and caudal curvature in marine medaka. At the molecular level, BPAF exposure affected the transcript levels of genes involved in the thyroid system (dio1, dio3a, trhr2, tg, and thra), cardiovascular system (gata4, atp2a1, and cacna1da), nervous system (elavl3 and gap43), and antioxidant and inflammatory systems (sod, pparβ, and il-8) in embryos. These results indicate that BPAF exposure can alter the expression of functional genes, induce abnormal development, and reduce the hatching and survival rates in marine medaka embryos. Overall, BPAF can adversely affect the survival and development of marine medaka embryos, and BPAF may not be an ideal substitute for BPA.
Collapse
Affiliation(s)
- Zeyin Huang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yuebi Chen
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhang Huan
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yue Liu
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Tianyang Zhou
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
8
|
Xi J, Su X, Wang Z, Ji H, Chen Y, Liu X, Miao M, Liang H, Yuan W. The associations between concentrations of gestational bisphenol analogues and thyroid related hormones in cord blood: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114838. [PMID: 36989560 DOI: 10.1016/j.ecoenv.2023.114838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Animal studies indicated that Bisphenol analogues (BPs) exhibited potential thyroid toxicity. However, little is known of the associations between maternal BPs exposure and offspring's thyroid related hormones in humans. On the basis of Shanghai-Minhang Birth Cohort study, we analyzed BPs in maternal urine collected at the third trimester of pregnancy. Thyroid related hormones (THs), including total triiodothyronine (TT3), free triiodothyronine (FT3), total thyroxine (TT4), free thyroxine (FT4), and thyroid-stimulating hormone (TSH) were measured in cord blood samples. We performed multiple linear regression and Bayesian kernel machine regression (BKMR) models to explore the single and joint effects of gestational BPs exposure on thyroid related hormones in cord blood among 258 mother-child pairs. Statistically significant inverse associations of categorized BPA with FT3 and TT4 concentrations were observed. We also found a significant association between the mixture of BPs in maternal urine and increased concentration of TT3 in cord blood and a marginally significant association between BPs mixture and increased FT3 concentrations. Further associations of BPA with lower TT4/FT4 and of Bisphenol AF (BPAF) with higher TT3/FT3 were also suggestive, by BKMR model, when other BPs were fixed at 25th percentiles. It was concluded that prenatal BPs exposure was associated with THs in cord blood. Exposure to BPA and BPAF might have large contributions to the effects on thyroid function than other bisphenols.
Collapse
Affiliation(s)
- Jianya Xi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Old Humin Road, Shanghai 200237, China
| | - Xiujuan Su
- Clinical Research center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ziliang Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Old Humin Road, Shanghai 200237, China
| | - Honglei Ji
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Old Humin Road, Shanghai 200237, China
| | - Yao Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Old Humin Road, Shanghai 200237, China
| | - Xiaofang Liu
- National Reference Laboratory of Dioxin, Institute of Health Inspection and Detection, Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Center for Disease Control and Prevention, #35 Zhuo Daoquan North Road, Wuhan 430079, China
| | - Maohua Miao
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Old Humin Road, Shanghai 200237, China
| | - Hong Liang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Old Humin Road, Shanghai 200237, China.
| | - Wei Yuan
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Old Humin Road, Shanghai 200237, China
| |
Collapse
|
9
|
Wei P, Xiao Y, Liu C, Yan B. Thyroid endocrine disruption induced by [C 8mim]Br: An integrated in vivo, in vitro, and in silico study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106535. [PMID: 37086652 DOI: 10.1016/j.aquatox.2023.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Conventional thyroid-disrupting chemicals (TDCs) such as polybrominated diphenyl ethers, polychlorinated biphenyls, and bisphenols perturb animal's thyroid endocrine system by mimicking the action of endogenous thyroid hormones (THs), since they share a similar backbone structure of coupled benzene rings with THs. 1-methyl-3-octylimidazolium bromide ([C8mim]Br), a commonly used ionic liquid (IL), has no structural similarity to THs. Whether it interferes with thyroid function and how its mode of action differs from conventional TDCs is largely unknown. Herein, zebrafish embryo-larvae experiments (in vivo), GH3 cell line studies (in vitro), and molecular simulation analyses (in silico) were carried out to explore the effect of [C8mim]Br on thyroid homeostasis and its underlying mechanism. Molecular docking results suggested that [C8mim]+ likely bound to retinoid X receptors (RXRs), which may compromise the formation of TH receptor/RXR heterodimers. This then perturbed the negative regulation of thyroid-stimulating hormone β (tshβ) transcription by T3 in GH3 cell line. The resulting enhancement of tshβ expression further caused hyperthyroidism and developmental toxicity in larval zebrafish. These findings provided a crucial aspect of the ecological risks of ILs, and presented a new insight into the thyroid-disrupting mechanisms for emerging pollutants that do not have structural similarity to THs.
Collapse
Affiliation(s)
- Penghao Wei
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Yadav P, Sarode LP, Gaddam RR, Kumar P, Bhatti JS, Khurana A, Navik U. Zebrafish as an emerging tool for drug discovery and development for thyroid diseases. FISH & SHELLFISH IMMUNOLOGY 2022; 130:53-60. [PMID: 36084888 DOI: 10.1016/j.fsi.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/06/2022]
Abstract
Zebrafish is a useful model for understanding human genetics and diseases and has evolved into a prominent scientific research model. The genetic structure of zebrafish is 70% identical to that of humans. Its small size, low cost, and transparent embryo make it a valuable tool in experimentation. Zebrafish and mammals possess the same molecular mechanism of thyroid organogenesis and development. Thus, thyroid hormone signaling, embryonic development, thyroid-related disorders, and novel genes involved in early thyroid development can all be studied using zebrafish as a model. Here in this review, we emphasize the evolving role of zebrafish as a possible tool for studying the thyroid gland in the context of physiology and pathology. The transcription factors nkx2.1a, pax2a, and hhex which contribute a pivotal role in the differentiation of thyroid primordium are discussed. Further, we have described the role of zebrafish as a model for thyroid cancer, evaluation of defects in thyroid hormone transport, thyroid hormone (TH) metabolism, and as a screening tool to study thyrotoxins. Hence, the present review highlights the role of zebrafish as a novel approach to understand thyroid development and organogenesis.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, Maharashtra, India
| | - Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, IA, USA
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074, Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India.
| |
Collapse
|
11
|
Kim H, Ji K. Effects of tetramethyl bisphenol F on thyroid and growth hormone-related endocrine systems in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113516. [PMID: 35483140 DOI: 10.1016/j.ecoenv.2022.113516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/09/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Trimethyl bisphenol F (TMBPF) has recently been used as a bisphenol A substitute in polymer coatings for metal cans containing beverages or food. This study investigated whether TMBPF disrupts the endocrine system associated with thyroid hormones and growth hormones employing zebrafish embryos and larvae. After 14 days of exposure, body weight was significantly reduced when zebrafish were exposed to a TMBPF concentration greater than 50 μg/L. The triiodothyronine levels were significantly increased, while growth hormone levels were significantly decreased in larvae exposed to 5 μg/L TMBPF. The transcription of genes associated with thyroid hormone production (trα, tpo, tg, and nis), deiodination (deio2), growth hormone production (gh1, ghrh, and ghra), and insulin-like growth factor (igf2a, igf2b, igf2r, igfbp1a, igfbp1b, igfbp2a, igfbp2b, and igfbp5a) was significantly upregulated, whereas the transcription of genes association with thyrotropin-releasing hormone (trh and trhr1) was significantly downregulated. These results suggest that hyperthyroidism, decrease in growth hormone, and regulation of genes involved in the hypothalamus-pituitary-thyroid and growth hormone/insulin-like growth factor might be responsible for the observed growth inhibition in larvae exposed to TMBPF. The bioaccumulation of TMBPF and its effects on the endocrine system after chronic exposure requires further investigation.
Collapse
Affiliation(s)
- Hyunggyu Kim
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea.
| |
Collapse
|
12
|
Effect of Acute Exposure to the Ionic Liquid 1-Methyl-3-octylimidazolium Chloride on the Embryonic Development and Larval Thyroid System of Zebrafish. Animals (Basel) 2022; 12:ani12111353. [PMID: 35681818 PMCID: PMC9179473 DOI: 10.3390/ani12111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary In this study, we aimed to evaluate the effect of acute exposure to the ionic liquid 1-methyl-3-octylimidazolium chloride on the embryonic development and larval thyroid system of zebrafish. The results showed that the fish embryonic development, thyroid hormone level, and expression of HPTs-related genes were altered, suggesting that the ionic liquid [C8mim]Cl might pose an aquatic environmental threat to fish. Abstract Previous studies have shown that ILs can induce toxicity in animals, plants, and cells. However, the effect of imidazolium-based ILs on the hypothalamus–pituitary–thyroid (HPT) axis of fish remains unknown. The present study aimed to evaluate the acute effect of [C8mim]Cl on the embryonic development and thyroid-controlled internal secretion system of zebrafish by determining the thyroid hormone level and the expression of HPT-related genes. The results obtained for embryonic developmental toxicity showed the survival rate, heart beats, and body length of fish had decreased 96 h after exposure to [C8mim]Cl, but the hatching rate had increased by the 48 h time point. The transcription levels of HTP-related genes showed that the genes dio3, tg, ttr, tsh, trhrα, trhrβ, trhr2, and tpo were up-regulated, while the expression levels of dio1, trh, tshr, and nis were significantly suppressed. Furthermore, we found that exposure to [C8mim]Cl induced an alteration in the levels of thyroid hormones that increased the T3 but decreased the T4 content. In conclusion, our study indicated that acute exposure to [C8mim]Cl altered the expression of HTP-related genes and disturbed the thyroid hormone level, suggesting that the ionic liquid [C8mim]Cl might pose an aquatic environmental threat to fish.
Collapse
|
13
|
Chen P, Wang R, Chen G, An B, Liu M, Wang Q, Tao Y. Thyroid endocrine disruption and hepatotoxicity induced by bisphenol AF: Integrated zebrafish embryotoxicity test and deep learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153639. [PMID: 35131240 DOI: 10.1016/j.scitotenv.2022.153639] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol AF (BPAF) is an emerging contaminant prevalent in the environment as one of main substitutes of bisphenol A (BPA). It was found that BPAF exhibited estrogenic effects in zebrafish larvae in our previous study, while little is known about its effects on the thyroid and liver. A 7 d zebrafish embryotoxicity test was conducted to study the potential thyroid disruption and hepatotoxicity of BPAF. BPAF decreased levels of thyroid hormones and deiodinases but increased expressions of transthyretin at 12.5 and 125 μg/L after 7 d exposure, indicating that both the metabolism and transport of thyroid hormones were perturbed. The thyroid hormone receptor (TR) levels decreased significantly upon exposure to ≥12.5 μg/L BPAF, implying that BPAF acts as a TR antagonist, which coincided well with the prediction from the Direct Message Passing Neural Network. The liver impairment (mainly cell necrosis of hepatocytes) and apoptosis were triggered by 125 μg/L and ≥12.5 μg/L BPAF respectively, accompanied by the increased activities of caspase 3 and caspase 9. Thus BPAF might not be a safe alternative to BPA given the thyroid and liver toxicity. DMPNN appears useful to screen for thyroid disrupting activity from molecular structures.
Collapse
Affiliation(s)
- Pengyu Chen
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Ruihan Wang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Geng Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China
| | - Baihui An
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Ming Liu
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Qiang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yuqiang Tao
- College of Oceanography, Hohai University, Nanjing 210024, China.
| |
Collapse
|
14
|
Lee S, Lee JS, Kho Y, Ji K. Effects of methylisothiazolinone and octylisothiazolinone on development and thyroid endocrine system in zebrafish larvae. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127994. [PMID: 34915294 DOI: 10.1016/j.jhazmat.2021.127994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Methylisothiazolinone (MIT) and octylisothiazolinone (OIT) are used as preservatives and biocides to prevent product decay or deterioration. In the present study, developmental toxicity and the effect on the thyroid endocrine system were investigated in zebrafish embryos exposed to MIT and OIT for 96 h. Coagulation was significantly increased when zebrafish embryos were exposed to a concentration of 300 μg/L MIT and ≥ 0.3 μg/L OIT, resulting in a significant decrease in hatchability and larvae survival. The body length in zebrafish larvae exposed to 30 μg/L OIT was significantly shorter than that of the control group. The whole-body levels of triiodothyronine and thyroxine were significantly decreased in larvae exposed to MIT and OIT. Significant upregulation of crh, trh, tshβ, and tshr genes and downregulation of trαa, tg, ttr, and deio2 genes were observed in fish exposed to two isothiazolinones. The expression of dre-miR-193b and dre-miR-499 was significantly increased in zebrafish larvae exposed to MIT and OIT, indicating that epigenetic deregulation of miRNAs modulated genes involved in thyroid hormone regulation. OIT has a higher magnitude of toxicity than MIT, corresponding to the observed changes in thyroid hormones and developmental toxicity.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea
| | - Ji-Su Lee
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi 13135, Republic of Korea; National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi 13135, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea.
| |
Collapse
|
15
|
Tang N, Fan P, Chen L, Yu X, Wang W, Wang W, Ouyang F. The Effect of Early Life Exposure to Triclosan on Thyroid Follicles and Hormone Levels in Zebrafish. Front Endocrinol (Lausanne) 2022; 13:850231. [PMID: 35721760 PMCID: PMC9203717 DOI: 10.3389/fendo.2022.850231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Triclosan (TCS) is an antimicrobial chemical widely used in personal care products. Most of the TCS component is discharged and enters the aquatic ecosystem after usage. TCS has a similar structure as thyroid hormones that are synthesized by thyroid follicular epithelial cells, thus TCS has a potential endocrine disrupting effect. It is still not clear how the different levels of the environmental TCS would affect early development in vivo. This study examines the effects of TCS on thyroid hormone secretion and the early development of zebrafish. The fertilized zebrafish eggs were exposed to TCS at 0 (control), 3, 30, 100, 300, and 900 ng/mL, and the hatching rate and the larvae mortality were inspected within the first 14 days. The total triiodothyronine (TT3), total thyroxine (TT4), free triiodothyronine (FT3), and free thyroxine (FT4) were measured at 7, 14, and 120 days post-fertilization (dpf). The histopathological examinations of thyroid follicles were conducted at 120 dpf. TCS exposure at 30-300 ng/mL reduced the hatching rate of larvae to 34.5% to 28.2 % in the first 48 hours and 93.8 .7 % to 86.8 % at 72 h. Extremely high TCS exposure (900 ng/mL) strongly inhibited the hatching rate, and all the larvae died within 1 day. Exposure to TCS from 3 to 300 ng/mL reduced the thyroid hormones production. The mean TT3 and FT3 levels of zebrafish decreased in 300 ng/mL TCS at 14 dpf (300 ng/mL TCS vs. control : TT3 , 0.19 ± 0.08 vs. 0.39 ± 0.06; FT3, 19.21 ± 3.13 vs. 28.53 ± 1.98 pg/mg), and the FT4 decreased at 120 dpf ( 0.09 ± 0.04 vs. 0.20 ± 0.14 pg/mg). At 120 dpf , in the 300 ng/mL TCS exposure group, the nuclear area and the height of thyroid follicular epithelial cells became greater, and the follicle cell layer got thicker. This happened along with follicle hyperplasia, nuclear hypertrophy, and angiogenesis in the thyroid. Our study demonstrated that early life exposure to high TCS levels reduces the rate and speed of embryos hatching, and induces the histopathological change of thyroid follicle, and decreases the TT3, FT3, and FT4 production in zebrafish.
Collapse
Affiliation(s)
- Ning Tang
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pianpian Fan
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Xiaogang Yu
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Wang
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiye Wang
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengxiu Ouyang
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Fengxiu Ouyang, ;
| |
Collapse
|
16
|
Dang Z, Arena M, Kienzler A. Fish toxicity testing for identification of thyroid disrupting chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117374. [PMID: 34051580 DOI: 10.1016/j.envpol.2021.117374] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 05/03/2023]
Abstract
Identification of thyroid disrupting chemicals (TDCs), one of the most studied types of endocrine disruptors (EDs), is required according to EU regulations on industrial chemicals, pesticides, and biocides. Following that requirement, the use of fish as a unique non-mammalian model species for identification of EDs may be warranted. This study summarized and evaluated effects of TDCs on fish thyroid sensitive endpoints including thyroid hormones, thyroid related gene expression, immunostaining for thyroid follicles, eye size and pigmentation, swim bladder inflation as well as effects of TDCs on secondary sex characteristics, sex ratio, growth and reproduction. Changes in thyroid sensitive endpoints may reflect the balanced outcome of different processes of the thyroid cascade. Thyroid sensitive endpoints may also be altered by non-thyroid molecular or endocrine pathways as well as non-specific factors such as general toxicity, development, stress, nutrient, and the environmental factors like temperature and pH. Defining chemical specific effects on thyroid sensitive endpoints is important for identification of TDCs. Application of the AOP (adverse outcome pathway) concept could be helpful for defining critical events needed for testing and identification of TDCs in fish.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment A. van Leeuwenhoeklaan, 93720, BA, Bilthoven, the Netherlands.
| | - Maria Arena
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| | - Aude Kienzler
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| |
Collapse
|
17
|
Jin M, Dang J, Paudel YN, Wang X, Wang B, Wang L, Li P, Sun C, Liu K. The possible hormetic effects of fluorene-9-bisphenol on regulating hypothalamic-pituitary-thyroid axis in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145963. [PMID: 33639463 DOI: 10.1016/j.scitotenv.2021.145963] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/30/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Fluorene-9-bisphenol (BHPF) is a bisphenol A substitute, which has been introduced for the production of so-called 'bisphenol A (BPA)-free' plastics. However, it has been reported that BHPF can enter living organisms through using commercial plastic bottles and cause adverse effects. To date, the majority of the toxicologic study of BHPF focused on investigating its doses above the toxicological threshold. Here, we studied the effects of BHPF on development, locomotion, neuron differentiation of the central nervous system (CNS), and the expression of genes in the hypothalamic-pituitary-thyroid (HPT) axis in zebrafish exposed to different doses of BHPF ranging from 1/5 of LD1 to LD50 (300, 500, 750, 1500, 3000, and 4500 nM). As a result, the possible hormetic effects of BHPF on regulating the HPT axis were revealed, in which low-dose BHPF positively affected the HPT axis while this regulation was inhibited as the dose increased. Underlying mechanism investigation suggested that BHPF disrupted myelination through affecting HPT axis including related genes expression and TH levels, thus causing neurotoxic characteristics. Collectively, this study provides the full understanding of the environmental impact of BHPF and its toxicity on living organisms, highlighting a substantial and generalized ongoing dose-response relationship with great implications for the usage and risk assessment of BHPF.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Jiao Dang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Xixin Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Baokun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China.
| |
Collapse
|
18
|
Qiao K, Hu T, Jiang Y, Huang J, Hu J, Gui W, Ye Q, Li S, Zhu G. Crosstalk of cholinergic pathway on thyroid disrupting effects of the insecticide chlorpyrifos in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143769. [PMID: 33221011 DOI: 10.1016/j.scitotenv.2020.143769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Chlorpyrifos is a widely used organophosphate insecticide and ubiquitously detected in the environment. However, little attention has been paid to its endocrine disrupting effect to non-target organisms. In the present study, zebrafish was exposed to 13 and 65 μg/L of chlorpyrifos for 7 and 10 days to determine the induced neurotoxicity and the alteration of thyroid metabolism. The 120 h LC50 and LC10 of chlorpyrifos was estimated as 1.35 mg/L and 0.62 mg/L based on the acute embryo toxicity assay, respectively. The acetylcholinesterase (AChE) inhibitory was detected by 13 μg/L chlorpyrifos and could be reversed by the co-exposure of 100 and 1000 μg/L anticholinergic agent atropine. For thyroid hormone level, 13 and 65 μg/L of chlorpyrifos induced increased free T3 levels in 10 dpf (days post-fertilization). The expression of thyroid related genes in 7 and 10 dpf exposed zebrafish were measured by the quantitative Real-Time PCR (qRT-PCR) assay. The mRNA expression of tshba, thrb, crhb, ttr, tpo, ugt1ab and slc5a5 had significant change. However, the alterations of thyroid hormone and mRNA expression could be partly rescued by the addition of atropine. The molecular docking of chlorpyrifos and T3 to the thyroid receptor β in zebrafish using homology modelling and CDOCKER procedures shown weaker binding ability of chlorpyrifos compared to T3. Therefore, we concluded that the disturbance of thyroid signaling in zebrafish might arise from the developmental neurotoxicity induced by chlorpyrifos.
Collapse
Affiliation(s)
- Kun Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China; Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Tiantian Hu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Yao Jiang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Jianping Huang
- Zhejiang Haotian Testing Technology Service Co., Ltd., Zhejiang, Hangzhou 311121, PR China
| | - Jingjin Hu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Wenjun Gui
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Qingfu Ye
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shuying Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China.
| | - Guonian Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
19
|
Waidyanatha S, Collins BJ, Cunny H, Aillon K, Riordan F, Turner K, McBride S, Betz L, Sutherland V. An investigation of systemic exposure to bisphenol AF during critical periods of development in the rat. Toxicol Appl Pharmacol 2021; 411:115369. [PMID: 33338515 PMCID: PMC7821698 DOI: 10.1016/j.taap.2020.115369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/20/2020] [Accepted: 12/13/2020] [Indexed: 11/22/2022]
Abstract
Due to structural similarity to bisphenol A and lack of safety data, the National Toxicology Program (NTP) is evaluating the potential toxicity of bisphenol AF (BPAF) in rodent models. The current investigation reports the internal exposure data for free (unconjugated BPAF) and total (free and conjugated forms) BPAF during critical stages of development following perinatal dietary exposure in Hsd:Sprague Dawley®SD® rats to 0 (vehicle control), 338, 1125, and 3750 ppm BPAF from gestation day (GD) 6 to postnatal day (PND) 28. Free and total BPAF concentrations in maternal plasma at GD 18, PND 4, and PND 28 increased with the exposure concentration; free BPAF concentrations were ≤ 1.61% those of total BPAF demonstrating extensive first pass metabolism of BPAF following dietary exposure in adults. Free and total BPAF were quantified in GD 18 fetuses and PND 4 pups with free concentrations 11.7-53.4% that of corresponding total concentrations. In addition, free concentrations were higher (130-571%) and total concentrations were lower (1.71-7.23%) than corresponding concentrations in dams, demonstrating either preferential transfer of free BPAF and/or inability of fetuses and pups to conjugate BPAF. Free and total concentrations in PND 28 pups were similar to maternal concentrations demonstrating direct exposure of pups via feed and that conjugating enzymes are developed in PND 28 pups. In conclusion, these data demonstrate considerable gestational and lactational transfer of parent aglycone from the mother to offspring. Since the ontogeny of conjugating enzymes in humans is similar to that of rodents, the data from rodent BPAF studies may be useful in predicting human risk from exposure to BPAF.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Bradley J Collins
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Helen Cunny
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | - Katie Turner
- RTI International, Discovery Sciences, Research Triangle, NC, USA
| | | | - Laura Betz
- Social and Scientific Systems, Durham, NC, USA
| | - Vicki Sutherland
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
20
|
Šauer P, Švecová H, Grabicová K, Gönül Aydın F, Mackuľak T, Kodeš V, Blytt LD, Henninge LB, Grabic R, Kocour Kroupová H. Bisphenols emerging in Norwegian and Czech aquatic environments show transthyretin binding potency and other less-studied endocrine-disrupting activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141801. [PMID: 32861950 DOI: 10.1016/j.scitotenv.2020.141801] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Bisphenols are increasingly recognized as environmental pollutants with endocrine-disrupting potential. Nonetheless, the study of environmental occurrence and some endocrine-disrupting activities of some bisphenols came widely into focus of research only recently. The aims of the present study were to: 1) determine the predominant bisphenols in Norwegian sewage sludge and sediment and in Czech surface waters, and 2) characterize the binding of bisphenols to a transport protein transthyretin (TTR) and their (anti-)thyroid, (anti-)progestagenic, and (anti-)androgenic activities. High-performance liquid chromatography with atmospheric pressure chemical ionization or photoionization coupled with high resolution mass spectrometry (HPLC-APCI/APPI-HRMS) and Chemically Activated LUciferase gene eXpression (CALUX) in vitro reporter gene bioassays were used to detect the target compounds and to determine endocrine-disrupting activities, respectively. Bisphenol A (BPA), 4,4'-bisphenol F (BPF), bisphenol S (BPS), and bisphenol E (BPE) were the most frequently found compounds in municipal sewage sludge. Furthermore, bisphenol TMC (BPTMC) and bisphenol AF (BPAF) frequently occurred in sediment and surface waters, respectively. BPA was the major contributor to Ʃ of bisphenols in Norwegian sewage sludge with exception of one sample where BPF predominated. We also monitored a few bisphenols in sediment but only BPTMC was found. BPA, BPAF and BPF were the dominant bisphenols in Czech surface waters. Some bisphenols have shown TTR binding potency (BPAF = BPF > BPA = BPE) and some have displayed the following endocrine-disrupting activities: anti-thyroid (BPAF), anti-progestagenic (BPTMC > BPA = BPAF), and anti-androgenic (BPAF > BPE > BPA > BPTMC > BPF > BPS). It is noteworthy that BPAF exhibited stronger or similarly potent endocrine-disrupting activities compared to BPA. Our results provide new insights into these less-studied endocrine-disrupting activities of environmentally relevant bisphenols and may be useful in prioritizing those compounds that deserve further attention in environmental monitoring and eco-toxicological research.
Collapse
Affiliation(s)
- Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Farah Gönül Aydın
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Ankara University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Turkey
| | - Tomáš Mackuľak
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Vít Kodeš
- Czech Hydrometeorological Institute, Na Šabatce 17, 143 06 Praha 4-Komořany, Czech Republic
| | | | | | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Hana Kocour Kroupová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
21
|
Faheem M, Bhandari RK. Detrimental Effects of Bisphenol Compounds on Physiology and Reproduction in Fish: A Literature Review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103497. [PMID: 32950715 PMCID: PMC11491272 DOI: 10.1016/j.etap.2020.103497] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol-A is one of the most studied endocrine-chemicals, which is widely used all over the world in plastic manufacture. Because of its extensive use, it has become one of the most abundant chemical environmental pollutants, especially in aquatic environments. BPA is known to affect fish reproduction via estrogen receptors but many studies advocate that BPA affects almost all aspects of fish physiology. The possible modes of action include genomic, as well as and non-genomic mechanisms, estrogen, androgen, and thyroid receptor-mediated effects. Due to the high detrimental effects of BPA, various analogs of BPA are being used as alternatives. Recent evidence suggests that the analogs of BPA have similar modes of action, with accompanying effects on fish physiology and reproduction. In this review, a detailed comparison of effects produced by BPA and analogs and their mode of action is discussed.
Collapse
|
22
|
Zebrafish Embryonic Exposure to BPAP and Its Relatively Weak Thyroid Hormone-Disrupting Effects. TOXICS 2020; 8:toxics8040103. [PMID: 33202880 PMCID: PMC7712898 DOI: 10.3390/toxics8040103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
Safe endocrine-disrupting alternatives for bisphenol A (BPA) are needed because its adverse health effects have become a public concern. Some bisphenol analogues (bisphenol F and S) have been applied, but their endocrine-disrupting potential is either not negligible or weaker than that of BPA. However, the endocrine-disrupting potential of bisphenol AP (BPAP), another BPA alternative, has not yet been fully assessed. Hence, we evaluated the thyroid hormone (TH)-disrupting potency of BPAP because THs are essential endocrine hormones. Zebrafish embryos were exposed to BPAP (0, 18.2, 43.4, or 105.9 μg/L) for 120 h, and TH levels, the transcription of 16 TH-related genes, the transcriptome, development, and behavior were evaluated. In our study, a decrease in T4 level was observed only at the maximum nonlethal concentration, but significant changes in the T3 and TSHβ levels were not detected. BPAP did not cause significant changes in transcription and gene ontology enrichment related to the TH system. Developmental and behavioral changes were not observed. Despite T4 level reduction, other markers were not significantly affected by BPAP. These might indicate that BPAP has weak or negligible potency regarding TH disruption as a BPA alternative. This study might provide novel information on the TH-disrupting potential of BPAP.
Collapse
|
23
|
Hosseinzadeh M, Amiri BM, Poorbagher H, Perelló-Amorós M, Schlenk D. The effects of diazinon on the cell types and gene expression of the olfactory epithelium and whole-body hormone concentrations in the Persian sturgeon (Acipenser persicus). Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110809. [PMID: 32971289 DOI: 10.1016/j.cbpa.2020.110809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/07/2022]
Abstract
The olfactory function and imprinting of odorant information of the native stream play a critical role during the homing migration in fish. Pesticides may impair olfactory imprinting by altering olfaction and hormone functions. The present study aimed to determine how diazinon impacts olfactory epithelium morphology and cell composition, as well as hormone concentrations in Persian sturgeon (Acipenser persicus) during their lifetime in freshwater and, also during diazinon-free saltwater acclimation. Fingerlings were exposed to 0, 150, 300, and 450 μg·L-1 of diazinon in freshwater for 7 days and then were transferred to diazinon-free saltwater by gradually increasing salinity up to 12 ppt. After diazinon exposure, the number of olfactory receptor cells (ORCs) and goblet cells (GCs) decreased and increased, respectively, and the expression of G-protein αolf (GPαolf) and calmodulin-dependent kinase II delta (CAMKIId) was down-regulated and up-regulated, respectively. Transferring the fish to diazinon-free saltwater (8 and 12 ppt) raised the number of ORCs, supporting cells (SCs), GCs, and GPαolf expression, and down-regulated CAMKIId without any significant differences among treatments. Exposure to diazinon increased whole-body cortisol at the high concentration, while decreased whole-body thyroxin (T4) and triiodothyronine (T3) in a dose-dependent manner. Although whole-body T4 and T3 increased in all the treatments after saltwater acclimation (8 and 12 ppt), the level of these hormones was lower in fish that had been exposed to diazinon than in the control. These results showed that diazinon can disrupt olfactory epithelium morphology and cell composition as well as hormone concentrations, which in turn may affect the olfactory imprinting in Persian sturgeon fingerlings.
Collapse
Affiliation(s)
- Mahboubeh Hosseinzadeh
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314 Karaj, Iran
| | - Bagher Mojazi Amiri
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314 Karaj, Iran.
| | - Hadi Poorbagher
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314 Karaj, Iran
| | - Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
24
|
Chen L, Wang Z, Gu W, Zhang XX, Ren H, Wu B. Single-Cell Sequencing Reveals Heterogeneity Effects of Bisphenol A on Zebrafish Embryonic Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9537-9546. [PMID: 32644799 DOI: 10.1021/acs.est.0c02428] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The embryonic period is a sensitive window for bisphenol A (BPA) exposure. However, embryonic development is a highly dynamic process with changing cell populations. The heterogeneity effects of BPA on fish embryo cells during development remain unclear. We applied single-cell RNA sequencing to analyze the impact of BPA exposure on transcriptome heterogeneity of 64 683 cells from zebrafish embryos at 8, 12, and 30 h postfertilization (hpf). Thirty-eight cell populations were identified and gene expression profiles of 16 cell populations were significantly altered by BPA. At 8 hpf, BPA mainly influenced the outer layer cell populations of embryos, such as neural plate border and enveloping layer cells. At 12 and 30 hpf, nervous system formation and heart morphogenesis were disturbed. The altered differential processes of the neural plate border, neural crest, and neuronal cells were found to lead to increased neurogenesis in zebrafish larvae. In the forebrain, midbrain, neurons, and optic cells, pathways related to cell division and DNA replication and repair were altered. Moreover, BPA also changed transforming growth factor (TGF) β signaling and heart tube morphogenesis in heart cells, leading to a decreased heartbeat in zebrafish larvae. Our study provides a comprehensive understanding of BPA toxicity on fish embryonic development at a single-cell level.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Zhizhi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Weiqing Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| |
Collapse
|
25
|
Gorini F, Bustaffa E, Coi A, Iervasi G, Bianchi F. Bisphenols as Environmental Triggers of Thyroid Dysfunction: Clues and Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2654. [PMID: 32294918 PMCID: PMC7216215 DOI: 10.3390/ijerph17082654] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/25/2022]
Abstract
Bisphenols (BPs), and especially bisphenol A (BPA), are known endocrine disruptors (EDCs), capable of interfering with estrogen and androgen activities, as well as being suspected of other health outcomes. Given the crucial role of thyroid hormones and the increasing incidence of thyroid carcinoma in the last few decades, this review analyzes the effects of BPS on the thyroid, considering original research in vitro, in vivo, and in humans published from January 2000 to October 2019. Both in vitro and in vivo studies reported the ability of BPs to disrupt thyroid function through multiple mechanisms. The antagonism with thyroid receptors (TRs), which affects TR-mediated transcriptional activity, the direct action of BPs on gene expression at the thyroid and the pituitary level, the competitive binding with thyroid transport proteins, and the induction of toxicity in several cell lines are likely the main mechanisms leading to thyroid dysfunction. In humans, results are more contradictory, though some evidence suggests the potential of BPs in increasing the risk of thyroid nodules. A standardized methodology in toxicological studies and prospective epidemiological studies with individual exposure assessments are warranted to evaluate the pathophysiology resulting in the damage and to establish the temporal relationship between markers of exposure and long-term effects.
Collapse
|
26
|
Elgawish RA, El-Beltagy MA, El-Sayed RM, Gaber AA, Abdelrazek HMA. Protective role of lycopene against metabolic disorders induced by chronic bisphenol A exposure in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9192-9201. [PMID: 31916151 DOI: 10.1007/s11356-019-07509-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
This study was conducted to elucidate the ameliorative potential of lycopene (LYC) against the metabolic toxicity induced by bisphenol A (BPA) in rats. Male rats (n = 28) were divided into 4 equal groups: control group, LYC group was given lycopene (10 mg/kg BW), BPA group was given 10 mg/kg BW of BPA, and the last group was administered BPA and LYC at 10 mg/kg via gavage for 90 consecutive days. Body weight (BW) gain, lipid profile, and total antioxidant capacity (TAC) were assessed. Oral glucose tolerance test (OGTT), homeostasis model assessment-estimated insulin resistance (HOMA-IR), thyroid hormones, interleukin-1 beta (IL-1β), leptin, and resistin were assayed. Moreover, immunohistochemistry of TNF-α was performed in adipose tissue. BPA-treated rats showed significant reduction in BW gain and deteriorations in lipid profile, TAC, OGTT, and thyroid hormones as well as significant increases in HOMA-IR, IL-1β, leptin, and resistin. While, improvement of metabolic parameters was observed when LYC was administrated with BPA. Intense TNF-α immunostaining was detected in the fat of BPA-treated rats but the intensity decreased when LYC was administrated with BPA. In conclusion, LYC ameliorated the adverse effects of BPA on metabolism through its antioxidant potential and its reduction of TNF-α expression in adipose tissue.
Collapse
Affiliation(s)
- Rania Abdelrahman Elgawish
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Marwa A El-Beltagy
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Rehab M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-, Arish, Egypt
| | - Aya A Gaber
- Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
27
|
Wang H, Song S, Shao M, Gao Y, Yang C, Li Y, Wang W, He Y, Li P. Determination of bisphenol analogues in food-contact plastics using diode array detector, charged aerosol detector and evaporative light-scattering detector. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109778. [PMID: 31627095 DOI: 10.1016/j.ecoenv.2019.109778] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Freshness protection packages and preservative films are widely used food-contact plastic made of polyethylene. Diode array detector (DAD), charged aerosol detector (CAD) and evaporative light-scattering detector (ELSD) were evaluated for determination of 6 bisphenols (bisphenol A, bisphenol S, bisphenol F, bisphenol B, bisphenol AF and tetrabromobisphenol A.) in polyethylene. DAD presented better parameters including limit of quantification (LOQs) ranging from 0.05 to 0.5 μg/g with relative standard deviations (RSDs, n = 5) lower than 1% at two concentration levels. CAD and ELSD are universal detectors with relative consistent response parameters for different analogues which have potential application by using single calibrant for quantification of multiple analytes. Matrix effects were barely observed on three detectors. Samples of freshness protection packages and preservative films were further analyzed and preliminary profiles of bisphenols in products from Beijing market was obtained. Bisphenol S have become most abundant analogue instead of bisphenol A in investigated products.
Collapse
Affiliation(s)
- Huiyu Wang
- National Institute of Metrology, China; Tianjin University of Technology, China
| | | | | | - Yan Gao
- National Institute of Metrology, China
| | - Chen Yang
- National Institute of Metrology, China; Tianjin University of Technology, China
| | - Ya Li
- Hunan Institute of Metrology and Testing, China
| | | | - Yajuan He
- National Institute of Metrology, China
| | | |
Collapse
|
28
|
Yuan L, Qian L, Qian Y, Liu J, Yang K, Huang Y, Wang C, Li Y, Mu X. Bisphenol F-Induced Neurotoxicity toward Zebrafish Embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14638-14648. [PMID: 31702913 DOI: 10.1021/acs.est.9b04097] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, the influence of bisphenol F (BPF) toward central nervous system (CNS) was assessed using zebrafish embryos. We found that BPF could induce significant neurotoxicity toward zebrafish embryos, including inhibited locomotion, reduced moving distance, and CNS cell apoptosis at an effective concentration of 0.0005 mg/L. Immunofluorescence assay showed that both microglia and astrocyte in zebrafish brain were significantly activated by BPF, indicating the existence of neuroinflammatory response. Peripheral motor neuron development was significantly inhibited by BPF at 72 hpf. RNA-seq data indicated that neuronal developmental processes and cell apoptosis pathways were significantly affected by BPF exposure, which was consistent with the phenotypic results. Chip-seq assay implied that the transcriptional changes were not mediated by ERα. Additionally, no significant change was found in neurotransmitter levels (5-hydroxytryptamine, dopamine, and acetylcholine) or acetylcholinesterase (Ache) enzyme activity after BPF exposure, indicating that BPF may not affect neurotransmission. In conclusion, BPF could lead to abnormal neural outcomes during zebrafish early life stage through inducing neuroinflammation and CNS cell apoptosis even at environmentally relevant concentration.
Collapse
Affiliation(s)
- Lilai Yuan
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Le Qian
- College of Sciences , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Yu Qian
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Jia Liu
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Ke Yang
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Chengju Wang
- College of Sciences , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Xiyan Mu
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| |
Collapse
|
29
|
Yang F, Li G, Sang N. Embryonic exposure to soil samples from a gangue stacking area induces thyroid hormone disruption in zebrafish. CHEMOSPHERE 2019; 236:124337. [PMID: 31330433 DOI: 10.1016/j.chemosphere.2019.07.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The total accumulative stockpiles of gangue from long-term coal mining exceed 1 billion tons and occupy 182 square kilometers, and 50 million tons of additional gangue are generated per year in Shanxi, a major energy province in China. The objective of this study was to examine whether exposure to village soils affected by gangue stacking would disrupt thyroid hormone system homeostasis and eventually affect endocrine system and development, using zebrafish (Danio rerio) as a model organism. The zebrafish embryos were exposed to village soil leachates at 0, 1:9, 1:3 and 1:1 from 1 to 120 h postfertilization (hpf), and the sample caused a dose-dependent increase in the mortality and malformation rate, and decrease in the heart rate, hatching rate and body length of zebrafish larvae. Importantly, the soil leachate alleviated the whole-body triiodothyronine (T3) and thyroxine (T4) levels at higher concentrations, and altered the expression of the hypothalamic-pituitary-thyroid (HPT) axis-regulating genes crh, trh, tshβ, nis, tg, nkx2.1, pax8, hhex, ttr, dio1, dio2, ugt1ab, trα, and trβ and the PAH exposure-related genes ahr2 and cyp1a. These findings highlight the potential risk of thyroid hormone disruption and developmental toxicity from soil samples around coal gangue stacking areas.
Collapse
Affiliation(s)
- Fenglong Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| |
Collapse
|
30
|
Pelch K, Wignall JA, Goldstone AE, Ross PK, Blain RB, Shapiro AJ, Holmgren SD, Hsieh JH, Svoboda D, Auerbach SS, Parham FM, Masten SA, Walker V, Rooney A, Thayer KA. A scoping review of the health and toxicological activity of bisphenol A (BPA) structural analogues and functional alternatives. Toxicology 2019; 424:152235. [PMID: 31201879 DOI: 10.1016/j.tox.2019.06.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/29/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Abstract
Recent studies report widespread usage or exposure to a variety of chemicals with structural or functional similarity to bisphenol A (BPA), referred to as BPA analogues or derivatives. These have been detected in foodstuffs, house dust, environmental samples, human urine or blood, and consumer products. Compared to BPA, relatively little is known about potential toxicity of these compounds. This scoping review aimed to summarize the human, animal, and mechanistic toxicity data for 24 BPA analogues of emerging interest to research and regulatory communities. PubMed was searched from March 1, 2015 to January 5, 2019 and combined with the results obtained from literature searches conducted through March 23, 2015, in The National Toxicology Program's Research Report 4 (NTP RR-04), "Biological Activity of Bisphenol A (BPA) Structural Analogues and Functional Alternatives". Study details are presented in interactive displays using Tableau Public. In total, 5748 records were screened for inclusion. One hundred sixty seven studies were included from NTP RR-04 and 175 studies were included from the updated literature search through January 2019. In total, there are 22, 117, and 221 human epidemiological, experimental animal, or in vitro studies included. The most frequently studied BPA analogues are bisphenol S (BPS), bisphenol F (4,4-BPF), and bisphenol AF (BPAF). Notable changes in the literature since 2015 include the growing body of human epidemiological studies and in vivo studies conducted in zebrafish. Numerous new endpoints were also evaluated across all three evidence streams including diabetes, obesity, and oxidative stress. However, few studies have addressed endpoints such as neurodevelopmental outcomes or impacts on the developing mammary or prostate glands, which are known to be susceptible to disruption by BPA. Further, there remains a critical need for better exposure information in order to prioritize experimental studies. Moving forward, researchers should also ensure that full dose responses are performed for all main effects in order to support hazard and risk characterization efforts. The evidence gathered here suggests that hazard and risk characterizations should expand beyond BPA in order to consider BPA structural and functional analogues.
Collapse
Affiliation(s)
- Katherine Pelch
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States.
| | | | | | - Pam K Ross
- ICF, 9300 Lee Highway, Fairfax, VA, 22031, United States
| | - Robyn B Blain
- ICF, 9300 Lee Highway, Fairfax, VA, 22031, United States
| | - Andrew J Shapiro
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| | - Stephanie D Holmgren
- Office of Scientific Information Management, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| | - Jui-Hua Hsieh
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| | - Daniel Svoboda
- SciOme LLC, 2 Davis Dr, Durham, NC, 27709, United States
| | - Scott S Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| | - Fredrick M Parham
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| | - Scott A Masten
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| | - Vickie Walker
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| | - Andrew Rooney
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| | - Kristina A Thayer
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC, 27560, United States
| |
Collapse
|
31
|
Walter KM, Miller GW, Chen X, Harvey DJ, Puschner B, Lein PJ. Changes in thyroid hormone activity disrupt photomotor behavior of larval zebrafish. Neurotoxicology 2019; 74:47-57. [PMID: 31121238 DOI: 10.1016/j.neuro.2019.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/12/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
High throughput in vitro, in silico, and computational approaches have identified numerous environmental chemicals that interfere with thyroid hormone (TH) activity, and it is posited that human exposures to such chemicals are a contributing factor to neurodevelopmental disorders. However, whether hits in screens of TH activity are predictive of developmental neurotoxicity (DNT) has yet to be systematically addressed. The zebrafish has been proposed as a second tier model for assessing the in vivo DNT potential of TH active chemicals. As an initial evaluation of the feasibility of this proposal, we determined whether an endpoint often used to assess DNT in larval zebrafish, specifically photomotor behavior, is altered by experimentally induced hyper- and hypothyroidism. Developmental hyperthyroidism was simulated by static waterborne exposure of zebrafish to varying concentrations (3-300 nM) of thyroxine (T4) or triiodothyronine (T3) beginning at 6 h post-fertilization (hpf) and continuing through 5 days post-fertilization (dpf). Teratogenic effects and lethality were observed at 4 and 5 dpf in fish exposed to T4 or T3 at concentrations >30 nM. However, as early as 3 dpf, T4 (> 3 nM) and T3 (> 10 nM) significantly increased swimming activity triggered by sudden changes from light to dark, particularly during the second dark period (Dark 2). Conversely, developmental hypothyroidism, which was induced by treatment with 6-propyl-2-thiouracil (PTU), morpholino knockdown of the TH transporter mct8, or ablation of thyroid follicles in adult females prior to spawning, generally decreased swimming activity during dark periods, although effects did vary across test days. All effects of developmental hypothyroidism on photomotor behavior occurred independent of teratogenic effects and were most robust during Dark 2. Treatment with the T4 analog, Tetrac, restored photomotor response in mct8 morphants to control levels. Collectively, these findings suggest that while the sensitivity of photomotor behavior in larval zebrafish to detect TH disruption is influenced by test parameters, this test can distinguish between TH promoting and TH blocking activity and may be useful for assessing the DNT potential of TH-active chemicals.
Collapse
Affiliation(s)
- Kyla M Walter
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Galen W Miller
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Xiaopeng Chen
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Danielle J Harvey
- Department of Public Health Sciences University of California, Davis, School of Medicine, Davis, California 95616, United States.
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, United States.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA, 95616, United States.
| |
Collapse
|
32
|
Waidyanatha S, Black SR, Aillon K, Collins B, Patel PR, Riordan F, Sutherland V, Robinson VG, Fernando R, Fennell TR. Toxicokinetics and bioavailability of bisphenol AF following oral administration in rodents: A dose, species, and sex comparison. Toxicol Appl Pharmacol 2019; 373:39-47. [PMID: 31022493 DOI: 10.1016/j.taap.2019.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022]
Abstract
We investigated the toxicokinetics and bioavailability of bisphenol AF (BPAF) in male and female Harlan Sprague Dawley rats and B6C3F1/N mice following a single gavage administration of 34, 110, or 340 mg/kg. A validated analytical method was used to quantitate free (unconjugated parent) and total (unconjugated and conjugated) BPAF in plasma. BPAF was rapidly absorbed in rats with the maximum plasma concentration, Cmax, of free BPAF reached at ≤2.20 h. BPAF was cleared rapidly with a plasma elimination half-life of ≤3.35 h. Cmax and the area under the concentration versus time curve, AUC0-∞, increased proportionally to the dose. Total BPAF Cmax was reached ≤1.07 h in rats with both Cmax (≥27-fold) and AUC0-∞ (≥52-fold) much higher than corresponding free values demonstrating rapid and extensive conjugation of BPAF following oral administration. Absorption of BPAF following a 34 mg/kg gavage dose in mice was more rapid than in rats with free BPAF Cmax reached ≤0.455 h. Free BPAF was cleared rapidly in mice with an elimination half-life of ≤4.22 h. Similar to rats, total BPAF was much higher than corresponding free BPAF. There was no apparent sex-related effect in plasma toxicokinetic parameters of free or total BPAF in mice and rats. Bioavailability in rats was ~ 1% with no apparent dose-related effect. Bioavailability in mice was slightly higher than in rats (male ~ 6%, female 3%). These data demonstrate that BPAF was rapidly absorbed following gavage administration in rodents, rapidly and extensively conjugated with low bioavailability.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States of America.
| | - Sherry R Black
- RTI International, Discovery Sciences, Research Triangle Park, NC, United States of America
| | | | - Brad Collins
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States of America
| | - Purvi R Patel
- RTI International, Discovery Sciences, Research Triangle Park, NC, United States of America
| | | | - Vicki Sutherland
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States of America
| | - Veronica Godfrey Robinson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States of America
| | - Reshan Fernando
- RTI International, Discovery Sciences, Research Triangle Park, NC, United States of America
| | - Timothy R Fennell
- RTI International, Discovery Sciences, Research Triangle Park, NC, United States of America
| |
Collapse
|
33
|
Lee S, Kim C, Shin H, Kho Y, Choi K. Comparison of thyroid hormone disruption potentials by bisphenols A, S, F, and Z in embryo-larval zebrafish. CHEMOSPHERE 2019; 221:115-123. [PMID: 30639807 DOI: 10.1016/j.chemosphere.2019.01.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 05/25/2023]
Abstract
Several structural analogues of bisphenol A (BPA), e.g., bisphenol F (BPF), bisphenol S (BPS), and bisphenol Z (BPZ), have been used as its substitutes in many applications and consequently detected in the environment, and human specimen such as urine and serum. While BPA has been frequently reported for thyroid hormone disruption in both experimental and epidemiological studies, less is known for the BPA analogues. In the present study, thyroid hormone disrupting effects of BPF, BPS and BPZ, were investigated, and compared with those of BPA, using embryo-larval zebrafish (Danio rerio). At 120 hpf, significant increases in T3 and/or T4 were observed in the larval fish following exposure to BPA, BPF, or BPS. Moreover, transcriptional changes of the genes related to thyroid development (hhex and tg), thyroid hormone transport (ttr) and metabolism (ugt1ab) were observed as well. Thyroid hormone (T4) disruption by BPF was observed even at the concentration (2.0 mg/L) lower than the effective concentration determined for BPA (>2.0 mg/L). Delayed hatching was observed by all tested bisphenols. Our results clearly show that these BPA analogues can disrupt thyroid function of the larval fish, and their thyroid hormone disruption potencies could be even greater than that of BPA. The concentrations which disrupt thyroid function of the larval fish were orders of magnitude higher than those occurring in the ambient environment. However, thyroid hormone disruption by longer term exposure and its consequences in the fish population, deserve further investigation.
Collapse
Affiliation(s)
- Sangwoo Lee
- School of Public Health, Seoul National University, Seoul, 08826, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Cheolmin Kim
- School of Public Health, Seoul National University, Seoul, 08826, South Korea; CRI Global Institute of Toxicology, Croen Research Inc., Suwon, 16614, South Korea
| | - Hyesoo Shin
- School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Younglim Kho
- School of Human and Environmental Sciences, Eulji University, Seongnam, 13135, South Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
34
|
Toxic Effects of TiO₂ NPs on Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040523. [PMID: 30781732 PMCID: PMC6406522 DOI: 10.3390/ijerph16040523] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have become a widely used nanomaterial due to the photocatalytic activity and absorption of ultraviolet light of specific wavelengths. This study investigated the toxic effects of rutile TiO2 NPs on zebrafish by examining its embryos and adults. In the embryo acute toxicity test, exposure to 100 mg/L TiO2 NPs didn’t affect the hatching rate of zebrafish embryos, and there was no sign of deformity. In the adult toxicity test, the effects of TiO2 NPs on oxidative damage in liver, intestine and gill tissue were studied. Enzyme linked immunosorbent assay (ELISA) and fluorescence-based quantitative real-time reverse transcription PCR (qRT-PCR) were used to detect the three antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT) and glutathione S transferase (GSTs) in the above mentioned zebrafish organs at protein and gene levels. The results showed that long-term exposure to TiO2 NPs can cause oxidative damage to organisms; and compared with the control group, the activity of the three kinds of enzyme declined somewhat at the protein level. In addition, long-term exposure to TiO2 NPs could cause high expression of CAT, SOD and GSTs in three organs of adult zebrafish in order to counter the adverse reaction. The effects of long-term exposure to TiO2 NPs to adult zebrafish were more obvious in the liver and gill.
Collapse
|
35
|
Walter KM, Miller GW, Chen X, Yaghoobi B, Puschner B, Lein PJ. Effects of thyroid hormone disruption on the ontogenetic expression of thyroid hormone signaling genes in developing zebrafish (Danio rerio). Gen Comp Endocrinol 2019; 272:20-32. [PMID: 30448381 PMCID: PMC6331280 DOI: 10.1016/j.ygcen.2018.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/25/2022]
Abstract
Thyroid hormones (THs) regulate neurodevelopment, thus TH disruption is widely posited as a mechanism of developmental neurotoxicity for diverse environmental chemicals. Zebrafish have been proposed as an alternative model for studying the role of TH in developmental neurotoxicity. To realize this goal, it is critical to characterize the normal ontogenetic expression profile of TH signaling molecules in the developing zebrafish and determine the sensitivity of these molecules to perturbations in TH levels. To address these gaps in the existing database, we characterized the transcriptional profiles of TH transporters, deiodinases (DIOs), receptors (TRs), nuclear coactivators (NCOAs), nuclear corepressors (NCORs), and retinoid X receptors (RXRs) in parallel with measurements of endogenous TH concentrations and tshβ mRNA expression throughout the first five days of zebrafish development. Transcripts encoding these TH signaling components were identified and observed to be upregulated around 48-72 h post fertilization (hpf) concurrent with the onset of larval production of T4. Exposure to exogenous T4 and T3 upregulated mct8, dio3-b, trα-a, trβ, and mbp-a levels, and downregulated expression of oatp1c1. Morpholino knockdown of TH transporter mct8 and treatment with 6-propyl-2-thiouracil (PTU) was used to reduce cellular uptake and production of TH, an effect that was associated with downregulation of dio3-b at 120 hpf. Collectively, these data confirm that larval zebrafish express orthologs of TH signaling molecules important in mammalian development and suggest that there may be species differences with respect to impacts of TH disruption on gene transcription.
Collapse
Affiliation(s)
- Kyla M Walter
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Galen W Miller
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Xiaopeng Chen
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| |
Collapse
|
36
|
Skledar DG, Carino A, Trontelj J, Troberg J, Distrutti E, Marchianò S, Tomašič T, Zega A, Finel M, Fiorucci S, Mašič LP. Endocrine activities and adipogenic effects of bisphenol AF and its main metabolite. CHEMOSPHERE 2019; 215:870-880. [PMID: 30408883 DOI: 10.1016/j.chemosphere.2018.10.129] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol AF (BPAF) is a fluorinated analog of bisphenol A (BPA), and it is a more potent estrogen receptor (ER) agonist. BPAF is mainly metabolized to BPAF-glucuronide (BPAF-G), which has been reported to lack ER agonist activity and is believed to be biologically inactive. The main goal of the current study was to examine the influence of the metabolism of BPAF via glucuronidation on its ER activity and adipogenesis. Also, as metabolites can have different biological activities, the effects of BPAF-G on other nuclear receptors were evaluated. First, in-vitro BPAF glucuronidation was investigated using recombinant human enzymes. Specific reporter-gene assays were used to determine BPAF and BPAF-G effects on estrogen, androgen, glucocorticoid, and thyroid receptor pathways, and on PXR, FXR, and PPARγ pathways. Their effects on lipid accumulation and differentiation were determined in murine 3T3L1 preadipocytes using Nile Red, with mRNA expression analysis of the adipogenic markers adiponectin, Fabp4, Cebpα, and PPARγ. BPAF showed strong agonistic activity for hERα and moderate antagonistic activities for androgen and thyroid receptors, and for PXR. BPAF-G was antagonistic for PXR and PPARγ. BPAF (0.1 μM) and BPAF-G (1.0 μM) induced lipid accumulation and increased expression of key adipogenic markers in murine preadipocytes. BPAF-G is therefore not an inactive metabolite of BPAF. Further toxicological and epidemiological investigations of BPAF effects on human health are warranted, to provide better understanding of the metabolic end-elimination of BPAF.
Collapse
Affiliation(s)
- Darja Gramec Skledar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Adriana Carino
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facultà di Medicina e Chirurgia, University of Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Jurij Trontelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Johanna Troberg
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Eleonora Distrutti
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facultà di Medicina e Chirurgia, University of Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Silvia Marchianò
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facultà di Medicina e Chirurgia, University of Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Moshe Finel
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Stefano Fiorucci
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facultà di Medicina e Chirurgia, University of Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Lucija Peterlin Mašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
37
|
Arancio AL, Cole KD, Dominguez AR, Cohenour ER, Kadie J, Maloney WC, Cilliers C, Schuh SM. Bisphenol A, Bisphenol AF, di-n-butyl phthalate, and 17β-estradiol have shared and unique dose-dependent effects on early embryo cleavage divisions and development in Xenopus laevis. Reprod Toxicol 2018; 84:65-74. [PMID: 30579998 DOI: 10.1016/j.reprotox.2018.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022]
Abstract
Bisphenol A (BPA), Bisphenol AF (BPAF), and di-n-butyl phthalate (DBP) are widespread compounds used in the production of plastics. We used Xenopus laevis to compare their effects on early embryo cell division and development. Directly after in vitro fertilizations, embryos were exposed to BPA, BPAF, DBP, or 17β-estradiol (E2) for up to 96 h. BPA (1-50 μM) and BPAF (0.003-25 μM) caused disrupted cleavage divisions, slowed cytokinesis, and cellular dissociation within 1-6 h. Flexures of the spinal cord, shorter body axis/tail, craniofacial malformations, and significant mortality occurred with environmentally relevant doses of BPAF (LC50 = 0.013 μM). DBP (10-200 μM) showed similar effects, but with severe ventral edema. There were both shared and unique effects of all compounds, with BPAF having the greatest potency and toxicity (BPAF > BPA > estradiol > DBP). These findings underscore the pleiotropic effects of widespread toxicants on early development and highlight the need for better toxicological characterization.
Collapse
Affiliation(s)
- Ashley L Arancio
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Kyla D Cole
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Anyssa R Dominguez
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Emry R Cohenour
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Julia Kadie
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - William C Maloney
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Chane Cilliers
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Sonya M Schuh
- Department of Biology, School of Science, Saint Mary's College of California, United States.
| |
Collapse
|
38
|
Lee J, Kim S, Choi K, Ji K. Effects of bisphenol analogs on thyroid endocrine system and possible interaction with 17β-estradiol using GH3 cells. Toxicol In Vitro 2018; 53:107-113. [PMID: 30099086 DOI: 10.1016/j.tiv.2018.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 11/28/2022]
Abstract
This study was conducted using a rat pituitary (GH3) cell line to understand the effects of bisphenol analogs (BPs) on the thyroid endocrine system, in the presence of 17β-estradiol (E2). In the first series of experiments, changes in cell proliferation were examined after exposure to each of ten BPs, in the absence or presence of a median effective concentration (6.4 × 10-10 M) of triiodothyronine (T3). All tested BPs significantly increased cell proliferation, suggesting thyroid hormone (TH) agonistic effects of BPs. BPs did not potentiate the T3-induced cell proliferation at 48 h exposure, while several tested BPs including BPA, BPAF, BPB, BPF, BPS, and BPZ elicited a potentiating effect on the T3-induced cell proliferation at 96 h exposure. These results indicate that TH-antagonistic effects of BPs depend on the tested dose and exposure time. In the second set of experiments, one of the most potent BPs, i.e., BPAF, was selected, and its possible interaction with E2 on the thyroid endocrine system was evaluated. Co-exposure of GH3 cells to 10-12 M E2 showed an additive-like effect. The extent of increase in cell proliferation was more pronounced with a combination of BPAF and E2 than with that of BPA and E2. Significant down-regulation of Trα, Trβ, and Dio2 genes and up-regulation of the Tshβ gene were observed in GH3 cells following co-exposure to BPAF and E2. Our results showed that some BP analogs might influence the thyroid endocrine system, and such perturbation appeared to be enhanced in the presence of E2.
Collapse
Affiliation(s)
- Jiyun Lee
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea; Institute of Natural Science, Yongin University, Yongin 17092, Republic of Korea
| | - Sujin Kim
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea.
| |
Collapse
|
39
|
Zhang S, Guo X, Lu S, Sang N, Li G, Xie P, Liu C, Zhang L, Xing Y. Exposure to PFDoA causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:974-982. [PMID: 29751401 DOI: 10.1016/j.envpol.2018.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 01/06/2018] [Accepted: 01/07/2018] [Indexed: 06/08/2023]
Abstract
Perfluorododecanoic acid (PFDoA), a kind of perfluorinated carboxylic acid (PFCA) with 12 carbon atoms, has an extensive industrial utilization and is widespread in both wildlife and the water environment, and was reported to have the potential to cause a disruption in the thyroid hormone system homeostasis. In this study, zebrafish embryos/larvae were exposed to different concentrations of PFDoA (0, 0.24, 1.2, 6 mg/L) for 96 h post-fertilization (hpf). PFDoA exposure caused obvious growth restriction connected with the reduced thyroid hormones (THs) contents in zebrafish larvae, strengthening the interference effect on the growth of fish larvae. The transcriptional level of genes within the hypothalamic-pituitary-thyroid (HPT) axis was analyzed. The gene expression levels of thyrotropin-releasing hormone (trh) and corticotrophin-releasing hormone (crh) were upregulated upon exposure to 6 mg/L of PFDoA, and iodothyronine deiodinases (dio2) was upregulated in the 1.2 mg/L PFDoA group. The transcription of thyroglobulin (tg) and thyroid receptor (trβ) were significantly downregulated upon exposure to 1.2 mg/L and 6 mg/L of PFDoA. PFDoA could also decrease the levels of sodium/iodide symporter (nis) and transthyretin (ttr) gene expression in a concentration-dependent manner after exposure. A significant decrease in thyroid-stimulating hormoneβ (tshβ), uridinediphosphate-glucuronosyltransferase (ugt1ab) and thyroid receptor (trα) gene expression were observed at 6 mg/L PFDoA exposure. Upregulation and downregulation of iodothyronine deiodinases (dio1) gene expression were observed upon the treatment of 1.2 mg/L and 6 mg/L PFDoA, respectively. All the data demonstrated that gene expression in the HPT axis altered after different PFDoA treatment and the potential mechanisms of the disruption of thyroid status could occur at several steps in the process of synthesis, regulation, and action of thyroid hormones.
Collapse
Affiliation(s)
- Shengnan Zhang
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China; State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaochun Guo
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China.
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Zhang
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100012, China
| |
Collapse
|
40
|
Dong H, Lu G, Yan Z, Liu J, Yang H, Nkoom M. Bioconcentration and effects of hexabromocyclododecane exposure in crucian carp (Carassius auratus). ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:313-324. [PMID: 29404869 DOI: 10.1007/s10646-018-1896-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
As a cycloaliphatic brominated flame retardant, hexabromocyclododecane (HBCD) has been widely used in building thermal insulation and fireproof materials. However, there is little information on the bioconcentration as well as effects with respect to HBCD exposure in the aquatic environment. To investigate the bioconcentration of HBCD in tissues (muscle and liver) and its biochemical and behavioural effects, juvenile crucian carp (Carassius auratus) were exposed to different concentrations of technical HBCD (nominal concentrations, 2, 20, 200 μg/L) for 7 days, using a flow-through exposure system. HBCD was found to concentrate in the liver and muscle with a terminal concentration of 0.60 ± 0.22 μg/g lw (lipid weight) and 0.18 ± 0.02 μg/g lw, respectively, at an environmentally-relevant concentration (2 μg/L). The total thyroxine and total triiodothyronine in the fish plasma were lowered as a result of exposure to the HBCD. Acetylcholinesterase activity in the brain was increased, while swimming activity was inhibited and shoaling inclination was enhanced after exposure to 200 μg/L HBCD. Feeding rate was suppressed in the 20 and 200 μg/L treatment groups. In summary, HBCD concentrations 10-100× higher than the current environmentally-relevant exposures induced adverse effects in the fish species tested in this study. These results suggest that increasing environmental concentrations and/or species with higher sensitivity than carp might be adversely affected by HBCD.
Collapse
Affiliation(s)
- Huike Dong
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China.
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, 860000, Linzhi, China.
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China
| | - Matthew Nkoom
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China
| |
Collapse
|
41
|
Abstract
Next-generation sequencing technologies have revolutionized the identification of disease-causing genes, accelerating the discovery of new mutations and new candidate genes for thyroid diseases. To face this flow of novel genetic information, it is important to have suitable animal models to study the mechanisms regulating thyroid development and thyroid hormone availability and activity. Zebrafish ( Danio rerio), with its rapid external embryonic development, has been extensively used in developmental biology. To date, almost all of the components of the zebrafish thyroid axis have been characterized and are structurally and functionally comparable with those of higher vertebrates. The availability of transgenic fluorescent zebrafish lines allows the real-time analysis of thyroid organogenesis and its alterations. Transient morpholino-knockdown is a solution to silence the expression of a gene of interest and promptly obtain insights on its contribution during the development of the zebrafish thyroid axis. The recently available tools for targeted stable gene knockout have further increased the value of zebrafish to the study of thyroid disease. All of the reported zebrafish models can also be used to screen small compounds and to test new drugs and may allow the establishment of experimental proof of concept to plan subsequent clinical trials.
Collapse
Affiliation(s)
- Federica Marelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
42
|
Ding ZM, Jiao XF, Wu D, Zhang JY, Chen F, Wang YS, Huang CJ, Zhang SX, Li X, Huo LJ. Bisphenol AF negatively affects oocyte maturation of mouse in vitro through increasing oxidative stress and DNA damage. Chem Biol Interact 2017; 278:222-229. [DOI: 10.1016/j.cbi.2017.10.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/17/2017] [Accepted: 10/30/2017] [Indexed: 02/02/2023]
|
43
|
Rosenfeld CS. Neuroendocrine disruption in animal models due to exposure to bisphenol A analogues. Front Neuroendocrinol 2017; 47:123-133. [PMID: 28801100 PMCID: PMC5612897 DOI: 10.1016/j.yfrne.2017.08.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/14/2017] [Accepted: 08/05/2017] [Indexed: 12/26/2022]
Abstract
Animal and human studies provide evidence that exposure to the endocrine disrupting chemical (EDC), bisphenol A (BPA), can lead to neurobehavioral disorders. Consequently, there is an impetus to identify safer alternatives to BPA. Three bisphenol compounds proposed as potential safer alternatives to BPA are bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF). However, it is not clear whether these other compounds are safer in terms of inducing less endocrine disrupting effects in animals and humans who are now increasingly coming into contact with these BPA-substitutes. In the past few years, several animal studies have shown exposure to these other bisphenols induce similar neurobehavioral disruption as BPA. We will explore in this review article the current studies suggesting these other bisphenols result in neuroendocrine disruptions that may be estrogen receptor-dependent. Current work may aide in designing future studies to test further whether these BPA-substitutes can act as neuroendocrine disruptors.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA; Genetics Area Program, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
44
|
Liang X, Li J, Martyniuk CJ, Wang J, Mao Y, Lu H, Zha J. Benzotriazole ultraviolet stabilizers alter the expression of the thyroid hormone pathway in zebrafish (Danio rerio) embryos. CHEMOSPHERE 2017; 182:22-30. [PMID: 28486152 DOI: 10.1016/j.chemosphere.2017.05.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 05/14/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are widely used in industrial products as well as personal-hygiene products to protect the material or skin from harmful UV-radiation. Due to their persistence and bioaccumulation, BUVSs have been ubiquitously detected in aquatic environments. Although the toxicological effects of BUVSs in aquatic organisms have been previously examined, the effects of BUVSs on the thyroid system have not been adequately addressed. In this study, we assessed putative thyroid disrupting effects of BUVSs (UV-234, UV-326, UV-329 and UV-P) in zebrafish embryos at 1, 10 and 100 μg/L for 96 h. The heart rate was assessed in zebrafish and was observed to be decreased by 6.9%-21.4% in exposure of tested BUVSs. We also observed that the transcript levels of HPT axis-related genes were affected by the 4 BUVSs tested in different ways. Specifically, mRNA levels of thyroid hormone receptors (thraa and thrb) in zebrafish embryos were differentially expressed and the direction of change in these transcripts was isoform and BUVSs dependent. Pathway analysis of the targeted genes measured indicated that cellular processes putatively affected by BUVSs included response to organic substance, regulation of transcription from RNA polymerase II promoter, intracellular receptor signaling pathway, and hypothyroidism. Upon expansion of the network, novel genes involved in this predicted gene network may provide insight into the mechanisms of thyroid disrupting mechanisms of BUVSs. Taken together, our results indicate that BUVSs can potentially impact the thyroid system, and that this is dependent upon the type or structure of BUVSs.
Collapse
Affiliation(s)
- Xuefang Liang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| | - Jiajia Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, UF Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Juan Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yufeng Mao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Huan Lu
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
45
|
Zhang DH, Zhou EX, Yang ZL. Waterborne exposure to BPS causes thyroid endocrine disruption in zebrafish larvae. PLoS One 2017; 12:e0176927. [PMID: 28467477 PMCID: PMC5415059 DOI: 10.1371/journal.pone.0176927] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/19/2017] [Indexed: 11/23/2022] Open
Abstract
Bisphenol S (BPS) is widely used as a raw material in industry, resulting in its ubiquitous distribution in natural environment, including the aqueous environment. However, the effect of BPS on the thyroid endocrine system is largely unknown. In this study, zebrafish (Danio rerio) embryos were exposed to BPS at 1, 3, 10, and 30 μg/L, from 2 h post-fertilization (hpf) to 168hpf. Bioconcentration of BPS and whole-body thyroid hormones (THs), thyroid-stimulating hormone (TSH) concentrations as well as transcriptional profiling of key genes related to the hypothalamic-pituitary-thyroid (HPT) axis were examined. Chemical analysis indicated that BPS was accumulated in zebrafish larvae. Thyroxine (T4) and triiodothyronine (T3) levels were significantly decreased at ≥ 10 and 30 μg/L of BPS, respectively. However, TSH concentration was significantly induced in the 10 and 30 μg/L BPS-treated groups. After exposure to BPS, the mRNA expression of corticotrophin releasing hormone (crh) and thyroglobulin (tg) genes were up-regulated at ≥10 μg/L of BPS, in a dose-response manner. The transcription of genes involved in thyroid development (pax8) and synthesis (sodium/iodide symporter, slc5a5) were also significantly increased in the 30 μg/L of BPS treatment group. Moreover, exposure to 10 μg/L or higher concentration of BPS significantly up-regulated genes related to thyroid hormone metabolism (deiodinases, dio1, dio2 and uridinediphosphate glucoronosyltransferases, ugt1ab), which might be responsible for the altered THs levels. However, the transcript of transthyretin (ttr) was significantly down-regulated at ≥ 3 μg/L of BPS, while the mRNA levels of thyroid hormone receptors (trα and trβ) and dio3 remained unchanged. All the results indicated that exposure to BPS altered the whole-body THs and TSH concentrations and changed the expression profiling of key genes related to HPT axis, thus triggering thyroid endocrine disruption.
Collapse
Affiliation(s)
- Dan-Hua Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - En-Xiang Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhu-Lin Yang
- Research Laboratory of Hepatobiliary Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
46
|
Thyroid hormone disrupting potentials of bisphenol A and its analogues - in vitro comparison study employing rat pituitary (GH3) and thyroid follicular (FRTL-5) cells. Toxicol In Vitro 2017; 40:297-304. [DOI: 10.1016/j.tiv.2017.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/20/2016] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
|
47
|
Kwon B, Kho Y, Kim PG, Ji K. Thyroid endocrine disruption in male zebrafish following exposure to binary mixture of bisphenol AF and sulfamethoxazole. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:168-174. [PMID: 27794274 DOI: 10.1016/j.etap.2016.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 05/27/2023]
Abstract
Thyroid endocrine disruption by bisphenol AF (BPAF) alone or in combination with sulfamethoxazole (SMX) exposure was evaluated in adult male zebrafish. Changes in thyroid gene transcription were examined using microarrays and were linked to effects on thyroxine hormone production and transcription of genes related to the hypothalamic-pituitary-thyroid axis. BPAF alone or in combination with SMX affected genes related to thyroid hormone production and receptor activity, thyroid gland development, and deiodinase activity. Increases in thyroxine levels, and gene transcription were more pronounced in the BPAF and SMX mixture group than in the BPAF group. Significant down-regulation of trh and tshβ genes in the brain suggested a negative feedback response resulting in increased thyroxine levels. The present study indicated that BPAF exposure alone alters transcription of genes associated with the thyroid endocrine system, and combination with SMX could increase the endocrine disrupting effect of BPAF.
Collapse
Affiliation(s)
- Bareum Kwon
- Department of Environmental Health, Graduate School at Yongin University, Yongin, 17092, Republic of Korea; CRI Global Institute of Toxicology, Croen Research Inc., Suwon, 16614, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Pan-Gyi Kim
- Department of Environmental Health, Graduate School at Yongin University, Yongin, 17092, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin, 17092, Republic of Korea.
| |
Collapse
|
48
|
Li J, Sheng N, Cui R, Feng Y, Shao B, Guo X, Zhang H, Dai J. Gestational and lactational exposure to bisphenol AF in maternal rats increases testosterone levels in 23-day-old male offspring. CHEMOSPHERE 2016; 163:552-561. [PMID: 27567155 DOI: 10.1016/j.chemosphere.2016.08.059] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
During prenatal and postnatal development, exposure to environmental chemicals with estrogenic activity, such as bisphenol AF (BPAF), may result in reproductive disorders. Currently, the mechanisms behind such disorders in male offspring induced by gestational and lactational exposure to BPAF remain poorly understood. Here, female rats from gestational day (GD) 3-19 were exposed to 100 mg BPAF/kg/day by oral gavage. On the day of birth (postnatal day (PD) 0), cross-fostering took place between treated and control litters, and cross-fostered mother rats were given BPAF 100 mg/kg/day during the postnatal period (PD 3 to PD 19). HPLC-MS/MS analysis showed that BPAF was transferred via cord blood and lactation, finally bio-accumulating in the offspring testes. Pups exposed to BPAF both prenatally and postnatally showed a significant increase in testis testosterone levels compared with that of the control, while all pups exposed to BPAF showed a significant decrease in testis inhibin B (INHB) levels. Compared with the control, RNA-seq revealed that 279 genes were significantly differentially expressed in the testes of pups exposed to BPAF both prenatally and postnatally, including genes involved in cell differentiation and meiosis. These results indicate that gestational and lactational exposure to BPAF in the mother can impair reproductive function in male offspring.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yixing Feng
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing, 100013, PR China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing, 100013, PR China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, PR China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|