1
|
Wang X, Han X, Ma J, Zhang R, Zou K, Wang X, Yuan W, Qiu M, Chen J, Yang Y, Hu S, Wang X, Jin H, Zhang Y, Wang P. 5-hydroxymethylfurfural attenuates osteoarthritis by upregulating of glucose metabolism in chondrocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156499. [PMID: 40020627 DOI: 10.1016/j.phymed.2025.156499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
INTRODUCTION 5-HMF (5-hydroxymethylfurfural), an active constituent found in Radix Rehmanniae Preparata, a widely utilized traditional Chinese medicine for osteoarthritis (OA) treatment, exhibits notable therapeutic benefits in countering the catabolic and inflammatory responses of OA chondrocytes. Despite these promising effects, the underlying mechanisms of 5-HMF's action remain elusive, thereby impeding its broader clinical application and development. OBJECTIVE To investigate the impact of 5-HMF on the progression of OA and elucidate its underlying mechanisms. METHODS In this study, Destabilization of the Medial Meniscus (DMM) was used to construct an OA model of C57BL/6 and transgenic mice in vivo, and interleukin -1β (IL-1β) was used to construct an OA model in vitro. Micro-CT and Alcnohistochemistry (IHC) and immunofluorescence (IF) were used to determine the eian Blue/Hematoxylin and Orange G (ABH/OG) staining were used to observe the morphological changes of joints. Western blot, Polymerase Chain Reaction (PCR), immuxpression levels of cartilage metabolic markers Collagen type II alpha 1 (Col2a1) and Matrix Metalloproteinase-13 (MMP13), as well as glucose transporter Glucose Transporter Type 1 (Glut1), glucose metabolic markers Hexokinase 1 (HK1) and Lactate Dehydrogenase A (LDHA). RNA-seq and Reactom analysis were used to predict the potential mechanism of 5-HMF in the treatment of OA. RESULTS 5-HMF demonstrates effective alleviation of OA progression, improvement of subchondral sclerosis and cartilage degeneration, particularly in the realm of cartilage protection, which is equivalent to that of celebrex. The protective effect of 5-HMF on cartilage is primarily attributed to its regulatory role in cartilage matrix metabolism, suppress the activity of MMP13 and enhance the expression of Col2a1 to delay cartilage injury. Moreover, RNA sequencing results indicate that 5-HMF's therapeutic effect on OA is closely linked to metabolism, specifically glucose metabolism. Our in vivo and in vitro experiments validate these findings. 5-HMF can counteract the decline in glucose metabolism induced by OA through the Glut1/HK1/LDHA signaling pathway. Furthermore, our findings confirm that Glut1 knockout mice with a DMM-induced OA model do not respond to 5-HMF treatment. CONCLUSION Our data reveal for the first time that 5-HMF may play a role in cartilage protection in the treatment of osteoarthritis by regulating glycolysis driven by Glut1/HK1/LDHA.
Collapse
Affiliation(s)
- Xinyu Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolong Han
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinjin Ma
- Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzho, China
| | - Ruogu Zhang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kaiao Zou
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xucheng Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhua Yuan
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Qiu
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiali Chen
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yimin Yang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songfeng Hu
- Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Xiaofeng Wang
- Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China.
| | - Hongting Jin
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yuanbin Zhang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China; Department of Orthopedic Joint Surgery, Hangzhou Fuyang Hospital of TCM Orthopaedics and Traumatology, Hangzhou, China.
| | - Pinger Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
2
|
Fahim JR, Samy MN, Ibrahem ES, Fawzy MA, Saber EA, Kamel MS, Sugimoto S, Matsunami K, Attia EZ. Hepatoprotective potential of Ceiba chodatii Hassl. Against carbon tetrachloride-induced chronic liver damage supported with phytochemical investigation. Fitoterapia 2025; 182:106466. [PMID: 40058657 DOI: 10.1016/j.fitote.2025.106466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Hepatic fibrosis is a major health concern that can develop into other life-threatening pathologies, with no fully effective treatments are available to date. Ceiba is a genus of multipurpose trees with diverse therapeutic applications, including liver ailments. Prior research has also unveiled the protecting role of Ceiba plants in chemical liver injuries via a number of in vitro and in vivo tests. Due to the crucial need for alternative therapies to prevent liver damage and stop its progress, the present work evaluates the protective effects of the total extract of Ceiba chodatii Hassl. flowers and its derived fractions (I-IV) against CCl4-induced chronic liver damage for the first time. The obtained results indicated the ability of C. chodatii flowers, particularly their chloroform- and ethyl acetate-soluble fractions (II and III), to alleviate liver damage in CCl4-intoxicated rats via normalizing high liver injury hallmarks (e.g., ALT, AST, albumin, and total bilirubin), preventing the build-up of malondialdehyde, enhancing the antioxidant capacity of hepatocytes, mitigating aberrant histopathological changes, and reducing extracellular matrix accumulation. Further mechanistic studies showed the aptitude of C. chodatii flowers to attenuate inflammatory, fibrotic, and apoptotic responses via counteracting the production of inflammatory cytokines (e.g., IL-6 and TNF-α), reducing the levels of cleaved caspase-3, and inhibiting JAK2/STAT3 and TGF-β/Smad signaling pathways. Interestingly, the liver-protecting actions of fractions II and III were also comparable to those of silymarin (50 mg/kg). Moreover, phytochemical investigation of C. chodatii flowers led to the isolation and identification of a group of flavonoid glycosides (1-10), with good antioxidant and liver supporting properties, suggesting their potential contribution to the anti-fibrotic properties of C. chodatii. These data highlight the multi-target hepatoprotective effects of C. chodatii and its potential as an alternative source to develop natural therapeutic agents against liver fibrosis.
Collapse
Affiliation(s)
- John Refaat Fahim
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Minia National University, 61111 New Minia, Egypt.
| | - Mamdouh Nabil Samy
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Minia National University, 61111 New Minia, Egypt
| | - Engy Saadalah Ibrahem
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt; Department of Biochemistry, Faculty of Pharmacy, Minia National University, 61111 New Minia, Egypt
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, 61519 Minia, Egypt; Department of Medical Science, Histology and Cell Biology, Deraya University, 61111 New Minia, Egypt
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Sachiko Sugimoto
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8553 Hiroshima, Japan
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8553 Hiroshima, Japan
| | - Eman Zekry Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Minia National University, 61111 New Minia, Egypt
| |
Collapse
|
3
|
Aditi P, Ali V, Choubey M, Tirumalasetty MB, Pandey H, Srivastava S, Tripathi YB. Hepatoprotective role of Pueraria tuberosa water extract (PTWE) in CCl4-induced liver injury through different signaling pathways. ADVANCES IN TRADITIONAL MEDICINE 2024. [DOI: 10.1007/s13596-024-00810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/02/2024] [Indexed: 01/05/2025]
|
4
|
Saha S, Ghosh A, Santra HK, Banerjee D, Chattopadhyay S. Corrective role of endophytic exopolysaccharides from Clerodendrum infortunatum L. on arsenic-induced ovarian steroidogenic dysfunction and associated inflammatory responses. Int J Biol Macromol 2024; 282:136795. [PMID: 39442839 DOI: 10.1016/j.ijbiomac.2024.136795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The present investigation aimed to evaluate the therapeutic potential of exopolysaccharides (EPSs) derived from endophytic fungi against arsenic [As(III)]-mediated metabolic and reproductive ailments. Two endophytic fungi, Diaporthe arengae (CleR1) and Fusarium proliferatum (CleR3), were isolated from Clerodendrum infortunatum (Cle), and used for the extraction of two types of EPSs. GC-MS analysis confirmed the presence of hydroxymethyl furfural (HMF) and α-d-glucopyranose in the EPS1 (CleR1) and EPS2 (CleR3), respectively. FTIR analysis revealed the potential As(III)-chelation properties of both EPSs. EPS1 and EPS2 significantly mitigated As(III)-induced oxidative stress and lipid peroxidation by restoring the activities of antioxidative enzymes. EPSs successfully corrected the gonadotropin imbalance and steroidogenic alterations. The downregulation of proinflammatory (NF-κB and TNF-α) and proapoptotic (BAX) mediators and the upregulation of antiapoptotic (Bcl-2) markers were also detected following the treatment with EPSs. Histomorphological restoration of reproductive and metabolic organs was also observed in both the EPS groups. Moreover, the As(III)-induced increase in the immunoreactivity of the androgen receptor (AR) was successfully reversed by these EPSs. Molecular docking predicted that HMF and α-d-glucopyranose of EPS1 and EPS2 interact with the active site of AR by limiting its activity. Hence, EPS could be effective for developing new therapeutic strategies for managing As(III) toxicity.
Collapse
Affiliation(s)
- Sangita Saha
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India; Cellular and Molecular Toxicology Laboratory, Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore 721102, West Bengal, India; Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Angshita Ghosh
- Cellular and Molecular Toxicology Laboratory, Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Hiran Kanti Santra
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Debdulal Banerjee
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India; Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Sandip Chattopadhyay
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India; Cellular and Molecular Toxicology Laboratory, Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
5
|
Zhao Y, Xia C, Jiang C, Kan C, Gao Y, Zou Y, He L. Comparison of the content of active ingredients and antioxidant, antibacterial and anti-inflammatory activities in different parts of Fructus Choerospondiatis. Sci Rep 2024; 14:28670. [PMID: 39562758 PMCID: PMC11577062 DOI: 10.1038/s41598-024-80334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
Fructus Choerospondiatis (FC) has been utilized in Mongolian medicine for the treatment of many diseases. This investigation assessed the coloration, five active components, total phenolic and flavonol contents, as well as the antioxidant and antibacterial properties of different parts of FC from eight cultivars, and the optimal cultivar was identified to determine the anti-inflammatory capacity of all parts. The findings revealed that L* and b* values of the dried peel powder were the highest and the a* value of whole fruit powder was the highest. The concentrations of gallic acid, catechin, epicatechin, total phenols, and total flavonoids exhibited a positive correlation with antioxidant activity. A comprehensive analysis revealed that the peel contained a greater abundance of active compounds and exhibited stronger antioxidant and antibacterial properties compared to other parts. RPNO.1 can be used as the source of high-quality FC for clinical application. In vivo anti-inflammatory experiments indicated that both the flesh and peel of RPNO.1 displayed the highest anti-inflammatory effect. This research not only addressed the gap in studies regarding FC' s anti-inflammatory properties but also proved that the peel of FC, which was often discarded, had utilization value and could be used as a medicinal herb.
Collapse
Affiliation(s)
- Yuchao Zhao
- School of Chemical and Biological Engineering, Yichun University, Yichun, 336000, China
| | - Chunfeng Xia
- School of Chemical and Biological Engineering, Yichun University, Yichun, 336000, China
| | - Chengkun Jiang
- School of Chemical and Biological Engineering, Yichun University, Yichun, 336000, China
| | - Chaonan Kan
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Yang Gao
- School of Chemical and Biological Engineering, Yichun University, Yichun, 336000, China.
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China.
| | - Yiping Zou
- School of Chemical and Biological Engineering, Yichun University, Yichun, 336000, China
| | - Liren He
- Chongyi lvzhilan Forestry Co., Ltd., Ganzhou, 341300, China
| |
Collapse
|
6
|
Pagare PP, McGinn M, Ghatge MS, Shekhar V, Alhashimi RT, Daniel Pierce B, Abdulmalik O, Zhang Y, Safo MK. The antisickling agent, 5-hydroxymethyl-2-furfural: Other potential pharmacological applications. Med Res Rev 2024; 44:2707-2729. [PMID: 38842004 PMCID: PMC11452283 DOI: 10.1002/med.22062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/30/2023] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
For the last two decades, the aromatic aldehyde 5-hydroxymethyl-furfural (5-HMF) has been the subject of several investigations for its pharmacologic potential. In 2004, the Safo group reported that 5-HMF has potent antisickling activity by targeting and ameliorating the primary pathophysiology of hypoxia-induced sickling of erythrocytes (red blood cells [RBC]). Following the encouraging outcome of the preclinical and phase I/II clinical studies of 5-HMF for the treatment of sickle cell disease (SCD), there have been multiple studies suggesting 5-HMF has several other biological or pharmacologic activities, including anti-allergic, antioxidant, anti-hypoxic, anti-ischemic, cognitive improvement, anti-tyrosinase, anti-proliferation, cytoprotective, and anti-inflammatory activities. The wide range of its effects makes 5-HMF a potential candidate for treating a variety of diseases including cognitive disorders, gout, allergic disorders, anemia, hypoxia, cancers, ischemia, hemorrhagic shock, liver fibrosis, and oxidative injury. Several of these therapeutic claims are currently under investigation and, while promising, vary in terms of the strength of their evidence. This review presents the research regarding the therapeutic potential of 5-HMF in addition to its sources, physicochemical properties, safety, absorption, distribution, metabolism, and excretion (ADME) profiles.
Collapse
Affiliation(s)
- Piyusha P. Pagare
- Department of Medicinal Chemistry, Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - Mina McGinn
- The Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - Mohini S. Ghatge
- Department of Medicinal Chemistry, Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
- The Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - Vibha Shekhar
- The Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - Rana T. Alhashimi
- Department of Medicinal Chemistry, Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
- The Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - B. Daniel Pierce
- Department of Biology, University of Richmond, Richmond, VA 23173
| | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, PA 19104
| | - Yan Zhang
- Department of Medicinal Chemistry, Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
- The Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - Martin K. Safo
- Department of Medicinal Chemistry, Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
- The Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
7
|
Hu P, Zhang Z, Yu X, Wang Y. 5-Hydroxymethylfurfural Ameliorates Allergic Inflammation in HMC-1 Cells by Inactivating NF-κB and MAPK Signaling Pathways. Biochem Genet 2024; 62:1521-1538. [PMID: 37648883 DOI: 10.1007/s10528-023-10492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/06/2023] [Indexed: 09/01/2023]
Abstract
Allergic inflammation is the foundation of multiple allergic disorders, such as allergic rhinitis and asthma. Mast cells are effector cells that initiate inflammatory response. 5-hydroxymethylfurfural (5-HMF), a furfural compound, is the heat-processed product of various fruit, foods, drinks, as well as some Chinese herbal medicines. 5-HMF was previously reported to inhibit mast cell activation. Our study aimed to explore the functions of 5-HMF in both phorbol 12-mystate 13-acetate (PMA) plus calcium ionophore (A23187)-induced allergic inflammation in human mast cell line HMC-1 and ovalbumin (OVA)-induced asthma mouse models. HMC-1 cells were pretreated with 5-HMF and then stimulated by PMA+A23187. The cytotoxicity of 5-HMF on HMC-1 cells was evaluated by MTT assay. Histamine content in cell supernatants was measured by the o-phthaldialdehyde spectrofluorometric procedure. Intracellular calcium was determined using the fluorescent dye Fura-2AM. The production and expression of pro-inflammatory cytokines were detected by ELISA and RT-qPCR. Caspase-1 colorimetric assay was employed to examine the enzymatic activity of caspase-1. Asthma mouse models were induced by OVA sensitization. The bronchoalveolar lavage fluid (BALF) and blood samples were collected for the detection of total and differential cell count as well as aspartate aminotransferase (AST), alanine aminotransferase (ALT), OVA-immunoglobulin E (OVA-IgE), OVA-immunoglobulin G1 (OVA-IgG1), and pro-inflammatory cytokine levels. The left lung of mouse was dissected for histopathological examination by hematoxylin and eosin (H&E) staining. The protein expression of pro-caspase-1 and the phosphorylation of NF-κB and MAPK pathway-associated molecules were assessed by Western blotting. Our findings revealed that 5-HMF efficiently suppressed the PMA+A23187-induced enhancement in histamine production and intracellular calcium in HMC-1 cells. Pro-inflammatory cytokine production and expression in HMC-1 cells were elevated after PMA plus A23187 stimulation, which, however, were inhibited by pretreatment of 5-HMF. Additionally, 5-HMF suppressed the activity of caspase-1 and the phosphorylation of NF-κB and MAPK-associated molecules including p65 NF-κB, p38 MAPK, ERK, and JNK in HMC-1 cells. In vivo experiments demonstrated that 5-HMF treatment reduced the lung/body weight index and total and differential (macrophages, neutrophils, lymphocytes, and eosinophils) cell counts in BALF of asthmatic mice, but exerted no influence on serum AST and ALT levels. Besides, 5-HMF reduced serum OVA-IgE and OVA-IgG1 levels, mitigated lung inflammation, and inhibited the NF-κB and MAPK signaling pathways in asthma mouse models. 5-HMF mitigates allergic inflammation in asthma by inactivating caspase-1 and NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Pan Hu
- Department of Emergency, Hubei Provincial Hospital of TCM, No. 4, Huayuan Mountain, Wuchang District, Wuhan, 430000, Hubei, China
| | - Zhuo Zhang
- Department of Emergency, Hubei Provincial Hospital of TCM, No. 4, Huayuan Mountain, Wuchang District, Wuhan, 430000, Hubei, China
| | - Xiaolin Yu
- Department of Pediatrics, Hubei Provincial Hospital of TCM, Wuhan, 430000, Hubei, China
| | - Yinglin Wang
- Department of Emergency, Hubei Provincial Hospital of TCM, No. 4, Huayuan Mountain, Wuchang District, Wuhan, 430000, Hubei, China.
| |
Collapse
|
8
|
Shalapy NM, Liu M, Kang W. Protective effects of hepatic diseases by bioactive phytochemicals in Fusarium oxysporum - A review. Heliyon 2024; 10:e26562. [PMID: 38455549 PMCID: PMC10918022 DOI: 10.1016/j.heliyon.2024.e26562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
Lately, liver diseases were categorized as one of the most prevalent health problems globally as it causes a severe threat to mankind all over the world due to the wide range of occurrence. There are multiple factors causing hepatic disorders, such as alcohol, virus, poisons, adverse effects of drugs, poor diet, inherited conditions and obesity. Liver diseases have various types including alcoholic liver disease, non-alcoholic fatty liver disease, autoimmune hepatitis, liver cancer, hepatocellular carcinoma, liver fibrosis and hepatic inflammation. Therefore, it is imperative to find effective and efficacious agents in managing liver diseases. Fusarium oxysporum, an endophytic fungus and containing many bioactive compounds, could be served as a forked medication for enormous number and types of maladies. It was characterized by producing biochemical compounds which had rare pharmacological properties as it may be found in a limit number of other medicinal plants. The majority of the past researches related to Fusarium oxysporum recited the fungal negative field either on the pathogenic effects of the fungus on economical crops or on the fungal chemical components to know how to resist it. The present review will highlight on the bright side of Fusarium oxysporum and introduce the functional activities of its chemical compounds for treating its target diseases. The key point of illustrated studies in this article is displaying wide range of detected bioactive compounds isolated from Fusarium oxysporum and in other illustrated studies it was elucidated the therapeutical and pharmacological potency of these biologically active compounds (isolated from medicinal plants sources) against different types of liver diseases including non-alcoholic fatty liver disease, alcoholic liver disease, cirrhosis and others. It was demonstrated that F. oxysporum contains unique types of isoflavones, flavonoids, phenols and another active chemical compounds, and these compounds showed recently a fabulous clinical contribution in the therapy of liver injury diseases, which opens new and unprecedented way for evaluating the maintaining efficacy of Fusarium oxysporum bioactive compounds in dealing with hepatic complications and its remedy impacting on liver diseases and injured hepatocytes through recommending implement a practical study.
Collapse
Affiliation(s)
- Nashwa M. Shalapy
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Center, Cairo, Egypt
| | - Ming Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, 475004, China
| |
Collapse
|
9
|
Thakuri LS, Park CM, Kim HA, Kim HJ, Park JW, Park JC, Rhyu DY. Gracilaria chorda subcritical water ameliorates hepatic lipid accumulation and regulates glucose homeostasis in a hepatic steatosis cell model and obese C57BL/6J mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117395. [PMID: 37952731 DOI: 10.1016/j.jep.2023.117395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/03/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Red seaweed, known as Rhodophyta, has a long history of use in traditional Asian medicine, including Traditional Chinese Medicine and Ayurveda. It is believed to have cooling and detoxification properties. Red seaweed species, such as Gracilaria, have been used in traditional remedies to address various conditions, such as inflammation, thyroid disorders, and digestive issues. AIM OF THE STUDY Obesity is a risk factor of hepatic steatosis, a hallmark of non-alcoholic fatty liver disease (NAFLD) that affects nearly 25% of the worldwide population. Gracilaria chorda (GC) contains bioactive peptides that may be applicable in the prevention of metabolic syndrome diseases. This study investigated the effects of GC subcritical water extract at 210 °C (GCSW210) on preventing liver injury and lipid and glucose dysregulation in an oleic acid (OA)-induced hepatic steatosis cell model (HepG2) and high-fat diet (HFD)-induced obese animal model (C57BL/6J mice). MATERIALS AND METHODS Human hepatoma HepG2 cells were exposed to 0.1 mM OA for 24 h to induce hepatic steatosis and C57BL/6J mice were fed a HFD for 13 weeks. For lipid accumulation, triglyceride (TG) content was measured in both models, along with free fatty acid (FFA), plasma glucose, and insulin levels in HFD-fed mice. Protein expression of master regulators of adipogenesis and lipogenesis, as well as cholesterol and mitochondrial biosynthesis, was studied via western blotting in hepatic steatosis-induced in vitro and in vivo models. In addition, protein expression of the insulin signaling cascade in skeletal muscle tissues of HFD-fed mice was studied. RESULTS GCSW210 significantly decreased lipid accumulation in HepG2 cells exposed to OA and suppressed the expression of lipogenic factors, such as sterol regulatory element-binding protein (SREBP)-1c and fatty acid synthase. In addition, GCSW210 abrogated transcription factors related to cholesterol biosynthesis, such as SREBP-2 and low-density lipoprotein receptor. Similarly, FFA, TG, serum glutamic acid, aspartate transaminase, alanine transferase, plasma glucose, and insulin levels were also significantly reduced in GCSW210-treated HFD-fed mice, which were comparable to the positive control mice treated with Garcinia cambogia extract. Additionally, GCSW210 enhanced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase in the hepatic tissues of HFD-fed mice. Moreover, GCSW210 treatment improved insulin signal transduction by reducing insulin receptor substrate 1 Ser307 phosphorylation and elevated phosphatidylinositol 3-kinase/protein kinase B and glucose transporter type 4 protein expression in muscle tissue. 5-Hdroxymethylfufural (5-HMF) was confirmed to be active substances isolated from GCSW210 through LC-PDA and LC-MS. CONCLUSIONS GCSW210 significantly regulated glucose metabolism, alleviated insulin resistance (IR) induced by high fatty acid synthesis and lipid accumulation, and elevated de novo lipogenesis by activating AMPK phosphorylation in both the liver and muscle tissues of HFD-fed mice. GCSW210 may be a potential functional food for preventing HFD-induced metabolic diseases, such as IR, NAFLD, and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Laxmi Sen Thakuri
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam 58554, Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Korea
| | - Chul Min Park
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam 58554, Korea; Division of Practical Research, Honam National Institute of Biological Resources, Jeonam 58762, Korea
| | - Hyeon-A Kim
- Department of Food and Nutrition, Mokpo National University, Jeonnam 58554, Korea
| | - Hyung Jung Kim
- Department of Pharmacy, Mokpo National University, Jeonnam 58554, Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Korea; Department of Pharmacy, Mokpo National University, Jeonnam 58554, Korea
| | - Jong Cheol Park
- Department of Oriental Medicine Resources, Sunchon National University, Jeonnam 57922, Korea; Chunsu Mountain Medicinal Herb Research Association, Gyeonggi-do 13637, Korea
| | - Dong Young Rhyu
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam 58554, Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Korea.
| |
Collapse
|
10
|
Du J, Liu N, Ma L, Liu R, Zuo D, Lan X, Yang J, Wei W, Peng X, Yu J. Antidepressant effect of the novel histone deacetylase-5 inhibitor T2943 in a chronic restraint stress mouse model. Biomed Pharmacother 2024; 171:116176. [PMID: 38242038 DOI: 10.1016/j.biopha.2024.116176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024] Open
Abstract
Depression is a prevalent and debilitating psychiatric illness. However, the antidepressant drugs currently prescribed are only effective in a limited group of patients. Histone modifications mediated by histone acetylation are considered to play an important role in the pathogenesis and treatment of depression. Recent studies have revealed that histone deacetylase inhibitors may be involved in the pathogenesis of depression and the underlying mechanism of the antidepressant therapeutic action. Here, we first conducted virtual screening of histone deacetylase-5 (HDAC5) inhibitors against HDAC5, a target closely related to depression, and identified compound T2943, further verifying its inhibitory effect on enzyme activities in vitro. After stereotaxic injection of T2943 into the hippocampus of mice, the antidepressant effect of T2943 was evaluated using behavioral experiments. We also used different proteomic and molecular biology analyses to determine and confirm that T2943 promoted histone 3 lysine 14 acetylation (H3K14ac) by inhibiting HDAC5 activity. Following the overexpression of adenoviral HDAC5 in the hippocampus of mice and subsequent behavioral analyses, we confirmed that T2943 exerts antidepressant effects by inhibiting HDAC5 activity. Our findings highlight the efficacy of targeting HDAC5 to treat depression and demonstrate the potential of using T2943 as an antidepressant.
Collapse
Affiliation(s)
- Juan Du
- College of Basic Medicine, Ningxia Medical University, Yin Chuan, China; Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China; Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yin Chuan, China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Lin Ma
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Ruyun Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Di Zuo
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yin Chuan, China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Wei Wei
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Xiaodong Peng
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China.
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China.
| |
Collapse
|
11
|
Thomas OE, Oduwole RT, Akin-Taylor A. Comparison of the DNA-binding interactions of 5-hydroxymethylfurfural and its synthesized derivative, 5, 5’[oxy-bis(methylene)]bis-2-furfural: experimental, DFT and docking studies. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2023.2183705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
Wang X, Liu H, Shu L, Yao Y, Xu Y, Wei J, Li Y. Rapid identification of chemical constituents in Hugan tablets by ultra-performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry. J Sep Sci 2023; 46:e2300302. [PMID: 37568249 DOI: 10.1002/jssc.202300302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Hugan tablet is a Chinese medicine preparation. It is composed of Bupleuri Radix, Artemisiae Scopariae Herba, Isatidis Radix, Schisandrae Chinensis Fructus, Suis Fellis Pulvis, and Vigna radiata L. It has the effects of dispersing stagnated liver qi, strengthening the spleen and eliminating food to be used for the treatment of chronic hepatitis and early cirrhosis. However, the chemical composition of Hugan tablet is complex and not fully understood, which hampers the research in pharmacology. In this study, a reliable method for the rapid analysis and identification of the chemical components in Hugan tablet by their characteristic fragments and neutral losses using ultra-performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry was developed. A total of 144 chemical components were tentatively identified, including 57 organic acids, 19 flavonoids, 23 alkaloids, 18 lignans, 7 saponins, and 20 others. These components may be the active ingredients of Hugan tablet. The established method can systematically and rapidly analyze the chemical components in Hugan tablet, which provides a basis for the pharmacodynamic substance study and is meaningful for the quality control of Hugan tablet.
Collapse
Affiliation(s)
- Xiaowen Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Huiru Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Lexin Shu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yaqi Yao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yanyan Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jinxia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
13
|
Kaur N, Halford NG. Reducing the Risk of Acrylamide and Other Processing Contaminant Formation in Wheat Products. Foods 2023; 12:3264. [PMID: 37685197 PMCID: PMC10486470 DOI: 10.3390/foods12173264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Wheat is a staple crop, consumed worldwide as a major source of starch and protein. Global intake of wheat has increased in recent years, and overall, wheat is considered to be a healthy food, particularly when products are made from whole grains. However, wheat is almost invariably processed before it is consumed, usually via baking and/or toasting, and this can lead to the formation of toxic processing contaminants, including acrylamide, 5-hydroxymethylfurfural (HMF) and polycyclic aromatic hydrocarbons (PAHs). Acrylamide is principally formed from free (soluble, non-protein) asparagine and reducing sugars (glucose, fructose and maltose) within the Maillard reaction and is classified as a Group 2A carcinogen (probably carcinogenic to humans). It also has neurotoxic and developmental effects at high doses. HMF is also generated within the Maillard reaction but can also be formed via the dehydration of fructose or caramelisation. It is frequently found in bread, biscuits, cookies, and cakes. Its molecular structure points to genotoxicity and carcinogenic risks. PAHs are a large class of chemical compounds, many of which are genotoxic, mutagenic, teratogenic and carcinogenic. They are mostly formed during frying, baking and grilling due to incomplete combustion of organic matter. Production of these processing contaminants can be reduced with changes in recipe and processing parameters, along with effective quality control measures. However, in the case of acrylamide and HMF, their formation is also highly dependent on the concentrations of precursors in the grain. Here, we review the synthesis of these contaminants, factors impacting their production and the mitigation measures that can be taken to reduce their formation in wheat products, focusing on the role of genetics and agronomy. We also review the risk management measures adopted by food safety authorities around the world.
Collapse
|
14
|
Jegal KH, Park HR, Choi BR, Kim JK, Ku SK. Synergistic Protective Effect of Fermented Schizandrae Fructus Pomace and Hoveniae Semen cum Fructus Extracts Mixture in the Ethanol-Induced Hepatotoxicity. Antioxidants (Basel) 2023; 12:1602. [PMID: 37627597 PMCID: PMC10451898 DOI: 10.3390/antiox12081602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Schizandrae Fructus (SF), fruits of Schisandra chinensis (Turcz.) Baill. and Hoveniae Semen cum Fructus (HSCF), the dried peduncle of Hovenia dulcis Thunb., have long been used for alcohol detoxification in the traditional medicine of Korea and China. In the current study, we aimed to evaluate the potential synergistic hepatoprotective effect of a combination mixture (MSH) comprising fermented SF pomace (fSFP) and HSCF hot water extracts at a 1:1 (w:w) ratio against ethanol-induced liver toxicity. Subacute ethanol-mediated hepatotoxicity was induced by the oral administration of ethanol (5 g/kg) in C57BL/6J mice once daily for 14 consecutive days. One hour after each ethanol administration, MSH (50, 100, and 200 mg/kg) was also orally administered daily. MSH administration significantly reduced the serum activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and γ-glutamyl transpeptidase. Histological observation indicated that MSH administration synergistically and significantly decreased the fatty changed region of hepatic parenchyma and the formation of lipid droplet in hepatocytes. Moreover, MSH significantly attenuated the hepatic triglyceride accumulation through reducing lipogenesis genes expression and increasing fatty acid oxidation genes expression. In addition, MSH significantly inhibited protein nitrosylation and lipid peroxidation by lowering cytochrome P450 2E1 enzyme activity and restoring the glutathione level, superoxide dismutase and catalase activity in liver. Furthermore, MSH synergistically decreased the mRNA level of tumor necrosis factor-α in the hepatic tissue. These findings indicate that MSH has potential for preventing alcoholic liver disease through inhibiting hepatic steatosis, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Kyung-Hwan Jegal
- Department of Korean Medical Classics, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea;
| | - Hye-Rim Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea;
- Nutracore Co., Ltd., Suwon 16514, Republic of Korea;
| | - Beom-Rak Choi
- Nutracore Co., Ltd., Suwon 16514, Republic of Korea;
| | - Jae-Kwang Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea;
| |
Collapse
|
15
|
Yang SH, Zhu J, Wu WT, Li JM, Tong HL, Huang Y, Gong QF, Gong FP, Zhong LY. Rhizoma Atractylodis Macrocephalae-Assessing the influence of herbal processing methods and improved effects on functional dyspepsia. Front Pharmacol 2023; 14:1236656. [PMID: 37601055 PMCID: PMC10436233 DOI: 10.3389/fphar.2023.1236656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Background: The unique pharmaceutical methods for the processing of botanical drugs according to the theory of traditional Chinese medicine (TCM) affect clinical syndrome differentiation and treatment. The objective of this study was to comprehensively elucidate the principles and mechanisms of an herbal processing method by investigating the alterations in the metabolites of Rhizoma Atractylodis Macrocephalae (AMR) processed by Aurantii Fructus Immaturus (AFI) decoction and to determine how these changes enhance the efficacy of aqueous extracts in treating functional dyspepsia (FD). Methods: A qualitative analysis of AMR before and after processing was conducted using UPLC-Q-TOF-MS/MS, and HPLC was employed for quantitative analysis. A predictive analysis was then conducted using a network analysis strategy to establish a botanical drug-metabolite-target-disease (BMTD) network and a protein-protein interaction (PPI) network, and the predictions were validated using an FD rat model. Results: A total of 127 metabolites were identified in the processed AMR (PAMR), and substantial changes were observed in 8 metabolites of PAMR after processing, as revealed by the quantitative analysis. The enhanced aqueous extracts of processed AMR (PAMR) demonstrate improved efficacy in treating FD, which indicates that this processing method enhances the anti-inflammatory properties and promotes gastric motility by modulating DRD2, SCF, and c-kit. However, this enhancement comes at the cost of attenuating the regulation of motilin (MTL), gastrin (GAS), acetylcholine (Ach), and acetylcholinesterase (AchE). Conclusion: Through this series of investigations, we aimed to unravel the factors influencing the efficacy of this herbal formulation in improving FD in clinical settings.
Collapse
Affiliation(s)
- Song-Hong Yang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jing Zhu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wen-Ting Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jun-Mao Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Heng-Li Tong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yi Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qian-Feng Gong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fei-Peng Gong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Ling-Yun Zhong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
16
|
Beigom Hejaziyan L, Hosseini SM, Taravati A, Asadi M, Bakhshi M, Moshaei Nezhad P, Gol M, Mououdi M. Effect of Rosa damascena Extract on Rat Model Alzheimer's Disease: A Histopathological, Behavioral, Enzyme Activities, and Oxidative Stress Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:4926151. [PMID: 37078068 PMCID: PMC10110374 DOI: 10.1155/2023/4926151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/28/2023] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
The purpose of the current study is to investigate the effect of aquatic Rosa damascena extract against the oxidative damage induced by aluminum chloride intoxication in Alzheimer's model of Wister rats. Rats were divided randomly into seven groups (n = 10). Control group received no treatment, sham group received distilled water orally, aluminum group (AL) was administered AlCl3 (100 mg/kg) orally, extract 1 and 2 groups were treated with only aqueous R. damascena extract (DRE) (500 and 1000 mg/kg), and treatment 1 and 2 groups received aqueous R. damascena extract (500 and 1000 mg/kg) and AlCl3 (100 mg/kg) orally. The brain tissues were sampled for histopathological examination, and biochemical analysis was conducted for estimating the enzyme activities of acetylcholinesterase and catalase (CAT), the levels of GSH and MDA, and ferric reducing antioxidant power. According to the results of behavioral tests, AL administration showed a reduction in spatial memory and remarkably increased the time needed for reaching the invisible platform. The administration of Al-induced oxidative stress and an increase of the enzyme activity of AChE. Al administration increased AChE level from 1.176 ± 0.173 to 3.62 ± 0.348, which was a significant rise. However, treating with the extract at the dose of 1000 mg/kg downregulated it to 1.56 ± 0.303. Administration of the R. damascene extract caused an increased level of catalase and glutathione levels in treatment groups, attenuated MDA level, and regulated AChE activity. Our results illustrate that administration of R. damascene extract has a protective effect against the oxidative damage induced by AlCl3 intoxication in Alzheimer's model.
Collapse
Affiliation(s)
- Leila Beigom Hejaziyan
- Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran
- Department of Human Anatomy, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Ali Taravati
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Asadi
- Department of Pathology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Mahyar Bakhshi
- Department of Pathology, Babol Branch, Islamic Azad University, Babol, Iran
| | | | - Mohammad Gol
- Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran
- Department of Human Anatomy, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mobina Mououdi
- Department of Pathology, Babol Branch, Islamic Azad University, Babol, Iran
| |
Collapse
|
17
|
Zhou Y, Hua J, Huang Z. Effects of beer, wine, and baijiu consumption on non-alcoholic fatty liver disease: Potential implications of the flavor compounds in the alcoholic beverages. Front Nutr 2023; 9:1022977. [PMID: 36687705 PMCID: PMC9852916 DOI: 10.3389/fnut.2022.1022977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease and its global incidence is estimated to be 24%. Beer, wine, and Chinese baijiu have been consumed worldwide including by the NAFLD population. A better understanding of the effects of these alcoholic beverages on NAFLD would potentially improve management of patients with NAFLD and reduce the risks for progression to fibrosis, cirrhosis, and hepatocellular carcinoma. There is evidence suggesting some positive effects, such as the antioxidative effects of bioactive flavor compounds in beer, wine, and baijiu. These effects could potentially counteract the oxidative stress caused by the metabolism of ethanol contained in the beverages. In the current review, the aim is to evaluate and discuss the current human-based and laboratory-based study evidence of effects on hepatic lipid metabolism and NAFLD from ingested ethanol, the polyphenols in beer and wine, and the bioactive flavor compounds in baijiu, and their potential mechanism. It is concluded that for the potential beneficial effects of wine and beer on NAFLD, inconsistence and contrasting data exist suggesting the need for further studies. There is insufficient baijiu specific human-based study for the effects on NAFLD. Although laboratory-based studies on baijiu showed the antioxidative effects of the bioactive flavor compounds on the liver, it remains elusive whether the antioxidative effect from the relatively low abundance of the bioactivate compounds could outweigh the oxidative stress and toxic effects from the ethanol component of the beverages.
Collapse
Affiliation(s)
- Yabin Zhou
- School of Biological Engineering, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,Liquor-Making Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Jin Hua
- School of Biological Engineering, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Zhiguo Huang
- School of Biological Engineering, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,Liquor-Making Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,*Correspondence: Zhiguo Huang,
| |
Collapse
|
18
|
Gomisin G improves muscle strength by enhancing mitochondrial biogenesis and function in disuse muscle atrophic mice. Biomed Pharmacother 2022; 153:113406. [DOI: 10.1016/j.biopha.2022.113406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
|
19
|
Liu S, Tang S, Gu D, Wang Y, Wang D, Yang Y. Preparation of 5-hydroxymethylfurfural from Schisandra chinensis (Turcz.) Baill by high-speed counter-current chromatography: Comparison of conventional and consecutive separation. Biomed Chromatogr 2022; 36:e5468. [PMID: 35904421 DOI: 10.1002/bmc.5468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022]
Abstract
Schisandra chinensis is a kind of plant with high medicinal value, which contains many medicinal ingredients, including 5-hydroxymethylfurfural. In the present study, an efficient method based on high-speed counter-current chromatography was established for the preparation of 5-hydroxymethylfurfural from Schisandra chinensis. Petroleum ether-ethyl acetate-methanol-water (2:5:2:5, v/v) was selected as the solvent system for high-speed counter-current chromatography. In order to improve the yield of single separation, the sample size was continuously optimized and improved. The result showed that 1250 mg was the most suitable sample size, and 41 mg of the target compound with 97% purity was obtained by a single run. To further improve the yield, consecutive high-speed counter-current chromatography was introduced and compared with the results of high-speed counter-current chromatography single run. The results showed that although the purity was reduced to 92%, 430 mg of the target compound was obtained from 12.5 g of ethanol extract within 670 min after 10 consecutive injections. It indicated that consecutive separation not only increased the yield of the target compound, but also saved the separation time and greatly improved the separation efficiency of high-speed counter-current chromatography.
Collapse
Affiliation(s)
- Shuo Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Shanshan Tang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dazhi Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
20
|
Compound Identification from Bromelia karatas Fruit Juice Using Gas Chromatography–Mass Spectrometry and Evaluation of the Bactericidal Activity of the Extract. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fruits of species of the genus Bromelia contain compounds with health benefits and potential biotechnological applications. For example, Bromelia karatas fruits contain antioxidants and proteins with bactericidal activity, but studies regarding the activity of these metabolites and potential benefits are required. We evaluated the bactericidal activity of the methanolic extract (treated and not treated with activated charcoal) and its fractions (hexane, ethyl acetate, and methanol) from ripe B. karatas fruit (8 °Brix) against Escherichia coli, Enterococcus faecalis, Salmonella enteritidis, and Shigella flexneri. The methanolic extract (ME) minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined at eight concentrations. The methanolic extract MIC was 5 mg/mL for E. faecalis and 10 mg/mL for the other bacteria; the MBC was 20 mg/mL for E. coli and E. faecalis, and 40 mg/mL for S. enteritidis and S. flexneri. Through gas chromatography–mass spectrometry, 131 compounds were identified, some of which had previously been reported to have biological activities, such as bactericidal, fungicide, anticancer, anti-inflammatory, enzyme inhibiting, and anti-allergic properties. The most abundant compounds found in the ME of B. karatas fruits were maleic anhydride, 5-hydroxymethylfurfural, and itaconic anhydride. This study shows that B. karatas fruits contain metabolites that are potentially beneficial for health.
Collapse
|
21
|
Qiu Y, Lin X, Chen Z, Li B, Zhang Y. 5-Hydroxymethylfurfural Exerts Negative Effects on Gastric Mucosal Epithelial Cells by Inducing Oxidative Stress, Apoptosis, and Tight Junction Disruption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3852-3861. [PMID: 35311281 DOI: 10.1021/acs.jafc.2c00269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
5-Hydroxymethylfurfural (5-HMF) is a processing byproduct present in foods that are consumed daily by humans, and the diet is the principal route for human exposure to it. However, its adverse effects on gastric epithelial cells are not fully understood. Based on the half inhibitory concentration value, concentrations of HMF of 2, 4, 8, and 16 mM were selected for this study. After 5-HMF treatment for 24 h, the number of living cells decreased to 89.61 ± 0.48, 77.30 ± 0.57, 58.75 ± 0.36, and 19.61 ± 0.40% of the control, respectively. Apoptosis activated through both the death receptor and mitochondrial pathways was confirmed to be the primary mode of HMF-induced cell death. Further analysis revealed that the reactive oxygen species (ROS) levels in GES-1 cells increased 1.7-6.5 fold after exposure to 5-HMF. Moreover, the inhibition of ROS by N-acetylcysteine blocked HMF-induced apoptosis and cell proliferation suppression, indicating that oxidative stress was important in HMF-induced apoptosis. Besides, after 5-HMF treatment, the gene expressions of occludin and ZO-1 were reduced by 1.1-3.4 fold and 2.0-9.4 fold, respectively. The cell surface morphology and tight junction-related protein expression analysis also revealed the destructive effect of 5-HMF on tight junction integrity. Our research highlights a potential mechanism of HMF-induced toxicity in GES-1 cells and provides additional information on the health risks of 5-HMF exposure to the human gastric epithelium.
Collapse
Affiliation(s)
- Yanting Qiu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bin Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
22
|
Li M, Jiang H, Hao Y, Du K, Du H, Ma C, Tu H, He Y. A systematic review on botany, processing, application, phytochemistry and pharmacological action of Radix Rehmnniae. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114820. [PMID: 34767834 DOI: 10.1016/j.jep.2021.114820] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Rehmanniae (RR) is the tuber root of Rehmannia glutionsa Libosch, which was firstly recorded in Shennong's Classic of Materia Medica (⟪⟫). RR is a non-toxic and wide used traditional Chinese medicine. RR has the effect of clearing heat, generating essence, cooling blood, stopping bleeding, nourishing yin and blood, and filling marrow. It is used in clinic in the form of processed decoction pieces, including Dry Radix Rehmnniae (DRR) and Rehmanniae Radix Praeparata (RRP). The application of RR in traditional Chinese medicine (TCM) prescriptions can treat various diseases, such as anemia, irregular menstruation, deficiency of liver yin, renal failure and so on. AIM OF REVIEW This paper aims to provide a comprehensive and productive review of RR, which mainly contains botanical characteristics, processing methods, traditional application, chemical composition, quality control and pharmacological action. MATERIALS AND METHODS Literature search was conducted through the Web of Science, Baidu Scholar, ScienceDirect, PubMed, CNKI, and WanFang DATA using the keywords "Radix Rehmnniae", "Rehmanniae Radix Praeparata", "processing", "clinical application", "chemical composition", "quality control", and "pharmacological action". In addition, information was collected from relevant textbooks, reviews, and documents. RESULTS RR is a traditional Chinese herbal medicine with clinical value and rich resources. More than 100 components have been isolated and identified from RR. It has multiple pharmacological actions, such as hemostasis, antioxidation, anti-osteoporosis, lowering blood sugar, improving renal function, anti-inflammation, protecting neuronal function, antidepression and anti-anxiety. DRR and RRP are two different processed products of RR. After processing, there are great changes in property, taste, efficacy, clinical application, chemical composition and pharmacological action. At present, identifying chemical constituents of RR and its medicinal value has been deeply studied. However, there is a lack of research on the reasons for the differences in pharmacological effects between DRR and RRP. The reasons for these differences need to be further verified. Catalpol, the active component of RR, has been studied extensively in the literature, but the pharmacological effects of catalpol cannot represent the pharmacological effects of the whole RR. In the future, effective components such as rehmannioside D, polysaccharide, total glycosides, and effective parts in RR need to be further studied and developed. The pharmacodynamic material basis and mechanism of RR need to be further discussed. The scientific connotation and processing methods of RRP need to be studied and standardized.
Collapse
Affiliation(s)
- Minmin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Huajuan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yule Hao
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Kequn Du
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Hongling Du
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chuan Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - He Tu
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, 610041, China.
| | - Yao He
- State Key Laboratory of Southwestern Chinese Medicine Resources; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Guizhou Yibai Pharmaceutical Co. Ltd. Guiyang, 550008, China.
| |
Collapse
|
23
|
Zhang H, Jiang Z, Shen C, Zou H, Zhang Z, Wang K, Bai R, Kang Y, Ye XY, Xie T. 5-Hydroxymethylfurfural Alleviates Inflammatory Lung Injury by Inhibiting Endoplasmic Reticulum Stress and NLRP3 Inflammasome Activation. Front Cell Dev Biol 2021; 9:782427. [PMID: 34966742 PMCID: PMC8711100 DOI: 10.3389/fcell.2021.782427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
5-Hydroxymethylfurfural (5-HMF) is a common reaction product during heat processing and the preparation of many types of foods and Traditional Chinese Medicine formulations. The aim of this study was to evaluate the protective effect of 5-HMF on endotoxin-induced acute lung injury (ALI) and the underlying mechanisms. Our findings indicate that 5-HMF attenuated lipopolysaccharide (LPS)-induced ALI in mice by mitigating alveolar destruction, neutrophil infiltration and the release of inflammatory cytokines. Furthermore, the activation of macrophages and human monocytes in response to LPS was remarkably suppressed by 5-HMF in vitro through inhibiting the NF-κB signaling pathway, NLRP3 inflammasome activation and endoplasmic reticulum (ER) stress. The inhibitory effect of 5-HMF on NLRP3 inflammasome was reversed by overexpressing ATF4 or CHOP, indicating the involvement of ER stress in the negative regulation of 5-HMF on NLRP3 inflammasome-mediated inflammation. Consistent with this, the ameliorative effect of 5-HMF on in vivo pulmonary dysfunction were reversed by the ER stress inducer tunicamycin. In conclusion, our findings elucidate the anti-inflammatory and protective efficacy of 5-HMF in LPS-induced acute lung injury, and also demonstrate the key mechanism of its action against NLRP3 inflammasome-related inflammatory disorders via the inhibition of ER stress.
Collapse
Affiliation(s)
- Hang Zhang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zheyi Jiang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chuanbin Shen
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Han Zou
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Zhiping Zhang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Kaitao Wang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yanhua Kang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
24
|
Zou H, Wu T, Wang Y, Kang Y, Shan Q, Xu L, Jiang Z, Lin X, Ye XY, Xie T, Zhang H. 5-Hydroxymethylfurfural Enhances the Antiviral Immune Response in Macrophages through the Modulation of RIG-I-Mediated Interferon Production and the JAK/STAT Signaling Pathway. ACS OMEGA 2021; 6:28019-28030. [PMID: 34723002 PMCID: PMC8552330 DOI: 10.1021/acsomega.1c03862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/29/2021] [Indexed: 05/13/2023]
Abstract
5-Hydroxymethylfurfural (5-HMF) exists in a wide range of sugar-rich foods and traditional Chinese medicines. The role of 5-HMF in antiviral innate immunity and its mechanism have not been reported previously. In this study, we reveal for the first time that 5-HMF upregulates the production of retinoic acid-inducible gene I (RIG-I)-mediated type I interferon (IFN) as a response to viral infection. IFN-β and IFN-stimulated chemokine gene expressions induced by the vesicular stomatitis virus (VSV) are upregulated in RAW264.7 cells and primary peritoneal macrophages after treatment with 5-HMF, a natural product that appears to inhibit the efficiency of viral replication. Meanwhile, 5-HMF-pretreated mice show enhanced innate antiviral immunity, increased serum levels of IFN-β, and reduced morbidity and viral loads upon infection with VSV. Thus, 5-HMF can be seen to have a positive effect on enhancing type I IFN production. Mechanistically, 5-HMF upregulates the expression of RIG-I in macrophages, resulting in an acceleration of the RIG-I signaling pathway activation. Additionally, STAT1 and STAT2 phosphorylations, along with the expression of IFN-stimulated chemokine genes induced by IFN-α/β, were also enhanced in macrophages cotreated with 5-HMF. In summary, these findings indicate that 5-HMF not only can induce type I IFN production but also can enhance IFN-JAK/STAT signaling, leading to a novel immunomodulatory mechanism against viral infection. In conclusion, our study reveals a previously unrecognized effect of 5-HMF in the antiviral innate immune response and suggests new potential of utilizing 5-HMF for controlling viral infection.
Collapse
Affiliation(s)
- Han Zou
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Tingyue Wu
- School
of Life Science, University of Science &
Technology of China, Hefei 230026, Anhui, China
- Key
Laboratory of Animal Models and Human Disease Mechanisms of the Chinese
Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Yuan Wang
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
| | - Yanhua Kang
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Qingye Shan
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
| | - Liqing Xu
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
| | - Zheyi Jiang
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Xiaohan Lin
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Xiang-Yang Ye
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
- Collaborative
Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Tian Xie
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
- Collaborative
Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Hang Zhang
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
- Collaborative
Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| |
Collapse
|
25
|
Abu Bakar Sajak A, Azlan A, Abas F, Hamzah H. The Changes in Endogenous Metabolites in Hyperlipidemic Rats Treated with Herbal Mixture Containing Lemon, Apple Cider, Garlic, Ginger, and Honey. Nutrients 2021; 13:3573. [PMID: 34684574 PMCID: PMC8539352 DOI: 10.3390/nu13103573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 02/07/2023] Open
Abstract
An herbal mixture composed of lemon, apple cider, garlic, ginger and honey as a polyphenol-rich mixture (PRM) has been reported to contain hypolipidemic activity on human subjects and hyperlipidemic rats. However, the therapeutic effects of PRM on metabolites are not clearly understood. Therefore, this study aimed to provide new information on the causal impact of PRM on the endogenous metabolites, pathways and serum biochemistry. Serum samples of hyperlipidemic rats treated with PRM were subjected to biochemistry (lipid and liver profile) and hydroxymethylglutaryl-CoA enzyme reductase (HMG-CoA reductase) analyses. In contrast, the urine samples were subjected to urine metabolomics using 1H NMR. The serum biochemistry revealed that PRM at 500 mg/kg (PRM-H) managed to lower the total cholesterol level and low-density lipoprotein (LDL-C) (p < 0.05) and reduce the HMG-CoA reductase activity. The pathway analysis from urine metabolomics reveals that PRM-H altered 17 pathways, with the TCA cycle having the highest impact (0.26). Results also showed the relationship between the serum biochemistry of LDL-C and HMG-CoA reductase and urine metabolites (trimethylamine-N-oxide, dimethylglycine, allantoin and succinate). The study's findings demonstrated the potential of PRM at 500 mg/kg as an anti-hyperlipidemic by altering the TCA cycle, inhibiting HMG-CoA reductase and lowering the LDL-C in high cholesterol rats.
Collapse
Affiliation(s)
- Azliana Abu Bakar Sajak
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Azrina Azlan
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Research Centre for Excellence for Nutrition and Non-Communicable Disease, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Hazilawati Hamzah
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
26
|
Schisandrae chinensis Fructus Extract Ameliorates Muscle Atrophy in Streptozotocin-Induced Diabetic Mice by Downregulation of the CREB-KLF15 and Autophagy-Lysosomal Pathways. Cells 2021; 10:cells10092283. [PMID: 34571935 PMCID: PMC8469055 DOI: 10.3390/cells10092283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes mellitus is an autoimmune disease caused by the destruction of pancreatic beta cells. Many patients with type 1 diabetes experience skeletal muscle wasting. Although the link between type 1 diabetes and muscle wasting is not clearly known, insulin insufficiency and hyperglycemia may contribute to decreased muscle mass. In this study, we investigated the therapeutic effect of the ethanolic extract of Schisandrae chinensis Fructus (SFe) on muscle wasting in streptozotocin (STZ)-induced diabetic mice. STZ-diabetic C57BL/6 mice (blood glucose level ≥300 mg/dL) were orally administered SFe (250 or 500 mg/kg/day) for 6 weeks. We observed that SFe administration did not change blood glucose levels but increased gastrocnemius muscle weight, cross-sectional area, and grip strength in STZ-induced diabetic mice. Administration of SFe (500 mg/kg) decreased the expression of atrophic factors, such as MuRF1 and atrogin-1, but did not alter the expression of muscle synthetic factors. Further studies showed that SFe administration decreased the expression of KLF15 and p-CREB, which are upstream molecules of atrophic factors. Examination of the expression of molecules involved in autophagy–lysosomal pathways (e.g., p62/SQSTM1, Atg7, Beclin-1, ULK-1, LC3-I, and LC3-II) revealed that SFe administration significantly decreased the expression of p62/SQSTM1, LC3-I, and LC3-II; however, no changes were observed in the expression of Atg7, Beclin-1, or ULK-1. Our results suggest that SFe ameliorated muscle wasting in STZ-induced diabetic mice by decreasing protein degradation via downregulation of the CREB-KLF15-mediated UPS system and the p62/SQSTM1-mediated autophagy–lysosomal pathway.
Collapse
|
27
|
Suri K, Singh B, Kaur A. Impact of microwave roasting on physicochemical properties, maillard reaction products, antioxidant activity and oxidative stability of nigella seed (Nigella sativa L.) oil. Food Chem 2021; 368:130777. [PMID: 34392118 DOI: 10.1016/j.foodchem.2021.130777] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
In this study, oils extracted from nigella seeds (NS) subjected to microwave roasting at 180, 360, 540 and 720 W for 5 and 10 min were evaluated for quality and stability characteristics. The impact of microwave powers on oil yield, pigment content, Maillard reaction products (MRPs), radical scavenging activity (RSA), color, viscosity, total phenolic content (TPC), oxidative stability index (OSI) and fatty acid composition (FAC) of oil was studied. TPC, RSA, OSI, MRPs, viscosity, chlorophyll and carotenoid contents were higher in oil of NS heated at 720 W for 10 min while maximum oil yield and low acid value was observed for NS heated at 540 W for 10 min. FAC was slightly influenced by microwave roasting and FTIR spectra exhibited a minor difference in intensities of peaks at 3009, 2925, 2854, 1745 and 1161 cm-1. The results of the study indicated that microwave roasting improves NS oil quality characteristics.
Collapse
Affiliation(s)
- Kanchan Suri
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Balwinder Singh
- P.G. Department of Biotechnology, Khalsa College, Amritsar, Punjab 143002, India.
| | - Amritpal Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
28
|
Ledbetter M, Blidi S, Ackon S, Bruno F, Sturrock K, Pellegrini N, Fiore A. Effect of novel sequential soaking treatments on Maillard reaction products in potato and alternative vegetable crisps. Heliyon 2021; 7:e07441. [PMID: 34286122 PMCID: PMC8278335 DOI: 10.1016/j.heliyon.2021.e07441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022] Open
Abstract
Frying leads to the formation of numerous food contaminants through the Maillard reaction (MR). In this paper, commercially available vegetable crisps were analysed for and established to have high levels of acrylamide. Consequentially, the capability of two novel sequential pre-frying treatments were applied to potato, beetroot and parsnip snacks to inhibit the formation of acrylamide, 5-hydroxymethylfurfural (HMF), glyoxal (GO) and methylglyoxal (MGO) was investigated. Data revealed that immersion in cold tap water for 2 min followed by blanching at 70 ± 2 °C for 2 min (Cold soak, hot soak, (CSHS)) as well as soaking in a 0.01M CaCl2 solution for 2 min followed by blanching at 70 ± 2 °C in 0.1M citric acid for 2 min were both effective pre-treatments for potato crisps, simultaneously decreasing acrylamide concentration under the benchmark level of 750 μg/kg and lowering GO content by 55.19 and 54.67% and MGO concentration by 39.17% and 81.62%, respectively. CSHS was the only efficient treatment for concurrent mitigation of acrylamide (-41.64%) and HMF (-88.43%) with little GO and MGO development in beetroot. Sequential cold soak in 0.01M calcium chloride and hot soak in a 0.1M citric acid solution has been effective in decreasing acrylamide in alternative crisps. However, this led to an increase in HMF, 30 and 20-fold respectively from the initial concentration. Data reveal that the tested mitigation strategies are vegetable specific. Vegetable crisps contain more acrylamide than the benchmark for potato crisps. Vegetable crisps contain significant levels of HMF, GO and MGO than potato crisps. Wash additives effect on potato, are variable on vegetable. Mitigation strategies for the reduction of acrylamide are vegetable specific.
Collapse
Affiliation(s)
- Moira Ledbetter
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Slim Blidi
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Stefania Ackon
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Francesca Bruno
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Keith Sturrock
- School of Applied Sciences, Division of Psychology and Forensic Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Alberto Fiore
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| |
Collapse
|
29
|
Hsieh HJ, Lin JA, Chen KT, Cheng KC, Hsieh CW. Thermal treatment enhances the α-glucosidase inhibitory activity of bitter melon (Momordica charantia) by increasing the free form of phenolic compounds and the contents of Maillard reaction products. J Food Sci 2021; 86:3109-3121. [PMID: 34146408 DOI: 10.1111/1750-3841.15798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
Inhibition of α-glucosidase can slow carbohydrate metabolism, which is known as an effective strategy for diabetes treatment. The aim of this study is to evaluate the effect of thermal treatment (50, 60, and 70℃) for 15 days on the α-glucosidase inhibitory activity of bitter melon. The results show that the bitter melon heated at 70℃ for 12 days had the best α-glucosidase inhibitory effect. However, the amount of free polyphenols, 5-hydroxymethyl-2-furfural (5-HMF), and the browning degree of bitter melon generally increased with the time (15 days) and temperature of the thermal treatment, which is positively related to their antioxidant and α-glucosidase inhibitory activities. In conclusion, aged bitter melon shows great α-glucosidase inhibitory activity, which may be related to the increased free form of the involved phenolic compounds and Maillard reaction products. This suggests that thermal processing may be a good way to enhance the application of bitter melon for diabetes treatment. PRACTICAL APPLICATION: The thermal processing of bitter melon provides an application for diabetes treatment. This study demonstrated that heat-treated bitter melon can lower the blood glucose level; therefore, it can be used as a potential anti-hyperglycemic and functional food.
Collapse
Affiliation(s)
- Hsin-Jung Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jer-An Lin
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Kai-Ting Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Department of Optometry, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
30
|
Swetha TK, Subramenium GA, Kasthuri T, Sharumathi R, Pandian SK. 5-hydroxymethyl-2-furaldehyde impairs Candida albicans - Staphylococcus epidermidis interaction in co-culture by suppressing crucial supportive virulence traits. Microb Pathog 2021; 158:104990. [PMID: 34048889 DOI: 10.1016/j.micpath.2021.104990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/25/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Polymicrobial biofilms involving fungal-bacterial interactions are stated to modulate host immune response and exhibit enhanced antibiotic resistance. In this milieu, clinically important opportunistic pathogens Candida albicans and Staphylococcus epidermidis associate synergistically and instigate implant and blood stream infections. Impediment of virulence traits that support successive pathogenic lifestyle and inter-kingdom interactions without altering the microbial growth represents an attractive alternate strategy. To accomplish this objective, 5-hydroxymethyl-2-furaldehyde (5HM2F), a reported antibiofilm agent against C. albicans, was considered for this study. 5HM2F significantly repressed the biofilm formation of S. epidermidis and mixed-species at 300 μg/mL and 400 μg/mL, respectively without modulating the growth. Microscopic analyses and phenotypic assays explicated the competency of 5HM2F to impede biofilm formation, hyphal growth, initial attachment, intercellular adhesion, and fungal-bacterial interaction. Further, 5HM2F greatly reduced the secreted hydrolases production. Reduced content of biofilm matrix components upon 5HM2F treatment was believed to be the underlying reason for enhanced antibiotic and/antifungal susceptibility. Additionally, qPCR analysis correlated well with in vitro bioassays wherein, 5HM2F was identified to repress the expression of important genes associated with hyphal morphogenesis, adhesion, biofilm formation and virulence in both mono-species and mixed-species. Reduced virulence and colonization of mono-species and mixed-species in 5HM2F treated Caenorhabditis elegans substantiated the antibiofilm and antivirulence potential of 5HM2F. Overall, this study proposes 5HM2F as a potent therapeutic candidate against single and mixed-species biofilm infections of C. albicans and S. epidermidis.
Collapse
Affiliation(s)
| | | | - Thirupathi Kasthuri
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India
| | - Rajendran Sharumathi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
31
|
Kopustinskiene DM, Bernatoniene J. Antioxidant Effects of Schisandra chinensis Fruits and Their Active Constituents. Antioxidants (Basel) 2021; 10:antiox10040620. [PMID: 33919588 PMCID: PMC8073495 DOI: 10.3390/antiox10040620] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Schisandra chinensis Turcz. (Baill.) fruits, their extracts, and bioactive compounds are used in alternative medicine as adaptogens and ergogens protecting against numerous neurological, cardiovascular, gastrointestinal, liver, and skin disorders. S. chinensis fruit extracts and their active compounds are potent antioxidants and mitoprotectors exerting anti-inflammatory, antiviral, anticancer, and anti-aging effects. S. chinensis polyphenolic compounds-flavonoids, phenolic acids and the major constituents dibenzocyclooctadiene lignans are responsible for the S. chinensis antioxidant activities. This review will focus on the direct and indirect antioxidant effects of S. chinensis fruit extract and its bioactive compounds in the cells during normal and pathological conditions.
Collapse
Affiliation(s)
- Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Correspondence:
| |
Collapse
|
32
|
Zhang L, Meng B, Li L, Wang Y, Zhang Y, Fang X, Wang D. Boletus aereus protects against acute alcohol-induced liver damage in the C57BL/6 mouse via regulating the oxidative stress-mediated NF-κB pathway. PHARMACEUTICAL BIOLOGY 2020; 58:905-914. [PMID: 32915675 PMCID: PMC7534317 DOI: 10.1080/13880209.2020.1812672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/09/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Alcoholic liver disease, caused by abuse and consumption of alcohol, exhibits high morbidity and mortality. Boletus aereus Bull. (Boletaceae) (BA) shows antioxidant, anti-inflammatory and antimicrobial effects. OBJECTIVES To investigate the hepatoprotective effects of BA using an acute alcohol-induced hepatotoxicity mice model. MATERIALS AND METHODS The composition of BA fruit body was first systematically analyzed. Subsequently, a C57BL/6 mice model of acute alcohol-induced liver injury was established by intragastrically administration of alcohol, which was intragastrically received with BA powder at 200 mg/kg and 800 mg/kg for 2 weeks, 60 mg/kg silybin treatment was used as positive control group. By employing the pathological examination, ELISA, RT-PCR and western blot, the regulation of BA on oxidative stress signals was investigated. RESULTS The LD50 of BA was much higher than 4 g/kg/p.o. In acute alcohol-damaged mice, BA reduced the levels of alanine aminotransferase (>18.3%) and aspartate aminotransferase (>27.6%) in liver, increased the activity of liver alcohol dehydrogenase (>35.0%) and serum acetaldehyde dehydrogenase (>18.9%). BA increased the activity of superoxide dismutase (>13.4%), glutathione peroxidase (>11.0%) and 800 mg/kg BA strongly reduced chemokine (C-X-C motif) ligand 13 (14.9%) and chitinase-3 like-1 protein (13.4%) in serum. BA reversed mRNA over-expression (>70%) and phosphor-stimulated expression (>45.0%) of an inhibitor of nuclear factor κ-B kinase (NF-κB, an inhibitor of nuclear factor κ-B α and nuclear factor κ-B in the liver. CONCLUSIONS BA is effective in ameliorating alcohol-induced liver injury through regulating oxidative stress-mediated NF-κB signalling, which provides a scientific basis for further research on its clinical applications.
Collapse
Affiliation(s)
- Luping Zhang
- Gastroenterology and Endoscopy Center, The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
| | - Bo Meng
- Gastroenterology and Endoscopy Center, The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Lanzhou Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yanzhen Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Pharmacy Food Science, Zhuhai College of Jilin University, Zhuhai, China
| | - Yuanzhu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xuexun Fang
- Gastroenterology and Endoscopy Center, The First Bethune Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Di Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Pharmacy Food Science, Zhuhai College of Jilin University, Zhuhai, China
| |
Collapse
|
33
|
Ni J, Ren Q, Luo J, Chen Z, Xu X, Guo J, Tan Y, Liu W, Qu Z, Wu Z, Wang J, Li Y, Guan G, Luo J, Yin H, Liu G. Ultrasound-assisted extraction extracts from Stemona japonica (Blume) Miq. and Cnidium monnieri (L.) Cuss. could be used as potential Rhipicephalus sanguineus control agents. Exp Parasitol 2020; 217:107955. [PMID: 32649953 DOI: 10.1016/j.exppara.2020.107955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/18/2020] [Accepted: 07/03/2020] [Indexed: 12/01/2022]
Abstract
Nicotiana tabacum, Stemona japonica, and Cnidium monnieri are common plants that are widely used for their anti-parasitic properties. The purpose of this study was to evaluate the acaricidal activity of extracts from these plants against the brown dog tick, Rhipicephalus sanguineus. A composition analysis of crude extracts by GC-MS was conducted to discover compounds with acaricidal effects. The toxicity of extraction against the engorged nymphs of R. sanguineus was evaluated by an immersion test. The results showed that the crude extracts of S. japonica and C. monnieri in varying ratios, concentrations, and from different extraction methods, had a killing effect on R. sanguineus. Lethality reached 76.67% ± 0.04410 when using a 1:1 extract of S. japonica:C. monnieri in 75% ethanol with ultrasonic extraction; the crude extract was determined at a concentration of 0.5 g/mL. GC-MS results showed that osthole and 5-hydroxymethylfurfural (5-HMF) are the main components of the extract. These results suggested that ultrasound-assisted extraction (UAE) extracts contained acaricidal components acting against R. sanguineus, which may result in the development of effective extracts of S. japonica and C. monnieri as a source of low-toxicity, plant-based, natural acaricidal drugs.
Collapse
Affiliation(s)
- Jun Ni
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Qiaoyun Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Jin Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Ze Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Xiaofeng Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Junhui Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Yangchun Tan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Wenge Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Zhiqiang Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Zegong Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| |
Collapse
|
34
|
Nassar AM, Salim YM, Eid KS, Shaheen HM, Saati AA, Hetta HF, Elmistekawy A, Batiha GES. Ameliorative Effects of Honey, Propolis, Pollen, and Royal Jelly Mixture against Chronic Toxicity of Sumithion Insecticide in White Albino Rats. Molecules 2020; 25:molecules25112633. [PMID: 32517066 PMCID: PMC7321238 DOI: 10.3390/molecules25112633] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
Sumithion (Fenitrothion) (SUM) is an organophosphorus insecticide used to combat a wide variety of plant pests. Exposure to SUM causes significant toxicity to the brain, liver, kidney, and reproductive organs through, for example, binding to DNA, and it induces DNA damage, which ends with oxidative stress. Therefore, the present study aimed to examine the protective role of bee products: a mixture of honey, propolis, palm pollen, and royal jelly (HPPJ) against SUM-induced toxicity. Twenty-four male albino rats (Rattus norvegicus) were classified into four groups, each containing six rats: control (corn oil), SUM (85 mg/kg; 1/20 LD50), HPPJ, and SUM + HPPJ once daily for 28 consecutive days. Blood samples were gently collected in sterilized ethylenediaminetetraacetic acid (EDTA) tubes for blood picture analyses and tubes without anticoagulant for serum isolation. Serum was used for assays of enzymatic and biochemical characteristics. The results revealed that SUM increased the weights of the liver, kidney, and brain as well as the enzymatic activity of glutathione peroxidase (GP), serum superoxide dismutase (SOD), and glutathione-S-transferase (GST). Additionally, SUM significantly increased the activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and γ-glutamyltransferase (γ-GT) and glucose, uric acid, and creatinine contents, while decreasing the acetylcholine esterase (AChE) activity and total lipids and total protein content. Furthermore, because of the inclusion of phenolic, flavonoids, terpenoids, and sugars, the HPPJ mixture counteracted the hematological, renal, and hepatic toxicity of SUM exposure.
Collapse
Affiliation(s)
- Atef M.K. Nassar
- Plant Protection Department, Faculty of Agriculture, Damanhour University, Damanhour 22511, AlBeheira, Egypt; (Y.M.M.S.); (K.S.A.E.)
- Correspondence: (A.M.K.N.); (G.E.-S.B.)
| | - Yehia M.M. Salim
- Plant Protection Department, Faculty of Agriculture, Damanhour University, Damanhour 22511, AlBeheira, Egypt; (Y.M.M.S.); (K.S.A.E.)
| | - Khalid S.A. Eid
- Plant Protection Department, Faculty of Agriculture, Damanhour University, Damanhour 22511, AlBeheira, Egypt; (Y.M.M.S.); (K.S.A.E.)
| | - Hazem M. Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
| | - Abdullah A. Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Departmentof Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Amr Elmistekawy
- Department of Internal Medicine, Gastroenterology Division, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
- Correspondence: (A.M.K.N.); (G.E.-S.B.)
| |
Collapse
|
35
|
Preventive Effects of Schisandrin A, A Bioactive Component of Schisandra chinensis, on Dexamethasone-Induced Muscle Atrophy. Nutrients 2020; 12:nu12051255. [PMID: 32354126 PMCID: PMC7282012 DOI: 10.3390/nu12051255] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022] Open
Abstract
Muscle wasting is caused by various factors, such as aging, cancer, diabetes, and chronic kidney disease, and significantly decreases the quality of life. However, therapeutic interventions for muscle atrophy have not yet been well-developed. In this study, we investigated the effects of schisandrin A (SNA), a component extracted from the fruits of Schisandra chinensis, on dexamethasone (DEX)-induced muscle atrophy in mice and studied the underlying mechanisms. DEX+SNA-treated mice had significantly increased grip strength, muscle weight, and muscle fiber size compared with DEX+vehicle-treated mice. In addition, SNA treatment significantly reduced the expression of muscle degradation factors such as myostatin, MAFbx (atrogin1), and muscle RING-finger protein-1 (MuRF1) and enhanced the expression of myosin heavy chain (MyHC) compared to the vehicle. In vitro studies using differentiated C2C12 myotubes also showed that SNA treatment decreased the expression of muscle degradation factors induced by dexamethasone and increased protein synthesis and expression of MyHCs by regulation of Akt/FoxO and Akt/70S6K pathways, respectively. These results suggest that SNA reduces protein degradation and increases protein synthesis in the muscle, contributing to the amelioration of dexamethasone-induced muscle atrophy and may be a potential candidate for the prevention and treatment of muscle atrophy.
Collapse
|
36
|
Feng W, Zhou LY, Mu RF, Gao L, Xu BY, Liu ML, Niu LY, Wang XG. Screening and Identification of the Main Metabolites of Schisantherin a In Vivo and In Vitro by Using UHPLC-Q-TOF-MS/MS. Molecules 2020; 25:molecules25020258. [PMID: 31936367 PMCID: PMC7024306 DOI: 10.3390/molecules25020258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/26/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023] Open
Abstract
Schisantherin A is an active ingredient originating from Schisandra chinensis (Turcz.) which has hepatoprotective and anti-oxidation activities. In this study, in vitro metabolisms investigated on rat liver microsomes (RLMs) and in vivo metabolisms explored on male Sprague Dawley rats of Schisantherin A were tested, respectively. The metabolites of Schisantherin A were identified using ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). Based on the method, 60 metabolites were successfully identified and structurally characterized including 48 phase-I and 12 phase-II metabolites. Among the metabolites, 45 metabolites were reported for the first time. Moreover, 56 and eight metabolites were detected in urine and bile and 19 metabolites were identified in rats’ plasma. It demonstrated that hepatic and extra-hepatic metabolic pathways were both involved in Schisantherin A biotransformation in rats. Five in vitro metabolites were structurally characterized for the first time. The results indicated that the metabolic pathways mainly include oxidation, reduction, methylation, and conjugation with glucuronide, taurine, glucose, and glutathione groups. This study provides a practical strategy for rapidly screening and identifying metabolites, and the results provide basic data for future pharmacological and toxicology studies of Schisantherin A and other lignin ingredients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li-Ying Niu
- Correspondence: (L.-Y.N.); (X.-G.W.); Tel.: +86-311-8992-6208 (L.-Y.N.)
| | - Xin-Guo Wang
- Correspondence: (L.-Y.N.); (X.-G.W.); Tel.: +86-311-8992-6208 (L.-Y.N.)
| |
Collapse
|
37
|
Russ M, Jauk S, Wintersteiger R, Andrä M, Brcic I, Ortner A. Investigation of antioxidative effects of a cardioprotective solution in heart tissue. Mol Cell Biochem 2019; 461:73-80. [PMID: 31342300 PMCID: PMC6790185 DOI: 10.1007/s11010-019-03591-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/15/2019] [Indexed: 01/02/2023]
Abstract
A multi-component solution, containing α-ketoglutaric acid (α-KG), 5-hydroxymethylfurfural (5-HMF), N-acetyl-seleno-L-methionine (NASeLM), and N-acetyl-L-methionine (NALM) as active ingredients, has been tested considering its supposed antioxidative effect with respect to heart transplantations. Oxidative stress was induced on isolated rat hearts through occlusion of a coronary artery and in chicken heart tissue through hydrogen peroxide. Both heart types were analyzed and the oxidative stress markers malondialdehyde (MDA) and carbonyl proteins (CPs) were determined via HPLC/UV-Vis. In both approaches, it was found that treatment with the multi-component solution led to a lower amount of MDA and CPs compared to a negative control treated with Krebs-Ringer solution (KRS). Further investigation on chicken heart tissue identified α-KG as antioxidative component in these experiments. However, numerous factors like arrhythmia, vessel dilatation, and minimization of oxidative stress effects play an important role for successful transplantation. Therefore, the investigated multi-component solution might be a novel approach against oxidative stress situations, for example at ischemia reperfusion injury during heart transplantations.
Collapse
Affiliation(s)
- Miriam Russ
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1, 8010, Graz, Austria
| | - Susanne Jauk
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1, 8010, Graz, Austria
| | - Reinhold Wintersteiger
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1, 8010, Graz, Austria
| | - Michaela Andrä
- Division of Transplant Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria
| | - Iva Brcic
- Diagnostic & Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Astrid Ortner
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1, 8010, Graz, Austria.
| |
Collapse
|
38
|
Lee CH, Chen KT, Lin JA, Chen YT, Chen YA, Wu JT, Hsieh CW. Recent advances in processing technology to reduce 5-hydroxymethylfurfural in foods. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.09.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Physicochemical changes and sensorial properties during black garlic elaboration: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
40
|
Saleh-Ghadimi S, Jafari-Vayghan H, Kheirouri S, Alizadeh M. Inhibitory Effect of Hydroxymethylfurfural in Viability of BALB/C Mice Splenocytes. PHARMACEUTICAL SCIENCES 2019. [DOI: 10.15171/ps.2019.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: This study was designed to discover if hydroxymethylfurfural (HMF) exposure modifies cell proliferation and DNA damage in BALB/c mice splenocytes. Methods: Mitogenesis in T cells and B cells was induced by Concanavalin A (Con A) and lipopolysaccharide (LPS). The colorimetric tetrazolium assay was used to evaluate cell proliferation. DNA damaging consequences were evaluated via measurement of 8-hydroxy-2-deoxyguanosine (8-OHdG) level in BALB/c mice splenocytes. Results: Spleen cells proliferation elicited by ConA, was dramatically suppressed by 25, 50 and 100 mM of HMF. However, there was not any significant difference between various concentrations of HMF. The same result was observed following treatment with LPS and HMF in different concentrations. Eight-OHdG concentration was elevated significantly in HMF treated groups compared with untreated control and mitogens. Conclusion: HMF was found to have immunosuppressing and DNA damaging properties in mM concentrations in mice splenocytes.
Collapse
Affiliation(s)
- Sevda Saleh-Ghadimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sorayya Kheirouri
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Kong F, Lee BH, Wei K. 5-Hydroxymethylfurfural Mitigates Lipopolysaccharide-Stimulated Inflammation via Suppression of MAPK, NF-κB and mTOR Activation in RAW 264.7 Cells. Molecules 2019; 24:molecules24020275. [PMID: 30642099 PMCID: PMC6359491 DOI: 10.3390/molecules24020275] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/01/2023] Open
Abstract
5-Hydroxymethylfurfural (5-HMF) is found in many food products including honey, dried fruits, coffee and black garlic extracts. Here, we investigated the anti-inflammatory activity of 5-HMF and its underlying mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. 5-HMF pretreatment ranging from 31.5 to 126.0 μg/mL reduced the production of nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in a concentration-dependent manner in LPS-stimulated cells. Moreover, 5-HMF-pretreated cells significantly down-regulated the mRNA expression of two major inflammatory mediators, nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and suppressed the production of pro-inflammatory cytokines, as compared with the only LPS-stimulated cells. 5-HMF suppressed the phosphorylation of extracellular regulated protein kinases (ERK1/2), c-Jun N-terminal kinase (JNK), IκBα, NF-κB p65, the mammalian target of rapamycin (mTOR) and protein kinase B (Akt). Besides, 5-HMF was proved to inhibit NF-κB p65 translocation into nucleus to activate inflammatory gene transcription. These results suggest that 5-HMF could exert the anti-inflammatory activity in the LPS-induced inflammatory response by inhibiting the MAPK, NF-κB and Akt/mTOR pathways. Thus, 5-HMF could be considered as a therapeutic ingredient in functional foods.
Collapse
Affiliation(s)
- Fanhui Kong
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Bae Hoon Lee
- Wenzhou Institute of Biomaterials and Engineering, CAS, Wenzhou 325011, Zhejiang, China.
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| | - Kun Wei
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, Guangdong, China.
- Wenzhou Institute of Biomaterials and Engineering, CAS, Wenzhou 325011, Zhejiang, China.
| |
Collapse
|
42
|
Li YZ, Ma ZN, Sun YS, Ren S, Jiang S, Zhang WZ, Wang Z, Li W. Protective effects of extracts of Schisandra chinensis stems against acetaminophen-induced hepatotoxicity via regulation of MAPK and caspase-3 signaling pathways. Chin J Nat Med 2018; 16:700-713. [PMID: 30269847 DOI: 10.1016/s1875-5364(18)30110-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/11/2022]
Abstract
The present study was designed to evaluate protective activity of an ethanol extract of the stems of Schisandra chinensis (SCE) and explore its possible molecular mechanisms on acetaminophen (APAP) induced hepatotoxicity in a mouse model. The results of HPLC analysis showed that the main components of SCE included schisandrol A, schisandrol B, deoxyschisandrin, schisandrin B, and schisandrin C and their contents were 5.83, 7.11, 2.13, 4.86, 0.42 mg·g-1, respectively. SCE extract was given for 7 consecutive days before a single hepatotoxic dose of APAP (250 mg·kg-1) was injected to mice. Our results showed that SCE pretreatment ameliorated liver dysfunction and oxidative stress, which was evidenced by significant decreases in aspartate transaminase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA) contents and elevations in reduced glutathione (GSH) and superoxide dismutase (SOD) levels. These findings were associated with the result that the SCE pretreatment significantly decreased expression levels of 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine (3-NT). SCE also significantly decreased the expression levels of Bax, mitogen- activated protein kinase (MAPK), and cleaved caspase-3 by APAP exposure. Furthermore, supplementation with SCE suppressed the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), suggesting alleviation of inflammatory response. In summary, these findings from the present study clearly demonstrated that SCE exerted significant alleviation in APAP-induced oxidative stress, inflammation and apoptosis mainly via regulating MAPK and caspase-3 signaling pathways.
Collapse
Affiliation(s)
- Yan-Zi Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhi-Na Ma
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yin-Shi Sun
- Institute of Special Wild Economic Animals and Plant, Chinese Academy of Agricultural Sciences (CAAS), Changchun 132109, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei-Zhe Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
43
|
Sipjeondaebo-tang Alleviates Oxidative Stress-Mediated Liver Injury through Activation of the CaMKK2-AMPK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8609285. [PMID: 30524483 PMCID: PMC6247439 DOI: 10.1155/2018/8609285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/17/2018] [Accepted: 09/30/2018] [Indexed: 12/25/2022]
Abstract
Sipjeondaebo-tang (SDT) is used frequently as a herbal prescription to treat deficiency syndromes in traditional Korean medicine. We investigated the hepatoprotective effects of SDT against oxidative stress and attempted to clarify the underlying molecular mechanisms. SDT pretreatment reduced arachidonic acid (AA) plus iron-mediated cytotoxicity in a concentration-dependent manner and prevented changes in apoptosis-related protein expression. In addition, SDT pretreatment significantly reduced glutathione depletion, hydrogen peroxide production, and mitochondrial dysfunction via treatment with AA plus iron. SDT increased the phosphorylation of AMP-activated protein kinase (AMPK) in accordance with the phosphorylation of Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2). Experiments using an AMPK chemical inhibitor (Compound C) or CaMKK2 chemical inhibitor (STO-609) suggested that the CaMKK2-AMPK signaling pathway contributes to SDT-mediated protection of mitochondria and cells. Moreover, administration of SDT for 4 consecutive days to mice significantly reduced the alanine aminotransferase and aspartate aminotransferase activities induced by carbon tetrachloride, and the numbers of degenerated hepatocytes, infiltrated inflammatory cells, nitrotyrosine-positive cells, and 4-hydroxynonenal-positive cells in liver tissue. Therefore, SDT protects hepatocytes from oxidative stress via CaMKK2-dependent AMPK activation and has the therapeutic potential to prevent or treat oxidative stress-related liver injury.
Collapse
|
44
|
Zhao Q, Ou J, Huang C, Qiu R, Wang Y, Liu F, Zheng J, Ou S. Absorption of 1-Dicysteinethioacetal-5-Hydroxymethylfurfural in Rats and Its Effect on Oxidative Stress and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11451-11458. [PMID: 30303013 DOI: 10.1021/acs.jafc.8b04260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The absorption of a 5-hydroxymethylfurfural (HMF)-cysteine adduct, 1-dicysteinethioacetal-5-hydroxymethylfurfural (DCH), and its effect on antioxidant activity and gut microbiota were investigated. Results indicated that DCH is more easily absorbed in rats than HMF. Serum DCH concentrations were 15-38-fold of HMF concentrations from 30 to 180 min after intragastrical administration at the level of 100 mg/kg of body weight, and 2.7-4.5% of absorbed DCH was converted to HMF. The malondialdehyde content in the plasma, heart, liver, and kidneys significantly increased after drug (100 mg/kg of bw) administration for 1 week, suggesting that HMF and DCH were oxidative-stress-inducing agents, instead of antioxidant agents, in rats. HMF and DCH also modulated gut microbiota. HMF promoted the growth of Lactobacillus, Tyzzerella, Enterobacter, and Streptococcus. DCH increased the ratio of Firmicutes/ Bacteroidetes and promoted the growth of Akkermansia, Shigella, and Escherichia while inhibiting the growth of Lactobacillus.
Collapse
Affiliation(s)
- Qianzhu Zhao
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
| | - Juanying Ou
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
- Food and Nutritional Science Program, School of Biological Sciences , The University of Hong Kong , Pok Fu Lam , Hong Kong, People's Republic of China
| | - Caihuan Huang
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
| | - Ruixia Qiu
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
| | - Yong Wang
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
| | - Fu Liu
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
| | - Jie Zheng
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
| | - Shiyi Ou
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
| |
Collapse
|
45
|
Ji M, Zhang Z, Li N, Xia R, Wang C, Yu Y, Yao S, Shen J, Wang SL. Identification of 5-hydroxymethylfurfural in cigarette smoke extract as a new substrate metabolically activated by human cytochrome P450 2A13. Toxicol Appl Pharmacol 2018; 359:108-117. [PMID: 30253172 DOI: 10.1016/j.taap.2018.09.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/12/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023]
Abstract
Cytochrome P450 2A13 (CYP2A13) is an extrahepatic enzyme mainly expressed in the human respiratory system and is reported to mediate tobacco-specific N-nitrosamines (TSNA) metabolism in cigarette smoke. This study aimed to identify other new substrates of CYP2A13 in cigarette smoke and their corresponding respiratory toxicity. Following separation by HPLC, GC-MS/MS, NMR and cytotoxicity assays in BEAS-2B cells stably expressing CYP2A13 (B-2A13), 5-Hydroxymethylfurfural (5-HMF) was screened and identified in the 4-5 min section of cigarette smoke extract (CSE). In vitro metabolism results showed that CYP2A13 mediated the fast clearance of 5-HMF and formed the metabolite 5-HMF acid (5-HMFA). CSE 5-HMF (CSE-5-HMF) showed cytotoxicity similar to that of standard 5-HMF in B-2A13 and B-2A5 cells, which was inhibited by 8-methoxypsoralen (8-MOP), a CYP enzyme inhibitor. Mouse CYP2A5, a homologous CYP enzyme to CYP2A13, shares many substrates with CYP2A13 in cigarette smoke. Thus, CYP2A5-/- mice were generated to explore the role of CYP2A5 in 5-HMF bioactivation. Compared with CYP2A5-/- mice, WT mice showed serious histological lung and nasal olfactory mucosa damage, as well as increased inflammatory cells and elevated TNF-α and IL-6 levels in bronchoalveolar lavage fluid. Besides, nasal microsomes undertook fast 5-HMFA formation in WT mice than that in CYP2A5-/- mice, which could be inhibited by 8-MOP. This study is the first to identify 5-HMF as a new toxic substrate of human CYP2A13 in cigarette smoke, it may play a potential role in cigarette smoke-induced respiratory injuries.
Collapse
Affiliation(s)
- Minghui Ji
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Na Li
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Chao Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Yongquan Yu
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Shen Yao
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Jiemiao Shen
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Shou-Lin Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| |
Collapse
|
46
|
Zhao CN, Tang GY, Liu Q, Xu XY, Cao SY, Gan RY, Zhang KY, Meng SL, Li HB. Five-Golden-Flowers Tea: Green Extraction and Hepatoprotective Effect against Oxidative Damage. Molecules 2018; 23:E2216. [PMID: 30200362 PMCID: PMC6225255 DOI: 10.3390/molecules23092216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 01/14/2023] Open
Abstract
The consumption of herbal teas has become popular in recent years due to their attractive flavors and outstanding antioxidant properties. The Five-Golden-Flowers tea is a herbal tea consisting of five famous edible flowers. The effects of microwave-assisted extraction parameters on the antioxidant activity of Five-Golden-Flowers tea were studied by single-factor experiments, and further investigated using response surface methodology. Under the optimal parameters (53.04 mL/g of solvent/material ratio, 65.52 °C, 30.89 min, and 500 W), the ferric-reducing antioxidant power, Trolox equivalent antioxidant capacity, and total phenolic content of the herbal tea were 862.90 ± 2.44 µmol Fe2+/g dry weight (DW), 474.37 ± 1.92 µmol Trolox/g DW, and 65.50 ± 1.26 mg gallic acid equivalent (GAE)/g DW, respectively. The in vivo antioxidant activity of the herbal tea was evaluated on alcohol-induced acute liver injury in mice. The herbal tea significantly decreased the levels of aspartate aminotransferase, total bilirubin, and malonaldehyde at different doses (200, 400, and 800 mg/kg); improved the levels of liver index, serum triacylglycerol, and catalase at dose of 800 mg/kg. These results indicated its role in alleviating hepatic oxidative injury. Besides, rutin, chlorogenic acid, epicatechin, gallic acid, and p-coumaric acid were identified and quantified by high performance liquid chromatography (HPLC), which could contribute to the antioxidant activity of the herbal tea.
Collapse
Affiliation(s)
- Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ke-Yi Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Shuang-Li Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
47
|
Jang AJ, Lee JH, Yotsu-Yamashita M, Park J, Kye S, Benza RL, Passineau MJ, Jeon YJ, Nyunoya T. A Novel Compound, "FA-1" Isolated from Prunus mume, Protects Human Bronchial Epithelial Cells and Keratinocytes from Cigarette Smoke Extract-Induced Damage. Sci Rep 2018; 8:11504. [PMID: 30065307 PMCID: PMC6068145 DOI: 10.1038/s41598-018-29701-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022] Open
Abstract
Extract of the Japanese apricot (JAE) has biological properties as an antioxidant and anti-inflammatory agent. We hypothesized that JAE might exert therapeutic effects on cigarette smoke (CS)-induced DNA damage and cytotoxicity. In this study, we found that concentrated JAE protects against cigarette smoke extract (CSE)-induced cytotoxicity and DNA damage accompanied by increased levels of aldehyde dehydrogenase (ALDH)2, 3A1, and Werner's syndrome protein (WRN) in immortalized human bronchial epithelial cells (HBEC2) and normal human epidermal keratinocytes (NHEK). Using the centrifugal partition chromatography (CPC) method, we identified an undescribed compound, 5-hydroxymethyl-2-furaldehyde bis(5-formylfurfuryl) acetal (which we named FA-1), responsible for the protective effects against CSE. This chemical structure has not been reported from a natural source to date. Protective effects of isolated FA-1 against CSE were observed in both HBEC2 and NHEK cells. The studies described herein suggest that FA-1 isolated from JAE protects against CSE-induced DNA damage and apoptosis by augmenting multiple isozymes of ALDH and DNA repair and reducing oxidative stress.
Collapse
Affiliation(s)
- Andrew J Jang
- Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, 15212, USA.
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Ji-Hyeok Lee
- Lee Gil Ya Cancer and Diabetes Institute, 7-45, Songdodong, Yeonsugu, Incheon, 406-840, Republic of Korea
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - Joodong Park
- Fysee Inc., 131, Angam-ro, Angseong-myeon, Chungju-si, Chungcheongbuk-do, 27303, Republic of Korea
| | - Steve Kye
- Acerta Pharma, 2200 Bridge Parkway, Suite 101, Redwood City, CA, 94065, USA
| | - Raymond L Benza
- Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | - Michael J Passineau
- Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756, Republic of Korea
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
48
|
Ma L, Huo CY, Zhang XY, Qin CQ, Ren DF, Lu J. Protective effect of Letinous edodes foot peptides against ethanol‑induced liver injury in L02 cells. Mol Med Rep 2018; 18:1858-1866. [PMID: 29845248 DOI: 10.3892/mmr.2018.9093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/09/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate the protective effect and mechanism of Letinous edodes foot peptides on ethanol‑induced L02 cells. A cell model of ethanol‑induced damage was established in vitro to study the effects of the Letinous edodes foot peptides on human L02 hepatocytes. The expression and activity of superoxide dismutase (SOD), malondialdehyde (MDA), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), following treatment were examined to determine the anti‑alcoholism and hepatoprotective functions of Letinous edodes foot peptides. Taking Letinous edodes foot peptides prior to ethanol exposure was more beneficial, which significantly increased SOD activity and the mRNA expression of ADH and ALDH suppressed by ethanol. In addition, the intracellular MDA content, and AST and ALT activity decreased in ethanol‑induced L02 cells pretreated with the peptides, when compared with the control. Furthermore, Letinous edodes foot peptides inhibited the ethanol‑induced activation of the proinflammatory cytokines, interleukin‑6 and tumor necrosis factor‑α, and promoted the metabolic regulation factors, AMP‑activated protein kinase‑α2 and peroxisome proliferator‑activated receptor‑α.
Collapse
Affiliation(s)
- Lin Ma
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Chun-Yan Huo
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Xiao-Yu Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Chen-Qiang Qin
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Di-Feng Ren
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jun Lu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, P.R. China
| |
Collapse
|
49
|
Li YZ, Ren S, Yan XT, Li HP, Li W, Zheng B, Wang Z, Liu YY. Improvement of Cisplatin-induced renal dysfunction by Schisandra chinensis stems via anti-inflammation and anti-apoptosis effects. JOURNAL OF ETHNOPHARMACOLOGY 2018; 217:228-237. [PMID: 29421595 DOI: 10.1016/j.jep.2018.01.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (Turcz.) Baill is a frequently used traditional Chinese medicine, and modern pharmacological research has proven that S. chinensis has antioxidant, anti-hepatotoxity, anti-inflammatory, and anti-nephrotoxic effects. Cisplatin is widely used as antineoplastic drug at present, but the clinical application is limited owing to its nephrotoxicity. AIM OF THE STUDY To demonstrate the renoprotective activity of the extract of the stems of S. chinensis (SCE) in mice established by cisplatin-triggering acute kidney injury (AKI). The possible molecular mechanism of nephroprotection exhibited by SCE was evaluated for the first time. MATERIALS AND METHODS Mice in SCE groups were pre-treated with SCE for 10 consecutive days, and on 7th day 1 h after final administration, following intraperitoneal injection of cisplatin with 20 mg/kg was treated to cisplatin group and SCE groups. On the 10th day, renal function, histopathological change, and oxidative stress markers were investigated. RESULTS Renal oxidative stress level characterized by elevated heme oxygenase 1 (HO-1), cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) expression was obviously reduced by SCE pre-treatment. In addition, SCE was found to suppress inflammatory response through the reduction of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) expression and nuclear factor-kappa B (NF-κB) p65 activation. SCE treatment also inhibited activation of apoptotic pathways through down-regulating Bax, cleaved caspase-3, 8, 9 and up-regulating Bcl-2 expression levels. CONCLUSION These findings illustrated that SCE possessed powerful protective effect on AKI caused by cisplatin via amelioration of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Yan-Zi Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiao-Tong Yan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hui-Ping Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Bing Zheng
- School of Business Administration, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Ying-Ying Liu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
50
|
Kanhar S, Sahoo AK, Mahapatra AK. The ameliorative effect of Homalium nepalense on carbon tetrachloride-induced hepatocellular injury in rats. Biomed Pharmacother 2018; 103:903-914. [PMID: 29710507 DOI: 10.1016/j.biopha.2018.04.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to evaluate ameliorative effects of Homalium nepalense Benth. (Flacourtiaceae) on CCl4-induced hepatocellular injury in rats. Oxygen-radical absorbance-capacity (ORAC) and cell-based-antioxidant-protection-in-erythrocytes (CAP-e) were performed and found that the ethyl acetate fractions of bark (HNEB) and leaf (HNEL) showed a remarkable degree of antioxidant activities in a dose dependent manner. Antioxidant potential HNEB was higher than HNEL and was comparable with trolox. HNEB and HNEL at 300 and 400 mg/kg showed significant hepatoprotective activities against CCl4-induced hepatotoxicity as evidenced by restoration of SGOT, SGPT, ALP, TB and TP level. The level of TBARS, SOD, CAT and GSH were significantly improved and restored towards normal value. Both fractions at 400 mg/kg showed remarkable improvements in marker levels as comparable to silymarin. Histopathological observations of liver tissues revealed the reduction of necrosis with appearance of sinusoidal space, central vein, and bile duct both in case of HNEB and HNEL. GC-MS and LC-MS confirmed occurrence of a total 53 no. of phytocompounds in HNEB and HNEL. Based on their retention times-(RT) and mass-to-charge-ratios-(m/z), some of the major bioactive compounds were catechol (5.89%), 5-hydroxymethylfurfural (5.87%), salicylic acid (4.89%), eugenol (1.60%), doconexent (0.31%), β-sitosterol (1.59%), 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (1.15%), coniferyl alcohol (2.99%), hexadecanoic acid methyl ester (1.05%), and betulin (1.20%). H. nepalense possesses significant hepatoprotection effect because of its antioxidant constituents.
Collapse
Affiliation(s)
- Satish Kanhar
- Phytotherapy Research Lab., Medicinal & Aromatic Plant Division, Regional Plant Resource Centre, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India
| | - Atish Kumar Sahoo
- Phytotherapy Research Lab., Medicinal & Aromatic Plant Division, Regional Plant Resource Centre, Forest & Environment Department, Govt. of Odisha, Nayapalli, Bhubaneswar, 751015, India.
| | - Ajay Kumar Mahapatra
- Forest and Environment Department, Govt. of Odisha, Aranya Bhawan, Chandrasekharpur, Bhubaneswar, 751023, India
| |
Collapse
|