1
|
Zapata-Mercado E, Rainwater RR, Özdemir E, Azarova EV, Krzyscik MA, Pasquale EB, Hristova K. Differential association of EphA2 intracellular regions in biased signaling. J Biol Chem 2025; 301:108383. [PMID: 40049409 PMCID: PMC11999613 DOI: 10.1016/j.jbc.2025.108383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/06/2025] Open
Abstract
Biased signaling is the ability of a receptor to differentially activate certain signaling cascades in response to different ligands. Our previous work demonstrated that the monomeric ephrinA1 ligand and the widely used dimeric ephrinA1-Fc ligand induced EphA2 receptor tyrosine kinase (RTK)-biased signaling. The hypothesis that RTK biased signaling is a consequence of differential interactions between receptor intracellular regions when different ligands are bound to the extracellular region has not been experimentally verified thus far, in part because of the lack of high-resolution structures of full-length RTK oligomers. Here, we compare the effects of deletion of intracellular regions in EphA2 oligomers bound to the biased ligands, monomeric ephrinA1 or ephrinA1-Fc. Our data reveal distinct differences in the intracellular organization of EphA2 oligomers bound to the two ligands, supporting the hypothesis. They also suggest that EphA2 signaling could be modulated by agents that alter interactions between oligomerized EphA2 intracellular regions by binding at sites that can be distant from the ATP-binding pocket.
Collapse
Affiliation(s)
- Elmer Zapata-Mercado
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Randall R Rainwater
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ece Özdemir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Evgenia V Azarova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mateusz A Krzyscik
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Adhikari DP, Stoneman MR, Raicu V. Impact of photobleaching of fluorescent proteins on FRET measurements under two-photon excitation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125294. [PMID: 39437697 DOI: 10.1016/j.saa.2024.125294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Förster resonance energy transfer (FRET) is a widely used technique for nanoscale molecular distance measurements, which makes FRET ideal for studying protein interactions and quaternary structure of protein complexes. In this work, we were interested in how photobleaching of donor and acceptor molecules affects the FRET results under various excitation conditions. We conducted a systematic study, under two-photon excitation, of the effects of the excitation power and the choice of excitation wavelengths upon the measured FRET efficiencies of multiplex protein constructs, consisting of one donor (D) and two acceptors (A) or one acceptor and a non-fluorescent tag (N), using both the kinetic theory of FRET and numerical simulations under given excitation conditions. We found that under low excitation power and properly chosen excitation wavelengths the relationship between the FRET efficiency of a trimeric construct ADA agrees within 2% with the FRET efficiency computed (via the kinetic theory of FRET in the absence of photobleaching) from two dimeric constructs ADN and NDA. By contrast, at higher excitation powers the FRET efficiencies changed significantly due to the photobleaching of both the donor (through direct excitation) and the acceptor (mostly through FRET-induced excitation). Based on these results and numerical simulations using a simple but competent algorithm, we developed guidelines for choosing appropriate experimental conditions for reliable FRET measurements, as well as for interpreting the results of existing experiments using different excitation schemes.
Collapse
Affiliation(s)
- Dhruba P Adhikari
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Michael R Stoneman
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| |
Collapse
|
3
|
Stoneman MR, Yokoi K, Biener G, Killeen TD, Adhikari DP, Rahman S, Harikumar KG, Miller LJ, Raicu V. Mechanistic insights from the atomic-level quaternary structure of short-lived GPCR oligomers in live cells. RESEARCH SQUARE 2024:rs.3.rs-4683780. [PMID: 39070646 PMCID: PMC11275986 DOI: 10.21203/rs.3.rs-4683780/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The functional significance of the interactions between proteins in living cells to form short-lived quaternary structures cannot be overemphasized. Yet, quaternary structure information is not captured by current methods, neither can those methods determine structure within living cells. The dynamic versatility, abundance, and functional diversity of G protein-coupled receptors (GPCRs) pose myriad challenges to existing technologies but also present these proteins as the ideal testbed for new technologies to investigate the complex inter-regulation of receptor-ligand, receptor-receptor, and receptor-downstream effector interfaces in living cells. Here, we present development and use of a novel method capable of overcoming existing challenges by combining distributions (or spectrograms) of FRET efficiencies from populations of fluorescently tagged proteins associating into oligomeric complexes in live cells with diffusion-like trajectories of FRET donors and acceptors obtained from molecular dynamics (MD) simulations. Our approach provides an atom-level picture of the binding interfaces within oligomers of the human secretin receptor (hSecR) in live cells and allows for extraction of mechanistic insights into the function of GPCRs oligomerization. This FRET-MD spectrometry approach is a robust platform for investigating protein-protein binding mechanisms and opens a new avenue for investigating stable as well as fleeting quaternary structures of any membrane proteins in living cells.
Collapse
Affiliation(s)
| | - Koki Yokoi
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Gabriel Biener
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Thomas D Killeen
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Dhruba P Adhikari
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Sadia Rahman
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Kaleeckal G Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| |
Collapse
|
4
|
Stoneman MR, McCoy VE, Gee CT, Bober KMM, Raicu V. Two-photon excitation fluorescence microspectroscopy protocols for examining fluorophores in fossil plants. Commun Biol 2024; 7:53. [PMID: 38184735 PMCID: PMC10771488 DOI: 10.1038/s42003-024-05763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024] Open
Abstract
Fluorescence emission is common in plants. While fluorescence microscopy has been widely used to study living plants, its application in quantifying the fluorescence of fossil plants has been limited. Fossil plant fluorescence, from original fluorophores or formed during fossilization, can offer valuable insights into fluorescence in ancient plants and fossilization processes. In this work, we utilize two-photon fluorescence microspectroscopy to spatially and spectrally resolve the fluorescence emitted by amber-embedded plants, leaf compressions, and silicified wood. The advanced micro-spectroscope utilized, with its pixel-level spectral resolution and line-scan excitation capabilities, allows us to collect comprehensive excitation and emission spectra with high sensitivity and minimal laser damage to the specimens. By applying linear spectral unmixing to the spectrally resolved fluorescence images, we can differentiate between (a) the matrix and (b) the materials that comprise the fossil. Our analysis suggests that the latter correspond to durable tissues such as lignin and cellulose. Additionally, we observe potential signals from chlorophyll derivatives/tannins, although minerals may have contributed to this. This research opens doors to exploring ancient ecosystems and understanding the ecological roles of fluorescence in plants throughout time. Furthermore, the protocols developed herein can also be applied to analyze non-plant fossils and biological specimens.
Collapse
Affiliation(s)
- Michael R Stoneman
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Victoria E McCoy
- Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA.
- School of Geography, Geology, and the Environment, University of Leicester, Leicester, LE1 7RH, UK.
| | - Carole T Gee
- Institute of Geosciences, Division of Paleontology, University of Bonn, Nussallee 8, 53115, Bonn, Germany
| | - Katherine M M Bober
- Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
5
|
Tahoun M, Gee CT, McCoy VE, Stoneman M, Raicu V, Engeser M, Müller CE. Suberin, the hallmark constituent of bark, identified in a 45-million-year-old monkeyhair tree (Coumoxylon hartigii) from Geiseltal, Germany. Sci Rep 2024; 14:118. [PMID: 38167954 PMCID: PMC10761729 DOI: 10.1038/s41598-023-50402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Suberin, a complex biopolymer, forms a water- and gas-insoluble barrier that protects the inner tissues of plants. It is abundant in tree bark, particularly in the cork oak Quercus suber. Anatomically, fossil bark has been described since the Devonian. However, its distinctive constituent suberin has not yet been reported from the fossil record. Here we present unambiguous chemical evidence for intact suberin from the bark of a middle Eocene monkeyhair tree from Geiseltal, eastern Germany. High-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) detected constituents of suberin in the outer layer the fossil monkeyhair tree, which confirms previous morphological interpretation of this tissue as bark, and chemically differentiates this layer from the two tissues of the inner layer. Notably, this is the first study with compelling chemical evidence for suberin in fossil bark. Fluorescence microspectroscopy additionally supports the presence of suberin. Fossilization conditions in the Eocene Geiseltal deposit were likely mild, with low moisture and temperatures, contributing to the remarkable preservation of bark and inner laticifer mats of the monkeyhair trees growing there 45 million years ago.
Collapse
Affiliation(s)
- Mariam Tahoun
- Department of Pharmaceutical and Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Carole T Gee
- Division of Paleontology, Institute of Geosciences, University of Bonn, Nussallee 8, 53115, Bonn, Germany.
| | - Victoria E McCoy
- Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Michael Stoneman
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Valerica Raicu
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Marianne Engeser
- Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121, Bonn, Germany
| | - Christa E Müller
- Department of Pharmaceutical and Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
6
|
Stoneman MR, Raicu V. Fluorescence-Based Detection of Proteins and Their Interactions in Live Cells. J Phys Chem B 2023. [PMID: 37205844 DOI: 10.1021/acs.jpcb.3c01419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent advances in fluorescence-based microscopy techniques, such as single molecule fluorescence, Förster resonance energy transfer (FRET), fluorescence intensity fluctuations analysis, and super-resolution microscopy have expanded our ability to study proteins in greater detail within their native cellular environment and to investigate the roles that protein interactions play in biological functions, such as inter- and intracellular signaling and cargo transport. In this Perspective, we provide an up-to-date overview of the current state of the art in fluorescence-based detection of proteins and their interactions in living cells with an emphasis on recent developments that have facilitated the characterization of the spatial and temporal organization of proteins into oligomeric complexes in the presence and absence of natural and artificial ligands. Further advancements in this field will only deepen our understanding of the underlying mechanisms of biological processes and help develop new therapeutic targets.
Collapse
Affiliation(s)
- Michael R Stoneman
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
7
|
Zapata-Mercado E, Azarova EV, Hristova K. Effect of reversible osmotic stress on live cell plasma membranes, probed via Laurdan general polarization measurements. Biophys J 2022; 121:2411-2418. [PMID: 35596525 DOI: 10.1016/j.bpj.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/10/2021] [Accepted: 05/16/2022] [Indexed: 11/02/2022] Open
Abstract
Here we seek to gain insight into changes in the plasma membrane of live cells upon the application of osmotic stress using Laurdan, a fluorescent probe that reports on membrane organization, hydration, and dynamics. It is known that the application of osmotic stress to lipid vesicles causes a decrease in Laurdan's generalized polarization (GP), which has been interpreted as an indication of membrane stretching. In cells, we see the opposite effects, as GP increases when the osmolarity of the solution is decreased. This increase in GP is associated with the presence of caveolae, which are known to disassemble and flatten in response to osmotic stress.
Collapse
Affiliation(s)
- Elmer Zapata-Mercado
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Evgenia V Azarova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218.
| |
Collapse
|
8
|
Sullivan B, Light T, Vu V, Kapustka A, Hristova K, Leckband D. Mechanical disruption of E-cadherin complexes with epidermal growth factor receptor actuates growth factor-dependent signaling. Proc Natl Acad Sci U S A 2022; 119:e2100679119. [PMID: 35074920 PMCID: PMC8794882 DOI: 10.1073/pnas.2100679119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Increased intercellular tension is associated with enhanced cell proliferation and tissue growth. Here, we present evidence for a force-transduction mechanism that links mechanical perturbations of epithelial (E)-cadherin (CDH1) receptors to the force-dependent activation of epidermal growth factor receptor (EGFR, ERBB1)-a key regulator of cell proliferation. Here, coimmunoprecipitation studies first show that E-cadherin and EGFR form complexes at the plasma membrane that are disrupted by either epidermal growth factor (EGF) or increased tension on homophilic E-cadherin bonds. Although force on E-cadherin bonds disrupts the complex in the absence of EGF, soluble EGF is required to mechanically activate EGFR at cadherin adhesions. Fully quantified spectral imaging fluorescence resonance energy transfer further revealed that E-cadherin and EGFR directly associate to form a heterotrimeric complex of two cadherins and one EGFR protein. Together, these results support a model in which the tugging forces on homophilic E-cadherin bonds trigger force-activated signaling by releasing EGFR monomers to dimerize, bind EGF ligand, and signal. These findings reveal the initial steps in E-cadherin-mediated force transduction that directly link intercellular force fluctuations to the activation of growth regulatory signaling cascades.
Collapse
Affiliation(s)
- Brendan Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Taylor Light
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Vinh Vu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Adrian Kapustka
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218;
| | - Deborah Leckband
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Center for Quantitative Biology and Biophysics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
9
|
Adhikari DP, Biener G, Stoneman MR, Badu DN, Paprocki JD, Eis A, Park PSH, Popa I, Raicu V. Comparative photophysical properties of some widely used fluorescent proteins under two-photon excitation conditions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120133. [PMID: 34243141 DOI: 10.1016/j.saa.2021.120133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Understanding the photophysical properties of fluorescent proteins (FPs), such as emission and absorption spectra, molecular brightness, photostability, and photo-switching, is critical to the development of criteria for their selection as tags for fluorescent-based biological applications. While two-photon excitation imaging techniques have steadily gained popularity - due to comparatively deeper penetration depth, reduced out-of-focus photobleaching, and wide separation between emission spectra and two-photon excitation spectra -, most studies reporting on the photophysical properties of FPs tend to remain focused on single-photon excitation. Here, we report our investigation of the photophysical properties of several commonly used fluorescent proteins using two-photon microscopy with spectral resolution in both excitation and emission. Our measurements indicate that not only the excitation (and sometimes emission) spectra of FPs may be markedly different between single-photon and two-photon excitation, but also their relative brightness and their photo-stability. A good understanding of the photophysical properties of FPs under two-photon excitation is essential for choosing the right tag(s) for a desired experiment.
Collapse
Affiliation(s)
- Dhruba P Adhikari
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Gabriel Biener
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | | | - Dammar N Badu
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Joel D Paprocki
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Annie Eis
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, WI 53211, USA; Department of Biological Sciences, University of Wisconsin-Milwaukee, WI 53211, USA.
| |
Collapse
|
10
|
Regulation of the EphA2 receptor intracellular region by phosphomimetic negative charges in the kinase-SAM linker. Nat Commun 2021; 12:7047. [PMID: 34857764 PMCID: PMC8639986 DOI: 10.1038/s41467-021-27343-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022] Open
Abstract
Eph receptor tyrosine kinases play a key role in cell-cell communication. Lack of structural information on the entire multi-domain intracellular region of any Eph receptor has hindered understanding of their signaling mechanisms. Here, we use integrative structural biology to investigate the structure and dynamics of the EphA2 intracellular region. EphA2 promotes cancer malignancy through a poorly understood non-canonical form of signaling involving serine/threonine phosphorylation of the linker connecting its kinase and SAM domains. We show that accumulation of multiple linker negative charges, mimicking phosphorylation, induces cooperative changes in the EphA2 intracellular region from more closed to more extended conformations and perturbs the EphA2 juxtamembrane segment and kinase domain. In cells, linker negative charges promote EphA2 oligomerization. We also identify multiple kinases catalyzing linker phosphorylation. Our findings suggest multiple effects of linker phosphorylation on EphA2 signaling and imply that coordination of different kinases is necessary to promote EphA2 non-canonical signaling. Eph receptor tyrosine kinases and their ephrin ligands mediate cell-cell communication. Here, the authors assess the structure and dynamics of the EphA2 intracellular region and uncover complex effects of phosphorylation within the linker region between EphA2 kinase and SAM domains.
Collapse
|
11
|
Quantitative characterization of tetraspanin 8 homointeractions in the plasma membrane. Biochem J 2021; 478:3643-3654. [PMID: 34524408 DOI: 10.1042/bcj20210459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
The spatial distribution of proteins in cell membranes is crucial for signal transduction, cell communication and membrane trafficking. Members of the Tetraspanin family organize functional protein clusters within the plasma membrane into so-called Tetraspanin-enriched microdomains (TEMs). Direct interactions between Tetraspanins are believed to be important for this organization. However, studies thus far have utilized mainly co-immunoprecipitation methods that cannot distinguish between direct and indirect, through common partners, interactions. Here we study Tetraspanin 8 homointeractions in living cells via quantitative fluorescence microscopy. We demonstrate that Tetraspanin 8 exists in a monomer-dimer equilibrium in the plasma membrane. Tetraspanin 8 dimerization is described by a high dissociation constant (Kd = 14 700 ± 1100 Tspan8/µm2), one of the highest dissociation constants measured for membrane proteins in live cells. We propose that this high dissociation constant, and thus the short lifetime of the Tetraspanin 8 dimer, is critical for Tetraspanin 8 functioning as a master regulator of cell signaling.
Collapse
|
12
|
Franco ML, Nadezhdin KD, Light TP, Goncharuk SA, Soler-Lopez A, Ahmed F, Mineev KS, Hristova K, Arseniev AS, Vilar M. Interaction between the transmembrane domains of neurotrophin receptors p75 and TrkA mediates their reciprocal activation. J Biol Chem 2021; 297:100926. [PMID: 34216618 PMCID: PMC8327350 DOI: 10.1016/j.jbc.2021.100926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
The neurotrophin receptors p75 and tyrosine protein kinase receptor A (TrkA) play important roles in the development and survival of the nervous system. Biochemical data suggest that p75 and TrkA reciprocally regulate the activities of each other. For instance, p75 is able to regulate the response of TrkA to lower concentrations of nerve growth factor (NGF), and TrkA promotes shedding of the extracellular domain of p75 by α-secretases in a ligand-dependent manner. The current model suggests that p75 and TrkA are regulated by means of a direct physical interaction; however, the nature of such interaction has been elusive thus far. Here, using NMR in micelles, multiscale molecular dynamics, FRET, and functional studies, we identified and characterized the direct interaction between TrkA and p75 through their respective transmembrane domains (TMDs). Molecular dynamics of p75-TMD mutants suggests that although the interaction between TrkA and p75 TMDs is maintained upon mutation, a specific protein interface is required to facilitate TrkA active homodimerization in the presence of NGF. The same mutations in the TMD protein interface of p75 reduced the activation of TrkA by NGF as well as reducing cell differentiation. In summary, we provide a structural model of the p75-TrkA receptor complex necessary for neuronal development stabilized by TMD interactions.
Collapse
Affiliation(s)
- María L Franco
- Unit of Molecular Basis of Neurodegeneration, Institute of Biomedicine CSIC, València, Spain
| | - Kirill D Nadezhdin
- Department of Structural Biology, Laboratory of NMR-Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Taylor P Light
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sergey A Goncharuk
- Department of Structural Biology, Laboratory of NMR-Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation; Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Andrea Soler-Lopez
- Unit of Molecular Basis of Neurodegeneration, Institute of Biomedicine CSIC, València, Spain
| | - Fozia Ahmed
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Konstantin S Mineev
- Department of Structural Biology, Laboratory of NMR-Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation; Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander S Arseniev
- Department of Structural Biology, Laboratory of NMR-Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation.
| | - Marçal Vilar
- Unit of Molecular Basis of Neurodegeneration, Institute of Biomedicine CSIC, València, Spain.
| |
Collapse
|
13
|
Light TP, Gomez-Soler M, Wang Z, Karl K, Zapata-Mercado E, Gehring MP, Lechtenberg BC, Pogorelov TV, Hristova K, Pasquale EB. A cancer mutation promotes EphA4 oligomerization and signaling by altering the conformation of the SAM domain. J Biol Chem 2021; 297:100876. [PMID: 34139238 PMCID: PMC8260879 DOI: 10.1016/j.jbc.2021.100876] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/20/2021] [Accepted: 06/13/2021] [Indexed: 12/24/2022] Open
Abstract
The Eph receptor tyrosine kinases and their ephrin ligands regulate many physiological and pathological processes. EphA4 plays important roles in nervous system development and adult homeostasis, while aberrant EphA4 signaling has been implicated in neurodegeneration. EphA4 may also affect cancer malignancy, but the regulation and effects of EphA4 signaling in cancer are poorly understood. A correlation between decreased patient survival and high EphA4 mRNA expression in melanoma tumors that also highly express ephrinA ligands suggests that enhanced EphA4 signaling may contribute to melanoma progression. A search for EphA4 gain-of-function mutations in melanoma uncovered a mutation of the highly conserved leucine 920 in the EphA4 sterile alpha motif (SAM) domain. We found that mutation of L920 to phenylalanine (L920F) potentiates EphA4 autophosphorylation and signaling, making it the first documented EphA4 cancer mutation that increases kinase activity. Quantitative Föster resonance energy transfer and fluorescence intensity fluctuation (FIF) analyses revealed that the L920F mutation induces a switch in EphA4 oligomer size, from a dimer to a trimer. We propose this switch in oligomer size as a novel mechanism underlying EphA4-linked tumorigenesis. Molecular dynamics simulations suggest that the L920F mutation alters EphA4 SAM domain conformation, leading to the formation of EphA4 trimers that assemble through two aberrant SAM domain interfaces. Accordingly, EphA4 wild-type and the L920F mutant are affected differently by the SAM domain and are differentially regulated by ephrin ligand stimulation. The increased EphA4 activation induced by the L920F mutation, through the novel mechanism we uncovered, supports a functional role for EphA4 in promoting pathogenesis.
Collapse
Affiliation(s)
- Taylor P Light
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maricel Gomez-Soler
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Zichen Wang
- Department of Chemistry, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, and National Center for Supercomputing Applications, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kelly Karl
- Program in Molecular Biophysics, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elmer Zapata-Mercado
- Program in Molecular Biophysics, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Marina P Gehring
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Bernhard C Lechtenberg
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Taras V Pogorelov
- Department of Chemistry, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, and National Center for Supercomputing Applications, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA; Program in Molecular Biophysics, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA.
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| |
Collapse
|
14
|
Wirth D, McCall A, Hristova K. Neural network strategies for plasma membrane selection in fluorescence microscopy images. Biophys J 2021; 120:2374-2385. [PMID: 33961865 PMCID: PMC8390876 DOI: 10.1016/j.bpj.2021.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022] Open
Abstract
In recent years, there has been an explosion of fluorescence microscopy studies of live cells in the literature. The analysis of the images obtained in these studies often requires labor-intensive manual annotation to extract meaningful information. In this study, we explore the utility of a neural network approach to recognize, classify, and select plasma membranes in high-resolution images, thus greatly speeding up data analysis and reducing the need for personnel training for highly repetitive tasks. Two different strategies are tested: 1) a semantic segmentation strategy, and 2) a sequential application of an object detector followed by a semantic segmentation network. Multiple network architectures are evaluated for each strategy, and the best performing solutions are combined and implemented in the Recognition Of Cellular Membranes software. We show that images annotated manually and with the Recognition Of Cellular Membranes software yield identical results by comparing Förster resonance energy transfer binding curves for the membrane protein fibroblast growth factor receptor 3. The approach that we describe in this work can be applied to other image selection tasks in cell biology.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Alec McCall
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
15
|
P120 catenin potentiates constitutive E-cadherin dimerization at the plasma membrane and regulates trans binding. Curr Biol 2021; 31:3017-3027.e7. [PMID: 34019823 DOI: 10.1016/j.cub.2021.04.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/09/2020] [Accepted: 04/26/2021] [Indexed: 11/23/2022]
Abstract
Cadherins are essential adhesion proteins that regulate tissue cohesion and paracellular permeability by assembling dense adhesion plaques at cell-to-cell contacts. Adherens junctions are central to a wide range of tissue functions; identifying protein interactions that potentiate their assembly and regulation has been the focus of research for over 2 decades. Here, we present evidence for a new, unexpected mechanism of cadherin oligomerization on cells. Fully quantified spectral imaging fluorescence resonance energy transfer (FSI-FRET) and fluorescence intensity fluctuation (FIF) measurements directly demonstrate that E-cadherin forms constitutive lateral (cis) dimers at the plasma membrane. Results further show that binding of the cytosolic protein p120ctn binding to the intracellular region is required for constitutive E-cadherin dimerization. This finding differs from a model that attributes lateral (cis) cadherin oligomerization solely to extracellular domain interactions. The present, novel findings are further supported by studies of E-cadherin mutants that uncouple p120ctn binding or with cells in which p120ctn was knocked out using CRISPR-Cas9. Quantitative affinity measurements further demonstrate that uncoupling p120ctn binding reduces the cadherin trans binding affinity and cell adhesion. These findings transform the current model of cadherin assembly at cell surfaces and identify the core building blocks of cadherin-mediated intercellular adhesions. They also identify a new role for p120ctn and reconcile findings that implicate both the extracellular and intracellular cadherin domains in cadherin clustering and intercellular cohesion.
Collapse
|
16
|
Dielectric Spectroscopy Based Detection of Specific and Nonspecific Cellular Mechanisms. SENSORS 2021; 21:s21093177. [PMID: 34063599 PMCID: PMC8124793 DOI: 10.3390/s21093177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022]
Abstract
Using radiofrequency dielectric spectroscopy, we have investigated the impact of the interaction between a G protein-coupled receptor (GPCR), the sterile2 α-factor receptor protein (Ste2), and its cognate agonist ligand, the α-factor pheromone, on the dielectric properties of the plasma membrane in living yeast cells (Saccharomyces cerevisiae). The dielectric properties of a cell suspension containing a saturating concentration of α-factor were measured over the frequency range 40Hz–110 MHz and compared to the behavior of a similarly prepared suspension of cells in the absence of α-factor. A spherical three-shell model was used to determine the electrical phase parameters for the yeast cells in both types of suspensions. The relative permittivity of the plasma membrane showed a significant increase after exposure to α-factor (by 0.06 ± 0.05). The equivalent experiment performed on yeast cells lacking the ability to express Ste2 showed no change in plasma membrane permittivity. Interestingly, a large change also occurred to the electrical properties of the cellular interior after the addition of α-factor to the cell suspending medium, whether or not the cells were expressing Ste2. We present a number of different complementary experiments performed on the yeast to support these dielectric data and interpret the results in terms of specific cellular reactions to the presence of α-factor.
Collapse
|
17
|
Interactions between Ligand-Bound EGFR and VEGFR2. J Mol Biol 2021; 433:167006. [PMID: 33891904 DOI: 10.1016/j.jmb.2021.167006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022]
Abstract
In this work, we put forward the provocative hypothesis that the active, ligand-bound RTK dimers from unrelated subfamilies can associate into heterooligomers with novel signaling properties. This hypothesis is based on a quantitative FRET study that monitors the interactions between EGFR and VEGFR2 in the plasma membrane of live cells in the absence of ligand, in the presence of either EGF or VEGF, and in the presence of both ligands. We show that direct interactions occur between EGFR and VEGFR2 in the absence of ligand and in the presence of the two cognate ligands. However, there are not significant heterointeractions between EGFR and VEGFR2 when only one of the ligands is present. Since RTK dimers and RTK oligomers are believed to signal differently, this finding suggests a novel mechanism for signal diversification.
Collapse
|
18
|
The biophysical basis of receptor tyrosine kinase ligand functional selectivity: Trk-B case study. Biochem J 2021; 477:4515-4526. [PMID: 33094812 DOI: 10.1042/bcj20200671] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/08/2023]
Abstract
Tropomyosin receptor kinase B (Trk-B) belongs to the second largest family of membrane receptors, Receptor Tyrosine Kinases (RTKs). Trk-B is known to interact with three different neurotrophins: Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-4 (NT-4), and Neurotrophin-3 (NT-3). All three neurotrophins are involved in survival and proliferation of neuronal cells, but each induces distinct signaling through Trk-B. We hypothesize that the different biological effects correlate with differences in the interactions between the Trk-B receptors, when bound to different ligands, in the plasma membrane. To test this hypothesis, we use quantitative FRET to characterize Trk-B dimerization in response to NT-3 and NT-4 in live cells, and compare it to the previously published data for Trk-B in the absence and presence of BDNF. Our study reveals that the distinct Trk-B signaling outcomes are underpinned by both different configurations and different stabilities of the three ligand-bound Trk-B dimers in the plasma membrane.
Collapse
|
19
|
Ahmed F, Zapata-Mercado E, Rahman S, Hristova K. The Biased Ligands NGF and NT-3 Differentially Stabilize Trk-A Dimers. Biophys J 2020; 120:55-63. [PMID: 33285113 DOI: 10.1016/j.bpj.2020.11.2262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Trk-A is a receptor tyrosine kinase (RTK) that plays an essential role in the development and functioning of the nervous system. Trk-A is expressed in neurons and signals in response to two ligands, NGF and neurotrophin-3 (NT-3), with very different functional consequences. Thus, NGF and NT-3 are "biased" ligands for Trk-A. Because it has been hypothesized that biased RTK ligands induce differential stabilization of RTK dimers, here, we seek to test this hypothesis for NGF and NT-3. In particular, we use Förster resonance energy transfer (FRET) and fluorescence intensity fluctuation spectroscopy to assess the strength of Trk-A interactions and Trk-A oligomer size in the presence of the two ligands. Although the difference in Trk-A behavior in response to the two ligands has been previously attributed to differences in their binding to Trk-A in the endosomes at low pH, here, we further show differences in the stabilities of the NGF- and NT-3-bound Trk-A dimers in the plasma membrane and at neutral pH. We discuss the biological significance of these new findings and their implications for the design of Trk-A ligands with novel functionalities.
Collapse
Affiliation(s)
- Fozia Ahmed
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Elmer Zapata-Mercado
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Sanim Rahman
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland; Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
20
|
Paprocki J, Biener G, Stoneman M, Raicu V. In-Cell Detection of Conformational Substates of a G Protein-Coupled Receptor Quaternary Structure: Modulation of Substate Probability by Cognate Ligand Binding. J Phys Chem B 2020; 124:10062-10076. [DOI: 10.1021/acs.jpcb.0c06081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Joel Paprocki
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Gabriel Biener
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Michael Stoneman
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
21
|
Paul MD, Grubb HN, Hristova K. Quantifying the strength of heterointeractions among receptor tyrosine kinases from different subfamilies: Implications for cell signaling. J Biol Chem 2020; 295:9917-9933. [PMID: 32467228 PMCID: PMC7380177 DOI: 10.1074/jbc.ra120.013639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Indexed: 01/09/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that control vital cell processes such as cell growth, survival, and differentiation. There is a growing body of evidence that RTKs from different subfamilies can interact and that these diverse interactions can have important biological consequences. However, these heterointeractions are often ignored, and their strengths are unknown. In this work, we studied the heterointeractions of nine RTK pairs, epidermal growth factor receptor (EGFR)-EPH receptor A2 (EPHA2), EGFR-vascular endothelial growth factor receptor 2 (VEGFR2), EPHA2-VEGFR2, EPHA2-fibroblast growth factor receptor 1 (FGFR1), EPHA2-FGFR2, EPHA2-FGFR3, VEGFR2-FGFR1, VEGFR2-FGFR2, and VEGFR2-FGFR3, using a FRET-based method. Surprisingly, we found that RTK heterodimerization and homodimerization strengths can be similar, underscoring the significance of RTK heterointeractions in signaling. We discuss how these heterointeractions can contribute to the complexity of RTK signal transduction, and we highlight the utility of quantitative FRET for probing multiple interactions in the plasma membrane.
Collapse
Affiliation(s)
- Michael D Paul
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hana N Grubb
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kalina Hristova
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Stoneman MR, Biener G, Raicu V. Proposal for simultaneous analysis of fluorescence intensity fluctuations and resonance energy transfer (IFRET) measurements. Methods Appl Fluoresc 2020; 8:035011. [DOI: 10.1088/2050-6120/ab9b68] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Singh DR, King C, Salotto M, Hristova K. Revisiting a controversy: The effect of EGF on EGFR dimer stability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183015. [PMID: 31295474 DOI: 10.1016/j.bbamem.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/23/2019] [Accepted: 07/02/2019] [Indexed: 12/26/2022]
Abstract
EGFR is a receptor tyrosine kinase that plays a critical role in cell proliferation, differentiation, survival and migration. Its activating ligand, EGF, has long been believed to stabilize the EGFR dimer. Two research studies aimed at quantitative measurements of EGFR dimerization, however, have led to contradicting conclusions and have questioned this view. Given the controversy, here we sought to measure the dimerization of EGFR in the absence and in the presence of saturating EGF concentrations, and to tease out the effect of ligand on dimer stability, using a FRET-based quantitative method. Our measurements show that the dissociation constant is decreased ~150 times due to ligand binding, indicative of significant dimer stabilization. In addition, our measurements demonstrate that EGF binding induces a conformational change in the EGFR dimer.
Collapse
Affiliation(s)
- Deo R Singh
- Institute of NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America; Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America
| | - Christopher King
- Institute of NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America; Program in Molecular Biophysics, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America
| | - Matt Salotto
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America
| | - Kalina Hristova
- Institute of NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America; Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America; Program in Molecular Biophysics, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America.
| |
Collapse
|
24
|
Stoneman MR, Biener G, Ward RJ, Pediani JD, Badu D, Eis A, Popa I, Milligan G, Raicu V. A general method to quantify ligand-driven oligomerization from fluorescence-based images. Nat Methods 2019; 16:493-496. [PMID: 31110281 PMCID: PMC7617210 DOI: 10.1038/s41592-019-0408-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/02/2019] [Indexed: 01/30/2023]
Abstract
Here, we introduce fluorescence intensity fluctuation spectrometry for determining the identity, abundance and stability of protein oligomers. This approach was tested on monomers and oligomers of known sizes and was used to uncover the oligomeric states of the epidermal growth factor receptor and the secretin receptor in the presence and absence of their agonist ligands. This method is fast and is scalable for high-throughput screening of drugs targeting protein-protein interactions.
Collapse
Affiliation(s)
- Michael R Stoneman
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Gabriel Biener
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Richard J Ward
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - John D Pediani
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dammar Badu
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Annie Eis
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ionel Popa
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Valerică Raicu
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
25
|
King C, Hristova K. Direct measurements of VEGF–VEGFR2 binding affinities reveal the coupling between ligand binding and receptor dimerization. J Biol Chem 2019; 294:9064-9075. [DOI: 10.1074/jbc.ra119.007737] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/05/2019] [Indexed: 01/13/2023] Open
|
26
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
27
|
Gomez-Soler M, Petersen Gehring M, Lechtenberg BC, Zapata-Mercado E, Hristova K, Pasquale EB. Engineering nanomolar peptide ligands that differentially modulate EphA2 receptor signaling. J Biol Chem 2019; 294:8791-8805. [PMID: 31015204 DOI: 10.1074/jbc.ra119.008213] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/18/2019] [Indexed: 11/06/2022] Open
Abstract
The EPH receptor A2 (EphA2) tyrosine kinase plays an important role in a plethora of biological and disease processes, ranging from angiogenesis and cancer to inflammation and parasitic infections. EphA2 is therefore considered an important drug target. Two short peptides previously identified by phage display, named YSA and SWL, are widely used as EphA2-targeting agents owing to their high specificity for this receptor. However, these peptides have only modest (micromolar) potency. Lack of structural information on the binding interactions of YSA and SWL with the extracellular EphA2 ligand-binding domain (LBD) has for many years precluded structure-guided improvements. We now report the high-resolution (1.53-2.20 Å) crystal structures of the YSA peptide and several of its improved derivatives in complex with the EphA2 LBD, disclosing that YSA targets the ephrin-binding pocket of EphA2 and mimics binding features of the ephrin-A ligands. The structural information obtained enabled iterative peptide modifications conferring low nanomolar potency. Furthermore, contacts observed in the crystal structures shed light on how C-terminal features can convert YSA derivatives from antagonists to agonists that likely bivalently interact with two EphA2 molecules to promote receptor oligomerization, autophosphorylation, and downstream signaling. Consistent with this model, quantitative FRET measurements in live cells revealed that the peptide agonists promote the formation of EphA2 oligomeric assemblies. Our findings now enable rational strategies to differentially modify EphA2 signaling toward desired outcomes by using appropriately engineered peptides. Such peptides could be used as research tools to interrogate EphA2 function and to develop pharmacological leads.
Collapse
Affiliation(s)
- Maricel Gomez-Soler
- From the Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| | - Marina Petersen Gehring
- From the Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| | - Bernhard C Lechtenberg
- From the Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| | - Elmer Zapata-Mercado
- the Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Kalina Hristova
- the Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Elena B Pasquale
- From the Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| |
Collapse
|
28
|
Raicu V. Ab Initio Derivation of the FRET Equations Resolves Old Puzzles and Suggests Measurement Strategies. Biophys J 2019; 116:1313-1327. [PMID: 30885378 DOI: 10.1016/j.bpj.2019.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/27/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022] Open
Abstract
Quantitative imaging methods based on Förster resonance energy transfer (FRET) rely on the determination of an apparent FRET efficiency (Eapp), as well as donor and acceptor concentrations, to uncover the identity and relative abundance of the supramolecular (or quaternary) structures of associating macromolecules. Theoretical work has provided "structure-based" relationships between Eapp distributions and the quaternary structure models that underlie them. By contrast, the body of work that predicates the "signal-based" dependence of Eapp on directly measurable quantities (i.e., fluorescence emission of donors and acceptors) relies largely on plausibility arguments, one of which is the seemingly obvious assumption that the fraction of fluorescent molecules in the ground state pretty nearly equals the total concentration of molecules. In this work, we use the kinetic models of fluorescence in the presence and absence of FRET to rigorously derive useful relationships between Eapp and measurable fluorescence signals. Analysis of these relationships reveals a few anticipated results and some unexpected explanations for known experimental FRET puzzles, and it provides theoretical foundations for optimizing measurement strategies.
Collapse
Affiliation(s)
- Valerica Raicu
- Physics Department and Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin.
| |
Collapse
|
29
|
Dimerization of the Trk receptors in the plasma membrane: effects of their cognate ligands. Biochem J 2018; 475:3669-3685. [PMID: 30366959 DOI: 10.1042/bcj20180637] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell surface receptors which control cell growth and differentiation, and play important roles in tumorigenesis. Despite decades of RTK research, the mechanism of RTK activation in response to their ligands is still under debate. Here, we investigate the interactions that control the activation of the tropomyosin receptor kinase (Trk) family of RTKs in the plasma membrane, using a FRET-based methodology. The Trk receptors are expressed in neuronal tissues, and guide the development of the central and peripheral nervous systems during development. We quantify the dimerization of human Trk-A, Trk-B, and Trk-C in the absence and presence of their cognate ligands: human β-nerve growth factor, human brain-derived neurotrophic factor, and human neurotrophin-3, respectively. We also assess conformational changes in the Trk dimers upon ligand binding. Our data support a model of Trk activation in which (1) Trks have a propensity to interact laterally and to form dimers even in the absence of ligand, (2) different Trk unliganded dimers have different stabilities, (3) ligand binding leads to Trk dimer stabilization, and (4) ligand binding induces structural changes in the Trk dimers which propagate to their transmembrane and intracellular domains. This model, which we call the 'transition model of RTK activation,' may hold true for many other RTKs.
Collapse
|
30
|
Raicu V. Extraction of information on macromolecular interactions from fluorescence micro-spectroscopy measurements in the presence and absence of FRET. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:340-348. [PMID: 29631099 DOI: 10.1016/j.saa.2018.03.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Investigations of static or dynamic interactions between proteins or other biological macromolecules in living cells often rely on the use of fluorescent tags with two different colors in conjunction with adequate theoretical descriptions of Förster Resonance Energy Transfer (FRET) and molecular-level micro-spectroscopic technology. One such method based on these general principles is FRET spectrometry, which allows determination of the quaternary structure of biomolecules from cell-level images of the distributions, or spectra of occurrence frequency of FRET efficiencies. Subsequent refinements allowed combining FRET frequency spectra with molecular concentration information, thereby providing the proportion of molecular complexes with various quaternary structures as well as their binding/dissociation energies. In this paper, we build on the mathematical principles underlying FRET spectrometry to propose two new spectrometric methods, which have distinct advantages compared to other methods. One of these methods relies on statistical analysis of color mixing in subpopulations of fluorescently tagged molecules to probe molecular association stoichiometry, while the other exploits the color shift induced by FRET to also derive geometric information in addition to stoichiometry. The appeal of the first method stems from its sheer simplicity, while the strength of the second consists in its ability to provide structural information.
Collapse
Affiliation(s)
- Valerică Raicu
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States of America.
| |
Collapse
|
31
|
King C, Wirth D, Workman S, Hristova K. Interactions between NRP1 and VEGFR2 molecules in the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2118-2125. [PMID: 29630862 DOI: 10.1016/j.bbamem.2018.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
Here we use a quantitative FRET approach, specifically developed to probe membrane protein interactions, to study the homo-association of neuropilin 1 (NRP1) in the plasma membrane, as well as its hetero-interactions with vascular endothelial growth factor receptor 2 (VEGFR2). Experiments are performed both in the absence and presence of the soluble ligand vascular endothelial growth factor A (VEGFA), which binds to both VEGFR2 and NRP1. We demonstrate the presence of homo-interactions between NRP1 molecules, as well as hetero-interactions between NRP1 and VEGFR2 molecules, in the plasma membrane. Our results underscore the complex nature of the interactions between self-associating receptors, co-receptors, and their ligands in the plasma membrane. They also highlight the need for new methodologies that capture this complexity, and the need for precise physiological measurements of local receptor surface densities in the membrane of cells. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Christopher King
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Daniel Wirth
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Samuel Workman
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States; Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
32
|
The EphA2 receptor is activated through induction of distinct, ligand-dependent oligomeric structures. Commun Biol 2018; 1:15. [PMID: 30271902 PMCID: PMC6123813 DOI: 10.1038/s42003-018-0017-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/28/2018] [Indexed: 01/19/2023] Open
Abstract
The EphA2 receptor tyrosine kinase is capable of activating multiple diverse signaling pathways with roles in processes such as tissue homeostasis and cancer. EphA2 is known to form activated oligomers in the presence of ephrin-A ligands. Here, we characterize the lateral interactions between full-length EphA2 molecules in the plasma membrane in the presence of three types of ligands (dimeric ephrinA1-Fc, monomeric ephrinA1, and an engineered peptide ligand) as well as in the absence of ligand, using a quantitative FRET technique. The data show that EphA2 forms higher-order oligomers and two different types of dimers that all lead to increased EphA2 tyrosine phosphorylation, which is indicative of increased kinase-dependent signaling. We find that different ligands stabilize conformationally distinct oligomers that are assembled through two different interfaces. Our results suggest that these different oligomeric assemblies could have distinct signaling properties, contributing to the diverse activities of the EphA2 receptor. Deo Singh et al. use Fully Quantified Spectral Imaging-FRET to show that the EphA2 receptor forms dimers or higher order oligomers depending on the type of ligand, and that different ligands stabilize EphA2 dimers through distinct interfaces. These findings may explain how EphA2 activates diverse signaling pathways.
Collapse
|
33
|
King C, Wirth D, Workman S, Hristova K. Cooperative interactions between VEGFR2 extracellular Ig-like subdomains ensure VEGFR2 dimerization. Biochim Biophys Acta Gen Subj 2017; 1861:2559-2567. [PMID: 28847506 DOI: 10.1016/j.bbagen.2017.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/16/2017] [Accepted: 08/24/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Prior studies have suggested that the interactions occurring between VEGFR2 extracellular domains in the absence of ligand are complex. Here we seek novel insights into these interactions, and into the role of the different Ig-like domains (D1 through D7) in VEGFR2 dimerization. METHODS We study the dimerization of a single amino acid mutant and of three deletion mutants in the plasma membrane using two photon microscopy and fully quantified spectral imaging. RESULTS We demonstrate that a set of cooperative interactions between the different Ig-like domains ensure that VEGFR2 dimerizes with a specific affinity instead of forming oligomers. CONCLUSIONS The contributions of subunits D7 and D4 seem to be the most critical, as they appear essential for strong lateral interactions and for the formation of dimers, respectively. GENERAL SIGNIFICANCE This study provides new insights into the mechanism of VEGFR2 dimerization and activation.
Collapse
Affiliation(s)
- Christopher King
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Daniel Wirth
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Samuel Workman
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States; Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
34
|
Del Piccolo N, Hristova K. Quantifying the Interaction between EGFR Dimers and Grb2 in Live Cells. Biophys J 2017; 113:1353-1364. [PMID: 28734476 DOI: 10.1016/j.bpj.2017.06.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/19/2017] [Accepted: 06/12/2017] [Indexed: 12/21/2022] Open
Abstract
Adaptor proteins are a class of cytoplasmic proteins that bind to phosphorylated residues in receptor tyrosine kinases and trigger signaling cascades that control critically important cellular processes, such as cell survival, growth, differentiation, and motility. Here, we seek to characterize the interaction between epidermal growth factor receptor (EGFR) and the cytoplasmic adaptor protein growth factor receptor-bound protein 2 (Grb2) in a cellular context. To do so, we explore the utility of a highly biologically relevant model system, mammalian cells under reversible osmotic stress, and a recently introduced Förster resonance energy transfer microscopy method, fully quantified spectral imaging. We present a method that allows us to quantify the stoichiometry and the association constant of the EGFR-Grb2 binding interaction in the plasma membrane, in the presence and absence of activating ligand. The method that we introduce can have broad utility in membrane protein research, as it can be applied to different membrane protein-cytoplasmic protein pairs.
Collapse
Affiliation(s)
- Nuala Del Piccolo
- Department of Materials Science and Engineering and Institute for NanoBio Technology, Johns Hopkins University, Baltimore, Maryland
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBio Technology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
35
|
Huang J, Li Z, Biener G, Xiong E, Malik S, Eaton N, Zhao CZ, Raicu V, Kong H, Zhao D. Carbonic Anhydrases Function in Anther Cell Differentiation Downstream of the Receptor-Like Kinase EMS1. THE PLANT CELL 2017; 29:1335-1356. [PMID: 28522549 PMCID: PMC5502440 DOI: 10.1105/tpc.16.00484] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 04/21/2017] [Accepted: 05/13/2017] [Indexed: 05/08/2023]
Abstract
Plants extensively employ leucine-rich repeat receptor-like kinases (LRR-RLKs), the largest family of RLKs, to control a wide range of growth and developmental processes as well as defense responses. To date, only a few direct downstream effectors for LRR-RLKs have been identified. We previously showed that the LRR-RLK EMS1 (EXCESS MICROSPOROCYTES1) and its ligand TPD1 (TAPETUM DETERMINANT1) are required for the differentiation of somatic tapetal cells and reproductive microsporocytes during early anther development in Arabidopsis thaliana Here, we report the identification of β-carbonic anhydrases (βCAs) as the direct downstream targets of EMS1. EMS1 biochemically interacts with βCA proteins. Loss of function of βCA genes caused defective tapetal cell differentiation, while overexpression of βCA1 led to the formation of extra tapetal cells. EMS1 phosphorylates βCA1 at four sites, resulting in increased βCA1 activity. Furthermore, phosphorylation-blocking mutations impaired the function of βCA1 in tapetal cell differentiation; however, a phosphorylation mimic mutation promoted the formation of tapetal cells. βCAs are also involved in pH regulation in tapetal cells. Our findings highlight the role of βCA in controlling cell differentiation and provide insights into the posttranslational modification of carbonic anhydrases via receptor-like kinase-mediated phosphorylation.
Collapse
Affiliation(s)
- Jian Huang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Zhiyong Li
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Gabriel Biener
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Erhui Xiong
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
- College of Life Sciences, Henan Agricultural University, Zhenzhou 450002, China
| | - Shikha Malik
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Nathan Eaton
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | | | - Valerica Raicu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dazhong Zhao
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
36
|
Singh DR, Ahmed F, Sarabipour S, Hristova K. Intracellular Domain Contacts Contribute to Ecadherin Constitutive Dimerization in the Plasma Membrane. J Mol Biol 2017; 429:2231-2245. [PMID: 28549925 DOI: 10.1016/j.jmb.2017.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 01/29/2023]
Abstract
Epithelial cadherin (Ecadherin) is responsible for the intercellular cohesion of epithelial tissues. It forms lateral clusters within adherens cell-cell junctions, but its association state outside these clusters is unknown. Here, we use a quantitative Forster resonance energy transfer (FRET) approach to show that Ecadherin forms constitutive dimers and that these dimers exist independently of the actin cytoskeleton or cytoplasmic proteins. The dimers are stabilized by intermolecular contacts that occur along the entire length of Ecadherin, with the intracellular domains having a surprisingly strong favorable contribution. We further show that Ecadherin mutations and calcium depletion induce structural alterations that propagate from the N terminus all the way to the C terminus, without destabilizing the dimeric state. These findings provide context for the interpretation of Ecadherin adhesion experiments. They also suggest that early events of adherens junction assembly involve interactions between from preformed Ecadherin dimers.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Materials Science and Engineering and Institute of NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, USA
| | - Fozia Ahmed
- Department of Materials Science and Engineering and Institute of NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, USA
| | - Sarvenaz Sarabipour
- Department of Materials Science and Engineering and Institute of NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute of NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
37
|
Corby MJ, Stoneman MR, Biener G, Paprocki JD, Kolli R, Raicu V, Frick DN. Quantitative microspectroscopic imaging reveals viral and cellular RNA helicase interactions in live cells. J Biol Chem 2017; 292:11165-11177. [PMID: 28483922 DOI: 10.1074/jbc.m117.777045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/29/2017] [Indexed: 01/12/2023] Open
Abstract
Human cells detect RNA viruses through a set of helicases called RIG-I-like receptors (RLRs) that initiate the interferon response via a mitochondrial signaling complex. Many RNA viruses also encode helicases, which are sometimes covalently linked to proteases that cleave signaling proteins. One unresolved question is how RLRs interact with each other and with viral proteins in cells. This study examined the interactions among the hepatitis C virus (HCV) helicase and RLR helicases in live cells with quantitative microspectroscopic imaging (Q-MSI), a technique that determines FRET efficiency and subcellular donor and acceptor concentrations. HEK293T cells were transfected with various vector combinations to express cyan fluorescent protein (CFP) or YFP fused to either biologically active HCV helicase or one RLR (i.e. RIG-I, MDA5, or LGP2), expressed in the presence or absence of polyinosinic-polycytidylic acid (poly(I:C)), which elicits RLR accumulation at mitochondria. Q-MSI confirmed previously reported RLR interactions and revealed an interaction between HCV helicase and LGP2. Mitochondria in CFP-RIG-I:YFP-RIG-I cells, CFP-MDA5:YFP-MDA5 cells, and CFP-MDA5:YFP-LGP2 cells had higher FRET efficiencies in the presence of poly(I:C), indicating that RNA causes these proteins to accumulate at mitochondria in higher-order complexes than those formed in the absence of poly(I:C). However, mitochondria in CFP-LGP2:YFP-LGP2 cells had lower FRET signal in the presence of poly(I:C), suggesting that LGP2 oligomers disperse so that LGP2 can bind MDA5. Data support a new model where an LGP2-MDA5 oligomer shuttles NS3 to the mitochondria to block antiviral signaling.
Collapse
Affiliation(s)
- M J Corby
- From the Departments of Chemistry and Biochemistry
| | | | | | | | - Rajesh Kolli
- From the Departments of Chemistry and Biochemistry
| | - Valerica Raicu
- Physics, and .,Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201
| | | |
Collapse
|
38
|
Biener G, Masson-Meyers DS, Bumah VV, Hussey G, Stoneman MR, Enwemeka CS, Raicu V. Blue/violet laser inactivates methicillin-resistant Staphylococcus aureus by altering its transmembrane potential. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:118-124. [DOI: 10.1016/j.jphotobiol.2017.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022]
|
39
|
Li Z, Wang Y, Huang J, Ahsan N, Biener G, Paprocki J, Thelen JJ, Raicu V, Zhao D. Two SERK Receptor-Like Kinases Interact with EMS1 to Control Anther Cell Fate Determination. PLANT PHYSIOLOGY 2017; 173:326-337. [PMID: 27920157 PMCID: PMC5210720 DOI: 10.1104/pp.16.01219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/02/2016] [Indexed: 05/03/2023]
Abstract
Cell signaling pathways mediated by leucine-rich repeat receptor-like kinases (LRR-RLKs) are essential for plant growth, development, and defense. The EMS1 (EXCESS MICROSPOROCYTES1) LRR-RLK and its small protein ligand TPD1 (TAPETUM DETERMINANT1) play a fundamental role in somatic and reproductive cell differentiation during early anther development in Arabidopsis (Arabidopsis thaliana). However, it is unclear whether other cell surface molecules serve as coregulators of EMS1. Here, we show that SERK1 (SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1) and SERK2 LRR-RLKs act redundantly as coregulatory and physical partners of EMS1. The SERK1/2 genes function in the same genetic pathway as EMS1 in anther development. Bimolecular fluorescence complementation, Förster resonance energy transfer, and coimmunoprecipitation approaches revealed that SERK1 interacted biochemically with EMS1. Transphosphorylation of EMS1 by SERK1 enhances EMS1 kinase activity. Among 12 in vitro autophosphorylation and transphosphorylation sites identified by tandem mass spectrometry, seven of them were found to be critical for EMS1 autophosphorylation activity. Furthermore, complementation test results suggest that phosphorylation of EMS1 is required for its function in anther development. Collectively, these data provide genetic and biochemical evidence of the interaction and phosphorylation between SERK1/2 and EMS1 in anther development.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| | - Yao Wang
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| | - Jian Huang
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| | - Nagib Ahsan
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| | - Gabriel Biener
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| | - Joel Paprocki
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| | - Jay J Thelen
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| | - Valerica Raicu
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| | - Dazhong Zhao
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| |
Collapse
|
40
|
Stoneman MR, Paprocki JD, Biener G, Yokoi K, Shevade A, Kuchin S, Raicu V. Quaternary structure of the yeast pheromone receptor Ste2 in living cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:1456-1464. [PMID: 27993568 DOI: 10.1016/j.bbamem.2016.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022]
Abstract
Transmembrane proteins known as G protein-coupled receptors (GPCRs) have been shown to form functional homo- or hetero-oligomeric complexes, although agreement has been slow to emerge on whether homo-oligomerization plays functional roles. Here we introduce a platform to determine the identity and abundance of differing quaternary structures formed by GPCRs in living cells following changes in environmental conditions, such as changes in concentrations. The method capitalizes on the intrinsic capability of FRET spectrometry to extract oligomer geometrical information from distributions of FRET efficiencies (or FRET spectrograms) determined from pixel-level imaging of cells, combined with the ability of the statistical ensemble approaches to FRET to probe the proportion of different quaternary structures (such as dimers, rhombus or parallelogram shaped tetramers, etc.) from averages over entire cells. Our approach revealed that the yeast pheromone receptor Ste2 forms predominantly tetramers at average expression levels of 2 to 25 molecules per pixel (2.8·10-6 to 3.5·10-5molecules/nm2), and a mixture of tetramers and octamers at expression levels of 25-100 molecules per pixel (3.5·10-5 to 1.4·10-4molecules/nm2). Ste2 is a class D GPCR found in the yeast Saccharomyces cerevisiae of the mating type a, and binds the pheromone α-factor secreted by cells of the mating type α. Such investigations may inform development of antifungal therapies targeting oligomers of pheromone receptors. The proposed FRET imaging platform may be used to determine the quaternary structure sub-states and stoichiometry of any GPCR and, indeed, any membrane protein in living cells. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.
Collapse
Affiliation(s)
- Michael R Stoneman
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Joel D Paprocki
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Gabriel Biener
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Koki Yokoi
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Aishwarya Shevade
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Sergei Kuchin
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Valerică Raicu
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
41
|
Singh DR, Ahmed F, Paul MD, Gedam M, Pasquale EB, Hristova K. The SAM domain inhibits EphA2 interactions in the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:31-38. [PMID: 27776928 DOI: 10.1016/j.bbamcr.2016.10.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/26/2016] [Accepted: 10/18/2016] [Indexed: 11/18/2022]
Abstract
All members of the Eph receptor family of tyrosine kinases contain a SAM domain near the C terminus, which has been proposed to play a role in receptor homotypic interactions and/or interactions with binding partners. The SAM domain of EphA2 is known to be important for receptor function, but its contribution to EphA2 lateral interactions in the plasma membrane has not been determined. Here we use a FRET-based approach to directly measure the effect of the SAM domain on the stability of EphA2 dimers on the cell surface in the absence of ligand binding. We also investigate the functional consequences of EphA2 SAM domain deletion. Surprisingly, we find that the EphA2 SAM domain inhibits receptor dimerization and decreases EphA2 tyrosine phosphorylation. This role is dramatically different from the role of the SAM domain of the related EphA3 receptor, which we previously found to stabilize EphA3 dimers and increase EphA3 tyrosine phosphorylation in cells in the absence of ligand. Thus, the EphA2 SAM domain likely contributes to a unique mode of EphA2 interaction that leads to distinct signaling outputs.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States
| | - Fozia Ahmed
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States
| | - Michael D Paul
- Program in Molecular Biophysics, Johns Hopkins University, 3400 Charles street, Baltimore, MD 21218, United States
| | - Manasee Gedam
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States
| | - Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Road, La Jolla, San Diego, CA 92037, United States
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States; Program in Molecular Biophysics, Johns Hopkins University, 3400 Charles street, Baltimore, MD 21218, United States.
| |
Collapse
|
42
|
Quaternary structures of opsin in live cells revealed by FRET spectrometry. Biochem J 2016; 473:3819-3836. [PMID: 27623775 DOI: 10.1042/bcj20160422] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023]
Abstract
Rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that initiates phototransduction in the retina. The receptor consists of the apoprotein opsin covalently linked to the inverse agonist 11-cis retinal. Rhodopsin and opsin have been shown to form oligomers within the outer segment disc membranes of rod photoreceptor cells. However, the physiological relevance of the observed oligomers has been questioned since observations were made on samples prepared from the retina at low temperatures. To investigate the oligomeric status of opsin in live cells at body temperatures, we utilized a novel approach called Förster resonance energy transfer spectrometry, which previously has allowed the determination of the stoichiometry and geometry (i.e. quaternary structure) of various GPCRs. In the current study, we have extended the method to additionally determine whether or not a mixture of oligomeric forms of opsin exists and in what proportion. The application of this improved method revealed that opsin expressed in live Chinese hamster ovary (CHO) cells at 37°C exists as oligomers of various sizes. At lower concentrations, opsin existed in an equilibrium of dimers and tetramers. The tetramers were in the shape of a near-rhombus. At higher concentrations of the receptor, higher-order oligomers began to form. Thus, a mixture of different oligomeric forms of opsin is present in the membrane of live CHO cells and oligomerization occurs in a concentration-dependent manner. The general principles underlying the concentration-dependent oligomerization of opsin may be universal and apply to other GPCRs as well.
Collapse
|
43
|
Singh DR, Pasquale EB, Hristova K. A small peptide promotes EphA2 kinase-dependent signaling by stabilizing EphA2 dimers. Biochim Biophys Acta Gen Subj 2016; 1860:1922-8. [PMID: 27281300 DOI: 10.1016/j.bbagen.2016.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 12/01/2022]
Abstract
BACKGROUND The EphA2 receptor tyrosine kinase is known to promote cancer cell malignancy in the absence of activation by ephrin ligands. This behavior depends on high EphA2 phosphorylation on Ser897 and low tyrosine phosphorylation, resulting in increased cell migration and invasiveness. We have previously shown that EphA2 forms dimers in the absence of ephrin ligand binding, and that dimerization of unliganded EphA2 can decrease EphA2 Ser897 phosphorylation. We have also identified a small peptide called YSA, which binds EphA2 and competes with the naturally occurring ephrin ligands. METHODS Here, we investigate the effect of YSA on EphA2 dimer stability and EphA2 function using quantitative FRET techniques, Western blotting, and cell motility assays. RESULTS We find that the YSA peptide stabilizes the EphA2 dimer, increases EphA2 Tyr phosphorylation, and decreases both Ser897 phosphorylation and cell migration. CONCLUSIONS The experiments demonstrate that the small peptide ligand YSA reduces EphA2 Ser897 pro-tumorigenic signaling by stabilizing the EphA2 dimer. GENERAL SIGNIFICANCE This work is a proof-of-principle demonstration that EphA2 homointeractions in the plasma membrane can be pharmacologically modulated to decrease the pro-tumorigenic signaling of the receptor.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States
| | - Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Road, La Jolla, San Diego, CA 92037, United States
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States.
| |
Collapse
|
44
|
King C, Stoneman M, Raicu V, Hristova K. Fully quantified spectral imaging reveals in vivo membrane protein interactions. Integr Biol (Camb) 2016; 8:216-29. [PMID: 26787445 DOI: 10.1039/c5ib00202h] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Here we introduce the fully quantified spectral imaging (FSI) method as a new tool to probe the stoichiometry and stability of protein complexes in biological membranes. The FSI method yields two dimensional membrane concentrations and FRET efficiencies in native plasma membranes. It can be used to characterize the association of membrane proteins: to differentiate between monomers, dimers, or oligomers, to produce binding (association) curves, and to measure the free energies of association in the membrane. We use the FSI method to study the lateral interactions of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), a member of the receptor tyrosine kinase (RTK) superfamily, in plasma membranes, in vivo. The knowledge gained through the use of the new method challenges the current understanding of VEGFR2 signaling.
Collapse
Affiliation(s)
- Christopher King
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21212, USA
| | | | | | | |
Collapse
|
45
|
Patowary S, Pisterzi LF, Biener G, Holz JD, Oliver JA, Wells JW, Raicu V. Experimental verification of the kinetic theory of FRET using optical microspectroscopy and obligate oligomers. Biophys J 2016; 108:1613-1622. [PMID: 25863053 DOI: 10.1016/j.bpj.2015.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/26/2015] [Accepted: 02/02/2015] [Indexed: 11/20/2022] Open
Abstract
Förster resonance energy transfer (FRET) is a nonradiative process for the transfer of energy from an optically excited donor molecule (D) to an acceptor molecule (A) in the ground state. The underlying theory predicting the dependence of the FRET efficiency on the sixth power of the distance between D and A has stood the test of time. In contrast, a comprehensive kinetic-based theory developed recently for FRET efficiencies among multiple donors and acceptors in multimeric arrays has waited for further testing. That theory has been tested in the work described in this article using linked fluorescent proteins located in the cytoplasm and at the plasma membrane of living cells. The cytoplasmic constructs were fused combinations of Cerulean as donor (D), Venus as acceptor (A), and a photo-insensitive molecule (Amber) as a nonfluorescent (N) place holder: namely, NDAN, NDNA, and ADNN duplexes, and the fully fluorescent quadruplex ADAA. The membrane-bound constructs were fused combinations of GFP2 as donor (D) and eYFP as acceptor (A): namely, two fluorescent duplexes (i.e., DA and AD) and a fluorescent triplex (ADA). According to the theory, the FRET efficiency of a multiplex such as ADAA or ADA can be predicted from that of analogs containing a single acceptor (e.g., NDAN, NDNA, and ADNN, or DA and AD, respectively). Relatively small but statistically significant differences were observed between the measured and predicted FRET efficiencies of the two multiplexes. While elucidation of the cause of this mismatch could be a worthy endeavor, the discrepancy does not appear to question the theoretical underpinnings of a large family of FRET-based methods for determining the stoichiometry and quaternary structure of complexes of macromolecules in living cells.
Collapse
Affiliation(s)
- Suparna Patowary
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | | | - Gabriel Biener
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Jessica D Holz
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Julie A Oliver
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - James W Wells
- The Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Valerică Raicu
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin.
| |
Collapse
|
46
|
Yuan X, Khokhani D, Wu X, Yang F, Biener G, Koestler BJ, Raicu V, He C, Waters CM, Sundin GW, Tian F, Yang CH. Cross-talk between a regulatory small RNA, cyclic-di-GMP signalling and flagellar regulator FlhDC for virulence and bacterial behaviours. Environ Microbiol 2015; 17:4745-63. [PMID: 26462993 DOI: 10.1111/1462-2920.13029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 12/01/2022]
Abstract
Dickeya dadantii is a globally dispersed phytopathogen which causes diseases on a wide range of host plants. This pathogen utilizes the type III secretion system (T3SS) to suppress host defense responses, and secretes pectate lyase (Pel) to degrade the plant cell wall. Although the regulatory small RNA (sRNA) RsmB, cyclic diguanylate monophosphate (c-di-GMP) and flagellar regulator have been reported to affect the regulation of these two virulence factors or multiple cell behaviours such as motility and biofilm formation, the linkage between these regulatory components that coordinate the cell behaviours remain unclear. Here, we revealed a sophisticated regulatory network that connects the sRNA, c-di-GMP signalling and flagellar master regulator FlhDC. We propose multi-tiered regulatory mechanisms that link the FlhDC to the T3SS through three distinct pathways including the FlhDC-FliA-YcgR3937 pathway; the FlhDC-EcpC-RpoN-HrpL pathway; and the FlhDC-rsmB-RsmA-HrpL pathway. Among these, EcpC is the most dominant factor for FlhDC to positively regulate T3SS expression.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Devanshi Khokhani
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Xiaogang Wu
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Gabriel Biener
- Department of Physics, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Benjamin J Koestler
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Valerica Raicu
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA.,Department of Physics, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA
| |
Collapse
|
47
|
Singh DR, Cao Q, King C, Salotto M, Ahmed F, Zhou XY, Pasquale EB, Hristova K. Unliganded EphA3 dimerization promoted by the SAM domain. Biochem J 2015; 471:101-9. [PMID: 26232493 PMCID: PMC4692061 DOI: 10.1042/bj20150433] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 01/03/2023]
Abstract
The erythropoietin-producing hepatocellular carcinoma A3 (EphA3) receptor tyrosine kinase (RTK) regulates morphogenesis during development and is overexpressed and mutated in a variety of cancers. EphA3 activation is believed to follow a 'seeding mechanism' model, in which ligand binding to the monomeric receptor acts as a trigger for signal-productive receptor clustering. We study EphA3 lateral interactions on the surface of live cells and we demonstrate that EphA3 forms dimers in the absence of ligand binding. We further show that these dimers are stabilized by interactions involving the EphA3 sterile α-motif (SAM) domain. The discovery of unliganded EphA3 dimers challenges the current understanding of the chain of EphA3 activation events and suggests that EphA3 may follow the 'pre-formed dimer' model of activation known to be relevant for other receptor tyrosine kinases. The present work also establishes a new role for the SAM domain in promoting Eph receptor lateral interactions and signalling on the cell surface.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - QingQing Cao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Christopher King
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Matt Salotto
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Fozia Ahmed
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Xiang Yang Zhou
- Vaccine Center, The Wistar Institute, Philadelphia, PA 19104, U.S.A
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, U.S.A
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A. Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21212, U.S.A.
| |
Collapse
|
48
|
Singh DR, Ahmed F, King C, Gupta N, Salotto M, Pasquale EB, Hristova K. EphA2 Receptor Unliganded Dimers Suppress EphA2 Pro-tumorigenic Signaling. J Biol Chem 2015; 290:27271-27279. [PMID: 26363067 DOI: 10.1074/jbc.m115.676866] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 01/08/2023] Open
Abstract
The EphA2 receptor tyrosine kinase promotes cell migration and cancer malignancy through a ligand- and kinase-independent distinctive mechanism that has been linked to high Ser-897 phosphorylation and low tyrosine phosphorylation. Here, we demonstrate that EphA2 forms dimers in the plasma membrane of HEK293T cells in the absence of ephrin ligand binding, suggesting that the current seeding mechanism model of EphA2 activation is incomplete. We also characterize a dimerization-deficient EphA2 mutant that shows enhanced ability to promote cell migration, concomitant with increased Ser-897 phosphorylation and decreased tyrosine phosphorylation compared with EphA2 wild type. Our data reveal a correlation between unliganded dimerization and tumorigenic signaling and suggest that EphA2 pro-tumorigenic activity is mediated by the EphA2 monomer. Thus, a therapeutic strategy that aims at the stabilization of EphA2 dimers may be beneficial for the treatment of cancers linked to EphA2 overexpression.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Fozia Ahmed
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Christopher King
- Department of Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218 and
| | - Nisha Gupta
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Matt Salotto
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, San Diego, California 92037
| | - Kalina Hristova
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218; Department of Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218 and.
| |
Collapse
|
49
|
Mishra AK, Mavlyutov T, Singh DR, Biener G, Yang J, Oliver JA, Ruoho A, Raicu V. The sigma-1 receptors are present in monomeric and oligomeric forms in living cells in the presence and absence of ligands. Biochem J 2015; 466:263-271. [PMID: 25510962 PMCID: PMC4500508 DOI: 10.1042/bj20141321] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The sigma-1 receptor (S1R) is a 223-amino-acid membrane protein that resides in the endoplasmic reticulum and the plasma membrane of some mammalian cells. The S1R is regulated by various synthetic molecules including (+)-pentazocine, cocaine and haloperidol and endogenous molecules such as sphingosine, dimethyltryptamine and dehydroepiandrosterone. Ligand-regulated protein chaperone functions linked to oxidative stress and neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and neuropathic pain have been attributed to the S1R. Several client proteins that interact with S1R have been identified including various types of ion channels and G-protein coupled receptors (GPCRs). When S1R constructs containing C-terminal monomeric GFP2 and YFP fusions were co-expressed in COS-7 cells and subjected to FRET spectrometry analysis, monomers, dimers and higher oligomeric forms of S1R were identified under non-liganded conditions. In the presence of the prototypic S1R agonist, (+)-pentazocine, however, monomers and dimers were the prevailing forms of S1R. The prototypic antagonist, haloperidol, on the other hand, favoured higher order S1R oligomers. These data, in sum, indicate that heterologously expressed S1Rs occur in vivo in COS-7 cells in multiple oligomeric forms and that S1R ligands alter these oligomeric structures. We suggest that the S1R oligomerization states may regulate its function(s).
Collapse
Affiliation(s)
- Ashish K. Mishra
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Timur Mavlyutov
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53211, U.S.A
| | - Deo R. Singh
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Gabriel Biener
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Jay Yang
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53211, U.S.A
| | - Julie A. Oliver
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Arnold Ruoho
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53211, U.S.A
| | - Valerică Raicu
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| |
Collapse
|