1
|
Michaëlsson K, Zheng R, Baron JA, Fall T, Wolk A, Lind L, Höijer J, Brunius C, Warensjö Lemming E, Titova OE, Svennblad B, Larsson SC, Yuan S, Melhus H, Byberg L, Brooke HL. Cardio-metabolic-related plasma proteins reveal biological links between cardiovascular diseases and fragility fractures: a cohort and Mendelian randomisation investigation. EBioMedicine 2025; 113:105580. [PMID: 39919333 PMCID: PMC11848109 DOI: 10.1016/j.ebiom.2025.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 12/17/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND How cardiovascular diseases (CVD) predispose to a higher risk of fragility fractures is not well understood. Both contribute to significant components of disease burden and health expenditure. Poor bone quality, central obesity, sarcopenia, falls, and low grip strength are independent risk factors for hip and other fragility fractures and also for CVD and early death. METHODS We used proteomics and a cohort design combined with Mendelian randomisation analysis to understand shared mechanisms for developing CVD and fragility fractures, two significant sources of disease burden and health expenditure. We primarily aimed to discover and replicate the association of 274 cardio-metabolic-related proteins with future rates of hip and any fracture in two separate population-based cohorts, with a total of 12,314 women and men. FINDINGS The average age at baseline was 68 years in the discovery cohort of women and 74 years in the mixed-sex replication cohort. During 100,619 person-years of follow-up, 2168 had any fracture, and 538 had a hip fracture. Our analysis resulted in 24 cardiometabolic proteins associated with fracture risk: 20 with hip fracture, 9 with any fracture, and 5 with both. The associations remained even if protein concentrations were measured from specimens taken during preclinical stages of cardio-metabolic diseases, and 19 associations remained after adjustment for bone mineral density. Twenty-two of the proteins were associated with total body fat mass or lean body mass. Mendelian randomisation (MR) analysis supported causality since genetically predicted levels of SOST (Sclerostin), CCDC80 (Coiled-coil domain-containing protein 80), NT-proBNP (N-terminal prohormone brain natriuretic peptide), and BNP (Brain natriuretic peptide) were associated with risk of hip fracture. MR analysis also revealed a possible negative impact on bone mineral density (BMD) by genetically predicted higher levels of SOST, CCDC80, and TIMP4 (Metalloproteinase inhibitor 4). The MR association with BMD was positive for PTX3 (Pentraxin-related protein) and SPP1 (Osteopontin). Genetically predicted higher concentrations of SOST and lower concentrations of SPP1 also conferred a higher risk of falls and lowered grip strength. The genetically determined concentration of nine proteins influenced fat mass, and one influenced lean body mass. INTERPRETATION These data reveal biological links between cardiovascular diseases and fragility fractures. The proteins should be further evaluated as shared targets for developing pharmacological interventions to prevent fractures and cardiovascular disease. FUNDING The study was supported by funding from the Swedish Research Council (https://www.vr.se; grants No. 2015-03257, 2017-00644, 2017-06100, and 2019-01291 to Karl Michaëlsson) and funding from Olle Engkvist Byggmästares stiftelse (SOEB).
Collapse
Affiliation(s)
- Karl Michaëlsson
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Rui Zheng
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - John A Baron
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Tove Fall
- Molecular Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Höijer
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Carl Brunius
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Eva Warensjö Lemming
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Olga E Titova
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Bodil Svennblad
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Susanna C Larsson
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Melhus
- Clinical Pharmacology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Liisa Byberg
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Hannah L Brooke
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Abidin BM, Rios FJ, Montezano AC, Touyz RM. Transient receptor potential melastatin 7 cation channel, magnesium and cell metabolism in vascular health and disease. Acta Physiol (Oxf) 2025; 241:e14282. [PMID: 39801180 DOI: 10.1111/apha.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/30/2025]
Abstract
Preserving the balance of metabolic processes in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), is crucial for optimal vascular function and integrity. ECs are metabolically active and depend on aerobic glycolysis to efficiently produce energy for their essential functions, which include regulating vascular tone. Impaired EC metabolism is linked to endothelial damage, increased permeability and inflammation. Metabolic alterations in VSMCs also contribute to vascular dysfunction in atherosclerosis and hypertension. Magnesium (Mg2+) is the second most abundant intracellular divalent cation and influences molecular processes that regulate vascular function, including vasodilation, vasoconstriction, and release of vasoactive substances. Mg2+ is critically involved in maintaining cellular homeostasis and metabolism since it is an essential cofactor for ATP, nucleic acids and hundreds of enzymes involved in metabolic processes. Low Mg2+ levels have been linked to endothelial dysfunction, increased vascular tone, vascular inflammation and arterial remodeling. Growing evidence indicates an important role for the transient receptor potential melastatin-subfamily member 7 (TRPM7) cation channel in the regulation of Mg2+ homeostasis in EC and VSMCs. In the vasculature, TRPM7 deficiency leads to impaired endothelial function, increased vascular contraction, phenotypic switching of VSMCs, inflammation and fibrosis, processes that characterize the vascular phenotype in hypertension. Here we provide a comprehensive overview on TRPM7/Mg2+ in the regulation of vascular function and how it influences EC and VSMC metabolism such as glucose and energy homeostasis, redox regulation, phosphoinositide signaling, and mineral metabolism. The putative role of TRPM7/Mg2+ and altered cellular metabolism in vascular dysfunction and hypertension is also discussed.
Collapse
Affiliation(s)
- Belma Melda Abidin
- Cardiovascular Health Across the Life Span, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Francisco J Rios
- Cardiovascular Health Across the Life Span, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Augusto C Montezano
- Cardiovascular Health Across the Life Span, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rhian M Touyz
- Cardiovascular Health Across the Life Span, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Family Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Pàmies A, Llop D, Ibarretxe D, Rosales R, Masana L, Vallvé JC, Paredes S. Angiopoietin-2, vascular endothelial growth factor family, and heparin binding endothelial growth factor are associated with subclinical atherosclerosis in rheumatoid arthritis. Comput Struct Biotechnol J 2024; 23:1680-1688. [PMID: 38689721 PMCID: PMC11059138 DOI: 10.1016/j.csbj.2024.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Patients with RA are at a higher risk of developing CV diseases than the general population. The precise mechanisms are still unknown. We evaluated the associations between 8 plasma growth factors (GFs) (angiopoietin-2, EGF, HB-EGF, PLGF, TGF-α, VEGFa, VEGFc, and VEGFd) and subclinical arteriosclerosis in RA patients. Materials and methods A total of 199 patients with RA treated at the Hospital Universitari Sant Joan de Reus (Spain) between 2011 and 2015 were included in this cross-sectional study. Carotid intima media thickness (cIMT), carotid plaque presence (cPP) and pulse wave velocity (PWV) were measured. GFs were measured with Bio-Plex Pro Human Cancer Biomarker Panel 2 (Bio-Rad). Multivariate models and partial least square discriminant analysis (PLS-DA) were used for analysis (RStudio, version 4.0.1). Results Multivariate models showed that angiopoietin-2 was associated with cPP and PWV in the overall cohort (OR = 1.53 and β = 0.20, respectively). VEGFc (β = 0.29), VEGFa (β = 0.26) and HB-EGF (β = 0.22) were also associated with PWV. VEGFa (OR = 2.36), VEGFd (OR = 2.29), EGF (OR = 2.62), PLGF (OR = 2.54), and HB-EGF (OR = 2.24) were associated with cPP in men. According to PLS-DA, GFs were able to distinguish between patients with and without cPP in the overall cohort, male cohort, and female cohort. In women, angiopoietin-2 was associated with PWV (β = 0.18). Conclusions The selected GFs were closely related to atherosclerosis in patients with RA and are potential predictors of CV disease in patients with RA.
Collapse
Affiliation(s)
- Anna Pàmies
- Secció de Reumatologia, Hospital Verge de la Cinta, Tortosa, Spain
| | - Dídac Llop
- Unitat Medicina Vascular i Metabolisme, Unitat de Recerca en Lípids i Arteriosclerosi, Hospital Universitari Sant Joan, Universitat Rovira i Virgili, IISPV, Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Daiana Ibarretxe
- Unitat Medicina Vascular i Metabolisme, Unitat de Recerca en Lípids i Arteriosclerosi, Hospital Universitari Sant Joan, Universitat Rovira i Virgili, IISPV, Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Roser Rosales
- Unitat Medicina Vascular i Metabolisme, Unitat de Recerca en Lípids i Arteriosclerosi, Hospital Universitari Sant Joan, Universitat Rovira i Virgili, IISPV, Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Luis Masana
- Unitat Medicina Vascular i Metabolisme, Unitat de Recerca en Lípids i Arteriosclerosi, Hospital Universitari Sant Joan, Universitat Rovira i Virgili, IISPV, Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Joan-Carles Vallvé
- Unitat Medicina Vascular i Metabolisme, Unitat de Recerca en Lípids i Arteriosclerosi, Hospital Universitari Sant Joan, Universitat Rovira i Virgili, IISPV, Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Silvia Paredes
- Unitat Medicina Vascular i Metabolisme, Unitat de Recerca en Lípids i Arteriosclerosi, Hospital Universitari Sant Joan, Universitat Rovira i Virgili, IISPV, Reus, Spain
- Secció de Reumatologia, Hospital Universitari Sant Joan de Reus, Reus, Spain
| |
Collapse
|
4
|
Hu Y, Chen L, Wu Y, Zhang J, Sheng Z, Zhou Z, Xie Y, Tian G, Wan J, Zhang X, Cai N, Zhou Y, Cao Y, Yang T, Chen X, Liao D, Ge Y, Cheng B, Zhong K, Tian E, Lu J, Lu H, Zhao Y, Yuan W. Palmatine reverse aristolochic acid-induced heart failure through activating EGFR pathway via upregulating IKBKB. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117100. [PMID: 39332194 DOI: 10.1016/j.ecoenv.2024.117100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Aristolochic acid (AA) is renowned for engendering nephrotoxicity and teratogenicity. Previous literature has reported that AA treatment resulted in heart failure (HF) via inflammatory pathways. Yet, its implications in HF remain comparatively uncharted territory, particularly with respect to underlying mechanisms. In our study, the zebrafish model was employed to delineate the cardiotoxicity of AA exposure and the restorative capacity of a phytogenic alkaloid palmatine (PAL). PAL restored morphology and blood supply in AA-damaged hearts by o-dianisidine staining, fluorescence imaging, and Hematoxylin and Eosin staining. Furthermore, PAL attenuated the detrimental effects of AA on ATPase activity, implying myocardial energy metabolism recovery. PAL decreased the co-localization of neutrophils with cardiomyocytes, implying an attenuation of the inflammatory response induced by AA. A combination of network pharmacological analysis and qPCR validation shed light on the therapeutic mechanism of PAL against AA-induced heart failure via upregulation of the epidermal growth factor receptor (EGFR) signaling pathway. Subsequent evaluations using a transcriptological testing, inhibitor model, and molecular docking assay corroborated PAL as an IKBKB enzyme activator. The study underscores the possible exploitation of the EGFR pathway as a potential therapeutic target for PAL against AA-induced HF, thus furthering the continued investigation of the toxicology and advancement of protective pharmaceuticals for AA.
Collapse
Affiliation(s)
- Ying Hu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Lixin Chen
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yulin Wu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Jun Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, Jiangsu 210042, China
| | - Zhixia Sheng
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Ziyi Zhou
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yufeng Xie
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Guiyou Tian
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Jiaxing Wan
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Xiaorun Zhang
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Na Cai
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yatong Zhou
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yi Cao
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Tengjiang Yang
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Xiaomei Chen
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Dalong Liao
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yurui Ge
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Bo Cheng
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Keyuan Zhong
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Erli Tian
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Jin Lu
- Department of Pharmacy, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Huiqiang Lu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China; The First Clinical College of Gannan Medical Uinversity, Ganzhou, Jiangxi 341000, China.
| | - Yan Zhao
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China.
| | - Wei Yuan
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
5
|
Yuce K. The Application of Mesenchymal Stem Cells in Different Cardiovascular Disorders: Ways of Administration, and the Effectors. Stem Cell Rev Rep 2024; 20:1671-1691. [PMID: 39023739 DOI: 10.1007/s12015-024-10765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
The heart is an organ with a low ability to renew and repair itself. MSCs have cell surface markers such as CD45-, CD34-, CD31-, CD4+, CD11a+, CD11b+, CD15+, CD18+, CD25+, CD49d+, CD50+, CD105+, CD73+, CD90+, CD9+, CD10+, CD106+, CD109+, CD127+, CD120a+, CD120b+, CD124+, CD126+, CD140a+, CD140b+, adherent properties and the ability to differentiate into cells such as adipocytes, osteoblasts and chondrocytes. Autogenic, allogeneic, normal, pretreated and genetically modified MSCs and secretomes are used in preclinical and clinical studies. MSCs and their secretomes (the total released molecules) generally have cardioprotective effects. Studies on cardiovascular diseases using MSCs and their secretomes include myocardial infraction/ischemia, fibrosis, hypertrophy, dilated cardiomyopathy and atherosclerosis. Stem cells or their secretomes used for this purpose are administered to the heart via intracoronary (Antegrade intracoronary and retrograde coronary venous injection), intramyocardial (Transendocardial and epicardial injection) and intravenous routes. The protective effects of MSCs and their secretomes on the heart are generally attributed to their differentiation into cardiomyocytes and endothelial cells, their immunomodulatory properties, paracrine effects, increasing blood vessel density, cardiac remodeling, and ejection fraction and decreasing apoptosis, the size of the wound, end-diastolic volume, end-systolic volume, ventricular myo-mass, fibrosis, matrix metalloproteins, and oxidative stress. The present review aims to assist researchers and physicians in selecting the appropriate cell type, secretomes, and technique to increase the chance of success in designing therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Kemal Yuce
- Physiology, Department of Basic Medical Sciences, Medicine Faculty, Selcuk University, Konya, Türkiye.
| |
Collapse
|
6
|
Perry AS, Amancherla K, Huang X, Lance ML, Farber-Eger E, Gajjar P, Amrute J, Stolze L, Zhao S, Sheng Q, Joynes CM, Peng Z, Tanaka T, Drakos SG, Lavine KJ, Selzman C, Visker JR, Shankar TS, Ferrucci L, Das S, Wilcox J, Patel RB, Kalhan R, Shah SJ, Walker KA, Wells Q, Tucker N, Nayor M, Shah RV, Khan SS. Clinical-transcriptional prioritization of the circulating proteome in human heart failure. Cell Rep Med 2024; 5:101704. [PMID: 39226894 PMCID: PMC11524958 DOI: 10.1016/j.xcrm.2024.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/15/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Given expanding studies in epidemiology and disease-oriented human studies offering hundreds of associations between the human "ome" and disease, prioritizing molecules relevant to disease mechanisms among this growing breadth is important. Here, we link the circulating proteome to human heart failure (HF) propensity (via echocardiographic phenotyping and clinical outcomes) across the lifespan, demonstrating key pathways of fibrosis, inflammation, metabolism, and hypertrophy. We observe a broad array of genes encoding proteins linked to HF phenotypes and outcomes in clinical populations dynamically expressed at a transcriptional level in human myocardium during HF and cardiac recovery (several in a cell-specific fashion). Many identified targets do not have wide precedent in large-scale genomic discovery or human studies, highlighting the complementary roles for proteomic and tissue transcriptomic discovery to focus epidemiological targets to those relevant in human myocardium for further interrogation.
Collapse
Affiliation(s)
- Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kaushik Amancherla
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xiaoning Huang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Eric Farber-Eger
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Priya Gajjar
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Junedh Amrute
- Cardiology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsey Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cassandra M Joynes
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Zhongsheng Peng
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Stavros G Drakos
- Division of Cardiovascular Medicine, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Kory J Lavine
- Cardiology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Craig Selzman
- Department of Cardiac Surgery, University of Utah School of Medicine, Division of Cardiothoracic Surgery, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Joseph R Visker
- Division of Cardiovascular Medicine, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Thirupura S Shankar
- Division of Cardiovascular Medicine, University of Utah and Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), Salt Lake City, UT, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Saumya Das
- Cardiovascular Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jane Wilcox
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ravi B Patel
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ravi Kalhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sanjiv J Shah
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Quinn Wells
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sadiya S Khan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
7
|
Gao F, Xu T, Zang F, Luo Y, Pan D. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms, Clinical Management and Innovative Treatment. Drug Des Devel Ther 2024; 18:4089-4116. [PMID: 39286288 PMCID: PMC11404500 DOI: 10.2147/dddt.s469331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
With the continuous refinement of therapeutic measures, the survival rate of tumor patients has been improving year by year, while cardiovascular complications related to cancer therapy have become increasingly prominent. Exploring the mechanism and prevention strategy of cancer therapy-related cardiovascular toxicity (CTR-CVT) remains one of the research hotspots in the field of Cardio-Oncology in recent years. Cardiotoxicity of anticancer drugs involves heart failure, myocarditis, hypertension, arrhythmias and vascular toxicity, mechanistically related to vascular endothelial dysfunction, ferroptosis, mitochondrial dysfunction and oxidative stress. To address the cardiotoxicity induced by different anticancer drugs, various therapeutic measures have been put in place, such as reducing the accumulation of anticancer drugs, shifting to drugs with less cardiotoxicity, using cardioprotective drugs, and early detection. Due to the very limited treatments available to ameliorate anticancer drugs-induced cardiotoxicity, a few innovations are being shifted from animal studies to human studies. Examples include mitochondrial transplantation. Mitochondrial transplantation has been proven to be effective in in vivo and in vitro experiments. Several recent studies have demonstrated that intercellular mitochondrial transfer can ameliorate doxorubicin(DOX)-induced cardiotoxicity, laying the foundation for innovative therapies in anticancer drugs-induced cardiotoxicity. In this review, we will discuss the current status of anticancer drugs-induced cardiotoxicity in terms of the pathogenesis and treatment, with a focus on mitochondrial transplantation, and we hope that this review will bring some inspiration to you.
Collapse
Affiliation(s)
- Feiyu Gao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Tao Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Fangnan Zang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| |
Collapse
|
8
|
Andrzejczyk K, Abou Kamar S, van Ommen AM, Canto ED, Petersen TB, Valstar G, Akkerhuis KM, Cramer MJ, Umans V, Rutten FH, Teske A, Boersma E, Menken R, van Dalen BM, Hofstra L, Verhaar M, Brugts J, Asselbergs F, den Ruijter H, Kardys I. Identifying plasma proteomic signatures from health to heart failure, across the ejection fraction spectrum. Sci Rep 2024; 14:14871. [PMID: 38937570 PMCID: PMC11211454 DOI: 10.1038/s41598-024-65667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024] Open
Abstract
Circulating proteins may provide insights into the varying biological mechanisms involved in heart failure (HF) with preserved ejection fraction (HFpEF) and reduced ejection fraction (HFrEF). We aimed to identify specific proteomic patterns for HF, by comparing proteomic profiles across the ejection fraction spectrum. We investigated 4210 circulating proteins in 739 patients with normal (Stage A/Healthy) or elevated (Stage B) filling pressures, HFpEF, or ischemic HFrEF (iHFrEF). We found 2122 differentially expressed proteins between iHFrEF-Stage A/Healthy, 1462 between iHFrEF-HFpEF and 52 between HFpEF-Stage A/Healthy. Of these 52 proteins, 50 were also found in iHFrEF vs. Stage A/Healthy, leaving SLITRK6 and NELL2 expressed in lower levels only in HFpEF. Moreover, 108 proteins, linked to regulation of cell fate commitment, differed only between iHFrEF-HFpEF. Proteomics across the HF spectrum reveals overlap in differentially expressed proteins compared to stage A/Healthy. Multiple proteins are unique for distinguishing iHFrEF from HFpEF, supporting the capacity of proteomics to discern between these conditions.
Collapse
Affiliation(s)
- Karolina Andrzejczyk
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sabrina Abou Kamar
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Cardiology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Anne-Mar van Ommen
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elisa Dal Canto
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of General Practice & Nursing Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Teun B Petersen
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gideon Valstar
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - K Martijn Akkerhuis
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maarten Jan Cramer
- Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Victor Umans
- Department of Cardiology, Northwest Clinics, Alkmaar, the Netherlands
| | - Frans H Rutten
- Department of General Practice & Nursing Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Arco Teske
- Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eric Boersma
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Roxana Menken
- Cardiology Centers of the Netherlands, Utrecht, The Netherlands
| | - Bas M van Dalen
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Cardiology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Leonard Hofstra
- Cardiology Centers of the Netherlands, Utrecht, The Netherlands
| | - Marianne Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jasper Brugts
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Folkert Asselbergs
- Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hester den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Clinical Cardiology Department, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Isabella Kardys
- Department of Cardiology, Thorax Center, Cardiovascular Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Camargo LDL, Trevelin SC, da Silva GHG, Dos Santos Dias AA, Oliveira MA, Mikhaylichenko O, Androwiki ACD, Dos Santos CX, Holbrook LM, Ceravolo GS, Denadai-Souza A, Ribeiro IMR, Sartoretto S, Laurindo FRM, Coltri PP, Antunes VR, Touyz R, Miller FJ, Shah AM, Lopes LR. Protein disulfide isomerase-mediated transcriptional upregulation of Nox1 contributes to vascular dysfunction in hypertension. J Hypertens 2024; 42:984-999. [PMID: 38690903 DOI: 10.1097/hjh.0000000000003677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Nox1 signaling is a causal key element in arterial hypertension. Recently, we identified protein disulfide isomerase A1 (PDI) as a novel regulatory protein that regulates Nox1 signaling in VSMCs. Spontaneously hypertensive rats (SHR) have increased levels of PDI in mesenteric resistance arteries compared with Wistar controls; however, its consequences remain unclear. Herein, we investigated the role of PDI in mediating Nox1 transcriptional upregulation and its effects on vascular dysfunction in hypertension. We demonstrate that PDI contributes to the development of hypertension via enhanced transcriptional upregulation of Nox1 in vascular smooth muscle cells (VSMCs). We show for the first time that PDI sulfenylation by hydrogen peroxide contributes to EGFR activation in hypertension via increased shedding of epidermal growth factor-like ligands. PDI also increases intracellular calcium levels, and contractile responses induced by ANG II. PDI silencing or pharmacological inhibition in VSMCs significantly decreases EGFR activation and Nox1 transcription. Overexpression of PDI in VSMCs enhances ANG II-induced EGFR activation and ATF1 translocation to the nucleus. Mechanistically, PDI increases ATF1-induced Nox1 transcription and enhances the contractile responses to ANG II. Herein we show that ATF1 binding to Nox1 transcription putative regulatory regions is augmented by PDI. Altogether, we provide evidence that HB-EGF in SHR resistance vessels promotes the nuclear translocation of ATF1, under the control of PDI, and thereby induces Nox1 gene expression and increases vascular reactivity. Thus, PDI acts as a thiol redox-dependent enhancer of vascular dysfunction in hypertension and could represent a novel therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Livia De Lucca Camargo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
- University of Glasgow, Institute of Cardiovascular & Medical Sciences
| | - Silvia Cellone Trevelin
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London
| | | | | | - Maria Aparecida Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Olga Mikhaylichenko
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London
| | - Aline C D Androwiki
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Celio Xavier Dos Santos
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London
| | | | | | | | | | - Simone Sartoretto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Patricia Pereira Coltri
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Vagner Roberto Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Rhian Touyz
- University of Glasgow, Institute of Cardiovascular & Medical Sciences
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Francis J Miller
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London
| | - Lucia Rossetti Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| |
Collapse
|
10
|
Egashira T, Ichinomiya T, Yokoyama A, Matsumoto S, Higashijima U, Sekino M, Murata H, Yoshitomi O, Sato S, Hara T. Cardioprotective Effects of Sodium-Glucose Cotransporter Subtype Inhibition on Ischemic and Pharmacological Preconditioning. Cureus 2024; 16:e59757. [PMID: 38841006 PMCID: PMC11152766 DOI: 10.7759/cureus.59757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Sodium-glucose cotransporter (SGLT) 2 inhibitors partially inhibit SGLT1 expression; however, whether a clinical dose of SGLT2 inhibitor abrogates ischemic preconditioning (IPC) is unknown, and the pharmacological cardioprotective effect under SGLT1 inhibition has not been examined. In this study, we investigated whether a clinical dose of tofogliflozin abrogates IPC and whether pharmacological preconditioning with olprinone has cardioprotective effects under SGLT1 inhibition. METHODS Male Wistar rats were divided into seven groups (seven rats per group) and subjected to the following treatments before inducing ischemia/reperfusion (I/R; 30 minutes of coronary artery occlusion followed by 120 minutes of reperfusion): saline infusion control treatment (Con); ischemic preconditioning (IPC); IPC after phlorizin infusion (IPC+Phl); IPC after low-dose tofogliflozin infusion (IPC+L-Tof); IPC after high-dose tofogliflozin infusion (IPC+H-Tof); olprinone infusion (Olp); and Olp infusion after phlorizin infusion (Olp+Phl). RESULTS The infarct size was significantly decreased in the IPC group, but not in the IPC+Phl group. In contrast, the infarct size decreased in the IPC+L-Tof and IPC+H-Tof groups. Additionally, Olp reduced the infarct size, and the effect was preserved in Olp+Phl groups. Phosphorylated AMP-activated protein kinase (AMPK) expression was lower in the IPC+Phl group compared to that in the IPC group. CONCLUSION The cardioprotective effect of IPC was attenuated by strong SGLT1 inhibition, but the effect was preserved under a clinical dose of highly selective SGLT2 inhibitor. Olprinone exerts a cardioprotective effect even under strong SGLT1 inhibition.
Collapse
Affiliation(s)
- Takashi Egashira
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Taiga Ichinomiya
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Akihiro Yokoyama
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Sojiro Matsumoto
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Ushio Higashijima
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Motohiro Sekino
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Hiroaki Murata
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Osamu Yoshitomi
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, Nagasaki, JPN
| | - Tetsuya Hara
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| |
Collapse
|
11
|
Osakabe Y, Taniguchi Y, Hamada Ode K, Shimamura Y, Inotani S, Nishikawa H, Matsumoto T, Horino T, Fujimoto S, Terada Y. Clinical significance of amphiregulin in patients with chronic kidney disease. Clin Exp Nephrol 2024; 28:421-430. [PMID: 38402497 DOI: 10.1007/s10157-023-02445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/02/2023] [Indexed: 02/26/2024]
Abstract
BACKGROUND Amphiregulin (AREG) is a ligand of epidermal growth factor receptor (EGFR), which plays an important role in injury-induced kidney fibrosis. However, the clinical significance of serum soluble AREG in chronic kidney disease (CKD) is unclear. In this study, we elucidated the clinical significance of serum soluble AREG in CKD by analyzing the association of serum soluble AREG levels with renal function and other clinical parameters in patients with CKD. METHODS In total, 418 Japanese patients with CKD were enrolled, and serum samples were collected for the determination of soluble AREG and creatinine (Cr) levels, and other clinical parameters. Additionally, these parameters were evaluated after 2 and 3 years. Moreover, immunohistochemical assay was performed ate AREG expression in the kidney tissues of patients with CKD. RESULTS Soluble AREG levels were positively correlated with serum Cr (p < 0.0001). Notably, initial AREG levels were positively correlated with changes in renal function (ΔCr) after 2 (p < 0.0001) and 3 years (P = 0.048). Additionally, soluble AREG levels were significantly higher (p < 0.05) in patients with diabetic nephropathy or primary hypertension. Moreover, AREG was highly expressed in renal tubular cells in patients with advanced CKD, but only weakly expressed in patients with preserved renal function. CONCLUSION Serum soluble AREG levels were significantly correlated with renal function, and changes in renal function after 2 and 3 years, indicating that serum soluble AREG levels might serve as a biomarker of renal function and renal prognosis in CKD.
Collapse
Affiliation(s)
- Yuki Osakabe
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan.
| | - Yoshinori Taniguchi
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Kazu Hamada Ode
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Yoshiko Shimamura
- Department of Dialysis, Kochi Memorial Hospital, Shiromi-cho, Kochi, Kochi, 780-0824, Japan
| | - Satoshi Inotani
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Hirofumi Nishikawa
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Tatsuki Matsumoto
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Taro Horino
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Shimpei Fujimoto
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Yoshio Terada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
12
|
Montecillo J, Pirker T, Pemberton C, Chew-Harris J. suPAR in cardiovascular disease. Adv Clin Chem 2024; 121:89-131. [PMID: 38797545 DOI: 10.1016/bs.acc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Soluble urokinase plasminogen activator receptor (suPAR), the soluble counterpart of urokinase plasminogen activator receptor, is found in the circulation at various levels. suPAR and its parent molecule, cell surface uPAR, exhibit similar structure and extracellular functional roles facilitating fibrinolysis, cellular adhesion, and migration. Studies have assessed the correlation between suPAR in cardiovascular disease (CVD). It is postulated that suPAR may serve as an indicator of inflammatory activation and burden during CVD progression. Increased suPAR independently predicts poorer outcomes in acute coronary syndromes, in heart failure, as well as in coronary artery disease and atherosclerosis. To guide translation into clinical utization, suPAR has been assessed in numerous CVD settings for improved risk discrimination independently or in association with established traditional risk factors. Whilst the involvement of suPAR has been explored in other diseases such as kidney diseases and cancer, there is only emerging evidence of suPAR's mechanistic involvement in cardiovascular disease. In this review, we provide a background into suPAR and its potential role as a biomarker in CVD.
Collapse
Affiliation(s)
- Jaya Montecillo
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Thomas Pirker
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | | | - Janice Chew-Harris
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
13
|
Thottakara T, Padmanabhan A, Tanriverdi T, Thambidurai T, Diaz-RG JA, Amonkar SR, Olgin JE, Long CS, Roselle Abraham M. Single-nucleus RNA/ATAC-seq in early-stage HCM models predicts SWI/SNF-activation in mutant-myocytes, and allele-specific differences in fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.589078. [PMID: 38903075 PMCID: PMC11188105 DOI: 10.1101/2024.04.24.589078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is associated with phenotypic variability. To gain insights into transcriptional regulation of cardiac phenotype, single-nucleus linked RNA-/ATAC-seq was performed in 5-week-old control mouse-hearts (WT) and two HCM-models (R92W-TnT, R403Q-MyHC) that exhibit differences in heart size/function and fibrosis; mutant data was compared to WT. Analysis of 23,304 nuclei from mutant hearts, and 17,669 nuclei from WT, revealed similar dysregulation of gene expression, activation of AP-1 TFs (FOS, JUN) and the SWI/SNF complex in both mutant ventricular-myocytes. In contrast, marked differences were observed between mutants, for gene expression/TF enrichment, in fibroblasts, macrophages, endothelial cells. Cellchat predicted activation of pro-hypertrophic IGF-signaling in both mutant ventricular-myocytes, and profibrotic TGFβ-signaling only in mutant-TnT fibroblasts. In summary, our bioinformatics analyses suggest that activation of IGF-signaling, AP-1 TFs and the SWI/SNF chromatin remodeler complex promotes myocyte hypertrophy in early-stage HCM. Selective activation of TGFβ-signaling in mutant-TnT fibroblasts contributes to genotype-specific differences in cardiac fibrosis.
Collapse
Affiliation(s)
- Tilo Thottakara
- Department of Medicine, University of California San Francisco, Division of Cardiology, San Francisco
- Department of Cardiology, University Heart and Vascular Center Hamburg, Germany
| | - Arun Padmanabhan
- Department of Medicine, University of California San Francisco, Division of Cardiology, San Francisco
- Gladstone Institutes, San Francisco, CA, USA
| | - Talha Tanriverdi
- Department of Medicine, University of California San Francisco, Division of Cardiology, San Francisco
| | - Tharika Thambidurai
- Department of Medicine, University of California San Francisco, Division of Cardiology, San Francisco
| | - Jose A. Diaz-RG
- Department of Medicine, University of California San Francisco, Division of Cardiology, San Francisco
| | - Sanika R. Amonkar
- Department of Medicine, University of California San Francisco, Division of Cardiology, San Francisco
| | - Jeffrey E. Olgin
- Department of Medicine, University of California San Francisco, Division of Cardiology, San Francisco
| | - Carlin S. Long
- Department of Medicine, University of California San Francisco, Division of Cardiology, San Francisco
| | - M. Roselle Abraham
- Department of Medicine, University of California San Francisco, Division of Cardiology, San Francisco
| |
Collapse
|
14
|
Lee SH, Ok SH, Park KE, Bae SI, Hwang Y, Ahn SH, Sim G, Bae M, Sohn JT. Epidermal growth factor receptor phosphorylation contributes to levobupivacaine-induced contraction in isolated rat aorta. Eur J Pharmacol 2024; 967:176389. [PMID: 38311282 DOI: 10.1016/j.ejphar.2024.176389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Vasoconstriction induced by levobupivacaine, a local anesthetic, is mediated by increased levels of calcium, tyrosine kinase, c-Jun NH2-terminal kinase (JNK), and phospholipase D, which are associated with prolonged local anesthesia. Epidermal growth factor receptor (EGFR) phosphorylation is associated with vasoconstriction. However, its role in levobupivacaine-induced contractions remains unknown. We determined whether EGFR phosphorylation is associated with levobupivacaine-induced contractions in isolated rat thoracic aortas and identified the underlying cellular signaling pathways. The effects of various inhibitors and a calcium-free solution alone or in combination on levobupivacaine-induced contractions were then assessed. Furthermore, we examined the effects of various inhibitors on levobupivacaine-induced EGFR and JNK phosphorylation and calcium levels in vascular smooth muscle cells (VSMCs) of rat aortas. The EGFR tyrosine kinase inhibitor AG1478, matrix metalloproteinase (MMP) inhibitor GM6001, Src kinase inhibitors PP1 and PP2, and JNK inhibitor SP600125 attenuated levobupivacaine-induced contractions. Moreover, although the calcium-free solution abolished levobupivacaine-induced contractions, calcium reversed this inhibitory effect. The magnitude of the calcium-mediated reversal of abolished levobupivacaine-induced contractions was lower in the combination treatment with calcium-free solution and AG1478 than in the treatment with calcium-free solution alone. Levobupivacaine induced EGFR and JNK phosphorylation. However, AG1478, GM6001, and PP2 attenuated levobupivacaine-induced EGFR and JNK phosphorylation. Moreover, although levobupivacaine induced JNK phosphorylation in control siRNA-transfected VSMCs, EGFR siRNA inhibited levobupivacaine-induced JNK phosphorylation. Furthermore, AG1478 inhibited levobupivacaine-induced calcium increases in VSMCs. Collectively, these findings suggest that levobupivacaine-induced EGFR phosphorylation, which may occur via the Src kinase-MMP pathway, contributes to vasoconstriction via JNK phosphorylation and increased calcium levels.
Collapse
Affiliation(s)
- Soo Hee Lee
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon-si, Gyeongsangnam-do, Republic of Korea; Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Jinju-si, Gyeongsangnam-do, Republic of Korea; Institute of Medical Science, Gyeongsang National University, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Seong-Ho Ok
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon-si, Gyeongsangnam-do, Republic of Korea; Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Jinju-si, Gyeongsangnam-do, Republic of Korea; Institute of Medical Science, Gyeongsang National University, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Kyeong-Eon Park
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 Beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea
| | - Sung Il Bae
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 Beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea
| | - Yeran Hwang
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 Beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea
| | - Seung Hyun Ahn
- Institute of Medical Science, Gyeongsang National University, Jinju-si, Gyeongsangnam-do, Republic of Korea; Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 Beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea
| | - Gyujin Sim
- Institute of Medical Science, Gyeongsang National University, Jinju-si, Gyeongsangnam-do, Republic of Korea; Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 Beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea
| | - Moonju Bae
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 Beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea
| | - Ju-Tae Sohn
- Institute of Medical Science, Gyeongsang National University, Jinju-si, Gyeongsangnam-do, Republic of Korea; Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 Beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea.
| |
Collapse
|
15
|
Shumliakivska M, Luxán G, Hemmerling I, Scheller M, Li X, Müller-Tidow C, Schuhmacher B, Sun Z, Dendorfer A, Debes A, Glaser SF, Muhly-Reinholz M, Kirschbaum K, Hoffmann J, Nagel E, Puntmann VO, Cremer S, Leuschner F, Abplanalp WT, John D, Zeiher AM, Dimmeler S. DNMT3A clonal hematopoiesis-driver mutations induce cardiac fibrosis by paracrine activation of fibroblasts. Nat Commun 2024; 15:606. [PMID: 38242884 PMCID: PMC10799021 DOI: 10.1038/s41467-023-43003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/27/2023] [Indexed: 01/21/2024] Open
Abstract
Hematopoietic mutations in epigenetic regulators like DNA methyltransferase 3 alpha (DNMT3A), play a pivotal role in driving clonal hematopoiesis of indeterminate potential (CHIP), and are associated with unfavorable outcomes in patients suffering from heart failure (HF). However, the precise interactions between CHIP-mutated cells and other cardiac cell types remain unknown. Here, we identify fibroblasts as potential partners in interactions with CHIP-mutated monocytes. We used combined transcriptomic data derived from peripheral blood mononuclear cells of HF patients, both with and without CHIP, and cardiac tissue. We demonstrate that inactivation of DNMT3A in macrophages intensifies interactions with cardiac fibroblasts and increases cardiac fibrosis. DNMT3A inactivation amplifies the release of heparin-binding epidermal growth factor-like growth factor, thereby facilitating activation of cardiac fibroblasts. These findings identify a potential pathway of DNMT3A CHIP-driver mutations to the initiation and progression of HF and may also provide a compelling basis for the development of innovative anti-fibrotic strategies.
Collapse
Affiliation(s)
- Mariana Shumliakivska
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Guillermo Luxán
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Inga Hemmerling
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Marina Scheller
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Xue Li
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Bianca Schuhmacher
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Zhengwu Sun
- Walter-Brendel-Centre of Experimental Medicine, Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 68, 81377, München, Germany
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 68, 81377, München, Germany
| | - Alisa Debes
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Simone-Franziska Glaser
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Marion Muhly-Reinholz
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Klara Kirschbaum
- Department of Medicine, Cardiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Jedrzej Hoffmann
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Institute of Experimental and Translational Cardiovascular Imaging, Centre for Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Eike Nagel
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Institute of Experimental and Translational Cardiovascular Imaging, Centre for Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Valentina O Puntmann
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Institute of Experimental and Translational Cardiovascular Imaging, Centre for Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sebastian Cremer
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
- Department of Medicine, Cardiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Florian Leuschner
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Wesley Tyler Abplanalp
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - David John
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Andreas M Zeiher
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany.
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany.
| |
Collapse
|
16
|
Liu A, Xie H, Tian F, Bai P, Weng H, Liu Y, Liu W, Tang L, You H, Zhou N, Shu X. ESCRT-III Component CHMP4C Attenuates Cardiac Hypertrophy by Targeting the Endo-Lysosomal Degradation of EGFR. Hypertension 2023; 80:2674-2686. [PMID: 37846580 DOI: 10.1161/hypertensionaha.123.21427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Cardiac hypertrophy and subsequent heart failure impose a considerable burden on public health worldwide. Impaired protein degradation, especially endo-lysosome-mediated degradation of membrane proteins, is associated with cardiac hypertrophy progression. CHMP4C (charged multivesicular body protein 4C), a critical constituent of multivesicular bodies, is involved in cellular trafficking and signaling. However, the specific role of CHMP4C in the progression of cardiac hypertrophy remains largely unknown. METHODS Mouse models with CHMP4C knockout or cardiadc-specific overexpression were subjected to transverse aortic constriction surgery for 4 weeks. Cardiac morphology and function were assessed through histological staining and echocardiography. Confocal imaging and coimmunoprecipitation assays were performed to identify the direct target of CHMP4C. An EGFR (epidermal growth factor receptor) inhibitor was administrated to determine whether effects of CHMP4C on cardiac hypertrophy were EGFR dependent. RESULTS CHMP4C was significantly upregulated in both pressure-overloaded mice and spontaneously hypertensive rats. Compared with wild-type mice, CHMP4C deficiency exacerbated transverse aortic constriction-induced cardiac hypertrophy, whereas CHMP4C overexpression in cardiomyocytes attenuated cardiac dysfunction. Mechanistically, the effect of CHMP4C on cardiac hypertrophy relied on the EGFR signaling pathway. Fluorescent staining and coimmunoprecipitation assays confirmed that CHMP4C interacts directly with EGFR and promotes lysosome-mediated degradation of activated EGFR, thus attenuating cardiac hypertrophy. Notably, an EGFR inhibitor canertinib counteracted the exacerbation of cardiac hypertrophy induced by CHMP4C knockdown in vitro and in vivo. CONCLUSIONS CHMP4C represses cardiac hypertrophy by modulating lysosomal degradation of EGFR and is a potential therapeutic candidate for cardiac hypertrophy.
Collapse
Affiliation(s)
- Ao Liu
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- Department of Cardiology (A.L., H.X., P.B., H.W., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Huilin Xie
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- Department of Cardiology (A.L., H.X., P.B., H.W., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Fangyan Tian
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China (F.T.)
| | - Peiyuan Bai
- Department of Cardiology (A.L., H.X., P.B., H.W., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Haobo Weng
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- Department of Cardiology (A.L., H.X., P.B., H.W., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Yu Liu
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Wen Liu
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Lu Tang
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Hongmin You
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China (H.Y.)
| | - Nianwei Zhou
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Xianhong Shu
- Department of Echocardiography (A.L., H.X., F.T., H.W., Y.L., W.L., L.T., N.Z., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- Department of Cardiology (A.L., H.X., P.B., H.W., X.S.), Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
- epartment of Echocardiography, Shanghai Xuhui District Central Hospital, China (X.S.)
| |
Collapse
|
17
|
Kaesler N, Cheng M, Nagai J, O’Sullivan J, Peisker F, Bindels EM, Babler A, Moellmann J, Droste P, Franciosa G, Dugourd A, Saez-Rodriguez J, Neuss S, Lehrke M, Boor P, Goettsch C, Olsen JV, Speer T, Lu TS, Lim K, Floege J, Denby L, Costa I, Kramann R. Mapping cardiac remodeling in chronic kidney disease. SCIENCE ADVANCES 2023; 9:eadj4846. [PMID: 38000021 PMCID: PMC10672229 DOI: 10.1126/sciadv.adj4846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023]
Abstract
Patients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD. Our data showed a hypertrophic response trajectory of cardiomyocytes with stress signaling and metabolic changes driven by soluble uremia-related factors. We mapped fibroblast to myofibroblast differentiation in this process and identified notable changes in the cardiac vasculature, suggesting inflammation and dysfunction. An integrated analysis of cardiac cellular responses to uremic toxins pointed toward endothelin-1 and methylglyoxal being involved in capillary dysfunction and TNFα driving cardiomyocyte hypertrophy in CKD, which was validated in vitro and in vivo. TNFα inhibition in vivo ameliorated the cardiac phenotype in CKD. Thus, interventional approaches directed against uremic toxins, such as TNFα, hold promise to ameliorate cardiac remodeling in CKD.
Collapse
Affiliation(s)
- Nadine Kaesler
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute of Experimental Medicine and Systems Biology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, University Hospital of the RWTH Aachen, Aachen, Germany
| | - James Nagai
- Institute for Computational Genomics, University Hospital of the RWTH Aachen, Aachen, Germany
| | - James O’Sullivan
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Fabian Peisker
- Institute of Experimental Medicine and Systems Biology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Eric M. J. Bindels
- Department of Hematology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Anne Babler
- Institute of Experimental Medicine and Systems Biology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Julia Moellmann
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Patrick Droste
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute of Pathology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Giulia Franciosa
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Aurelien Dugourd
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
| | - Sabine Neuss
- Institute of Pathology, University Hospital of the RWTH Aachen, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Peter Boor
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute of Pathology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Claudia Goettsch
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Jesper V. Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Thimoteus Speer
- Department of Medicine (Nephrology), Goethe University Frankfurt, Frankfurt, Germany
| | - Tzong-Shi Lu
- Brigham and Women’s Hospital, Renal Division, Boston, MA, USA
| | - Kenneth Lim
- Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jürgen Floege
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Laura Denby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ivan Costa
- Institute for Computational Genomics, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Rafael Kramann
- Clinic for Renal and Hypertensive Disorders, Rheumatological and Immunological Disease, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute of Experimental Medicine and Systems Biology, University Hospital of the RWTH Aachen, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
18
|
Gekle M, Dubourg V, Schwerdt G, Benndorf RA, Schreier B. The role of EGFR in vascular AT1R signaling: From cellular mechanisms to systemic relevance. Biochem Pharmacol 2023; 217:115837. [PMID: 37777161 DOI: 10.1016/j.bcp.2023.115837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ErbB-family of receptor tyrosine kinases that are of importance in oncology. During the last years, substantial evidence accumulated for a crucial role of EGFR concerning the action of the angiotensin II type 1 receptor (AT1R) in blood vessels, resulting form AT1R-induced EGFR transactivation. This transactivation occurs through the release of membrane-anchored EGFR-ligands, cytosolic tyrosine kinases, heterocomplex formation or enhanced ligand expression. AT1R-EGFR crosstalk amplifies the signaling response and enhances the biological effects of angiotensin II. Downstream signaling cascades include ERK1/2 and p38 MAPK, PLCγ and STAT. AT1R-induced EGFR activation contributes to vascular remodeling and hypertrophy via e.g. smooth muscle cell proliferation, migration and extracellular matrix production. EGFR transactivation results in increased vessel wall thickness and reduced vascular compliance. AT1R and EGFR signaling pathways are also implicated the induction of vascular inflammation. Again, EGFR transactivation exacerbates the effects, leading to endothelial dysfunction that contributes to vascular inflammation, dysfunction and remodeling. Dysregulation of the AT1R-EGFR axis has been implicated in the pathogenesis of various cardiovascular diseases and inhibition or prevention of EGFR signaling can attenuate part of the detrimental impact of enhanced renin-angiotensin-system (RAAS) activity, highlighting the importance of EGFR for the adverse consequences of AT1R activation. In summary, EGFR plays a critical role in vascular AT1R action, enhancing signaling, promoting remodeling, contributing to inflammation, and participating in the pathogenesis of cardiovascular diseases. Understanding the interplay between AT1R and EGFR will foster the development of effective therapeutic strategies of RAAS-induced disorders.
Collapse
Affiliation(s)
- Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany.
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| |
Collapse
|
19
|
Okyere AD, Nayak TK, Patwa V, Teplitsky D, McEachern E, Carter RL, Xu H, Gao E, Zhou Y, Tilley DG. Myeloid cell-specific deletion of epidermal growth factor receptor aggravates acute cardiac injury. Clin Sci (Lond) 2023; 137:1513-1531. [PMID: 37728308 PMCID: PMC10758753 DOI: 10.1042/cs20230804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Myeloid cells, including macrophages, play important roles as first responders to cardiac injury and stress. Epidermal growth factor receptor (EGFR) has been identified as a mediator of macrophage responsiveness to select diseases, though its impact on cardiac function or remodeling following acute ischemic injury is unknown. We aimed to define the role of myeloid cell-specific EGFR in the regulation of cardiac function and remodeling following acute myocardial infarction (MI)-induced injury. Floxed EGFR mice were bred with homozygous LysM-Cre (LMC) transgenic mice to yield myeloid-specific EGFR knockout (mKO) mice. Via echocardiography, immunohistochemistry, RNA sequencing and flow cytometry, the impact of myeloid cell-specific EGFR deletion on cardiac structure and function was assessed at baseline and following injury. Compared with LMC controls, myeloid cell-specific EGFR deletion led to an increase in cardiomyocyte hypertrophy at baseline. Bulk RNASeq analysis of isolated cardiac Cd11b+ myeloid cells revealed substantial changes in mKO cell transcripts at baseline, particularly in relation to predicted decreases in neovascularization. In response to myocardial infarction, mKO mice experienced a hastened decline in cardiac function with isolated cardiac Cd11b+ myeloid cells expressing decreased levels of the pro-reparative mediators Vegfa and Il10, which coincided with enhanced cardiac hypertrophy and decreased capillary density. Overall, loss of EGFR qualitatively alters cardiac resident macrophages that promotes a low level of basal stress and a more rapid decrease in cardiac function along with worsened repair following acute ischemic injury.
Collapse
Affiliation(s)
- Ama D. Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Tapas K. Nayak
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Viren Patwa
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - David Teplitsky
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Erin McEachern
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Rhonda L. Carter
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Heli Xu
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, U.S.A
| | - Douglas G. Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, U.S.A
| |
Collapse
|
20
|
Xiong Y, Wang Y, Yang T, Luo Y, Xu S, Li L. Receptor Tyrosine Kinase: Still an Interesting Target to Inhibit the Proliferation of Vascular Smooth Muscle Cells. Am J Cardiovasc Drugs 2023; 23:497-518. [PMID: 37524956 DOI: 10.1007/s40256-023-00596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Vascular smooth muscle cells (VSMCs) proliferation is a critical event that contributes to the pathogenesis of vascular remodeling such as hypertension, restenosis, and pulmonary hypertension. Increasing evidences have revealed that VSMCs proliferation is associated with the activation of receptor tyrosine kinases (RTKs) by their ligands, including the insulin-like growth factor receptor (IGFR), fibroblast growth factor receptor (FGFR), epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). Moreover, some receptor tyrosinase inhibitors (TKIs) have been found and can prevent VSMCs proliferation to attenuate vascular remodeling. Therefore, this review will describe recent research progress on the role of RTKs and their inhibitors in controlling VSMCs proliferation, which helps to better understand the function of VSMCs proliferation in cardiovascular events and is beneficial for the prevention and treatment of vascular disease.
Collapse
Affiliation(s)
- Yilin Xiong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Tao Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yunmei Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
21
|
Bakhashab S, Megantara HP, Mahaputra DK, O’Neill J, Phowira J, Weaver JU. Decoding of miR-7-5p in Colony Forming Unit-Hill Colonies as a Biomarker of Subclinical Cardiovascular Disease-A MERIT Study. Int J Mol Sci 2023; 24:11977. [PMID: 37569355 PMCID: PMC10418446 DOI: 10.3390/ijms241511977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Colony forming unit-Hill (CFU-Hill) colonies were established to serve as a sensitive biomarker for vascular health. In animals, the overexpression of miR-7-5p was shown to be pro-atherogenic and associated with increased cardiovascular disease (CVD) risk. In a MERIT study, we aimed to explore the role of miR-7-5p expression in CFU-Hill colonies in type 1 diabetes mellitus (T1DM) and the effect of metformin in subclinical CVD. The expression of miR-7-5p in CFU-Hill colonies in 29 T1DM subjects without CVD and 20 healthy controls (HC) was measured. Metformin was administered to T1DM subjects for eight weeks. MiR-7-5p was upregulated in T1DM whereas metformin reduced it to HC levels. MiR-7-5p was positively correlated with c-reactive protein, and C-X-C motif chemokine ligand 10. The receiver operating characteristic curve revealed miR-7-5p as a biomarker of CVD, and upregulated miR-7-5p, defining subclinical CVD at a HbA1c level of 44.3 mmol/mol. Ingenuity pathway analysis predicted miR-7-5p to inhibit the mRNA expression of Krüppel-like factor 4, epidermal growth factor receptor, insulin-like growth factor 1 receptor, v-raf-1 murine leukemia viral oncogene homolog 1 and insulin receptor substrate ½, and insulin receptor, while metformin activated these miRNAs via transforming growth factor-β1 and Smad2/3. We proved the pro-atherogenic effect of miR-7-5p that maybe used as a prognostic biomarker.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 2189, Saudi Arabia
| | - Hamzah Pratama Megantara
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Dimas Kirana Mahaputra
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Josie O’Neill
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
| | - Jason Phowira
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Jolanta U. Weaver
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, Newcastle Upon Tyne NE9 6SH, UK
- Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
22
|
Deo R, Dubin RF, Ren Y, Murthy AC, Wang J, Zheng H, Zheng Z, Feldman H, Shou H, Coresh J, Grams M, Surapaneni AL, Bhat Z, Cohen JB, Rahman M, He J, Saraf SL, Go AS, Kimmel PL, Vasan RS, Segal MR, Li H, Ganz P. Proteomic cardiovascular risk assessment in chronic kidney disease. Eur Heart J 2023; 44:2095-2110. [PMID: 37014015 PMCID: PMC10281556 DOI: 10.1093/eurheartj/ehad115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/21/2023] [Accepted: 02/16/2023] [Indexed: 04/05/2023] Open
Abstract
AIMS Chronic kidney disease (CKD) is widely prevalent and independently increases cardiovascular risk. Cardiovascular risk prediction tools derived in the general population perform poorly in CKD. Through large-scale proteomics discovery, this study aimed to create more accurate cardiovascular risk models. METHODS AND RESULTS Elastic net regression was used to derive a proteomic risk model for incident cardiovascular risk in 2182 participants from the Chronic Renal Insufficiency Cohort. The model was then validated in 485 participants from the Atherosclerosis Risk in Communities cohort. All participants had CKD and no history of cardiovascular disease at study baseline when ∼5000 proteins were measured. The proteomic risk model, which consisted of 32 proteins, was superior to both the 2013 ACC/AHA Pooled Cohort Equation and a modified Pooled Cohort Equation that included estimated glomerular filtrate rate. The Chronic Renal Insufficiency Cohort internal validation set demonstrated annualized receiver operating characteristic area under the curve values from 1 to 10 years ranging between 0.84 and 0.89 for the protein and 0.70 and 0.73 for the clinical models. Similar findings were observed in the Atherosclerosis Risk in Communities validation cohort. For nearly half of the individual proteins independently associated with cardiovascular risk, Mendelian randomization suggested a causal link to cardiovascular events or risk factors. Pathway analyses revealed enrichment of proteins involved in immunologic function, vascular and neuronal development, and hepatic fibrosis. CONCLUSION In two sizeable populations with CKD, a proteomic risk model for incident cardiovascular disease surpassed clinical risk models recommended in clinical practice, even after including estimated glomerular filtration rate. New biological insights may prioritize the development of therapeutic strategies for cardiovascular risk reduction in the CKD population.
Collapse
Affiliation(s)
- Rajat Deo
- Division of Cardiovascular Medicine, Electrophysiology Section, Perelman School of Medicine at the University of Pennsylvania, One Convention Avenue, Level 2 / City Side, Philadelphia, PA 19104, USA
| | - Ruth F Dubin
- Division of Nephrology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yue Ren
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Ashwin C Murthy
- Division of Cardiovascular Medicine, Electrophysiology Section, Perelman School of Medicine at the University of Pennsylvania, One Convention Avenue, Level 2 / City Side, Philadelphia, PA 19104, USA
| | - Jianqiao Wang
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Haotian Zheng
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Zihe Zheng
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Harold Feldman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Josef Coresh
- Department of Epidemiology; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University, 2024 E. Monument Street, Room 2-635, Suite 2-600, Baltimore, MD 21287, USA
| | - Morgan Grams
- Department of Epidemiology; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University, 2024 E. Monument Street, Room 2-635, Suite 2-600, Baltimore, MD 21287, USA
| | - Aditya L Surapaneni
- Department of Epidemiology; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - Zeenat Bhat
- Division of Nephrology, University of Michigan, 5100 Brehm Tower, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | - Jordana B Cohen
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
- Renal, Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, 831 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Mahboob Rahman
- Department of Medicine, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Wearn Bldg. 3 Floor. Rm 352, Cleveland, OH 44106, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, SL 18, New Orleans, LA 70112, USA
| | - Santosh L Saraf
- Division of Hematology and Oncology, University of Illinois at Chicago, 1740 West Taylor Street, Chicago, IL 60612, USA
| | - Alan S Go
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA 94612, USA
- Departments of Epidemiology, Biostatistics and Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Section of Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Mark R Segal
- Department of Epidemiology and Biostatistics, University of California, 550 16th Street, 2nd Floor, Box #0560, San Francisco, CA 94143, USA
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Peter Ganz
- Division of Cardiology, Zuckerberg San Francisco General Hospital and Department of Medicine, University of California, San Francisco, 1001 Potrero Avenue, 5G1, San Francisco, CA 94110, USA
| |
Collapse
|
23
|
Imam N, Alam A, Siddiqui MF, Veg A, Bay S, Khan MJI, Ishrat R. Network-medicine approach for the identification of genetic association of parathyroid adenoma with cardiovascular disease and type-2 diabetes. Brief Funct Genomics 2023; 22:250-262. [PMID: 36790356 DOI: 10.1093/bfgp/elac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 02/16/2023] Open
Abstract
Primary hyperparathyroidism is caused by solitary parathyroid adenomas (PTAs) in most cases (⁓85%), and it has been previously reported that PTAs are associated with cardiovascular disease (CVD) and type-2 diabetes (T2D). To understand the molecular basis of PTAs, we have investigated the genetic association amongst PTAs, CVD and T2D through an integrative network-based approach and observed a remarkable resemblance. The current study proposed to compare the PTAs-associated proteins with the overlapping proteins of CVD and T2D to determine the disease relationship. We constructed the protein-protein interaction network by integrating curated and experimentally validated interactions in humans. We found the $11$ highly clustered modules in the network, which contain a total of $13$ hub proteins (TP53, ESR1, EGFR, POTEF, MEN1, FLNA, CDKN2B, ACTB, CTNNB1, CAV1, MAPK1, G6PD and CCND1) that commonly co-exist in PTAs, CDV and T2D and reached to network's hierarchically modular organization. Additionally, we implemented a gene-set over-representation analysis over biological processes and pathways that helped to identify disease-associated pathways and prioritize target disease proteins. Moreover, we identified the respective drugs of these hub proteins. We built a bipartite network that helps decipher the drug-target interaction, highlighting the influential roles of these drugs on apparently unrelated targets and pathways. Targeting these hub proteins by using drug combinations or drug-repurposing approaches will improve the clinical conditions in comorbidity, enhance the potency of a few drugs and give a synergistic effect with better outcomes. This network-based analysis opens a new horizon for more personalized treatment and drug-repurposing opportunities to investigate new targets and multi-drug treatment and may be helpful in further analysis of the mechanisms underlying PTA and associated diseases.
Collapse
Affiliation(s)
- Nikhat Imam
- Institute of Computer Science and Information Technology, Department of Mathematics, Magadh University, Bodh Gaya, Bihar India
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi India
| | - Mohd Faizan Siddiqui
- International Medical Faculty, Osh State University, Osh City, 723500, Kyrgyz Republic Kyrgyzstan
| | - Akhtar Veg
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi India
| | - Sadik Bay
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University; Istanbul Türkiye
| | - Md Jawed Ikbal Khan
- Institute of Computer Science and Information Technology, Department of Mathematics, Magadh University, Bodh Gaya, Bihar India
- Department of Mathematics, Mirza Ghalib College, Magadh University, Bodh Gaya, Bihar India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi India
| |
Collapse
|
24
|
Peters AE, Nguyen M, Green JB, Pearson ER, Buse J, Sourij H, Hernandez AF, Sattar N, Holman RR, Mentz RJ, Shah SH. Proteomic Pathways across Ejection Fraction Spectrum in Heart Failure: an EXSCEL Substudy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.16.23288273. [PMID: 37293003 PMCID: PMC10246051 DOI: 10.1101/2023.05.16.23288273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Ejection fraction (EF) is a key component of heart failure (HF) classification, including the increasingly codified HF with mildly reduced EF (HFmrEF) category. However, the biologic basis of HFmrEF as an entity distinct from HF with preserved EF (HFpEF) and reduced EF (HFrEF) has not been well characterized. Methods The EXSCEL trial randomized participants with type 2 diabetes (T2DM) to once-weekly exenatide (EQW) vs. placebo. For this study, profiling of ∼5000 proteins using the SomaLogic SomaScan platform was performed in baseline and 12-month serum samples from N=1199 participants with prevalent HF at baseline. Principal component analysis (PCA) and ANOVA (FDR p<0.1) were used to determine differences in proteins between three EF groups, as previously curated in EXSCEL (EF>55% [HFpEF], EF 40-55% [HFmrEF], EF<40% [HFrEF]). Cox proportional hazards was used to assess association between baseline levels of significant proteins, and changes in protein level between baseline and 12-month, with time-to-HF hospitalization. Mixed models were used to assess whether significant proteins changed differentially with exenatide vs. placebo therapy. Results Of N=1199 EXSCEL participants with prevalent HF, 284 (24%), 704 (59%) and 211 (18%) had HFpEF, HFmrEF and HFrEF, respectively. Eight PCA protein factors and 221 individual proteins within these factors differed significantly across the three EF groups. Levels of the majority of proteins (83%) demonstrated concordance between HFmrEF and HFpEF, but higher levels in HFrEF, predominated by the domain of extracellular matrix regulation, e.g. COL28A1 and tenascin C [TNC]; p<0.0001. Concordance between HFmrEF and HFrEF was observed in a minority of proteins (1%) including MMP-9 (p<0.0001). Biologic pathways of epithelial mesenchymal transition, ECM receptor interaction, complement and coagulation cascades, and cytokine receptor interaction demonstrated enrichment among proteins with the dominant pattern, i.e. HFmrEF-HFpEF concordance. Baseline levels of 208 (94%) of the 221 proteins were associated with time-to-incident HF hospitalization including domains of extracellular matrix (COL28A1, TNC), angiogenesis (ANG2, VEGFa, VEGFd), myocyte stretch (NT-proBNP), and renal function (cystatin-C). Change in levels of 10 of the 221 proteins from baseline to 12 months (including increase in TNC) predicted incident HF hospitalization (p<0.05). Levels of 30 of the 221 significant proteins (including TNC, NT-proBNP, ANG2) were reduced differentially by EQW compared with placebo (interaction p<0.0001). Conclusions In this HF substudy of a large clinical trial of people with T2DM, we found that serum levels of most proteins across multiple biologic domains were similar between HFmrEF and HFpEF. HFmrEF may be more biologically similar to HFpEF than HFrEF, and specific related biomarkers may offer unique data on prognosis and pharmacotherapy modification with variability by EF.
Collapse
|
25
|
Sun F, Liu J, Wang Y, Yang H, Song D, Fu H, Feng X. BASP1 promotes high glucose-induced endothelial apoptosis in diabetes via activation of EGFR signaling. J Diabetes Investig 2023; 14:535-547. [PMID: 36756695 PMCID: PMC10034959 DOI: 10.1111/jdi.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 02/10/2023] Open
Abstract
AIMS Diabetes mellitus is a common chronic disease of glucose metabolism. Endothelial dysfunction is an early event in diabetes complicated by cardiovascular disease. This study aimed to reveal the expression of BASP1 and its biological roles in endothelial cell dysfunction in diabetes complicated by cardiovascular disease. MATERIALS AND METHODS By analyzing the databases related to diabetes complicated with coronary heart disease, BASP1 was screened out as an upregulated gene. Human umbilical vein endothelial cells (HUVECs) and primary mouse aortic endothelial cells were treated with high glucose to establish cell models of diabetes-related endothelial dysfunction, and the expression changes of BASP1 were verified by RT-qPCR, western blot, and immunofluorescence. BASP1 was silenced or overexpressed by siRNA or overexpression plasmid, and its effects on cell migration, apoptosis, tube formation, inflammatory response, and ROS were detected. The possible signaling pathway of BASP1 was found and the mechanism of BASP1 on promoting the progression of endothelial dysfunction was explored using the EGFR inhibitor, gefitinib. RESULTS Bioinformatics analysis indicated that the expression of BASP1 in patients with diabetes mellitus and concomitant coronary heart disease was increased. High glucose induced the upregulation of BASP1 expression in endothelial cells, and showed a time-dependent relationship. Silencing of BASP1 alleviated the damage of high glucose to endothelial cells. BASP1 regulated EGFR positively. The promoting effect of BASP1 on endothelial cell apoptosis may be achieved by regulating the EGFR pathway. CONCLUSION BASP1 promotes endothelial cell injury induced by high glucose in patients with diabetes, which may be activated by activating the EGFR pathway.
Collapse
Affiliation(s)
- Fengnan Sun
- Department of Laboratory Medicine, Yantaishan Hospital, Yantai, China
| | - Junwei Liu
- Department of Laboratory Medicine, Qishan Hospital, Yantai, China
| | - Yanzheng Wang
- Department of Laboratory Medicine, Yantaishan Hospital, Yantai, China
| | - Hongmei Yang
- Department of Laboratory Medicine, Yantaishan Hospital, Yantai, China
| | - Danfeng Song
- Department of Laboratory Medicine, Yantaishan Hospital, Yantai, China
| | - Haiyan Fu
- Department of Laboratory Medicine, Yantaishan Hospital, Yantai, China
| | - Xingxing Feng
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, China
| |
Collapse
|
26
|
Shoykhet M, Dervishi O, Menauer P, Hiermaier M, Moztarzadeh S, Osterloh C, Ludwig RJ, Williams T, Gerull B, Kääb S, Clauss S, Schüttler D, Waschke J, Yeruva S. EGFR inhibition leads to enhanced desmosome assembly and cardiomyocyte cohesion via ROCK activation. JCI Insight 2023; 8:163763. [PMID: 36795511 PMCID: PMC10070108 DOI: 10.1172/jci.insight.163763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a familial heart disease partly caused by impaired desmosome turnover. Thus, stabilization of desmosome integrity may provide new treatment options. Desmosomes, apart from cellular cohesion, provide the structural framework of a signaling hub. Here, we investigated the role of the epidermal growth factor receptor (EGFR) in cardiomyocyte cohesion. We inhibited EGFR under physiological and pathophysiological conditions using the murine plakoglobin-KO AC model, in which EGFR was upregulated. EGFR inhibition enhanced cardiomyocyte cohesion. Immunoprecipitation showed an interaction of EGFR and desmoglein 2 (DSG2). Immunostaining and atomic force microscopy (AFM) revealed enhanced DSG2 localization and binding at cell borders upon EGFR inhibition. Enhanced area composita length and desmosome assembly were observed upon EGFR inhibition, confirmed by enhanced DSG2 and desmoplakin (DP) recruitment to cell borders. PamGene Kinase assay performed in HL-1 cardiomyocytes treated with erlotinib, an EGFR inhibitor, revealed upregulation of Rho-associated protein kinase (ROCK). Erlotinib-mediated desmosome assembly and cardiomyocyte cohesion were abolished upon ROCK inhibition. Thus, inhibiting EGFR and, thereby, stabilizing desmosome integrity via ROCK might provide treatment options for AC.
Collapse
Affiliation(s)
- Maria Shoykhet
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Orsela Dervishi
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Philipp Menauer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Matthias Hiermaier
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Sina Moztarzadeh
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Colin Osterloh
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Tatjana Williams
- Comprehensive Heart Failure Center and Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Brenda Gerull
- Comprehensive Heart Failure Center and Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Kääb
- Medizinische Klinik und Poliklinik I, LMU Hospital, LMU, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modeling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Sebastian Clauss
- Medizinische Klinik und Poliklinik I, LMU Hospital, LMU, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modeling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, LMU Hospital, LMU, Munich, Germany
| | - Dominik Schüttler
- Medizinische Klinik und Poliklinik I, LMU Hospital, LMU, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modeling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, LMU Hospital, LMU, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Sunil Yeruva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| |
Collapse
|
27
|
Abstract
Hypertension (HT) is among the most common cardiovascular diseases in the world and is an important risk factor for stroke, myocardial infarction, heart failure, and kidney failure. Recent studies have demonstrated that activation of the immune system plays an important role in the occurrence and maintenance of HT. Thus, this research aimed to determine the immune-related biomarkers in HT. In this study, RNA sequencing data of the gene expression profiling datasets (GSE74144) were downloaded from the Gene Expression Omnibus database. Differentially expressed genes between HT and normal samples were identified using the software limma. The immune-related genes associated with HT were screened. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the program "clusterProfiler" of the R package. The protein-protein interaction network of these differentially expressed immune-related genes (DEIRGs) was constructed based on the information from the STRING database. Finally, the TF-hub and miRNA-hub gene regulatory networks were predicted and constructed using the miRNet software. Fifty-nine DEIRGs were observed in HT. The Gene Ontology analysis indicated that DEIRGs were mainly enriched in the positive regulation of cytosolic calcium ions, peptide hormones, protein kinase B signaling, and lymphocyte differentiation. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that these DEIRGs were significantly involved in the intestinal immune network for IgA production, autoimmune thyroid disease, JAK-STAT signaling pathway, hepatocellular carcinoma, and Kaposi sarcoma-associated herpesvirus infection, among others. From the protein-protein interaction network, 5 hub genes (insulin-like growth factor 2, cytokine-inducible Src homology 2-containing protein, suppressor of cytokine signaling 1, cyclin-dependent kinase inhibitor 2A, and epidermal growth factor receptor) were identified. The receiver operating characteristic curve analysis was performed in GSE74144, and all genes with an area under the curve of > 0.7 were identified as the diagnostic genes. Moreover, miRNA-mRNA and TF-mRNA regulatory networks were constructed. Our study identified 5 immune-related hub genes in patients with HT and demonstrated that they were potential diagnostic biomarkers for HT.
Collapse
Affiliation(s)
- Linhu Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Wei Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Jianling Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
- * Correspondence: Jianling Chen, Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People’s Republic of China (e-mail: )
| |
Collapse
|
28
|
Munguia-Galaviz FJ, Miranda-Diaz AG, Cardenas-Sosa MA, Echavarria R. Sigma-1 Receptor Signaling: In Search of New Therapeutic Alternatives for Cardiovascular and Renal Diseases. Int J Mol Sci 2023; 24:ijms24031997. [PMID: 36768323 PMCID: PMC9916216 DOI: 10.3390/ijms24031997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Cardiovascular and renal diseases are among the leading causes of death worldwide, and regardless of current efforts, there is a demanding need for therapeutic alternatives to reduce their progression to advanced stages. The stress caused by diseases leads to the activation of protective mechanisms in the cell, including chaperone proteins. The Sigma-1 receptor (Sig-1R) is a ligand-operated chaperone protein that modulates signal transduction during cellular stress processes. Sig-1R interacts with various ligands and proteins to elicit distinct cellular responses, thus, making it a potential target for pharmacological modulation. Furthermore, Sig-1R ligands activate signaling pathways that promote cardioprotection, ameliorate ischemic injury, and drive myofibroblast activation and fibrosis. The role of Sig-1R in diseases has also made it a point of interest in developing clinical trials for pain, neurodegeneration, ischemic stroke, depression in patients with heart failure, and COVID-19. Sig-1R ligands in preclinical models have significantly beneficial effects associated with improved cardiac function, ventricular remodeling, hypertrophy reduction, and, in the kidney, reduced ischemic damage. These basic discoveries could inform clinical trials for heart failure (HF), myocardial hypertrophy, acute kidney injury (AKI), and chronic kidney disease (CKD). Here, we review Sig-1R signaling pathways and the evidence of Sig-1R modulation in preclinical cardiac and renal injury models to support the potential therapeutic use of Sig-1R agonists and antagonists in these diseases.
Collapse
Affiliation(s)
- Francisco Javier Munguia-Galaviz
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Division de Ciencias de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzman 49000, Jalisco, Mexico
| | - Alejandra Guillermina Miranda-Diaz
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Miguel Alejandro Cardenas-Sosa
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Raquel Echavarria
- CONACYT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
- Correspondence:
| |
Collapse
|
29
|
Liu M, Li Z, Ouyang Y, Chen M, Guo X, Mazhar M, Kang J, Zhou H, Wu Q, Yang S. Material basis and integrative pharmacology of danshen decoction in the treatment of cardiovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154503. [PMID: 36332387 DOI: 10.1016/j.phymed.2022.154503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are among the primary and predominant threats to human health with increasing incidence. Danshen Decoction (DSD) as an adjuvant therapy can benefit CVDs patients by improving clinical efficacy. PURPOSE The purpose of this study was to identify the active components and potential pharmacological mechanisms of DSD by combining mass spectrometry with a network pharmacology strategy and to review the use of DSD in the treatment of CVDs. METHOD First, the composition of DSD was analyzed by ultrahigh-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). Second, the network pharmacology method was used to elucidate the underlying material basis and possible pharmacological mechanism of DSD for the treatment of CVDs. Finally, clinical and experimental studies on DSD in the past ten years were retrieved from the PubMed and CNKI database, and the content of these studies was used to summarize the latest progress in DSD treatment of CVDs. OUTCOME A total of 35 compounds were found in DSD by manual identification from the analysis of MS, which may be the material basis for the therapeutic effect of DSD. After taking the intersection of 2086 targets related to CVDs, these 35 compounds are considered to play a role in the treatment of CVDs through 210 targets including signal transducer and activator of transcription 3 (STAT3), sarcoma (SRC) and phosphoinositide-3-kinase regulatory subunit (PIK3R), and a total of 168 signaling pathways were involved in the regulation of CVDs by DSD, including PI3K-AKT signaling pathway, Alzheimer disease, and Rap1 signaling pathway. A total of 29 clinical studies using DSD in the treatment of CVDs were included in the literature review, and these studies showed the positive significance of DSD as adjuvant therapy, while 14 experimental studies included in the literature review also demonstrated the effectiveness of DSD in the treatment of CVDs. CONCLUSION DSD plays a role in the treatment of CVDs through a variety of active ingredients. Large-scale clinical research and more in-depth experimental research will help to further reveal the mechanism of DSD in the treatment of CVDs.
Collapse
Affiliation(s)
- Mengnan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, PR China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Ziyi Li
- School of Clinical Medicine, Southwest Medical University, Luzhou 646000, PR China
| | - Yue Ouyang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China
| | - Mingtai Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China; Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518000, PR China
| | - Xin Guo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China
| | - Maryam Mazhar
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, PR China
| | - Junli Kang
- School of Clinical Medicine, Southwest Medical University, Luzhou 646000, PR China
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510000, PR China.
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China.
| | - Sijin Yang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, PR China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, PR China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, PR China.
| |
Collapse
|
30
|
Du S, Chen J, Kim H, Walker ME, Lichtenstein AH, Chatterjee N, Ganz P, Yu B, Vasan RS, Coresh J, Rebholz CM. Plasma Protein Biomarkers of Healthy Dietary Patterns: Results from the Atherosclerosis Risk in Communities Study and the Framingham Heart Study. J Nutr 2023; 153:34-46. [PMID: 36913470 PMCID: PMC10196586 DOI: 10.1016/j.tjnut.2022.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Molecular mechanisms underlying the benefits of healthy dietary patterns are poorly understood. Identifying protein biomarkers of dietary patterns can contribute to characterizing biological pathways influenced by food intake. OBJECTIVES This study aimed to identify protein biomarkers associated with four indexes of healthy dietary patterns: Healthy Eating Index-2015 (HEI-2015); Alternative Healthy Eating Index-2010 (AHEI-2010); DASH diet; and alternate Mediterranean Diet (aMED). METHODS Analyses were conducted on 10,490 Black and White men and women aged 49-73 y from the ARIC study at visit 3 (1993-1995). Dietary intake data were collected using a food frequency questionnaire, and plasma proteins were quantified using an aptamer-based proteomics assay. Multivariable linear regression models were used to examine the association between 4955 proteins and dietary patterns. We performed pathway overrepresentation analysis for diet-related proteins. An independent study population from the Framingham Heart Study was used for replication analyses. RESULTS In the multivariable-adjusted models, 282 out of 4955 proteins (5.7%) were significantly associated with at least one dietary pattern (HEI-2015: 137; AHEI-2010: 72; DASH: 254; aMED: 35; P value < 0.05/4955 = 1.01 × 10-5). There were 148 proteins that were associated with only one dietary pattern (HEI-2015: 22; AHEI-2010: 5; DASH: 121; aMED: 0), and 20 proteins were associated with all four dietary patterns. Five unique biological pathways were significantly enriched by diet-related proteins. Seven out of 20 proteins associated with all dietary patterns in the ARIC study were available for replication analyses, and 6 out of these 7 proteins were consistent in direction and significantly associated with at least 1 dietary pattern in the Framingham Heart Study (HEI-2015: 2; AHEI-2010: 4; DASH: 6; aMED: 4; P value < 0.05/7 = 7.14 × 10-3). CONCLUSIONS A large-scale proteomic analysis identified plasma protein biomarkers that are representative of healthy dietary patterns among middle-aged and older US adult population. These protein biomarkers may be useful objective indicators of healthy dietary patterns.
Collapse
Affiliation(s)
- Shutong Du
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Jingsha Chen
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Hyunju Kim
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Maura E Walker
- Department of Health Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA; Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Nilanjan Chatterjee
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Peter Ganz
- Cardiovascular Division, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Josef Coresh
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Casey M Rebholz
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
31
|
Sylvén C, Wärdell E, Månsson-Broberg A, Cingolani E, Ampatzis K, Larsson L, Björklund Å, Giacomello S. High cardiomyocyte diversity in human early prenatal heart development. iScience 2022; 26:105857. [PMID: 36624836 PMCID: PMC9823232 DOI: 10.1016/j.isci.2022.105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/19/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiomyocytes play key roles during cardiogenesis, but have poorly understood features, especially in prenatal stages. Here, we characterized human prenatal cardiomyocytes, 6.5-7 weeks post-conception, by integrating single-cell RNA sequencing, spatial transcriptomics, and ligand-receptor interaction information. Using a computational workflow developed to dissect cell type heterogeneity, localize cell types, and explore their molecular interactions, we identified eight types of developing cardiomyocyte, more than double compared to the ones identified in the Human Developmental Cell Atlas. These have high variability in cell cycle activity, mitochondrial content, and connexin gene expression, and are differentially distributed in the ventricles, including outflow tract, and atria, including sinoatrial node. Moreover, cardiomyocyte ligand-receptor crosstalk is mainly with non-cardiomyocyte cell types, encompassing cardiogenesis-related pathways. Thus, early prenatal human cardiomyocytes are highly heterogeneous and develop unique location-dependent properties, with complex ligand-receptor crosstalk. Further elucidation of their developmental dynamics may give rise to new therapies.
Collapse
Affiliation(s)
- Christer Sylvén
- Department of Medicine, Karolinska Institute, Huddinge, Sweden,Corresponding author
| | - Eva Wärdell
- Department of Medicine, Karolinska Institute, Huddinge, Sweden
| | | | | | | | - Ludvig Larsson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Åsa Björklund
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden,Corresponding author
| |
Collapse
|
32
|
Wang D, Wang T, Zhang Z, Li Z, Guo Y, Zhao G, Wu L. Recent advances in the effects of dietary polyphenols on inflammation in vivo: potential molecular mechanisms, receptor targets, safety issues, and uses of nanodelivery system and polyphenol polymers. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Orofiamma LA, Vural D, Antonescu CN. Control of cell metabolism by the epidermal growth factor receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119359. [PMID: 36089077 DOI: 10.1016/j.bbamcr.2022.119359] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) triggers the activation of many intracellular signals that control cell proliferation, growth, survival, migration, and differentiation. Given its wide expression, EGFR has many functions in development and tissue homeostasis. Some of the cellular outcomes of EGFR signaling involve alterations of specific aspects of cellular metabolism, and alterations of cell metabolism are emerging as driving influences in many physiological and pathophysiological contexts. Here we review the mechanisms by which EGFR regulates cell metabolism, including by modulation of gene expression and protein function leading to control of glucose uptake, glycolysis, biosynthetic pathways branching from glucose metabolism, amino acid metabolism, lipogenesis, and mitochondrial function. We further examine how this regulation of cell metabolism by EGFR may contribute to cell proliferation and differentiation and how EGFR-driven control of metabolism can impact certain diseases and therapy outcomes.
Collapse
Affiliation(s)
- Laura A Orofiamma
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Dafne Vural
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
34
|
Florentin J, Zhao J, Tai YY, Sun W, Ohayon LL, O'Neil SP, Arunkumar A, Zhang X, Zhu J, Al Aaraj Y, Watson A, Sembrat J, Rojas M, Chan SY, Dutta P. Loss of Amphiregulin drives inflammation and endothelial apoptosis in pulmonary hypertension. Life Sci Alliance 2022; 5:5/11/e202101264. [PMID: 35732465 PMCID: PMC9218345 DOI: 10.26508/lsa.202101264] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension (PH) is a vascular disease characterized by elevated pulmonary arterial pressure, leading to right ventricular failure and death. Pathogenic features of PH include endothelial apoptosis and vascular inflammation, which drive vascular remodeling and increased pulmonary arterial pressure. Re-analysis of the whole transcriptome sequencing comparing human pulmonary arterial endothelial cells (PAECs) isolated from PH and control patients identified AREG, which encodes Amphiregulin, as a key endothelial survival factor. PAECs from PH patients and mice exhibited down-regulation of AREG and its receptor epidermal growth factor receptor (EGFR). Moreover, the deficiency of AREG and EGFR in ECs in vivo and in vitro heightened inflammatory leukocyte recruitment, cytokine production, and endothelial apoptosis, as well as diminished angiogenesis. Correspondingly, hypoxic mice lacking Egfr in ECs (cdh5 cre/+ Egfr fl/fl) displayed elevated RVSP and pulmonary remodeling. Computational analysis identified NCOA6, PHB2, and RRP1B as putative genes regulating AREG in endothelial cells. The master transcription factor of hypoxia HIF-1⍺ binds to the promoter regions of these genes and up-regulates their expression in hypoxia. Silencing of these genes in cultured PAECs decreased inflammation and apoptosis, and increased angiogenesis in hypoxic conditions. Our pathway analysis and gene silencing experiments revealed that BCL2-associated agonist of cell death (BAD) is a downstream mediator of AREG BAD silencing in ECs lacking AREG mitigated inflammation and apoptosis, and suppressed tube formation. In conclusion, loss of Amphiregulin and its receptor EGFR in PH is a crucial step in the pathogenesis of PH, promoting pulmonary endothelial cell death, influx of inflammatory myeloid cells, and vascular remodeling.
Collapse
Affiliation(s)
- Jonathan Florentin
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jingsi Zhao
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yi-Yin Tai
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wei Sun
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Lee L Ohayon
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Scott P O'Neil
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anagha Arunkumar
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xinyi Zhang
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jianhui Zhu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yassmin Al Aaraj
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Annie Watson
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Partha Dutta
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Platelet-rich plasma: a comparative and economical therapy for wound healing and tissue regeneration. Cell Tissue Bank 2022; 24:285-306. [PMID: 36222966 PMCID: PMC9555256 DOI: 10.1007/s10561-022-10039-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
Rise in the incidences of chronic degenerative diseases with aging makes wound care a socio-economic burden and unceasingly necessitates a novel, economical, and efficient wound healing treatment. Platelets have a crucial role in hemostasis and thrombosis by modulating distinct mechanistic phases of wound healing, such as promoting and stabilizing the clot. Platelet-rich plasma (PRP) contains a high concentration of platelets than naïve plasma and has an autologous origin with no immunogenic adverse reactions. As a consequence, PRP has gained significant attention as a therapeutic to augment the healing process. Since the past few decades, a robust volume of research and clinical trials have been performed to exploit extensive role of PRP in wound healing/tissue regeneration. Despite these rigorous studies and their application in diversified medical fields, efficacy of PRP-based therapies is continuously questioned owing to the paucity of large samplesizes, controlled clinical trials, and standard protocols. This review systematically delineates the process of wound healing and involvement of platelets in tissue repair mechanisms. Additionally, emphasis is laid on PRP, its preparation methods, handling, classification,application in wound healing, and PRP as regenerative therapeutics combined with biomaterials and mesenchymal stem cells (MSCs).
Collapse
|
36
|
Pandhi P, Ter Maaten JM, Anker SD, Ng LL, Metra M, Samani NJ, Lang CC, Dickstein K, de Boer RA, van Veldhuisen DJ, Voors AA, Sama IE. Pathophysiologic Processes and Novel Biomarkers Associated With Congestion in Heart Failure. JACC. HEART FAILURE 2022; 10:623-632. [PMID: 36049813 DOI: 10.1016/j.jchf.2022.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Congestion is the main driver behind symptoms of heart failure (HF), but pathophysiology related to congestion remains poorly understood. OBJECTIVES Using pathway and differential expression analyses, the authors aim to identify biological processes and biomarkers associated with congestion in HF. METHODS A congestion score (sum of jugular venous pressure, orthopnea, and peripheral edema) was calculated in 1,245 BIOSTAT-CHF patients with acute or worsening HF. Patients with a score ranking in the bottom or top categories of congestion were deemed noncongested (n = 408) and severely congested (n = 142), respectively. Plasma concentrations of 363 unique proteins (Olink Proteomics Multiplex CVD-II, CVD-III, Immune Response and Oncology II panels) were compared between noncongested and severely congested patients. Results were validated in an independent validation cohort of 1,342 HF patients (436 noncongested and 232 severely congested). RESULTS Differential protein expression analysis showed 107/363 up-regulated and 6/363 down-regulated proteins in patients with congestion compared with those without. FGF-23, FGF-21, CA-125, soluble ST2, GDF-15, FABP4, IL-6, and BNP were the strongest up-regulated proteins (fold change [FC] >1.30, false discovery rate [FDR], P < 0.05). KITLG, EGF, and PON3 were the strongest down-regulated proteins (FC <-1.30, FDR P < 0.05). Pathways most prominently involved in congestion were related to inflammation, endothelial activation, and response to mechanical stimulus. The validation cohort yielded similar findings. CONCLUSIONS Severe congestion in HF is mainly associated with inflammation, endothelial activation, and mechanical stress. Whether these pathways play a causal role in the onset or progression of congestion remains to be established. The identified biomarkers may become useful for diagnosing and monitoring congestion status.
Collapse
Affiliation(s)
- Paloma Pandhi
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jozine M Ter Maaten
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stefan D Anker
- Department of Cardiology, Charité Universitätsmedizin, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, German Centre for Cardiovascular Research, Charité Universitätsmedizin, Berlin, Germany
| | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Leicester, United Kingdom
| | - Marco Metra
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Leicester, United Kingdom
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom; Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Kenneth Dickstein
- University of Bergen, Bergen, Norway; Stavanger University Hospital, Stavanger, Norway
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Iziah E Sama
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
37
|
Leong SK, Hsiao JC, Shie JJ. A Multiscale Molecular Dynamic Analysis Reveals the Effect of Sialylation on EGFR Clustering in a CRISPR/Cas9-Derived Model. Int J Mol Sci 2022; 23:ijms23158754. [PMID: 35955894 PMCID: PMC9368999 DOI: 10.3390/ijms23158754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial and viral pathogens can modulate the glycosylation of key host proteins to facilitate pathogenesis by using various glycosidases, particularly sialidases. Epidermal growth factor receptor (EGFR) signaling is activated by ligand-induced receptor dimerization and oligomerization. Ligand binding induces conformational changes in EGFR, leading to clusters and aggregation. However, information on the relevance of EGFR clustering in the pattern of glycosylation during bacterial and viral invasion remains unclear. In this study, (1) we established CRISPR/Cas9-mediated GFP knock-in (EGFP-KI) HeLa cells expressing fluorescently tagged EGFR at close to endogenous levels to study EGF-induced EGFR clustering and molecular dynamics; (2) We studied the effect of sialylation on EGF-induced EGFR clustering and localization in live cells using a high content analysis platform and raster image correlation spectroscopy (RICS) coupled with a number and brightness (N&B) analysis; (3) Our data reveal that the removal of cell surface sialic acids by sialidase treatment significantly decreases EGF receptor clustering with reduced fluorescence intensity, number, and area of EGFR-GFP clusters per cell upon EGF stimulation. Sialylation appears to mediate EGF-induced EGFR clustering as demonstrated by the change of EGFR-GFP clusters in the diffusion coefficient and molecular brightness, providing new insights into the role of sialylation in EGF-induced EGFR activation; and (4) We envision that the combination of CRISPR/Cas9-mediated fluorescent tagging of endogenous proteins and fluorescence imaging techniques can be the method of choice for studying the molecular dynamics and interactions of proteins in live cells.
Collapse
Affiliation(s)
- Shwee Khuan Leong
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Taiwan International Graduate Program (TIGP), Sustainable Chemical Science & Technology (SCST), Academia Sinica, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu 30050, Taiwan
| | - Jye-Chian Hsiao
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Correspondence:
| |
Collapse
|
38
|
Lee SH, Kwon SC, Ok SH, Ahn SH, Bae SI, Kim JY, Hwang Y, Park KE, Kim M, Sohn JT. Dexmedetomidine-Induced Aortic Contraction Involves Transactivation of the Epidermal Growth Factor Receptor in Rats. Int J Mol Sci 2022; 23:ijms23084320. [PMID: 35457136 PMCID: PMC9024600 DOI: 10.3390/ijms23084320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, we examined whether aortic contraction, induced by the alpha-2 adrenoceptor agonist dexmedetomidine, is involved in the transactivation of the epidermal growth factor receptor (EGFR) in isolated endothelium-denuded rat aortas. Additionally, we aimed to elucidate the associated underlying cellular mechanisms. The effects of the alpha-2 adrenoceptor inhibitor rauwolscine, EGFR tyrosine kinase inhibitor AG1478, Src kinase inhibitors PP1 and PP2, and matrix metalloproteinase inhibitor GM6001 on EGFR tyrosine phosphorylation and c-Jun NH2-terminal kinase (JNK) phosphorylation induced by dexmedetomidine in rat aortic smooth muscles were examined. In addition, the effects of these inhibitors on dexmedetomidine-induced contraction in isolated endothelium-denuded rat aorta were examined. Dexmedetomidine-induced contraction was inhibited by the alpha-1 adrenoceptor inhibitor prazosin, rauwolscine, AG1478, PP1, PP2, and GM6001 alone or by a combined treatment with prazosin and AG1478. AG1478 (3 × 10−6 M) inhibited dexmedetomidine-induced contraction in isolated endothelium-denuded rat aortas pretreated with rauwolscine. Dexmedetomidine-induced EGFR tyrosine and JNK phosphorylation were inhibited by rauwolscine, PP1, PP2, GM6001, and AG1478. Furthermore, dexmedetomidine-induced JNK phosphorylation reduced upon EGFR siRNA treatment. Therefore, these results suggested that the transactivation of EGFR associated with dexmedetomidine-induced contraction, mediated by the alpha-2 adrenoceptor, Src kinase, and matrix metalloproteinase, caused JNK phosphorylation and increased calcium levels.
Collapse
Affiliation(s)
- Soo Hee Lee
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Gyeongsangnam-do, Korea; (S.H.L.); (S.-H.O.)
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 beon-gil, Jinju-si 52727, Gyeongsangnam-do, Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju-si 52727, Gyeongsangnam-do, Korea
| | - Seong-Chun Kwon
- Department of Physiology, Institute of Clinical and Translational Research, Catholic Kwandong University, College of Medicine, Gangneung 25601, Korea;
| | - Seong-Ho Ok
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Gyeongsangnam-do, Korea; (S.H.L.); (S.-H.O.)
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 beon-gil, Jinju-si 52727, Gyeongsangnam-do, Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju-si 52727, Gyeongsangnam-do, Korea
| | - Seung Hyun Ahn
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si 52727, Gyeongsangnam-do, Korea; (S.H.A.); (S.I.B.); (J.-Y.K.); (Y.H.); (K.-E.P.); (M.K.)
| | - Sung Il Bae
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si 52727, Gyeongsangnam-do, Korea; (S.H.A.); (S.I.B.); (J.-Y.K.); (Y.H.); (K.-E.P.); (M.K.)
| | - Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si 52727, Gyeongsangnam-do, Korea; (S.H.A.); (S.I.B.); (J.-Y.K.); (Y.H.); (K.-E.P.); (M.K.)
| | - Yeran Hwang
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si 52727, Gyeongsangnam-do, Korea; (S.H.A.); (S.I.B.); (J.-Y.K.); (Y.H.); (K.-E.P.); (M.K.)
| | - Kyeong-Eon Park
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si 52727, Gyeongsangnam-do, Korea; (S.H.A.); (S.I.B.); (J.-Y.K.); (Y.H.); (K.-E.P.); (M.K.)
| | - Mingu Kim
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si 52727, Gyeongsangnam-do, Korea; (S.H.A.); (S.I.B.); (J.-Y.K.); (Y.H.); (K.-E.P.); (M.K.)
| | - Ju-Tae Sohn
- Institute of Health Sciences, Gyeongsang National University, Jinju-si 52727, Gyeongsangnam-do, Korea
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si 52727, Gyeongsangnam-do, Korea
- Correspondence: ; Tel.: +82-55-750-8586
| |
Collapse
|
39
|
Gonciar D, Mocan T, Agoston-Coldea L. Nanoparticles Targeting the Molecular Pathways of Heart Remodeling and Regeneration. Pharmaceutics 2022; 14:pharmaceutics14040711. [PMID: 35456545 PMCID: PMC9028351 DOI: 10.3390/pharmaceutics14040711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 12/10/2022] Open
Abstract
Cardiovascular diseases are the main cause of death worldwide, a trend that will continue to grow over the next decade. The heart consists of a complex cellular network based mainly on cardiomyocytes, but also on endothelial cells, smooth muscle cells, fibroblasts, and pericytes, which closely communicate through paracrine factors and direct contact. These interactions serve as valuable targets in understanding the phenomenon of heart remodeling and regeneration. The advances in nanomedicine in the controlled delivery of active pharmacological agents are remarkable and may provide substantial contribution to the treatment of heart diseases. This review aims to summarize the main mechanisms involved in cardiac remodeling and regeneration and how they have been applied in nanomedicine.
Collapse
Affiliation(s)
- Diana Gonciar
- 2nd Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca 400000, Romania; (D.G.); (L.A.-C.)
| | - Teodora Mocan
- Physiology Department, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca 400000, Romania
- Department of Nanomedicine, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
- Correspondence:
| | - Lucia Agoston-Coldea
- 2nd Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca 400000, Romania; (D.G.); (L.A.-C.)
| |
Collapse
|
40
|
Lasrado N, Borcherding N, Arumugam R, Starr TK, Reddy J. Dissecting the cellular landscape and transcriptome network in viral myocarditis by single-cell RNA sequencing. iScience 2022; 25:103865. [PMID: 35243228 PMCID: PMC8861636 DOI: 10.1016/j.isci.2022.103865] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/11/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
Coxsackievirus B3 (CVB3)-induced myocarditis is commonly employed to study viral pathogenesis in mice. Chronically affected mice may develop dilated cardiomyopathy, which may involve the mediation of immune and nonimmune cells. To dissect this complexity, we performed single-cell RNA sequencing on heart cells from healthy and myocarditic mice, leading us to note significant proportions of myeloid cells, T cells, and fibroblasts. Although the transcriptomes of myeloid cells were mainly of M2 phenotype, the Th17 cells, CTLs, and Treg cells had signatures critical for cytotoxic functions. Fibroblasts were heterogeneous expressing genes important in fibrosis and regulation of inflammation and immune responses. The intercellular communication networks revealed unique interactions and signaling pathways in the cardiac cellulome, whereas myeloid cells and T cells had upregulated unique transcription factors modulating cardiac remodeling functions. Together, our data suggest that M2 cells, T cells, and fibroblasts may cooperatively or independently participate in the pathogenesis of viral myocarditis.
Collapse
Affiliation(s)
- Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Rajkumar Arumugam
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Timothy K. Starr
- Department of Obstetrics and Gynecology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
41
|
Zhou QB, Chen Y, Zhang Y, Li DD, Wang HQ, Jia ZJ, Jin Y, Xu FQ, Zhang Y. Hypermethylation Effects of Yiqihuoxue Decoction in Diabetic Atherosclerosis Using Genome-Wide DNA Methylation Analyses. J Inflamm Res 2022; 15:163-176. [PMID: 35035227 PMCID: PMC8754469 DOI: 10.2147/jir.s335374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose To investigate if a traditional Chinese medicine formulation, called “Yiqihuoxue” (YQHX), could improve diabetic atherosclerosis (DA) and explore potential mechanisms based on DNA methylation. Methods Apolipoprotein E-knockout mice were administered streptozotocin (50 mg/d, i.p.) for 5 days and fed a high-fat diet for 16 weeks. Mice were divided randomly into DA model, rosiglitazone, as well as low-, medium-, and high-dose YQHX groups. Ten healthy C57BL/6J mice were the control group. Serum levels of fasting insulin, blood glucose, homeostasis model-insulin resistance index (HOMA-IR), serum lipids, and inflammatory factors were analyzed after the final treatment. Aorta tissues were collected for staining (hematoxylin and eosin, and Oil red O). Genomic DNA was extracted for methyl-capture sequencing (MC-seq). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) databases were used to analyze differentially methylated genes. Pyrosequencing was used to verify MC-seq data. Results Low-dose and high-dose YQHX could reduce the HOMA-IR (P < 0.05). Low-dose YQHX reduced expression of total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), TNF-α, andI L-6 in serum compared with that in the model group (P < 0.05). Medium-dose YQHX decoction inhibited the expression level of TNF-α (P < 0.05). High-dose YQHX decreased the expression level of IL-6 (P < 0.05). Staining also showed the anti-atherosclerosis effects of YQHX (P < 0.05). MC-seq revealed many abnormally hypermethylated and hypomethylated genes in DA mice compared with those in the control group. KEGG database analysis showed that the hypermethylated genes induced by YQHX treatment were related to pathways in cancer, Hippo signaling, and mitogen activated protein kinase. The network analysis suggested that the hypermethylated genes epidermal growth factor receptor(Egfr) and phosphoinositide-3-kinase regulatory subunit 1(Pik3r1) induced by YQHX treatment had important roles in DA. Pyrosequencing revealed that YQHX treatment increased methylation of AKT1, Nr1h3 and Fabp4 significantly (P < 0.05). Conclusion YQHX decoction had positive treatment effects against DA, because it could regulate aberrant hypomethylation of DNA.
Collapse
Affiliation(s)
- Qing-Bing Zhou
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Yao Chen
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Yan Zhang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Dan-Dan Li
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Hong-Qin Wang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Zi-Jun Jia
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Yu Jin
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, People's Republic of China
| | - Feng-Qin Xu
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| | - Ying Zhang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China
| |
Collapse
|
42
|
Luo Y, Tang H, Zhang Z, Zhao R, Wang C, Hou W, Huang Q, Liu J. Pharmacological inhibition of epidermal growth factor receptor attenuates intracranial aneurysm formation by modulating the phenotype of vascular smooth muscle cells. CNS Neurosci Ther 2022; 28:64-76. [PMID: 34729926 PMCID: PMC8673708 DOI: 10.1111/cns.13735] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022] Open
Abstract
AIM To study the effect of pharmacological inhibition of epidermal growth factor receptor (EGFR) on intracranial aneurysm (IA) initiation. METHODS Human IA samples were analyzed for the expression of p-EGFR and alpha smooth muscle actin (α-SMA) by immunofluorescence (IF). Rat models of IA were established to evaluate the ability of the EGFR inhibitor, erlotinib, to attenuate the incidence of IA. We analyzed anterior cerebral artery tissues by pathological and proteomic detection for the expression of p-EGFR and relevant proteins, and vessel casting was used to evaluate the incidence of aneurysms in each group. Rat vascular smooth muscle cells (VSMCs) and endothelial cells were extracted and used to establish an in vitro co-culture model in a flow chamber with or without erlotinib treatment. We determined p-EGFR and relevant protein expression in VSMCs by immunoblotting analysis. RESULTS Epidermal growth factor receptor activation was found in human IA vessel walls and rat anterior cerebral artery walls. Treatment with erlotinib markedly attenuated the incidence of IA by inhibiting vascular remodeling and pro-inflammatory transformation of VSMC in rat IA vessel walls. Activation of EGFR in rat VSMCs and phenotypic modulation of rat VSMCs were correlated with the strength of shear stress in vitro, and treatment with erlotinib reduced phenotypic modulation of rat VSMCs. In vitro experiments also revealed that EGFR activation could be induced by TNF-α in human brain VSMCs. CONCLUSIONS These results suggest that EGFR plays a critical role in the initiation of IA and that the EGFR inhibitor erlotinib protects rats from IA initiation by regulating phenotypic modulation of VSMCs.
Collapse
Affiliation(s)
- Yin Luo
- Department of Biomedical EngineeringSchool of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Department of NeurosurgeryChanghai HospitalSecond Military Medical UniversityShanghaiChina
| | - Haishuang Tang
- Department of NeurosurgeryChanghai HospitalSecond Military Medical UniversityShanghaiChina
| | - Zhaolong Zhang
- Department of NeurologyStrategic Support Force Medical Center of PLABeijingChina
| | - Rui Zhao
- Department of NeurosurgeryChanghai HospitalSecond Military Medical UniversityShanghaiChina
| | - Chuanchuan Wang
- Department of NeurosurgeryChanghai HospitalSecond Military Medical UniversityShanghaiChina
| | - Wenguang Hou
- Department of Biomedical EngineeringSchool of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Qinghai Huang
- Department of NeurosurgeryChanghai HospitalSecond Military Medical UniversityShanghaiChina
| | - Jianmin Liu
- Department of NeurosurgeryChanghai HospitalSecond Military Medical UniversityShanghaiChina
| |
Collapse
|
43
|
Gém JB, Kovács KB, Szalai L, Szakadáti G, Porkoláb E, Szalai B, Turu G, Tóth AD, Szekeres M, Hunyady L, Balla A. Characterization of Type 1 Angiotensin II Receptor Activation Induced Dual-Specificity MAPK Phosphatase Gene Expression Changes in Rat Vascular Smooth Muscle Cells. Cells 2021; 10:3538. [PMID: 34944046 PMCID: PMC8700539 DOI: 10.3390/cells10123538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/03/2023] Open
Abstract
Activation of the type I angiotensin receptor (AT1-R) in vascular smooth muscle cells (VSMCs) plays a crucial role in the regulation of blood pressure; however, it is also responsible for the development of pathological conditions such as vascular remodeling, hypertension and atherosclerosis. Stimulation of the VSMC by angiotensin II (AngII) promotes a broad variety of biological effects, including gene expression changes. In this paper, we have taken an integrated approach in which an analysis of AngII-induced gene expression changes has been combined with the use of small-molecule inhibitors and lentiviral-based gene silencing, to characterize the mechanism of signal transduction in response to AngII stimulation in primary rat VSMCs. We carried out Affymetrix GeneChip experiments to analyze the effects of AngII stimulation on gene expression; several genes, including DUSP5, DUSP6, and DUSP10, were identified as upregulated genes in response to stimulation. Since various dual-specificity MAPK phosphatase (DUSP) enzymes are important in the regulation of mitogen-activated protein kinase (MAPK) signaling pathways, these genes have been selected for further analysis. We investigated the kinetics of gene-expression changes and the possible signal transduction processes that lead to altered expression changes after AngII stimulation. Our data shows that the upregulated genes can be stimulated through multiple and synergistic signal transduction pathways. We have also found in our gene-silencing experiments that epidermal growth factor receptor (EGFR) transactivation is not critical in the AngII-induced expression changes of the investigated genes. Our data can help us understand the details of AngII-induced long-term effects and the pathophysiology of AT1-R. Moreover, it can help to develop potential interventions for those symptoms that are induced by the over-functioning of this receptor, such as vascular remodeling, cardiac hypertrophy or atherosclerosis.
Collapse
Affiliation(s)
- Janka Borbála Gém
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
| | - Kinga Bernadett Kovács
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
| | - Laura Szalai
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - Gyöngyi Szakadáti
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
| | - Edit Porkoláb
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - Bence Szalai
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - András Dávid Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
44
|
Chen J, Wang W, Li Z, Xu C, Tian X, Zhang D. Heritability and genome-wide association study of blood pressure in Chinese adult twins. Mol Genet Genomic Med 2021; 9:e1828. [PMID: 34586716 PMCID: PMC8606211 DOI: 10.1002/mgg3.1828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Blood pressure (BP) is an independent and important factor for chronic diseases such as cardiovascular diseases and diabetes. METHODS We firstly conducted twin modeling analyses to explore the heritability of BP, including systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP) and mean arterial pressure (MAP), and then performed genome-wide association studies to explore the associated genomic loci, genes, and pathways. RESULTS A total of 380 Chinese twin pairs were included. The AE model containing additive genetic parameter (A) and unique/non-shared environmental parameter (E) was the best fit model, with A accounting for 53.7%, 50.1%, 48.1%, and 53.3% for SBP, DBP, PP and MAP, respectively. No SNP was found to reach the genome-wide significance level (p < 5 × 10-8 ), however, three, four, 14 and nine SNPs were found to exceed suggestive significance level (p < 1 × 10-5 ) for SBP, DBP, PP, and MAP, respectively. And after imputation, 46, 37, 91 and 61 SNPs were found to exceed the suggestive significance level for SBP, DBP, PP, and MAP, respectively. In gene-based analysis, 53 common genes were found among SBP, DBP, PP, and MAP. In pathway enrichment analysis, 672, 706, 701, and 596 biological pathways were associated with SBP, DBP, PP, and MAP, respectively (p < 0.05). CONCLUSION Our study suggests that BP is moderately heritable in the Chinese population and could be mediated by a series of genomic loci, genes, and pathways. Future larger-scale studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Epidemiology and Health StatisticsPublic Health CollegeQingdao UniversityQingdaoChina
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingP. R. China
| | - Weijing Wang
- Department of Epidemiology and Health StatisticsPublic Health CollegeQingdao UniversityQingdaoChina
| | - Zhaoying Li
- Department of Epidemiology and Health StatisticsPublic Health CollegeQingdao UniversityQingdaoChina
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and PreventionQingdao Institute of Preventive MedicineQingdaoShandongChina
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and PreventionQingdao Institute of Preventive MedicineQingdaoShandongChina
| | - Dongfeng Zhang
- Department of Epidemiology and Health StatisticsPublic Health CollegeQingdao UniversityQingdaoChina
| |
Collapse
|
45
|
Si J, Yang S, Sun D, Yu C, Guo Y, Lin Y, Millwood IY, Walters RG, Yang L, Chen Y, Du H, Hua Y, Liu J, Chen J, Chen Z, Chen W, Lv J, Liang L, Li L. Epigenome-wide analysis of DNA methylation and coronary heart disease: a nested case-control study. eLife 2021; 10:e68671. [PMID: 34515027 PMCID: PMC8585480 DOI: 10.7554/elife.68671] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/12/2021] [Indexed: 02/05/2023] Open
Abstract
Background Identifying environmentally responsive genetic loci where DNA methylation is associated with coronary heart disease (CHD) may reveal novel pathways or therapeutic targets for CHD. We conducted the first prospective epigenome-wide analysis of DNA methylation in relation to incident CHD in the Asian population. Methods We did a nested case-control study comprising incident CHD cases and 1:1 matched controls who were identified from the 10 year follow-up of the China Kadoorie Biobank. Methylation level of baseline blood leukocyte DNA was measured by Infinium Methylation EPIC BeadChip. We performed the single cytosine-phosphate-guanine (CpG) site association analysis and network approach to identify CHD-associated CpG sites and co-methylation gene module. Results After quality control, 982 participants (mean age 50.1 years) were retained. Methylation level at 25 CpG sites across the genome was associated with incident CHD (genome-wide false discovery rate [FDR] < 0.05 or module-specific FDR < 0.01). One SD increase in methylation level of identified CpGs was associated with differences in CHD risk, ranging from a 47 % decrease to a 118 % increase. Mediation analyses revealed 28.5 % of the excessed CHD risk associated with smoking was mediated by methylation level at the promoter region of ANKS1A gene (P for mediation effect = 0.036). Methylation level at the promoter region of SNX30 was associated with blood pressure and subsequent risk of CHD, with the mediating proportion to be 7.7 % (P = 0.003) via systolic blood pressure and 6.4 % (P = 0.006) via diastolic blood pressure. Network analysis revealed a co-methylation module associated with CHD. Conclusions We identified novel blood methylation alterations associated with incident CHD in the Asian population and provided evidence of the possible role of epigenetic regulations in the smoking- and blood pressure-related pathways to CHD risk. Funding This work was supported by National Natural Science Foundation of China (81390544 and 91846303). The CKB baseline survey and the first re-survey were supported by a grant from the Kadoorie Charitable Foundation in Hong Kong. The long-term follow-up is supported by grants from the UK Wellcome Trust (202922/Z/16/Z, 088158/Z/09/Z, 104085/Z/14/Z), grant (2016YFC0900500, 2016YFC0900501, 2016YFC0900504, 2016YFC1303904) from the National Key R&D Program of China, and Chinese Ministry of Science and Technology (2011BAI09B01).
Collapse
Affiliation(s)
- Jiahui Si
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science CenterBeijingChina
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Songchun Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science CenterBeijingChina
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science CenterBeijingChina
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science CenterBeijingChina
| | - Yu Guo
- Chinese Academy of Medical SciencesBeijingChina
| | - Yifei Lin
- Department of Urology, West China Hospital, Sichuan UniversityChengduChina
| | - Iona Y Millwood
- Medical Research Council Population Health Research Unit at the University of OxfordOxfordUnited Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| | - Robin G Walters
- Medical Research Council Population Health Research Unit at the University of OxfordOxfordUnited Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| | - Ling Yang
- Medical Research Council Population Health Research Unit at the University of OxfordOxfordUnited Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| | - Yiping Chen
- Medical Research Council Population Health Research Unit at the University of OxfordOxfordUnited Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| | - Huaidong Du
- Medical Research Council Population Health Research Unit at the University of OxfordOxfordUnited Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| | - Yujie Hua
- NCDs Prevention and Control Department, Suzhou CDCJiangsuChina
| | - Jingchao Liu
- NCDs Prevention and Control Department, Wuzhong CDCJiangsuChina
| | - Junshi Chen
- China National Center for Food Safety Risk AssessmentBeijingChina
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of OxfordOxfordUnited Kingdom
| | - Wei Chen
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane UniversityNew OrleansUnited States
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science CenterBeijingChina
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of EducationBeijingChina
- Peking University Institute of Environmental MedicineBeijingChina
| | - Liming Liang
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science CenterBeijingChina
| | | |
Collapse
|
46
|
Enarsson M, Feldreich T, Byberg L, Nowak C, Lind L, Ärnlöv J. Association between Cardiorespiratory Fitness and Circulating Proteins in 50-Year-Old Swedish Men and Women: a Cross-Sectional Study. SPORTS MEDICINE-OPEN 2021; 7:52. [PMID: 34312731 PMCID: PMC8313632 DOI: 10.1186/s40798-021-00343-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/04/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS A strong cardiorespiratory fitness is suggested to have beneficial effects on cardiovascular risk; the exact mechanisms underlying the cardioprotective effects of fitness remain uncertain. Our aim was to investigate associations between cardiorespiratory fitness and multiple plasma proteins, in order to obtain insights about physiological pathways associated with the effects of exercise on cardiovascular health. METHODS In the Prospective investigation of Obesity, Energy and Metabolism (POEM) study (n=444 adults aged 50 years, 50% women), cardiorespiratory fitness was measured by a maximal exercise test on bicycle ergometer with gas exchange (VO2peak) normalized for body lean mass (dual-energy X-ray absorptiometry (DXA)). We measured 82 cardiovascular proteins associated with cardiovascular pathology and inflammation in plasma samples with a proximity extension assay. RESULTS In sex-adjusted linear regression, VO2peak was associated with 18 proteins after Bonferroni correction for multiple testing (p<0.0006). Following additional adjustment for fat mass (DXA), fasting glucose (mmol/L), low-density lipoprotein (LDL, mmol/L), smoking status, waist/hip ratio, blood pressure (mmHg), education level, and lpnr (lab sequence number), higher VO2peak was significantly associated with lower levels of 6 proteins: fatty-acid binding protein-4 (FABP4), interleukin-6 (IL-6), leptin, cystatin-B (CSTB), interleukin-1 receptor antagonist (IL-1RA), and growth differentiation factor 15 (GDF-15), and higher levels of 3 proteins: galanin, kallikrein-6 (KLK6), and heparin-binding EGF-like growth factor (HB-EGF), at nominal p-values (p<0.05). CONCLUSIONS We identified multiple novel associations between cardiorespiratory fitness and plasma proteins involved in several atherosclerotic processes and key cellular mechanisms such as inflammation, energy homeostasis, and protease activity, which shed new light on how exercise asserts its beneficial effects on cardiovascular health. Our findings encourage additional studies in order to understand the underlying causal mechanisms for these associations.
Collapse
Affiliation(s)
- Malin Enarsson
- Center for Clinical Research Dalarna, Uppsala University, Region Dalarna, Nissers väg 3, 79182, Falun, Sweden
| | - Tobias Feldreich
- School of Health and Social Studies, Dalarna University, 79188, Falun, Sweden
| | - Liisa Byberg
- Department of Surgical Sciences, Orthopedics, Uppsala University, Dag Hammarskjölds väg 14, B 75185, Uppsala, Sweden
| | - Christoph Nowak
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Alfred Nobels Allé 23, 14183, Huddinge, SE, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Dag Hammarskölds väg 10B, 75237, Uppsala, Sweden
| | - Johan Ärnlöv
- School of Health and Social Studies, Dalarna University, 79188, Falun, Sweden. .,Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Alfred Nobels Allé 23, 14183, Huddinge, SE, Sweden.
| |
Collapse
|
47
|
Palanisamy S, Xue C, Ishiyama S, Naga Prasad SV, Gabrielson K. GPCR-ErbB transactivation pathways and clinical implications. Cell Signal 2021; 86:110092. [PMID: 34303814 DOI: 10.1016/j.cellsig.2021.110092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
Cell surface receptors including the epidermal growth factor receptor (EGFR) family and G-protein coupled receptors (GPCRs) play quintessential roles in physiology, and in diseases, including cardiovascular diseases. While downstream signaling from these individual receptor families has been well studied, the cross-talk between EGF and GPCR receptor families is still incompletely understood. Including members of both receptor families, the number of receptor and ligand combinations for unique interactions is vast, offering a frontier of pharmacologic targets to explore for preventing and treating disease. This molecular cross-talk, called receptor transactivation, is reviewed here with a focus on the cardiovascular system featuring the well-studied GPCR receptors, but also discussing less-studied receptors from both families for a broad understanding of context of expansile interactions, repertoire of cellular signaling, and disease consequences. Attention is given to cell type, level of chronicity, and disease context given that transactivation and comorbidities, including diabetes, hypertension, coronavirus infection, impact cardiovascular disease and health outcomes.
Collapse
Affiliation(s)
| | - Carolyn Xue
- University of California, Los Angeles, 101 Hershey Hall, 612 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | - Shun Ishiyama
- Sidney Kimmel Cancer Center, Department of Surgery, Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Coloproctological Surgery, Juntendo University School of Medicine, Tokyo, Japan.
| | - Sathyamangla Venkata Naga Prasad
- NB50, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, 1, Cleveland, OH 44195, USA.
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, 733 North Broadway, Miller Research Building, Room 807, Baltimore, MD 21205-2196, USA.
| |
Collapse
|
48
|
Cheng N, Mo Q, Donelson J, Wang L, Breton G, Rodney GG, Wang J, Hirschi KD, Wehrens XHT, Nakata PA. Crucial Role of Mammalian Glutaredoxin 3 in Cardiac Energy Metabolism in Diet-induced Obese Mice Revealed by Transcriptome Analysis. Int J Biol Sci 2021; 17:2871-2883. [PMID: 34345213 PMCID: PMC8326124 DOI: 10.7150/ijbs.60263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is often associated with metabolic dysregulation and oxidative stress with the latter serving as a possible unifying link between obesity and cardiovascular complications. Glutaredoxins (Grxs) comprise one of the major antioxidant systems in the heart. Although Grx3 has been shown to act as an endogenous negative regulator of cardiac hypertrophy and heart failure, its metabolic impact on cardiac function in diet-induced obese (DIO) mice remains largely unknown. In the present study, analysis of Grx3 expression indicated that Grx3 protein levels, but not mRNA levels, were significantly increased in the hearts of DIO mice. Cardiac-specific Grx3 deletion (Grx3 CKO) mice were viable and grew indistinguishably from their littermates after being fed a high fat diet (HFD) for one month, starting at 2 months of age. After being fed with a HFD for 8 months (starting at 2 months of age); however, Grx3 CKO DIO mice displayed left ventricular systolic dysfunction with a significant decrease in ejection fraction and fractional shortening that was associated with heart failure. ROS production was significantly increased in Grx3 CKO DIO cardiomyocytes compared to control cells. Gene expression analysis revealed a significant decline in the level of transcripts corresponding to genes associated with processes such as fatty acid uptake, mitochondrial fatty acid transport and oxidation, and citrate cycle in Grx3 CKO DIO mice compared to DIO controls. In contrast, an increase in the level of transcripts corresponding to genes associated with glucose uptake and utilization were found in Grx3 CKO DIO mice compared to DIO controls. Taken together, these findings indicate that Grx3 may play a critical role in redox balance and as a metabolic switch in cardiomyocytes contributing to the development and progression of heart failure.
Collapse
Affiliation(s)
- Ninghui Cheng
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qianxing Mo
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jimmonique Donelson
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lingfei Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ghislain Breton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - George G Rodney
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kendal D Hirschi
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xander H T Wehrens
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Nakata
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
49
|
Yu Y, Wei SG, Weiss RM, Felder RB. Silencing Epidermal Growth Factor Receptor in Hypothalamic Paraventricular Nucleus Reduces Extracellular Signal-regulated Kinase 1 and 2 Signaling and Sympathetic Excitation in Heart Failure Rats. Neuroscience 2021; 463:227-237. [PMID: 33540053 PMCID: PMC8106624 DOI: 10.1016/j.neuroscience.2021.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
Activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling in cardiovascular regulatory regions of the brain contributes to sympathetic excitation in myocardial infarction (MI)-induced heart failure (HF) by increasing brain renin-angiotensin system (RAS) activity, neuroinflammation, and endoplasmic reticulum (ER) stress. The mechanisms eliciting brain ERK1/2 signaling in HF are still poorly understood. We tested the involvement of the epidermal growth factor receptor (EGFR) which, upon activation, stimulates ERK1/2 activity. Adult male Sprague-Dawley rats received bilateral microinjections of a lentiviral vector encoding a small interfering RNA (siRNA) for EGFR, or a scrambled siRNA, into the hypothalamic paraventricular nucleus (PVN), a recognized source of sympathetic overactivity in HF. One week later, coronary artery ligation was performed to induce HF. Four weeks later, the EGFR siRNA-treated HF rats, compared with the scrambled siRNA-treated HF rats, had lower mRNA and protein levels of EGFR, lower levels of phosphorylated (p-) EGFR and p-ERK1/2 and lower mRNA levels of the inflammatory mediators TNF-α, IL-1β and cyclooxygenase-2, the RAS components angiotensin-converting enzyme and angiotensin II type 1a receptor and the ER stress markers BIP and ATF4 in the PVN. They also had lower plasma and urinary norepinephrine levels and improved peripheral manifestations of HF. Additional studies revealed that p-EGFR was increased in the PVN of HF rats, compared with sham-operated control rats. These results suggest that activation of EGFR in the PVN triggers ERK1/2 signaling, along with ER stress, neuroinflammation and RAS activity, in MI-induced HF. Brain EGFR may be a novel target for therapeutic intervention in MI-induced HF.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shun-Guang Wei
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert M Weiss
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert B Felder
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA; VA Medical Center, Iowa City, IA, USA.
| |
Collapse
|
50
|
Rational Molecular Profiling of Receptor-Associated Late Transducer Peptide Selectivity Across Her/Rtk Kinases. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10223-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|