1
|
Nguyen TY, Hamissa MF, Šafařík M, Bouř P, Šebestík J. Acidobasic equilibria of inubosin derivatives studied by UV-Vis spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125950. [PMID: 40024080 DOI: 10.1016/j.saa.2025.125950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Inubosin derivatives were suggested as compounds supporting the regeneration of neurons. For practical pharmaceutical applications their physicochemical properties need to be optimized in terms of bioavailability, possible side effects, and efficiency. We focused on four inubosin B derivatives, where acidobasic constants as key players in the biological activity were determined using the UV-Vis spectroscopy. The constants were correlated with the structure on the basis of the Hammett theory. In addition, water-organic solvent equilibria were studied for selected compounds. A software for semi-automated processing of the UV-Vis titration data was developed and tested. Time dependent density functional theory (TDDFT) was used to model and interpret the experimental spectra, which made it possible, for example, to assign the most characteristic cationic band to the S0 → S2 transition. For the acridine acid, both the TDDFT computations and the experimental data indicate that it forms zwitterion in the aqueous solution, whereas it is not dissociated in the organic phase.
Collapse
Affiliation(s)
- Thu Yen Nguyen
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Mohamed Farouk Hamissa
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Martin Šafařík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.
| |
Collapse
|
2
|
Hegab DY, El-Sharkawy NI, Moustafa GG, Abd-Elhakim YM, Said EN, Metwally MMM, Saber TM. Pumpkin seeds oil rescues colchicine-induced neurotoxicity in rats via modifying oxidative stress, DNA damage, and immunoexpression of BDNF and GFAP. Tissue Cell 2025; 94:102792. [PMID: 39965508 DOI: 10.1016/j.tice.2025.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Colchicine (CHC), a poisonous plant alkaloid, has been widely utilized for decades in the treatment of gout, but has a rather low therapeutic index, which causes oxidative stress leading to cognitive impairment, brain damage, apoptosis, and hitopathological alterations in humans and experimental animals. The present investigation evaluated the potential palliative effect of the pumpkin seeds oil (PSO) at a dose of 4 ml/kg b.wt against CHC (0.6 mg/kg b.wt) -induced neurotoxic and neurobehavioral effects in rats. Forty male rats weighing 245-260 g were assigned to four groups. The results displayed that CHC exposure induced neurobehavioral disorders and a remarkable decline in the serotonin and dopamine levels and the immunoexpression of BDNF and GFAP in the brain. Besides, CHC treatment evoked brain oxidative stress, as manifested by depleted antioxidant enzyme activities and elevated malondialdehyde (MDA) and protein carbonyl (PC) levels. Also, CHC triggered brain DNA damage, as indicated by a marked increment in the brain 8-Hydroxyguanosine (8-OHdG) level. However, concurrent treatment with the PSO effectively attenuated the CHC-induced toxic effects as evidenced by a noticeable increase in the serotonin (33 ± 3.05) and dopamine (2.48 ± 0.40) concentrations, and the BDNF and GFAP immunoexpression in the brain. Moreover, PSO mitigated CHC-induced brain oxidative stress and DNA damage as shown by elevated antioxidant enzyme activities (164 ± 3.46 SOD and 7.55 ± 0.43 CAT) and reduced MDA (1.62 ± 0.23), PC (1.35 ± 0.23), and 8-OHdG (3.02 ± 0.33) levels. These results concluded that PSO could serve as a therapeutic strategy to ameliorate the neurotoxic and neurobehavioral impacts of CHC.
Collapse
Affiliation(s)
- Dina Y Hegab
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nabela I El-Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Enas N Said
- Department of Behavior and Management of Animal, Poultry and Aquatic, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Department of Development of Animal Wealth, Faculty of Veterinary Medicine. The Egyptian Chinese University ECU, Cairo, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras surd, Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
3
|
Alam P, Arshad MF, Sharma P. Structural Dynamics and Network Pharmacology for the Discovery of Inhibitors Targeting DYRK1 A in Neurological Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04935-0. [PMID: 40261606 DOI: 10.1007/s12035-025-04935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Neurological disorders, including Down syndrome, Alzheimer's disease, and autism spectrum disorders, involve intricate disruptions in brain function and development. DYRK1A (Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A) has become an essential target in these diseases because it helps neurons grow, differentiate, and change shape. Overexpression of DYRK1A is connected to problems with neurodevelopment, memory loss, and tauopathies, which makes it an essential target for therapy. Therefore, inhibiting the DYRK1A protein aids in maintaining the normal brain molecular mechanism. Herein, we have identified three major natural compounds, ZINC000043552589, ZINC000001562130, and ZINC000059779788, as potential inhibitory candidates. These compounds exhibited a strong binding affinity with the DYRK1A protein during virtual screening and molecular docking. During the virtual screening analysis, the binding scores of these compounds were more than -11.0 kcal/mol. Further, hydrogen and hydrophobic interactions strengthen their binding with the DYRK1A protein. The MD simulation analysis also confirmed the structural dynamic stability of the compounds. Moreover, the total free binding energy calculated via the MM/GBSA method was found to be -54.06 kcal/mol for ZINC000043552589, -39.01 kcal/mol for ZINC000001562130 and -50.26 kcal/mol for ZINC000059779788. These values further confirm the binding affinity strength of the compounds with the target protein. DFT analysis revealed distinct HOMO-LUMO energy gaps and orbital distributions across the compounds, highlighting their varied electronic characteristics and charge-transfer potentials. Network pharmacology analysis further highlighted multiple potential gene targets for the selected compounds, providing insights into their broader therapeutic implications. This analysis suggests these natural compounds may modulate additional pathways relevant to neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Mohammed Faiz Arshad
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India.
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
4
|
Khan MS, Qureshi N, Khan R, Son YO, Maqbool T. CRISPR/Cas9-Based therapeutics as a promising strategy for management of Alzheimer's disease: progress and prospects. Front Cell Neurosci 2025; 19:1578138. [PMID: 40260080 PMCID: PMC12009953 DOI: 10.3389/fncel.2025.1578138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025] Open
Abstract
CRISPR/Cas9 technology has revolutionized genetic and biomedical research in recent years. It enables editing and modulation of gene function with an unparalleled precision and effectiveness. Among the various applications and prospects of this technology, the opportunities it offers in unraveling the molecular underpinnings of a myriad of central nervous system diseases, including neurodegenerative disorders, psychiatric conditions, and developmental abnormalities, are unprecedented. In this review, we highlight the applications of CRISPR/Cas9-based therapeutics as a promising strategy for management of Alzheimer's disease and transformative impact of this technology on AD research. Further, we emphasize the role of CRISPR/Cas9 in generating accurate AD models for identification of novel therapeutic targets, besides the role of CRISPR-based therapies aimed at correcting AD-associated mutations and modulating the neurodegenerative processes. Furthermore, various delivery systems are reviewed and potential of the non-viral nanotechnology-based carriers for overcoming the critical limitations of effective delivery systems for CRISPR/Cas9 is discussed. Overall, this review highlights the promise and prospects of CRISPR/Cas9 technology for unraveling the intricate molecular processes underlying the development of AD, discusses its limitations, ethical concerns and several challenges including efficient delivery across the BBB, ensuring specificity, avoiding off-target effects. This article can be helpful in better understanding the applications of CRISPR/Cas9 based therapeutic approaches and the way forward utilizing enormous potential of this technology in targeted, gene-specific treatments that could change the trajectory of this debilitating and incurable illness.
Collapse
Affiliation(s)
- Mohamad Sultan Khan
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Nousheen Qureshi
- Department of Higher Education, Government of Jammu and Kashmir, Srinagar, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab, India
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
5
|
Ryan SC, Wertis L, Sugg MM, Runkle JD. A small area analysis of acute exposure to temperatures and mental health in North Carolina. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025; 69:805-819. [PMID: 39904766 PMCID: PMC11947002 DOI: 10.1007/s00484-025-02858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/11/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Increasing evidence suggests that temperatures adversely impact mental and behavioral disorders (MBD). This study explores the effects of temperatures on mental health outcomes using over 5.9 million MBD-related emergency department (ED) visits across three geographical regions of North Carolina (i.e., Mountains, Piedmont, and Coast) from 2016 to 2019. A distributed lag non-linear model (DLNM) with a generalized linear model and quasi-Poisson distribution adjusted for humidity, long-term seasonal time trends, and day of the week examined the acute impact (i.e., 7-day) of temperature on daily MBD-related ED visits at zip code tabulation area (ZCTA) locations. Results were pooled at the region and state levels and reported in reference to the median temperature using a case-time series design for the analysis of small-area data. Stratified analyses were conducted for age, sex, and specific mental-health related ED visits (substance use, mood disorders, anxiety disorders). At the state level, we found significant positive associations between high temperatures (97.5th percentile) and an increase in relative risk (RR) for total MBDs (RR:1.04, 95% CI,1.03-1.05) and psychoactive substance use (RR:1.04, 95% CI, 1.02-1.06). Low air temperatures (2.5th percentile) only increased risk for the elderly (i.e., 65 and older) and predominantly white communities (RR: 1.03, CI: 1.03-1.05). During high temperatures (97.5th percentile), majority-white communities (RR:1.06, CI: 1.01-1.10) and low-income communities had the highest risk for MBDs (RR: 1.05, CI: 1.03-1.07). Our findings suggest there is a positive association between exposure to high temperatures and increased MBD-related ED visits, modified by patient age and place-based sociodemographic (ie., race and income) context.
Collapse
Affiliation(s)
- Sophia C Ryan
- Department of Geography & Planning, Appalachian State University, Boone, NC, USA.
| | - Luke Wertis
- Department of Geography & Planning, Appalachian State University, Boone, NC, USA
| | - Margaret M Sugg
- Department of Geography & Planning, Appalachian State University, Boone, NC, USA
| | - Jennifer D Runkle
- North Carolina Institute for Climate Studies, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
6
|
Das S, Murumulla L, Ghosh P, Challa S. Heavy metal-induced disruption of the autophagy-lysosomal pathway: implications for aging and neurodegenerative disorders. Biometals 2025; 38:371-417. [PMID: 39960543 DOI: 10.1007/s10534-025-00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/19/2025] [Indexed: 04/03/2025]
Abstract
Heavy metals such as lead, mercury, cadmium, magnesium, manganese, arsenic, copper pose considerable threats to neuronal health and are increasingly recognized as factors contributing to aging-related neurodegeneration. Exposure to these environmental toxins disrupts cellular homeostasis, resulting in oxidative stress and compromising critical cellular processes, particularly the autophagy-lysosomal pathway. This pathway is vital for preserving cellular integrity by breaking down damaged proteins and organelles; however, toxicity from heavy metals can hinder this function, leading to the buildup of harmful substances, inflammation, and increased neuronal injury. As individuals age, the consequences of neurodegeneration become more significant, raising the likelihood of developing disorders like Alzheimer's and Parkinson's disease. This review explores the intricate relationship between heavy metal exposure, dysfunction of the autophagy-lysosomal pathway, and aging-related neurodegeneration, emphasizing the urgent need for a comprehensive understanding of these mechanisms. The insights gained from this analysis are crucial for creating targeted therapeutic approaches aimed at alleviating the harmful effects of heavy metals on neuronal health and improving cellular resilience in aging populations.
Collapse
Affiliation(s)
- Shrabani Das
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Pritha Ghosh
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
7
|
Munteanu C, Galaction AI, Onose G, Turnea M, Rotariu M. The Janus Face of Oxidative Stress and Hydrogen Sulfide: Insights into Neurodegenerative Disease Pathogenesis. Antioxidants (Basel) 2025; 14:360. [PMID: 40227410 PMCID: PMC11939184 DOI: 10.3390/antiox14030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/09/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Oxidative stress plays an essential role in neurodegenerative pathophysiology, acting as both a critical signaling mediator and a driver of neuronal damage. Hydrogen sulfide (H2S), a versatile gasotransmitter, exhibits a similarly "Janus-faced" nature, acting as a potent antioxidant and cytoprotective molecule at physiological concentrations, but becoming detrimental when dysregulated. This review explores the dual roles of oxidative stress and H2S in normal cellular physiology and pathophysiology, focusing on neurodegenerative disease progression. We highlight potential therapeutic opportunities for targeting redox and sulfur-based signaling systems in neurodegenerative diseases by elucidating the intricate balance between these opposing forces.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| |
Collapse
|
8
|
Rob M, Yousef M, Lakshmanan AP, Mahboob A, Terranegra A, Chaari A. Microbial signatures and therapeutic strategies in neurodegenerative diseases. Biomed Pharmacother 2025; 184:117905. [PMID: 39933444 DOI: 10.1016/j.biopha.2025.117905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), arise from complex interactions between genetic factors, environmental exposures, and aging. Additionally, gut dysbiosis has been linked to systemic inflammation and neurodegeneration. Advances in microbiome and metabolome profiling techniques have provided deeper insights into how alterations in gut microbiota and dietary patterns affect metabolic pathways and contribute to the progression of NDs. This review explores the profiles of gut microbiome and metabolome derived biomarkers and their roles in NDs. Across phyla, families, and genera, we identified 55 microbial alterations in PD, 24 in AD, 4 in ALS, and 17 in MS. Some notable results include an increase in Akkermansia in PD, AD, and MS and a decrease in short-chain fatty acids (SCFAs) in PD and AD. We examined the effects of probiotics, prebiotics, fecal microbiota transplants (FMT), sleep, exercise, and diet on the microbiota, all of which contributed to delayed onset and alleviation of symptoms. Further, artificial intelligence (AI) and machine learning (ML) algorithms applied to omics data have been crucial in identifying novel therapeutic targets, diagnosing and predicting prognosis, and enabling personalized medicine using microbiota-modulating therapies in NDs patients.
Collapse
Affiliation(s)
- Mlaak Rob
- Weill Cornell Medical College Qatar, Education city, P.O.Box 24144, Doha, Qatar
| | - Mahmoud Yousef
- Weill Cornell Medical College Qatar, Education city, P.O.Box 24144, Doha, Qatar
| | | | - Anns Mahboob
- Weill Cornell Medical College Qatar, Education city, P.O.Box 24144, Doha, Qatar
| | - Annalisa Terranegra
- Research Department, Sidra Medicine, Education city, P.O.Box 26999, Doha, Qatar
| | - Ali Chaari
- Weill Cornell Medical College Qatar, Education city, P.O.Box 24144, Doha, Qatar.
| |
Collapse
|
9
|
Tew VK, Barathan M, Nordin F, Law JX, Ng MH. Emerging Role of Mesenchymal Stromal Cell and Exosome Therapies in Treating Cognitive Impairment. Pharmaceutics 2025; 17:284. [PMID: 40142948 PMCID: PMC11945939 DOI: 10.3390/pharmaceutics17030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 03/28/2025] Open
Abstract
Cognitive aging, characterized by the gradual decline in cognitive functions such as memory, attention, and problem-solving, significantly impacts daily life. This decline is often accelerated by neurodegenerative diseases, particularly Alzheimer's Disease (AD) and Parkinson's Disease (PD). AD is marked by the accumulation of amyloid-beta plaques and tau tangles, whereas PD involves the degeneration of dopaminergic neurons. Both conditions lead to severe cognitive impairment, greatly diminishing the quality of life for affected individuals. Recent advancements in regenerative medicine have highlighted mesenchymal stromal cells (MSCs) and their derived exosomes as promising therapeutic options. MSCs possess regenerative, neuroprotective, and immunomodulatory properties, which can promote neurogenesis, reduce inflammation, and support neuronal health. Exosomes, nanosized vesicles derived from MSCs, provide an efficient means for delivering bioactive molecules across the blood-brain barrier, targeting the underlying pathologies of AD and PD. While these therapies hold great promise, challenges such as variability in MSC sources, optimal dosing, and effective delivery methods need to be addressed for clinical application. The development of robust protocols, along with rigorous clinical trials, is crucial for validating the safety and efficacy of MSC and exosome therapies. Future research should focus on overcoming these barriers, optimizing treatment strategies, and exploring the integration of MSC and exosome therapies with lifestyle interventions. By addressing these challenges, MSC- and exosome-based therapies could offer transformative solutions for improving outcomes and enhancing the quality of life for individuals affected by cognitive aging and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (F.N.); (J.X.L.)
| |
Collapse
|
10
|
Sadiq AH, Alam MJ, Begum F, Hasan M, Kristof J, Mamun MA, Maniruzzaman M, Shimizu K, Kanazawa T, Kahyo T, Setou M, Shimizu K. Enhancing Galantamine Distribution in Rat Brain Using Microplasma-Assisted Nose-to-Brain Drug Delivery. Int J Mol Sci 2025; 26:1710. [PMID: 40004175 PMCID: PMC11855811 DOI: 10.3390/ijms26041710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Nose-to-brain (N2B) drug delivery is a promising technique for the treatment of brain diseases. It allows a drug to enter the brain without passing through the blood-brain barrier. However, the nasal cavity and nasal mucosa can restrict the amount of drug absorbed. Recent studies of non-thermal plasma (NTP) have shown improvement in in vitro drug delivery to cells and tissues. However, whether NTP treatments can enhance the in vivo delivery of drugs for neurodegenerative disease like Alzheimer's disease (AD) into the brain via the N2B technique remains unclear. The drug used in this study was galantamine hydrobromide. Galantamine is used to treat patients with mild to moderate AD. Based on the principle of NTP, a type of dielectric barrier discharge (DBD) plasma, which we called spiral DBD microplasma, was designed. It was inserted into the nose of a rat to a depth of 2 mm. The spiral DBD microplasma was driven by a sinusoidal voltage for 4 min, followed by the immediate administration of galantamine. The effect of the microplasma treatment on the distribution of galantamine in the brain was evaluated using matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS). The results showed a high distribution of galantamine in the left and right brain hemispheres of the rat treated with plasma discharge compared to a control treated without plasma discharge. The spiral DBD microplasma is a novel contribution to DBD plasma designs. In addition, this technique for drug delivery has also created a novel approach with potential for becoming a non-invasive method of enhancing drug distribution in the brain for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Abubakar Hamza Sadiq
- Graduate School of Science and Technology, Shizuoka University, Johoku, Chuo-ku, Hamamatsu 432-8561, Japan; (A.H.S.); (M.H.)
| | - Md Jahangir Alam
- Graduate School of Medical Photonics, Shizuoka University, Johoku, Chuo-ku, Hamamatsu 432-8561, Japan; (M.J.A.); (F.B.)
| | - Farhana Begum
- Graduate School of Medical Photonics, Shizuoka University, Johoku, Chuo-ku, Hamamatsu 432-8561, Japan; (M.J.A.); (F.B.)
| | - Mahedi Hasan
- Graduate School of Science and Technology, Shizuoka University, Johoku, Chuo-ku, Hamamatsu 432-8561, Japan; (A.H.S.); (M.H.)
| | - Jaroslav Kristof
- Organization for Innovation and Social Collaboration, Shizuoka University, Johoku, Chuo-ku, Hamamatsu 432-8561, Japan;
| | - Md. Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Chuo-ku, Hamamatsu 431-3192, Japan; (M.A.M.); (M.M.); (T.K.); (M.S.)
| | - Md. Maniruzzaman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Chuo-ku, Hamamatsu 431-3192, Japan; (M.A.M.); (M.M.); (T.K.); (M.S.)
| | - Kosuke Shimizu
- Nanotheranostics Laboratory, Division of Innovative Diagnostic and Therapeutic Research, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Handayama, Chuo-ku, Hamamatsu 431-3192, Japan;
| | - Takanori Kanazawa
- Graduate School of Biomedical Science, Tokushima University, Shoumachi, Tokushima 770-8505, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Chuo-ku, Hamamatsu 431-3192, Japan; (M.A.M.); (M.M.); (T.K.); (M.S.)
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Handayama, Chuo-ku, Hamamatsu 431-3192, Japan; (M.A.M.); (M.M.); (T.K.); (M.S.)
| | - Kazuo Shimizu
- Graduate School of Science and Technology, Shizuoka University, Johoku, Chuo-ku, Hamamatsu 432-8561, Japan; (A.H.S.); (M.H.)
- Graduate School of Medical Photonics, Shizuoka University, Johoku, Chuo-ku, Hamamatsu 432-8561, Japan; (M.J.A.); (F.B.)
- Organization for Innovation and Social Collaboration, Shizuoka University, Johoku, Chuo-ku, Hamamatsu 432-8561, Japan;
| |
Collapse
|
11
|
Almutary AG, Begum MY, Siddiqua A, Gupta S, Chauhan P, Wadhwa K, Singh G, Iqbal D, Padmapriya G, Kumar S, Kedia N, Verma R, Kumar R, Sinha A, Dheepak B, Abomughaid MM, Jha NK. Unlocking the Neuroprotective Potential of Silymarin: A Promising Ally in Safeguarding the Brain from Alzheimer's Disease and Other Neurological Disorders. Mol Neurobiol 2025:10.1007/s12035-024-04654-y. [PMID: 39956886 DOI: 10.1007/s12035-024-04654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/02/2024] [Indexed: 02/18/2025]
Abstract
Medicinal plants and their phytochemicals have been extensively employed worldwide for centuries to address a diverse range of ailments, boasting a history that spans several decades. These plants are considered the source of numerous medicinal compounds. For instance, silymarin is a polyphenolic flavonoid extract obtained from the milk thistle plant or Silybum marianum which has been shown to have significant neuroprotective effects and great therapeutic benefits. Neurodegenerative diseases (NDs) are a class of neurological diseases that have become more prevalent in recent years, and although treatment is available, there is no complete cure developed yet. Silymarin utilizes a range of molecular mechanisms, including modulation of MAPK, AMPK, NF-κB, mTOR, and PI3K/Akt pathways, along with various receptors, enzymes, and growth factors. These mechanisms collectively contribute to its protective effects against NDs such as Alzheimer's disease, Parkinson's disease, and depression. Despite its safety and efficacy, silymarin faces challenges related to bioavailability and aqueous solubility, hindering its development as a clinical drug. This review highlights the molecular mechanisms underlying silymarin's neuroprotective effects, suggesting its potential as a promising therapeutic strategy for NDs.
Collapse
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Saurabh Gupta
- Deparment of Biotechnology, GLA University, Mathura, India
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia
| | - Gopalakrishnan Padmapriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Sanjay Kumar
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Navin Kedia
- NIMS School of Civil Engineering, NIMS University Rajasthan, Jaipur, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges Jhanjeri, Mohali, 140307, Punjab, India
| | - Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Department of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - B Dheepak
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Niraj Kumar Jha
- Department of Biotechnology & Bioengineering, School of Biosciences & Technology, Galgotias University, Greater Noida, Uttar Pradesh, 203201, India.
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
12
|
Abdulrahman A. Investigating the link between microplastic exposure (benzyl butyl phthalate) and neurodegenerative diseases using high-performance computational toxicology. Toxicol Res (Camb) 2025; 14:tfae211. [PMID: 39830890 PMCID: PMC11741681 DOI: 10.1093/toxres/tfae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/01/2024] [Indexed: 01/22/2025] Open
Abstract
Background Microplastics are tiny plastic particles, typically less than 5 mm in size, formed from the breakdown of larger plastic products. This breakdown releases additives, including benzyl butyl phthalate (BBP), into the environment. Humans can be exposed to BBP through contaminated food and water, inhalation, and dermal contact. Aim Research suggests that BBP, like other phthalates, may have neurotoxic effects, potentially contributing to neurodevelopmental disorders, though its specific toxic targets are not yet clear. Methodology In this study, high-performance computational methods were used to identify potential neurotoxic targets of BBP. The findings indicate that BBP has a strong potential to interact with Parkin (PRKN) and Pyruvate dehydrogenase lipoamide kinase isozyme 1 (PDK1), with binding scores of -5.35 kcal/mol, -5.56 kcal/mol, respectively. The PRKN and PDK1 BBP complexes were stable throughout the simulation period, as evidenced by the system's backbone exhibiting slight fluctuations and binding energies confirmed by molecular dynamics (MD) simulation trajectories. Results The MMPBSA analysis revealed free binding energies of -21.29 kcal/mol and - 27.06 kcal/mol for the PRKN and PDK1 BBP complexes, respectively. The interaction energies of BBP with PRKN and PDK1 were also within an acceptable range, at -113.68 ± 3.1 kJ/mol and - 117.54 ± 6.2 kJ/mol, respectively. Additionally, density-functional theory (DFT) based optimization showed negative values for the highest occupied molecular orbital (HOMO) -6.934 eV and lowest unoccupied molecular orbital (LUMO) -1.562 eV, indicating that BBP is energetically stable, which is crucial for forming a stable ligand-protein complex. Conclusion Overall, the computational investigation reveals that BBP has the potential to interact with PRKN and PDK1, leading to neurodegeneration.
Collapse
Affiliation(s)
- Alhamyani Abdulrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Baha University, Al-Baha 65779, Saudi Arabia
| |
Collapse
|
13
|
Ogunmiluyi OE, Naiho AO, Emojevwe VO, Oladele TS, Adebisi KA, Siyanbade JA, Akinola AO. Zinc or/and Vitamin E Supplementation Mitigates Oxidative Stress, Neuroinflammation, Neurochemical Changes and Behavioural Deficits in Male Wistar Rats Exposed to Bonny Light Crude Oil. J Toxicol 2024; 2024:9317271. [PMID: 39734606 PMCID: PMC11681987 DOI: 10.1155/jt/9317271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024] Open
Abstract
Background: Crude oil, a major key economic driver in developing countries, is also of environmental concern, linked to neurotoxicity and behavioural problems. Despite the known neurotoxic effects of crude oil and the potential benefits of zinc and vitamin E, there is a paucity of research specifically addressing their combined efficacy in mitigating neurochemical changes and behavioural deficits induced by crude oil. Current studies have largely focussed on the individual effects of these supplements in different contexts, but their synergistic potential in a crude oil exposure model remains underexplored. This study investigated the potential effects of zinc and vitamin E on neurobehavioural alterations in male Wistar rats fed with Bonny light crude oil (BLCO)-contaminated diet. Methods: Thirty (30) male Wistar rats (160 ± 10 g) were assigned into five groups (n = 6). Group 1 received standard rat feed, Group 2 was exposed to BLCO (0.1 mL/g of rat feed) for 3 weeks, and groups 3-5 were treated with zinc (50 mg/kg/day), vitamin E (400 IU/kg), or both [vitamin E (400 IU/kg) + zinc (50 mg/kg/day)], respectively for 1 week after BLCO exposure for 3 weeks. Locomotive, anxiolytic, depressive-like behaviours and spatial memory were assessed using the open-field test, elevated plus maze, forced swim test and Y-maze. Rats were sacrificed and the brain samples were collected for biochemical assays at the end of the behavioural tests. Results: Zinc and vitamin E supplementation (individually or combined) significantly increased brain total antioxidant capacity and superoxide dismutase (SOD) activity, reduced inflammatory markers (TNF-alpha) and lipid peroxidation, normalized neurotransmitter levels in the brain and improved behavioural performance. Conclusion: Treatment with Zn and/or vitamin E reverses BLCO-induced neurobehavioural alterations via modulation of oxidative stress, inflammation and neurotransmitters.
Collapse
Affiliation(s)
| | - Alexander Obidike Naiho
- Department of Physiology, University of Medical Sciences, Ondo, Ondo, Nigeria
- Department of Physiology, University of Delta, Agbor, Delta, Nigeria
- Department of Physiology, Delta State University, Abraka, Delta, Nigeria
| | | | | | | | | | | |
Collapse
|
14
|
Lu S, Zhu X, Zeng P, Hu L, Huang Y, Guo X, Chen Q, Wang Y, Lai L, Xue A, Wang Y, Wang Z, Song W, Liu Q, Bian G, Li J, Bu Q, Cen X. Exposure to PFOA, PFOS, and PFHxS induces Alzheimer's disease-like neuropathology in cerebral organoids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125098. [PMID: 39389246 DOI: 10.1016/j.envpol.2024.125098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), a class of ubiquitous synthetic organic chemicals, are widely utilized across various industrial applications. However, the long-term neurological health effects of PFAS mixture exposure in humans remain poorly understood. To address this gap, we have designed a comprehensive study to predict and validate cell-type-specific neurotoxicity of PFASs using single-cell RNA sequencing (scRNA-seq) and cerebral organoids. Cerebral organoids were exposed to a PFAS mixture at concentrations of 1 × (10 ng/ml PFOS and PFOA, and 1 ng/ml PFHxS), 30 × , and 900 × over 35 days, with a follow-up analysis at day 70. Pathological alterations and lipidomic profiles were analyzed to identify disrupted molecular pathways and mechanisms. The scRNA-seq data revealed a significant impact of PFASs on neurons, suggesting a potential role in Alzheimer's Disease (AD) pathology, as well as intellectual and cognitive impairments. PFAS-treated cerebral organoids exhibited Aβ accumulation and tau phosphorylation. Lipidomic analyses further revealed lipid disturbances in response to PFAS mixture exposure, linking PFAS-induced AD-like neuropathology to sphingolipid metabolism disruption. Collectively, our findings provide novel insights into the PFAS-induced neurotoxicity, highlighting the significance of sphingolipid metabolism in the development of AD-like neuropathology. The use of cerebral organoids and scRNA-seq offers a powerful methodology for evaluating the health risks associated with environmental contaminants, particularly those with neurotoxic potential.
Collapse
Affiliation(s)
- Shiya Lu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xizhi Zhu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Pinli Zeng
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Linxia Hu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yan Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xinhua Guo
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiqi Chen
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yantang Wang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Li Lai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Aiqin Xue
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yanli Wang
- Jinniu Maternity and Child Health Hospital of Chengdu, Chengdu, 610036, China
| | - Zhiqiu Wang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wenbo Song
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qian Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Guohui Bian
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jiayuan Li
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qian Bu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Waxman M, Manczak EM. Air Pollution's Hidden Toll: Links Between Ozone, Particulate Matter, and Adolescent Depression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1663. [PMID: 39767502 PMCID: PMC11675593 DOI: 10.3390/ijerph21121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Rising rates of depression among youth present a growing mental health crisis. Despite growing concerns regarding the risks of air pollution exposure on youth mental and physical health, associations between ambient air pollutants and depression have been largely overlooked in youth. In this cross-sectional study, we investigated associations between ozone, particulate matter, and depressive symptoms in adolescents across 224 Colorado census tracts (average age of 14.45 years, 48.8% female, 48.9% of minority race/ethnicity). Students in participating schools reported depressive symptoms and demographic information, and school addresses were used to compute ozone and particulate matter levels per census tract. Possible confounding variables, including sociodemographic and geographic characteristics, were also addressed. Exploratory analyses examined demographic moderators of these associations. Census tracts with higher ozone concentrations had a higher percentage of adolescents experiencing depressive symptoms. Particulate matter did not emerge as a significant predictor of adolescent depressive symptoms. Secondary analyses demonstrated that associations with ozone were moderated by racial/ethnic and gender compositions of census tracts, with stronger effects in census tracts with higher percentages of individuals with marginalized racial/ethnic and gender identities. Ultimately, this project strengthens our understanding of the interplay between air pollution exposures and mental health during adolescence.
Collapse
Affiliation(s)
- Megan Waxman
- Department of Psychology, University of Denver, Denver, CO 80208, USA
| | | |
Collapse
|
16
|
Huang L, Zheng Y, Feng S, Wu B, Chen L, Xu X, Wang B, Li W, Zhou C, Zhang L. Seasonal Changes and Age-Related Effects on the Intestinal Microbiota of Captive Chinese Monals ( Lophophorus lhuysii). Animals (Basel) 2024; 14:3418. [PMID: 39682382 DOI: 10.3390/ani14233418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
The Chinese monal (Lophophorus lhuysii) is a large-sized and vulnerable (VU in IUCN) bird from southwestern China. This study applied 16S rRNA high-throughput sequencing to comprehensively examine the gut microbiota of captive Chinese monals (located in Baoxing, Sichuan, China) across varying seasons and life stages. Dominant bacterial phyla identified included Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. Significant seasonal and age-associated shifts were observed within specific bacterial groups, particularly marked by seasonal fluctuations in beta diversity. Moreover, linear discriminant analysis effect size (LEfSe) and functional predictions highlighted distinct winter signatures, indicating possible functional shifts in energy metabolism and disease resistance. In mid-aged adults, an expansion of Gamma-Proteobacteria suggested an elevated susceptibility of the gut microbiota of Chinese monals to chronic disorders and microbial imbalance. Putative pathogenic bacteria exhibited increased abundance in spring and summer, likely driven by temperature, host physiological cycles, interspecies interactions, and competition. These findings imply that the diversity, and structure of the gut microbiota in captive Chinese monals are strongly influenced by seasonal and age-related factors. The insights provided here are essential for improving breeding strategies and preventing gastrointestinal diseases in captivity.
Collapse
Affiliation(s)
- Lijing Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- College of Life Science, China West Normal University, Nanchong 637000, China
| | - Yanchu Zheng
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- College of Life Science, China West Normal University, Nanchong 637000, China
| | - Shaohua Feng
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- College of Life Science, China West Normal University, Nanchong 637000, China
| | - Bangyuan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- College of Life Science, China West Normal University, Nanchong 637000, China
| | - Li Chen
- Management and Protection Center of Sichuan Fengtongzhai National Nature Reserve, Ya'an 625700, China
| | - Xiaoqin Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Bin Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Wanhong Li
- Management and Protection Center of Sichuan Fengtongzhai National Nature Reserve, Ya'an 625700, China
| | - Caiquan Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Long Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong 637000, China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong 637009, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| |
Collapse
|
17
|
Ndjoubi KO, Omoruyi SI, Luckay RC, Hussein AA. Isolation of Lessertiosides A and B and Other Metabolites from Lessertia frutescens and Their Neuroprotection Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:3076. [PMID: 39519994 PMCID: PMC11548272 DOI: 10.3390/plants13213076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Lessertia frutescens (synonym Sutherlandia frutescens) is an important South African medicinal plant used traditionally to treat different human pathologies and is considered an adaptogenic plant. This study sought to isolate compounds from the plant and determine their protective potentials using SH-SY5Y cells and MPP+ (1-methyl-4-phenylpyridinium) to mimic Parkinson's disease. The phytochemical analysis of a 70% aqueous methanolic extract of L. frutescens leaves resulted in the isolation and identification of 11 pure compounds (1-11), among which compounds 1 and 2 were identified as new metabolites. The new compounds were characterised using IR, UV, NMR, and HRESIMS and were given the trivial names lessertiosides A (1) and B (2). Additionally, the flavonoids 8-methoxyvestitol (7) and mucronulatol (8) were isolated for the first time from the plant. The biological actions show that the isolated compounds had negligible toxicity on SH-SY5Y cells and improved cell viability in the cells exposed to MPP+. Furthermore, as a mechanism of action, the compounds could sustain cellular ATP generation and prevent MPP+-induced apoptotic cell death. Our findings provide evidence for the neuroprotective properties of compounds isolated from L. frutescens in MPP+-induced neuronal damage for the first time and create an avenue for these compounds to be further investigated to elucidate their molecular targets.
Collapse
Affiliation(s)
- Kadidiatou O. Ndjoubi
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd. Bellville, Cape Town 7535, South Africa;
| | - Sylvester I. Omoruyi
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa;
| | - Robert C. Luckay
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, Stellenbosch 7602, South Africa;
| | - Ahmed A. Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd. Bellville, Cape Town 7535, South Africa;
| |
Collapse
|
18
|
Evangelisti C, Ramadan S, Orlacchio A, Panza E. Experimental Cell Models for Investigating Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9747. [PMID: 39273694 PMCID: PMC11396244 DOI: 10.3390/ijms25179747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Experimental models play a pivotal role in biomedical research, facilitating the understanding of disease mechanisms and the development of novel therapeutics. This is particularly true for neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and motor neuron disease, which present complex challenges for research and therapy development. In this work, we review the recent literature about experimental models and motor neuron disease. We identified three main categories of models that are highly studied by scientists. In fact, experimental models for investigating these diseases encompass a variety of approaches, including modeling the patient's cell culture, patient-derived induced pluripotent stem cells, and organoids. Each model offers unique advantages and limitations, providing researchers with a range of tools to address complex biological questions. Here, we discuss the characteristics, applications, and recent advancements in terms of each model system, highlighting their contributions to advancing biomedical knowledge and translational research.
Collapse
Affiliation(s)
- Cecilia Evangelisti
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Sherin Ramadan
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Antonio Orlacchio
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
- Laboratory of Neurogenetics, European Center for Brain Research (CERC), IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Emanuele Panza
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
19
|
Tripathi S, Bhawana. Epigenetic Orchestration of Neurodegenerative Disorders: A Possible Target for Curcumin as a Therapeutic. Neurochem Res 2024; 49:2319-2335. [PMID: 38856890 DOI: 10.1007/s11064-024-04167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Epigenetic modulations play a major role in gene expression and thus are responsible for various physiological changes including age-associated neurological disorders. Neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD), although symptomatically different, may share common underlying mechanisms. Most neurodegenerative diseases are associated with increased oxidative stress, aggregation of certain proteins, mitochondrial dysfunction, inactivation/dysregulation of protein degradation machinery, DNA damage and cell excitotoxicity. Epigenetic modulations has been reported to play a significant role in onset and progression of neurodegenerative diseases by regulating these processes. Previous studies have highlighted the marked antioxidant and neuroprotective abilities of polyphenols such as curcumin, by increased activity of detoxification systems like superoxide dismutase (SOD), catalase or glutathione peroxidase. The role of curcumin as an epigenetic modulator in neurological disorders and neuroinflammation apart from other chronic diseases have also been reported by a few groups. Nonetheless, the evidences for the role of curcumin mediated epigenetic modulation in its neuroprotective ability are still limited. This review summarizes the current knowledge of the role of mitochondrial dysfunction, epigenetic modulations and mitoepigenetics in age-associated neurological disorders such as PD, AD, HD, Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS), and describes the neuroprotective effects of curcumin in the treatment and/or prevention of these neurodegenerative diseases by regulation of the epigenetic machinery.
Collapse
Affiliation(s)
- Shweta Tripathi
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, SGT University, Gurugram, 122505, Haryana, India.
| | - Bhawana
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, SGT University, Gurugram, 122505, Haryana, India
| |
Collapse
|
20
|
Shi Y, Ma P. Pharmacological effects of Astragalus polysaccharides in treating neurodegenerative diseases. Front Pharmacol 2024; 15:1449101. [PMID: 39156112 PMCID: PMC11327089 DOI: 10.3389/fphar.2024.1449101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Astragalus membranaceus widely used in traditional Chinese medicine, exhibits multiple pharmacological effects, including immune stimulation, antioxidation, hepatoprotection, diuresis, antidiabetes, anticancer, and expectorant properties. Its main bioactive compounds include flavonoids, triterpene saponins, and polysaccharides. Astragalus polysaccharides (APS), one of its primary bioactive components, have been shown to possess a variety of pharmacological activities, such as antioxidant, immunomodulatory, anti-inflammatory, antitumor, antidiabetic, antiviral, hepatoprotective, anti-atherosclerotic, hematopoietic, and neuroprotective effects. This review provides a comprehensive summary of the molecular mechanisms and therapeutic effects of APS in treating neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). It discusses how APS improve insulin resistance, reduce blood glucose levels, enhance cognitive function, and reduce Aβ accumulation and neuronal apoptosis by modulating various pathways such as Nrf2, JAK/STAT, Toll, and IMD. For PD, APS protect neurons and stabilize mitochondrial function by inhibiting ROS production and promoting autophagy through the PI3K/AKT/mTOR pathway. APS also reduce oxidative stress and neurotoxicity induced by 6-hydroxydopamine, showcasing their neuroprotective effects. In MS, APS alleviate symptoms by suppressing T cell proliferation and reducing pro-inflammatory cytokine expression via the PD-1/PD-Ls pathway. APS promote myelin regeneration by activating the Sonic hedgehog signaling pathway and fostering the differentiation of neural stem cells into oligodendrocytes. This article emphasizes the significant antioxidant, anti-inflammatory, immunomodulatory, and neuroprotective pharmacological activities of APS, highlighting their potential as promising candidates for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Ping Ma
- School of Basic Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Paramanick D, Rani KN, Singh VK, Basist P, Khan R, Al-Tamimi JH, Noman OM, Ibrahim MN, Alhalmi A. Enhancement of Cognitive Function by Andrographolide-Loaded Lactose β-Cyclodextrin Nanoparticles: Synthesis, Optimization, and Behavioural Assessment. Pharmaceuticals (Basel) 2024; 17:966. [PMID: 39065814 PMCID: PMC11279429 DOI: 10.3390/ph17070966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigates whether Andrographolide-loaded Lactose β-Cyclodextrin (ALN-βCD) nanoparticles enhance cognitive function, particularly spatial learning and memory. The successful conjugation of lactose to β-cyclodextrin was confirmed via 1H NMR spectroscopy, facilitating neuronal cell entry. The solvent evaporation method was used to create the nanoparticles, which were characterised for particle size, PDI, zeta potential, and drug release. The nanoparticles exhibited a size of 247.9 ± 3.2 nm, a PDI of 0.5 ± 0.02, and a zeta potential of 26.8 ± 2.5 mV. FTIR and TEM analyses, along with in vitro drug release and BBB permeability studies, confirmed their stability and efficacy. Behavioural tests, including the Elevated Plus Maze, Y-Maze, Object Recognition, and Locomotor Activity tests, demonstrated significant improvements in memory, motor coordination, and exploration time in the nanoparticle-treated groups. The group treated with ALN-βCD at a dose of 100 mg/kg/p.o. showed superior cognitive performance compared to the group receiving free andrographolides (AG). Biochemical assays indicated a significant reduction in acetylcholinesterase activity and lipid peroxidation, suggesting increased acetylcholine levels and reduced oxidative stress. Histopathological examination showed improved neuronal function without toxicity. The results showed significant improvements (p < 0.001) in memory and cognitive abilities in experimental animals, highlighting the potential of ALN-βCD nanoparticles as a non-invasive treatment for memory loss. These promising findings warrant further exploration through clinical trials.
Collapse
Affiliation(s)
- Debashish Paramanick
- School of Medical and Allied Science, Galgotias University, Greater Noida 203201, India;
| | - Kagithala Naga Rani
- School of Medical and Allied Science, Galgotias University, Greater Noida 203201, India;
| | - Vijay Kumar Singh
- School of Pharmacy, Rawatpura Sarkar University, Raipur 492015, India;
| | - Parakh Basist
- School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India;
| | - Rahmuddin Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.K.); (A.A.)
| | - Jameel H. Al-Tamimi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Mansour N. Ibrahim
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.K.); (A.A.)
| |
Collapse
|
22
|
Mari JDJ, Kapczinski F, Brunoni AR, Gadelha A, Prates-Baldez D, Miguel EC, Scorza FA, Caye A, Quagliato LA, De Boni RB, Salum G, Nardi AE. The S20 Brazilian Mental Health Report for Building a Just World and a Sustainable Planet: Part II. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2024; 46:e20243707. [PMID: 38875470 PMCID: PMC11559842 DOI: 10.47626/1516-4446-2024-3707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 06/16/2024]
Abstract
This is the second part of the Brazilian S20 mental health report. The mental health working group is dedicated to leveraging scientific insights to foster innovation and propose actionable recommendations for implementation in Brazil and participating countries. In addressing the heightened mental health challenges in a post-pandemic world, strategies should encompass several key elements. This second part of the S20 Brazilian Mental Health Report will delve into some of these elements, including: the impact of climate change on mental health, the influence of environmental factors on neurodevelopmental disorders, the intersection of serious mental illness and precision psychiatry, the co-occurrence of physical and mental disorders, advancements in biomarkers for mental disorders, the use of digital health in mental health care, the implementation of interventional psychiatry, and the design of innovative mental health systems that integrate principles of innovation and human rights. Reassessing the treatment settings for psychiatric patients in general hospitals, where their mental health and physical needs are addressed, should be prioritized in mental health policy. As the S20 countries prepare for the future, we need principles that can advance innovation, uphold human rights, and strive for the highest standards in mental health care.
Collapse
Affiliation(s)
- Jair de Jesus Mari
- Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
- Urban Mental Health Section, World Psychiatric Association (WPA), Geneva, Switzerland
| | - Flávio Kapczinski
- Departamento de Psiquiatria, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Academia Brasileira de Ciências, Rio de Janeiro, RJ, Brazil
| | - André Russowsky Brunoni
- Grupo de Psiquiatria Intervencionista, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Ary Gadelha
- Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Daniel Prates-Baldez
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Departamento de Psiquiatria e Medicina Legal, UFRGS, Porto Alegre, RS, Brazil
| | - Eurípedes Constantino Miguel
- Centro Nacional de Ciência e Inovação em Saúde Mental, Instituto de Psiquiatria, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Fulvio A. Scorza
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil
- Ministério do Desenvolvimento Agrário e Agricultura Familiar, Brasília, DF, Brazil
| | - Arthur Caye
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Departamento de Psiquiatria e Medicina Legal, UFRGS, Porto Alegre, RS, Brazil
- Centro Nacional de Ciência e Inovação em Saúde Mental, Instituto de Psiquiatria, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Laiana A. Quagliato
- Laboratório de Pânico e Respiração, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Raquel B. De Boni
- Instituto de Comunicação e Informação Científica e Tecnológica em Saúde (ICICT), Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Giovanni Salum
- Departamento de Psiquiatria, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Global Programs, Child Mind Institute, New York, NY, USA
| | - Antonio E. Nardi
- Academia Brasileira de Ciências, Rio de Janeiro, RJ, Brazil
- Laboratório de Pânico e Respiração, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Ambulatório de Depressão Resistente ao Tratamento, Instituto de Psiquiatria, UFRJ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
23
|
Zaib S, Khan I, Ali HS, Younas MT, Ibrar A, Al-Odayni AB, Al-Kahtani AA. Design and discovery of anthranilamide derivatives as a potential treatment for neurodegenerative disorders via targeting cholinesterases and monoamine oxidases. Int J Biol Macromol 2024; 272:132748. [PMID: 38821306 DOI: 10.1016/j.ijbiomac.2024.132748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Neurodegenerative diseases with progressive cellular loss of the central nervous system and elusive disease etiology provide a continuous impetus to explore drug discovery programmes aiming at identifying robust and effective inhibitors of cholinesterase and monoamine oxidase enzymes. We herein present a concise library of anthranilamide derivatives involving a palladium-catalyzed Suzuki-Miyaura cross-coupling reaction to install the diverse structural diversity required for the desired biological action. Using Ellman's method, cholinesterase inhibitory activity was performed against AChE and BuChE enzymes. In vitro assay results demonstrated that anthranilamides are potent inhibitors with remarkable potency. Compound 6k emerged as the lead candidate and dual inhibitor of both enzymes with IC50 values of 0.12 ± 0.01 and 0.49 ± 0.02 μM against AChE and BuChE, respectively. Several other compounds were found as highly potent and selective inhibitors. Anthranilamide derivatives were also tested against monoamine oxidase (A and B) enzymes using fluorometric method. In vitro data revealed compound 6h as the most potent inhibitor against MAO-A, showing an IC50 value of 0.44 ± 0.02 μM, whereas, compound 6k emerged as the top inhibitor of MAO-B with an IC50 value of 0.06 ± 0.01 μM. All the lead inhibitors were analyzed for the identification of their mechanism of action using Michaelis-Menten kinetics experiments. Compound 6k and 6h depicted a competitive mode of action against AChE and MAO-A, whereas, a non-competitive and mixed-type of inhibition was observed against BuChE and MAO-B by compounds 6k. Molecular docking analysis revealed remarkable binding affinities of the potent inhibitors with specific residues inside the active site of receptors. Furthermore, molecular dynamics simulations were performed to explore the ability of potent compounds to form energetically stable complexes with the target protein. Finally, in silico ADME calculations also demonstrated that the potent compounds exhibit promising pharmacokinetic profile, satisfying the essential criteria for drug-likeness. Altogether, the findings reported in the current work clearly suggest that the identified anthranilamide derivatives have the potential to serve as effective drug candidates for future investigations.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester MI 7DN, UK.
| | - Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry, the INEOS Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Muhammad Tayyab Younas
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, KPK 22620, Pakistan.
| | - Abdel-Basit Al-Odayni
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Abdullah A Al-Kahtani
- Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
24
|
An D, Xu Y. Environmental risk factors provoke new thinking for prevention and treatment of dementia with Lewy bodies. Heliyon 2024; 10:e30175. [PMID: 38707435 PMCID: PMC11068646 DOI: 10.1016/j.heliyon.2024.e30175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
In recent years, environmental factors have received attention in the pathogenesis of neurodegenerative diseases. Other than genetic factors, the identification of environmental factors and modifiable risk factors may create opportunities to delay the onset or slow the progression of Lewy body disease. Researchers have made significant progress in understanding environmental and modifiable risk factors over the past 30 years. To date, despite the increasing number of articles assessing risk factors for Lewy body disease, few reviews have focused on their role in its onset. In this review, we reviewed the literature investigating the relationship between Lewy body disease and several environmental and other modifiable factors. We found that some air pollutants, exposure to some metals, and infection with some microorganisms may increase the risk of Lewy body disease. Coffee intake and the Mediterranean diet are protective factors. However, it is puzzling that low educational levels and smoking may have some protective effects. In addition, we proposed specific protocols for subsequent research directions on risk factors for neurodegenerative diseases and improved methods. By conducting additional case-control studies, we could explore the role of these factors in the etiopathogenesis of Lewy body disease, establishing a foundation for strategies aimed at preventing and reducing the onset and burden of the disease.
Collapse
Affiliation(s)
- Dinghao An
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Nanjing Neurology Clinical Medical Center, Nanjing, China
| |
Collapse
|
25
|
Javdani-Mallak A, Salahshoori I. Environmental pollutants and exosomes: A new paradigm in environmental health and disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171774. [PMID: 38508246 DOI: 10.1016/j.scitotenv.2024.171774] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/16/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
This study investigates the intricate interplay between environmental pollutants and exosomes, shedding light on a novel paradigm in environmental health and disease. Cellular stress, induced by environmental toxicants or disease, significantly impacts the production and composition of exosomes, crucial mediators of intercellular communication. The heat shock response (HSR) and unfolded protein response (UPR) pathways, activated during cellular stress, profoundly influence exosome generation, cargo sorting, and function, shaping intercellular communication and stress responses. Environmental pollutants, particularly lipophilic ones, directly interact with exosome lipid bilayers, potentially affecting membrane stability, release, and cellular uptake. The study reveals that exposure to environmental contaminants induces significant changes in exosomal proteins, miRNAs, and lipids, impacting cellular function and health. Understanding the impact of environmental pollutants on exosomal cargo holds promise for biomarkers of exposure, enabling non-invasive sample collection and real-time insights into ongoing cellular responses. This research explores the potential of exosomal biomarkers for early detection of health effects, assessing treatment efficacy, and population-wide screening. Overcoming challenges requires advanced isolation techniques, standardized protocols, and machine learning for data analysis. Integration with omics technologies enhances comprehensive molecular analysis, offering a holistic understanding of the complex regulatory network influenced by environmental pollutants. The study underscores the capability of exosomes in circulation as promising biomarkers for assessing environmental exposure and systemic health effects, contributing to advancements in environmental health research and disease prevention.
Collapse
Affiliation(s)
- Afsaneh Javdani-Mallak
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
26
|
Abondio P, Bruno F, Passarino G, Montesanto A, Luiselli D. Pangenomics: A new era in the field of neurodegenerative diseases. Ageing Res Rev 2024; 94:102180. [PMID: 38163518 DOI: 10.1016/j.arr.2023.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
A pangenome is composed of all the genetic variability of a group of individuals, and its application to the study of neurodegenerative diseases may provide valuable insights into the underlying aspects of genetic heterogenetiy for these complex ailments, including gene expression, epigenetics, and translation mechanisms. Furthermore, a reference pangenome allows for the identification of previously undetected structural commonalities and differences among individuals, which may help in the diagnosis of a disease, support the prediction of what will happen over time (prognosis) and aid in developing novel treatments in the perspective of personalized medicine. Therefore, in the present review, the application of the pangenome concept to the study of neurodegenerative diseases will be discussed and analyzed for its potential to enable an improvement in diagnosis and prognosis for these illnesses, leading to the development of tailored treatments for individual patients from the knowledge of the genomic composition of a whole population.
Collapse
Affiliation(s)
- Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy.
| | - Francesco Bruno
- Academy of Cognitive Behavioral Sciences of Calabria (ASCoC), Lamezia Terme, Italy; Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| |
Collapse
|
27
|
Olasehinde TA, Olaokun OO. The Beneficial Role of Apigenin against Cognitive and Neurobehavioural Dysfunction: A Systematic Review of Preclinical Investigations. Biomedicines 2024; 12:178. [PMID: 38255283 PMCID: PMC10813036 DOI: 10.3390/biomedicines12010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Apigenin is a flavone widely present in different fruits and vegetables and has been suggested to possess neuroprotective effects against some neurological disorders. In this study, we systematically reviewed preclinical studies that investigated the effects of apigenin on learning and memory, locomotion activity, anxiety-like behaviour, depressive-like behaviour and sensorimotor and motor coordination in rats and mice with impaired memory and behaviour. We searched SCOPUS, Web of Science, PubMed and Google Scholar for relevant articles. A total of 34 studies were included in this review. The included studies revealed that apigenin enhanced learning and memory and locomotion activity, exhibited anxiolytic effects, attenuated depressive-like behaviour and improved sensorimotor and motor coordination in animals with cognitive impairment and neurobehavioural deficit. Some of the molecular and biochemical mechanisms of apigenin include activation of the ERK/CREB/BDNF signalling pathway; modulation of neurotransmitter levels and monoaminergic, cholinergic, dopaminergic and serotonergic systems; inhibition of pro-inflammatory cytokine production; and attenuation of oxidative neuronal damage. These results revealed the necessity for further research using established doses and short or long durations to ascertain effective and safe doses of apigenin. These results also point to the need for a clinical experiment to ascertain the therapeutic effect of apigenin.
Collapse
Affiliation(s)
- Tosin A. Olasehinde
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research Oshodi, Lagos 100261, Nigeria
| | - Oyinlola O. Olaokun
- Department of Biology and Environmental Science, School of Science and Technology, Sefako Makgatho Health Science University, Pretoria 0204, South Africa;
| |
Collapse
|
28
|
Skibska A, Perlikowska R. Natural Plant Materials as a Source of Neuroprotective Peptides. Curr Med Chem 2024; 31:5027-5045. [PMID: 37403392 DOI: 10.2174/0929867331666230703145043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
In many circumstances, some crucial elements of the neuronal defense system fail, slowly leading to neurodegenerative diseases. Activating this natural process by administering exogenous agents to counteract unfavourable changes seems promising. Therefore, looking for neuroprotective therapeutics, we have to focus on compounds that inhibit the primary mechanisms leading to neuronal injuries, e.g., apoptosis, excitotoxicity, oxidative stress, and inflammation. Among many compounds considered neuroprotective agents, protein hydrolysates and peptides derived from natural materials or their synthetic analogues are good candidates. They have several advantages, such as high selectivity and biological activity, a broad range of targets, and high safety profile. This review aims to provide biological activities, the mechanism of action and the functional properties of plant-derived protein hydrolysates and peptides. We focused on their significant role in human health by affecting the nervous system and having neuroprotective and brain-boosting properties, leading to memory and cognitive improving activities. We hope our observation may guide the evaluation of novel peptides with potential neuroprotective effects. Research into neuroprotective peptides may find application in different sectors as ingredients in functional foods or pharmaceuticals to improve human health and prevent diseases.
Collapse
Affiliation(s)
- Agnieszka Skibska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University, Lodz, Poland
| | - Renata Perlikowska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University, Lodz, Poland
| |
Collapse
|
29
|
Eskandani R, Zibaii MI. Unveiling the biological effects of radio-frequency and extremely-low frequency electromagnetic fields on the central nervous system performance. BIOIMPACTS : BI 2023; 14:30064. [PMID: 39104617 PMCID: PMC11298025 DOI: 10.34172/bi.2023.30064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 11/26/2023] [Indexed: 08/07/2024]
Abstract
Introduction Radiofrequency electromagnetic radiation (RF-EMR) and extremely low-frequency electromagnetic fields (ELF-EMF) have emerged as noteworthy sources of environmental pollution in the contemporary era. The potential biological impacts of RF-EMR and ELF-EMF exposure on human organs, particularly the central nervous system (CNS), have garnered considerable attention in numerous research studies. Methods This article presents a comprehensive yet summarized review of the research on the explicit/implicit effects of RF-EMR and ELF-EMF exposure on CNS performance. Results Exposure to RF-EMR can potentially exert adverse effects on the performance of CNS by inducing changes in the permeability of the blood-brain barrier (BBB), neurotransmitter levels, calcium channel regulation, myelin protein structure, the antioxidant defense system, and metabolic processes. However, it is noteworthy that certain reports have suggested that RF-EMR exposure may confer cognitive benefits for various conditions and disorders. ELF-EMF exposure has been associated with the enhancement of CNS performance, marked by improved memory retention, enhanced learning ability, and potential mitigation of neurodegenerative diseases. Nevertheless, it is essential to acknowledge that ELF-EMF exposure has also been linked to the induction of anxiety states, oxidative stress, and alterations in hormonal regulation. Moreover, ELF-EMR exposure alters hippocampal function, notch signaling pathways, the antioxidant defense system, and synaptic activities. Conclusion The RF-EMR and ELF-EMF exposures exhibit both beneficial and adverse effects. Nevertheless, the precise conditions and circumstances under which detrimental or beneficial effects manifest (either individually or simultaneously) remain uncertain.
Collapse
Affiliation(s)
- Ramin Eskandani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Mohammad Ismail Zibaii
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran 19839-69411, Iran
| |
Collapse
|
30
|
Shoukat S, Zia MA, Uzair M, Attia KA, Abushady AM, Fiaz S, Ali S, Yang SH, Ali GM. Bacopa monnieri: A promising herbal approach for neurodegenerative disease treatment supported by in silico and in vitro research. Heliyon 2023; 9:e21161. [PMID: 37954293 PMCID: PMC10637926 DOI: 10.1016/j.heliyon.2023.e21161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Neurodegenerative disorders, caused by progressive neuron loss, are a global health issue. Among the various factors implicated in their pathogenesis, dysregulation of acetylcholinesterase activity has been recognized as a key contributor. Acetylcholinesterase breaks down the neurotransmitter acetylcholine, important for neural transmission. Evaluating phyto-compounds from Bacopa monnieri Linn. through in vitro and in silico analysis may expand their role as alternative therapeutic agents by modulating the function of acetylcholinesterase and complementing existing treatments. To accomplish this objective, chemical structures of phyto-compounds were retrieved from PubChem database and subjected to in silico and in vitro approaches. Virtual screening was performed through molecular docking and molecular dynamic simulation resulting in four top hit compounds including quercetin, apigenin, wogonin, and bacopaside X (novel lead compound for acetylcholinesterase inhibitor) with least binding score. Further, dose dependent acetylcholinesterase inhibition biochemical assay depicted that bacopaside X, apigenin, quercetin, and wogonin exhibited strong potential against acetylcholinesterase with IC50 values of 12.78 μM, 13.83 μM, 12.73 μM and 15.48 μM respectively, in comparison with the donepezil (IC50: 0.0204 μM). The in silico and in vitro research suggests that B. monnieri phyto-compounds have the potential to modulate molecular targets associated with neurodegenerative diseases and have a role in neuroprotection.
Collapse
Affiliation(s)
- Shehla Shoukat
- Department of Plant Genomics and Biotechnology, PARC Institute of Advance Studies in Agriculture Research, Affiliated with Quaid-e-Azam University, National Agriculture Research Centre, Islamabad, Pakistan
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Muhammad Amir Zia
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Asmaa M. Abushady
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt
- Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, 22620 Haripur, Pakistan
| | - Shaukat Ali
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, 59626, Republic of Korea
| | | |
Collapse
|
31
|
Obafemi TO, Ekundayo BE, Adewale OB, Obafemi BA, Anadozie SO, Adu IA, Onasanya AO, Ekundayo SK. Gallic acid and neurodegenerative diseases. PHYTOMEDICINE PLUS 2023; 3:100492. [DOI: 10.1016/j.phyplu.2023.100492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Nadeem MD, Memon S, Qureshi K, Farooq U, Memon UA, Aparna F, Kachhadia MP, Shahzeen F, Ali S, Varrassi G, Kumar L, Kumar S, Kumar S, Khatri M. Seizing the Connection: Exploring the Interplay Between Epilepsy and Glycemic Control in Diabetes Management. Cureus 2023; 15:e45606. [PMID: 37868449 PMCID: PMC10588297 DOI: 10.7759/cureus.45606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Epilepsy, a neurological disorder characterized by recurrent seizures, and diabetes, a metabolic disorder characterized by impaired regulation of glucose levels, are two distinct conditions that may appear unrelated at first glance. Nevertheless, recent scholarly investigations have revealed these entities' intricate and ever-evolving interplay. This review initially delves into the intricate interplay between epilepsy and its potential ramifications on glycemic control. Seizures, particularly those accompanied by convulsive manifestations, have the potential to induce acute perturbations in blood glucose levels via diverse mechanisms, encompassing the liberation of stress hormones, the emergence of insulin resistance, and the dysregulation of the autonomic nervous system. Comprehending these intricate mechanisms is paramount in customizing productive strategies for managing diabetes in individuals with epilepsy. On the contrary, it is worth noting that diabetes can substantially impact the trajectory and control of epilepsy. The correlation between hyperglycemia and an elevated susceptibility to seizures, as well as the potential for exacerbating the intensity of epilepsy, has been established. This narrative review offers a concise exposition of the intricate interplay between epilepsy and glycemic control within diabetes management. The objective of exploring reciprocal influences, underlying mechanisms, and common risk factors is to augment the clinical comprehension of this intricate interconnection. In essence, this acquired knowledge possesses the potential to serve as a guiding compass for healthcare professionals, enabling them to craft bespoke therapeutic approaches that enhance the holistic welfare of individuals grappling with the coexistence of epilepsy and diabetes.
Collapse
Affiliation(s)
| | - Siraj Memon
- Medicine, Liaquat University of Medical & Health Sciences, Jamshoro, PAK
| | - Kashifa Qureshi
- Medicine, Liaquat University of Medical & Health Sciences, Jamshoro, PAK
| | - Umer Farooq
- Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Unaib Ahmed Memon
- Neurology and Internal Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, PAK
| | - Fnu Aparna
- Medicine, Ghulam Muhammad Mahar Medical College, Sukkur, PAK
| | | | - Fnu Shahzeen
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Sameer Ali
- Internal Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, PAK
| | | | - Lakshya Kumar
- General Medicine, Pandit Deendayal Upadhyay Medical College, Rajkot, IND
| | - Sumeet Kumar
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Satesh Kumar
- Medicine and Surgery, Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, PAK
| | - Mahima Khatri
- Medicine and Surgery, Dow University of Health Sciences, Karachi, PAK
| |
Collapse
|
33
|
Rajagopalan V, Venkataraman S, Rajendran DS, Vinoth Kumar V, Kumar VV, Rangasamy G. Acetylcholinesterase biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine neurotransmitter: A literature review. ENVIRONMENTAL RESEARCH 2023; 227:115724. [PMID: 36948285 DOI: 10.1016/j.envres.2023.115724] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Neurotoxic pesticides are a group of chemicals that pose a severe threat to both human health and the environment. These molecules are also known to accumulate in the food chain and persist in the environment, which can lead to long-term exposure and adverse effects on non-target organisms. The detrimental effects of these pesticides on neurotransmitter levels and function can lead to a range of neurological and behavioral symptoms, which are closely associated with neurodegenerative diseases. Hence, the accurate and reliable detection of these neurotoxic pesticides and associated neurotransmitters is essential for clinical applications, such as diagnosis and treatment. Over the past few decades, acetylcholinesterase (AchE) biosensors have emerged as a sensitive and reliable tool for the electrochemical detection of neurotoxic pesticides and acetylcholine. These biosensors can be tailored to utilize the high specificity and sensitivity of AchE, enabling the detection of these chemicals. Additionally, enzyme immobilization and the incorporation of nanoparticles have further improved the detection capabilities of these biosensors. AchE biosensors have shown tremendous potential in various fields, including environmental monitoring, clinical diagnosis, and pesticide residue analysis. This review summarizes the advancements in AchE biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine over the past two decades.
Collapse
Affiliation(s)
- Vahulabaranan Rajagopalan
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India.
| | - Vaithyanathan Vasanth Kumar
- Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science, Chennai, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
34
|
Oummadi A, Menuet A, Méresse S, Laugeray A, Guillemin G, Mortaud S. The herbicides glyphosate and glufosinate and the cyanotoxin β-N-methylamino-l-alanine induce long-term motor disorders following postnatal exposure: the importance of prior asymptomatic maternal inflammatory sensitization. Front Neurosci 2023; 17:1172693. [PMID: 37360165 PMCID: PMC10288190 DOI: 10.3389/fnins.2023.1172693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Background Prenatal maternal immune activation (MIA) and/or perinatal exposure to various xenobiotics have been identified as risk factors for neurological disorders, including neurodegenerative diseases. Epidemiological data suggest an association between early multi-exposures to various insults and neuropathologies. The "multiple-hit hypothesis" assumes that prenatal inflammation makes the brain more susceptible to subsequent exposure to several kinds of neurotoxins. To explore this hypothesis and its pathological consequences, a behavioral longitudinal procedure was performed after prenatal sensitization and postnatal exposure to low doses of pollutants. Methods Maternal exposure to an acute immune challenge (first hit) was induced by an asymptomatic lipopolysaccharide (LPS) dose (0.008 mg/kg) in mice. This sensitization was followed by exposing the offspring to environmental chemicals (second hit) postnatally, by the oral route. The chemicals used were low doses of the cyanotoxin β-N-methylamino-l-alanine (BMAA; 50 mg/kg), the herbicide glufosinate ammonium (GLA; 0.2 mg/kg) or the pesticide glyphosate (GLY; 5 mg/kg). After assessing maternal parameters, a longitudinal behavioral assessment was carried out on the offspring in order to evaluate motor and emotional abilities in adolescence and adulthood. Results We showed that the low LPS immune challenge was an asymptomatic MIA. Even though a significant increase in systemic pro-inflammatory cytokines was detected in the dams, no maternal behavioral defects were observed. In addition, as shown by rotarod assays and open field tests, this prenatal LPS administration alone did not show any behavioral disruption in offspring. Interestingly, our data showed that offspring subjected to both MIA and post-natal BMAA or GLA exposure displayed motor and anxiety behavioral impairments during adolescence and adulthood. However, this synergistic effect was not observed in the GLY-exposed offspring. Conclusion These data demonstrated that prenatal and asymptomatic immune sensitization represents a priming effect to subsequent exposure to low doses of pollutants. These double hits act in synergy to induce motor neuron disease-related phenotypes in offspring. Thus, our data strongly emphasize that multiple exposures for developmental neurotoxicity regulatory assessment must be considered. This work paves the way for future studies aiming at deciphering cellular pathways involved in these sensitization processes.
Collapse
Affiliation(s)
- Asma Oummadi
- Experimental and Molecular Immunology and Neurogenetics, UMR7355 CNRS, Orléans, France
- Faculty of Medicine and Human Health Sciences, Center for MND Research, Macquarie University, Sydney, NSW, Australia
| | - Arnaud Menuet
- Experimental and Molecular Immunology and Neurogenetics, UMR7355 CNRS, Orléans, France
- UFR Sciences et Techniques, University of Orléans, Orléans, France
| | - Sarah Méresse
- Experimental and Molecular Immunology and Neurogenetics, UMR7355 CNRS, Orléans, France
- UFR Sciences et Techniques, University of Orléans, Orléans, France
| | - Anthony Laugeray
- Faculty of Biology and Medicine, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Gilles Guillemin
- Faculty of Medicine and Human Health Sciences, Center for MND Research, Macquarie University, Sydney, NSW, Australia
| | - Stéphane Mortaud
- Experimental and Molecular Immunology and Neurogenetics, UMR7355 CNRS, Orléans, France
- UFR Sciences et Techniques, University of Orléans, Orléans, France
| |
Collapse
|
35
|
Kim SG, George NP, Hwang JS, Park S, Kim MO, Lee SH, Lee G. Human Bone Marrow-Derived Mesenchymal Stem Cell Applications in Neurodegenerative Disease Treatment and Integrated Omics Analysis for Successful Stem Cell Therapy. Bioengineering (Basel) 2023; 10:bioengineering10050621. [PMID: 37237691 DOI: 10.3390/bioengineering10050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Neurodegenerative diseases (NDDs), which are chronic and progressive diseases, are a growing health concern. Among the therapeutic methods, stem-cell-based therapy is an attractive approach to NDD treatment owing to stem cells' characteristics such as their angiogenic ability, anti-inflammatory, paracrine, and anti-apoptotic effects, and homing ability to the damaged brain region. Human bone-marrow-derived mesenchymal stem cells (hBM-MSCs) are attractive NDD therapeutic agents owing to their widespread availability, easy attainability and in vitro manipulation and the lack of ethical issues. Ex vivo hBM-MSC expansion before transplantation is essential because of the low cell numbers in bone marrow aspirates. However, hBM-MSC quality decreases over time after detachment from culture dishes, and the ability of hBM-MSCs to differentiate after detachment from culture dishes remains poorly understood. Conventional analysis of hBM-MSCs characteristics before transplantation into the brain has several limitations. However, omics analyses provide more comprehensive molecular profiling of multifactorial biological systems. Omics and machine learning approaches can handle big data and provide more detailed characterization of hBM-MSCs. Here, we provide a brief review on the application of hBM-MSCs in the treatment of NDDs and an overview of integrated omics analysis of the quality and differentiation ability of hBM-MSCs detached from culture dishes for successful stem cell therapy.
Collapse
Affiliation(s)
- Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Nimisha Pradeep George
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Seokho Park
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Soo Hwan Lee
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, 206 World Cup-ro, Suwon 16499, Republic of Korea
| |
Collapse
|
36
|
Iranpanah A, Kooshki L, Moradi SZ, Saso L, Fakhri S, Khan H. The Exosome-Mediated PI3K/Akt/mTOR Signaling Pathway in Neurological Diseases. Pharmaceutics 2023; 15:pharmaceutics15031006. [PMID: 36986865 PMCID: PMC10057486 DOI: 10.3390/pharmaceutics15031006] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
As major public health concerns associated with a rapidly growing aging population, neurodegenerative diseases (NDDs) and neurological diseases are important causes of disability and mortality. Neurological diseases affect millions of people worldwide. Recent studies have indicated that apoptosis, inflammation, and oxidative stress are the main players of NDDs and have critical roles in neurodegenerative processes. During the aforementioned inflammatory/apoptotic/oxidative stress procedures, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a crucial role. Considering the functional and structural aspects of the blood-brain barrier, drug delivery to the central nervous system is relatively challenging. Exosomes are nanoscale membrane-bound carriers that can be secreted by cells and carry several cargoes, including proteins, nucleic acids, lipids, and metabolites. Exosomes significantly take part in the intercellular communications due to their specific features including low immunogenicity, flexibility, and great tissue/cell penetration capabilities. Due to their ability to cross the blood-brain barrier, these nano-sized structures have been introduced as proper vehicles for central nervous system drug delivery by multiple studies. In the present systematic review, we highlight the potential therapeutic effects of exosomes in the context of NDDs and neurological diseases by targeting the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| |
Collapse
|
37
|
Anjum M, Shahab S, Yu Y. Syndrome Pattern Recognition Method Using Sensed Patient Data for Neurodegenerative Disease Progression Identification. Diagnostics (Basel) 2023; 13:887. [PMID: 36900031 PMCID: PMC10000542 DOI: 10.3390/diagnostics13050887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Neurodegenerative diseases are a group of conditions that involve the progressive loss of function of neurons in the brain and spinal cord. These conditions can result in a wide range of symptoms, such as difficulty with movement, speech, and cognition. The causes of neurodegenerative diseases are poorly understood, but many factors are believed to contribute to the development of these conditions. The most important risk factors include ageing, genetics, abnormal medical conditions, toxins, and environmental exposures. A slow decline in visible cognitive functions characterises the progression of these diseases. If left unattended or unnoticed, disease progression can result in serious issues such as the cessation of motor function or even paralysis. Therefore, early recognition of neurodegenerative diseases is becoming increasingly important in modern healthcare. Many sophisticated artificial intelligence technologies are incorporated into modern healthcare systems for the early recognition of these diseases. This research article introduces a Syndrome-dependent Pattern Recognition Method for the early detection and progression monitoring of neurodegenerative diseases. The proposed method determines the variance between normal and abnormal intrinsic neural connectivity data. The observed data is combined with previous and healthy function examination data to identify the variance. In this combined analysis, deep recurrent learning is exploited by tuning the analysis layer based on variance suppressed by identifying normal and abnormal patterns in the combined analysis. This variance from different patterns is recurrently used to train the learning model for maximising of recognition accuracy. The proposed method achieves 16.77% high accuracy, 10.55% high precision, and 7.69% high pattern verification. It reduces the variance and verification time by 12.08% and 12.02%, respectively.
Collapse
Affiliation(s)
- Mohd Anjum
- Department of Computer Engineering, Aligarh Muslim University, Aligarh 202001, India
| | - Sana Shahab
- Department of Business Administration, College of Business Administration, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Yang Yu
- Centre for Infrastructure Engineering and Safety (CIES), University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|