1
|
Muthusamy G, Karthikeyan S, Arun Giridhari V, Alhimaidi AR, Balachandar D, Ammari AA, Paranidharan V, Maruthamuthu T. Foodborne Pathogen Prevalence and Biomarker Identification for Microbial Contamination in Mutton Meat. BIOLOGY 2024; 13:1054. [PMID: 39765721 PMCID: PMC11673006 DOI: 10.3390/biology13121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
Microbial contamination and the prevalence of foodborne pathogens in mutton meat and during its slaughtering process were investigated through microbial source tracking and automated pathogen identification techniques. Samples from mutton meat, cutting boards, hand swabs, knives, weighing balances, and water sources were collected from four different retail sites in Coimbatore. Total plate count (TPC), yeast and mold count (YMC), coliforms, E. coli, Pseudomonas aeruginosa, Salmonella, and Staphylococcus were examined across 91 samples. The highest microbial loads were found in the mutton-washed water, mutton meat, and cutting board samples. The automated pathogen identification system identified Staphylococcus species as the predominant contaminant and also revealed a 57% prevalence of Salmonella. Further analysis of goat meat inoculated with specific pathogens showed distinct volatile and metabolite profiles, identified using gas chromatography-mass spectrometry (GC-MS). Multivariate statistical analyses, including principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA), and sparse partial least squares discriminant analysis (sPLS-DA), identified potential biomarkers for pathogen contamination. The results highlight the significance of cross-contamination in the slaughtering process and suggest the use of volatile compounds as potential biomarkers for pathogen detection.
Collapse
Affiliation(s)
- Gayathri Muthusamy
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (G.M.); (D.B.)
| | - Subburamu Karthikeyan
- Centre for Post Harvest Technology, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Veeranan Arun Giridhari
- Centre for Post Harvest Technology, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Ahmad R. Alhimaidi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.R.A.)
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (G.M.); (D.B.)
| | - Aiman A. Ammari
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.R.A.)
| | | | | |
Collapse
|
2
|
Muthusamy G, Karthikeyan S, Arun Giridhari V, Alhimaidi AR, Balachandar D, Ammari AA, Paranidharan V, Maruthamuthu T. Identification of Potential Biomarkers and Spectral Fingerprinting for Detection of Foodborne Pathogens in Raw Chicken Meat Matrix Using GCMS and FTIR. Foods 2024; 13:3416. [PMID: 39517200 PMCID: PMC11545171 DOI: 10.3390/foods13213416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Foodborne illnesses pose a serious threat to public health, with increasing global incidence rates driven by factors such as rising meat consumption. Rapid detection of foodborne pathogens in meat is critical for preventing outbreaks. This study investigates the potential of gas chromatography-mass spectrometry (GC-MS) and Fourier-transform infrared spectroscopy (FTIR) for identifying biomarkers and spectral fingerprints indicative of foodborne pathogens in raw chicken meat. Raw broiler chicken meat samples were surface-sterilized and inoculated with foodborne pathogens. The samples were challenge inoculated with the specific pathogen and the physical quality parameters like pH, color, texture, drip loss, and water activity were assessed. GC-MS analysis identified 113 metabolites, including potential biomarkers like ureidopropionic acid, 5-sulfosalicylic acid, 11,14-eicosadienoic acid, methyl ester for E. coli O157:H7; 11-bromoundecanoic acid, neocurdione, glafenin, eicosanoic acid for Salmonella; azepan-1-yl-acetic acid, methyl ester, tramadol, cytarabine, dipipanone for Staphylococcus and cyclopentaneundecanoic acid, phosphonofluoridic acid, î-n-formyl-l-lysine for Pseudomonas. Pathway analysis revealed the involvement of fatty acid metabolism and amino acid degradation pathways. FTIR spectral data showed significant variances between control and spiked samples, particularly in the fatty acid spectral region. The identified metabolites and spectral patterns could serve as biomarkers for developing rapid pathogen detection methods, contributing to enhanced food safety protocols.
Collapse
Affiliation(s)
- Gayathri Muthusamy
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (G.M.); (D.B.)
| | - Subburamu Karthikeyan
- Centre for Post Harvest Technology, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Veeranan Arun Giridhari
- Centre for Post Harvest Technology, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Ahmad R. Alhimaidi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (G.M.); (D.B.)
| | - Aiman A. Ammari
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
3
|
Ilie EI, Popescu L, Luță EA, Biță A, Corbu AR, Mihai DP, Pogan AC, Balaci TD, Mincă A, Duțu LE, Olaru OT, Boscencu R, Gîrd CE. Phytochemical Characterization and Antioxidant Activity Evaluation for Some Plant Extracts in Conjunction with Pharmacological Mechanism Prediction: Insights into Potential Therapeutic Applications in Dyslipidemia and Obesity. Biomedicines 2024; 12:1431. [PMID: 39062004 PMCID: PMC11274650 DOI: 10.3390/biomedicines12071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Lipid metabolism dysregulation can lead to dyslipidemia and obesity, which are major causes of cardiovascular disease and associated mortality worldwide. The purpose of the study was to obtain and characterize six plant extracts (ACE-Allii cepae extractum; RSE-Rosmarini extractum; CHE-Cichorii extractum; CE-Cynarae extractum; AGE-Apii graveolentis extractum; CGE-Crataegi extractum) as promising adjuvant therapies for the prevention and treatment of dyslipidemia and its related metabolic diseases. Phytochemical screening revealed that RSE was the richest extract in total polyphenols (39.62 ± 13.16 g tannic acid/100 g dry extract) and phenolcarboxylic acids (22.05 ± 1.31 g chlorogenic acid/100 g dry extract). Moreover, the spectrophotometric chemical profile highlighted a significant concentration of flavones for CGE (5.32 ± 0.26 g rutoside/100 g dry extract), in contrast to the other extracts. UHPLC-MS quantification detected considerable amounts of phenolic constituents, especially chlorogenic acid in CGE (187.435 ± 1.96 mg/g extract) and rosmarinic acid in RSE (317.100 ± 2.70 mg/g extract). Rosemary and hawthorn extracts showed significantly stronger free radical scavenging activity compared to the other plant extracts (p < 0.05). Pearson correlation analysis and the heatmap correlation matrix indicated significant correlations between phytochemical contents and in vitro antioxidant activities. Computational studies were performed to investigate the potential anti-obesity mechanism of the studied extracts using target prediction, homology modeling, molecular docking, and molecular dynamics approaches. Our study revealed that rosmarinic acid (RA) and chlorogenic acid (CGA) can form stable complexes with the active site of carbonic anhydrase 5A by either interacting with the zinc-bound catalytic water molecule or by directly binding Zn2+. Further studies are warranted to experimentally validate the predicted CA5A inhibitory activities of RA and CGA and to investigate the hypolipidemic and antioxidant activities of the proposed plant extracts in animal models of dyslipidemia and obesity.
Collapse
Affiliation(s)
- Elena Iuliana Ilie
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Liliana Popescu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Emanuela-Alice Luță
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Andrei Biță
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Petru Rareș 2, 200349 Craiova, Romania;
| | - Alexandru Radu Corbu
- Department of Horticulture & Food Science, University of Craiova, AI Cuza 13, 200585 Craiova, Romania;
| | - Dragoș Paul Mihai
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Ana Corina Pogan
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Teodora Dalila Balaci
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Alexandru Mincă
- Department of Medical Semiology, Discipline of Internal Medicine I and Nephrology, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, Eroii Sanitari 8, 050474 Bucharest, Romania;
| | - Ligia Elena Duțu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Rica Boscencu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Cerasela Elena Gîrd
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| |
Collapse
|
4
|
Zhang L, Shi Y, Liang B, Li X. An overview of the cholesterol metabolism and its proinflammatory role in the development of MASLD. Hepatol Commun 2024; 8:e0434. [PMID: 38696365 PMCID: PMC11068152 DOI: 10.1097/hc9.0000000000000434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 05/04/2024] Open
Abstract
Cholesterol is an essential lipid molecule in mammalian cells. It is not only involved in the formation of cell membranes but also serves as a raw material for the synthesis of bile acids, vitamin D, and steroid hormones. Additionally, it acts as a covalent modifier of proteins and plays a crucial role in numerous life processes. Generally, the metabolic processes of cholesterol absorption, synthesis, conversion, and efflux are strictly regulated. Excessive accumulation of cholesterol in the body is a risk factor for metabolic diseases such as cardiovascular disease, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD). In this review, we first provide an overview of the discovery of cholesterol and the fundamental process of cholesterol metabolism. We then summarize the relationship between dietary cholesterol intake and the risk of developing MASLD, and also the animal models of MASLD specifically established with a cholesterol-containing diet. In the end, the role of cholesterol-induced inflammation in the initiation and development of MASLD is discussed.
Collapse
Affiliation(s)
- Linqiang Zhang
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yongqiong Shi
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Bin Liang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Hejazi N, Ghalandari H, Nouri M, Askarpour M. Onion supplementation and health metabolic parameters: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2023; 58:1-13. [PMID: 38056991 DOI: 10.1016/j.clnesp.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Functional foods, such as onions, have been the center of many recent investigations. In this systematic-review and meta-analysis, we aimed to gather up the existing information with regard to the impact of onion supplementation on anthropometric measurements/indices, lipid profile, indices of glycemic control and hepatic health, systolic and diastolic blood pressures (SBP and DBP), and adiponectin and leptin. METHODS All major online datasets (PubMed, Web of Science, Cochrane, and Scopus) were thoroughly searched from inception up to October 2022. Relevant randomized controlled trials (RCTs) were obtained using the eligibility criteria. Weighted mean differences (WMDs) were calculated and reported. Statistical significance was set as p-values <0.05. RESULTS Among all the retrieved data, 14 RCTs were eligible to be included. The results of the crude analysis showed that onion supplementation significantly improved body fat percentage (BFP), low-density lipoprotein-cholesterol (LDL-c), total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-c), systolic blood pressure, adiponectin, and aspartate aminotransferase (AST). Subgroup analysis revealed that interventions lasting more than 12 weeks can significantly alter weight, waist circumference (WC), body mass index (BMI), BFP, LDL-c, TC, SBP, and DBP. Moreover, the intake of dosages of >300 mg/day of onion supplementation could significantly improve weight, WC, BMI, BFP, LDL-c, HDL-C, TC, AST, ALT, SBP and DBP. CONCLUSION It seems that the intake of onion supplementation can improve health metabolic parameters. We observed that with either longer follow-up periods or higher dosages of onion supplementation, improvements in cardio-metabolic parameters could be expected.
Collapse
Affiliation(s)
- Najmeh Hejazi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Xu J, Jin Y, Song C, Chen G, Li Q, Yuan H, Wei S, Yang M, Li S, Jin S. Comparative analysis of the synergetic effects of Diwuyanggan prescription on high fat diet-induced non-alcoholic fatty liver disease using untargeted metabolomics. Heliyon 2023; 9:e22151. [PMID: 38045182 PMCID: PMC10692813 DOI: 10.1016/j.heliyon.2023.e22151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver disorders worldwide and had no approved pharmacological treatments. Diwuyanggan prescription (DWYG) is a traditional Chinese medicine preparation composed of 5 kinds of herbs, which has been used for treating chronic liver diseases in clinic. Whereas, the synergistic mechanism of this prescription for anti-NAFLD remains unclear. In this study, we aimed to demonstrate the synergetic effect of DWYG by using the disassembled prescriptions and untargeted metabolomics research strategies. The therapeutic effects of the whole prescription of DWYG and the individual herb were divided into six groups according to the strategy of disassembled prescriptions, including DWYG, Artemisia capillaris Thunb. (AC), Curcuma longa L. (CL), Schisandra chinensis Baill. (SC), Rehmannia glutinosa Libosch. (RG) and Glycyrrhiza uralensis Fisch. (GU) groups. The high fat diets-induced NAFLD mice model was constructed to evaluate the efficacy effects of DWYG. An untargeted metabolomics based on the UPLC-QTOF-MS/MS approach was carried out to make clear the synergetic effect on the regulation of metabolites dissecting the united mechanisms. Experimental results on animals revealed that the anti-NAFLD effect of DWYG prescription was better than the individual herb group in reducing liver lipid deposition and restoring the abnormality of lipidemia. In addition, further metabolomics analysis indicated that 23 differential metabolites associated with the progression of NAFLD were identified and 19 of them could be improved by DWYG. Compared with five single herbs, DWYG showed the most extensive regulatory effects on metabolites and their related pathways, which were related to lipid and amino acid metabolisms. Besides, each individual herb in DWYG was found to show different degrees of regulatory effects on NAFLD and metabolic pathways. SC and CL possessed the highest relationship in the regulation of NAFLD. Altogether, these results provided an insight into the synergetic mechanisms of DWYG from the metabolic perspective, and also supported a scientific basis for the rationality of clinical use of this prescription.
Collapse
Affiliation(s)
- Jinlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Yuehui Jin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chengwu Song
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guangya Chen
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Qiaoyu Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hao Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Sha Wei
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Min Yang
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Sen Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuna Jin
- School of Basic Medicine Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
7
|
Aquino G, Basilicata MG, Crescenzi C, Vestuto V, Salviati E, Cerrato M, Ciaglia T, Sansone F, Pepe G, Campiglia P. Optimization of microwave-assisted extraction of antioxidant compounds from spring onion leaves using Box-Behnken design. Sci Rep 2023; 13:14923. [PMID: 37691048 PMCID: PMC10493223 DOI: 10.1038/s41598-023-42303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023] Open
Abstract
Many studies have explored the extraction of bioactive compounds from different onion solid wastes, such as bulb, skin, and peel. However, onion leaves have received limited attention despite their potential as a valuable source of nutraceutical compounds. This study aimed to valorise, for the first time, the agricultural waste in the form of spring onion leaves (CN, Cipollotto Nocerino) to obtain antioxidant-rich polyphenolic extracts. A Box-Behnken design (BBD) was used to assess the impact of microwave-assisted extraction (MAE) variables (temperature, time, extraction volume, and ethanol concentration) on total polyphenol content (TPC) measured by Folin-Ciocalteu method and the antioxidant power determined by FRAP assay. Response surface methodology (RSM) was applied, and regression equations, analysis of variance, and 3D response curves were developed. Our results highlighted that the TPC values range from 0.76 to 1.43 mg GAE g-1 dw, while the FRAP values range from 8.25 to 14.80 mmol Fe(II)E g-1 dw. The optimal extraction conditions predicted by the model were 60 °C, 22 min, ethanol concentration 51% (v/v), and solvent volume 11 mL. These conditions resulted in TPC and FRAP values of 1.35 mg GAE g-1 dw and 14.02 mmol Fe(II)E g-1 dw, respectively. Furthermore, the extract obtained under optimized conditions was characterized by UHPLC-ESI-Orbitrap-MS analysis. LC/MS-MS platform allowed us to tentatively identify various compounds belonging to the class of flavonoids, saponins, fatty acids, and lipids. Finally, the ability of CN optimal extract to inhibit the intracellular reactive oxygen species (ROS) release in a hepatocarcinoma cell line using an H2O2-induced oxidative stress model, was evaluated. The results highlighted the potential of CN extract as a valuable source of polyphenols with significant antioxidant properties, suitable for various applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Giovanna Aquino
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | | | - Carlo Crescenzi
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Michele Cerrato
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Francesca Sansone
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| |
Collapse
|
8
|
Guo F, Xiong H, Tsao R, Wen X, Liu J, Chen D, Jiang L, Sun Y. Multi-omics reveals that green pea ( Pisum sativum L.) hull supplementation ameliorates non-alcoholic fatty liver disease via the SHMT2/glycine/mTOR/PPAR-γ signaling pathway. Food Funct 2023; 14:7195-7208. [PMID: 37462466 DOI: 10.1039/d3fo01771k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Diets rich in various active ingredients may be an effective intervention strategy for non-alcoholic fatty liver disease (NAFLD). The green pea hull (GPH) is a processing by-product of green peas rich in dietary fiber and polyphenols. Here, a mouse model of NAFLD induced by DSS + high-fat diet (HFD) was established to explore the intervention effect of the GPH. The results showed that dietary supplements with the GPH can inhibit obesity and reduce lipid accumulation in the mouse liver to prevent liver fibrosis. GPH intervention can improve liver antioxidant capacity, reduce blood lipid deposition and maintain glucose homeostasis. DSS-induced disruption of the intestinal barrier aggravates NAFLD, which may be caused by the influx of large amounts of LPS. A multi-omics approach combining metabolomics and transcriptomic analysis indicated that glycine was the key target and its content was decreased in the liver after GPH intervention, and that dietary supplements with the GPH can relieve NAFLD via the SHMT2/glycine/mTOR/PPAR-γ signaling pathway, which was further supported by liver-associated protein expression. In conclusion, our study demonstrated that dietary GPH can significantly ameliorate NAFLD, and the future development of related food products can enhance the economic value of the GPH.
Collapse
Affiliation(s)
- Fanghua Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Rong Tsao
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Xushen Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Jiahua Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Dongying Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
9
|
Ong ES. Urine Metabolites and Bioactive Compounds from Functional Food: Applications of Liquid Chromatography Mass Spectrometry. Crit Rev Anal Chem 2023; 54:3196-3211. [PMID: 37454386 DOI: 10.1080/10408347.2023.2235442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Bioactive compounds in functional foods, medicinal plants and others are considered attractive value-added molecules based on their wide range of bioactivity. It is clear that an important role is occupied by polyphenol, phenolic compounds and others. Urine is an effective biofluid to evaluate and monitor alterations in homeostasis and other processes related to metabolism. The current review provides a detailed description of the formation of urine in human body, various aspects relevant to sampling and analysis of urinary metabolites before presenting recent developments leveraging on metabolite profiling of urine. For the profiling of small molecules in urine, advancement of liquid chromatography mass tandem spectrometry (LC/MS/MS), establishment of standardized chemical fragmentation libraries, computational resources, data-analysis approaches with pattern recognition tools have made it an attractive option. The profiling of urinary metabolites gives an overview of the biomarkers associated with the diet and evaluates its biological effects. Metabolic pathways such as glycolysis, tricarboxylic acid cycle, amino acid metabolism, energy metabolism, purine metabolism and others can be evaluated. Finally, a combination of metabolite profiling with chemical standardization and bioassay in functional food and medicinal plants will likely lead to the identification of new biomarkers and novel biochemical insights.
Collapse
Affiliation(s)
- Eng Shi Ong
- Singapore University of Technology and Design, Singapore, Republic of Singapore
| |
Collapse
|
10
|
Effects of Dried Onion Powder and Quercetin on Obesity-Associated Hepatic Menifestation and Retinopathy. Int J Mol Sci 2022; 23:ijms231911091. [PMID: 36232387 PMCID: PMC9569566 DOI: 10.3390/ijms231911091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
Onion (Allium cepa L.), rich in flavonoids (particularly quercetin), reportedly has anti-obesity properties, but the underlying mechanisms and associated health issues remain unclear. In this study, we compared the effects of dried onion powder (DO) with that of quercetin on high-fat diet (HFD)-induced obesity, nonalcoholic fatty liver disease, and retinal neovascularization. Briefly, rats (n = 9–10 per group) were divided into control, HFD alone (43% fat), HFD + DO (1% DO), HFD + 5DO (5% DO, w/w), and HFD + quercetin (180 mg/kg). After 12 weeks, body fat, markers of metabolism, fatty liver, steatohepatitis, and retinopathy were analyzed. The results revealed that DO and 5DO dose-dependently suppressed body weight, visceral and subcutaneous fat accumulation, and epididymal adipocyte in HFD-fed rats. DO also decreased HFD-induced ALT, AST, free fatty acid, glucose, proinflammatory cytokines, and oxidative stress. DO and 5DO groups had lower triglycerides, total cholesterol, proinflammatory cytokine levels, and ACC-α (a fatty acid synthesis–associated enzyme) expression but higher hepatic antioxidant enzyme activities and fecal lipids. 5DO exhibited better or similar efficacy to quercetin. Both 5DO and quercetin increased fecal levels of acetic acid and butyric acid similarly. They also reduced lipid peroxidation of the eye, retinal adiposity, and neovascularization. However, quercetin resulted in a more apparent decrease in regulation of the Raf/MAPK pathway than DO in eye specimens. Conclusively, DO suppresses visceral, subcutaneous, and liver fat accumulation better than quercetin likely due to higher fecal fat excretion and lower oxidative stress, proinflammatory cytokine levels, and ACC-α expression. Quercetin regulating signal pathways is better than DO at reducing retinal adiposity and neovascularization.
Collapse
|
11
|
Rey-Stolle F, Dudzik D, Gonzalez-Riano C, Fernández-García M, Alonso-Herranz V, Rojo D, Barbas C, García A. Low and high resolution gas chromatography-mass spectrometry for untargeted metabolomics: A tutorial. Anal Chim Acta 2022; 1210:339043. [PMID: 35595356 DOI: 10.1016/j.aca.2021.339043] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022]
Abstract
GC-MS for untargeted metabolomics is a well-established technique. Small molecules and molecules made volatile by derivatization can be measured and those compounds are key players in main biological pathways. This tutorial provides ready-to-use protocols for GC-MS-based metabolomics, using either the well-known low-resolution approach (GC-Q-MS) with nominal mass or the more recent high-resolution approach (GC-QTOF-MS) with accurate mass, discussing their corresponding strengths and limitations. Analytical procedures are covered for different types of biofluids (plasma/serum, bronchoalveolar lavage, urine, amniotic fluid) tissue samples (brain/hippocampus, optic nerve, lung, kidney, liver, pancreas) and samples obtained from cell cultures (adipocytes, macrophages, Leishmania promastigotes, mitochondria, culture media). Together with the sample preparation and data acquisition, data processing strategies are described specially focused on Agilent equipments, including deconvolution software and database annotation using spectral libraries. Manual curation strategies and quality control are also deemed. Finally, considerations to obtain a semiquantitative value for the metabolites are also described. As a case study, an illustrative example from one of our experiments at CEMBIO Research Centre, is described and findings discussed.
Collapse
Affiliation(s)
- Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla Del Monte, 28668, Madrid, Spain
| | - Danuta Dudzik
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla Del Monte, 28668, Madrid, Spain; Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdańsk, Poland
| | - Carolina Gonzalez-Riano
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla Del Monte, 28668, Madrid, Spain
| | - Miguel Fernández-García
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla Del Monte, 28668, Madrid, Spain
| | - Vanesa Alonso-Herranz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla Del Monte, 28668, Madrid, Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla Del Monte, 28668, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla Del Monte, 28668, Madrid, Spain
| | - Antonia García
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla Del Monte, 28668, Madrid, Spain.
| |
Collapse
|
12
|
The Role of Amino Acids in Endothelial Biology and Function. Cells 2022; 11:cells11081372. [PMID: 35456051 PMCID: PMC9030017 DOI: 10.3390/cells11081372] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022] Open
Abstract
The vascular endothelium acts as an important component of the vascular system. It is a barrier between the blood and vessel wall. It plays an important role in regulating blood vessel tone, permeability, angiogenesis, and platelet functions. Several studies have shown that amino acids (AA) are key regulators in maintaining vascular homeostasis by modulating endothelial cell (EC) proliferation, migration, survival, and function. This review summarizes the metabolic and signaling pathways of AAs in ECs and discusses the importance of AA homeostasis in the functioning of ECs and vascular homeostasis. It also discusses the challenges in understanding the role of AA in the development of cardiovascular pathophysiology and possible directions for future research.
Collapse
|
13
|
Deprogramming metabolism in pancreatic cancer with a bi-functional GPR55 inhibitor and biased β2 adrenergic agonist. Sci Rep 2022; 12:3618. [PMID: 35256673 PMCID: PMC8901637 DOI: 10.1038/s41598-022-07600-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/21/2022] [Indexed: 01/14/2023] Open
Abstract
Metabolic reprogramming contributes to oncogenesis, tumor growth, and treatment resistance in pancreatic ductal adenocarcinoma (PDAC). Here we report the effects of (R,S′)-4′-methoxy-1-naphthylfenoterol (MNF), a GPR55 antagonist and biased β2-adrenergic receptor (β2-AR) agonist on cellular signaling implicated in proliferation and metabolism in PDAC cells. The relative contribution of GPR55 and β2-AR in (R,S′)-MNF signaling was explored further in PANC-1 cells. Moreover, the effect of (R,S′)-MNF on tumor growth was determined in a PANC-1 mouse xenograft model. PANC-1 cells treated with (R,S′)-MNF showed marked attenuation in GPR55 signal transduction and function combined with increased β2-AR/Gαs/adenylyl cyclase/PKA signaling, both of which contributing to lower MEK/ERK, PI3K/AKT and YAP/TAZ signaling. (R,S′)-MNF administration significantly reduced PANC-1 tumor growth and circulating l-lactate concentrations. Global metabolic profiling of (R,S′)-MNF-treated tumor tissues revealed decreased glycolytic metabolism, with a shift towards normoxic processes, attenuated glutamate metabolism, and increased levels of ophthalmic acid and its precursor, 2-aminobutyric acid, indicative of elevated oxidative stress. Transcriptomics and immunoblot analyses indicated the downregulation of gene and protein expression of HIF-1α and c-Myc, key initiators of metabolic reprogramming in PDAC. (R,S′)-MNF treatment decreased HIF-1α and c-Myc expression, attenuated glycolysis, shifted fatty acid metabolism towards β-oxidation, and suppressed de novo pyrimidine biosynthesis in PANC-1 tumors. The results indicate a potential benefit of combined GPR55 antagonism and biased β2-AR agonism in PDAC therapy associated with the deprogramming of altered cellular metabolism.
Collapse
|
14
|
Yahaya N, Hamdan NH, Zabidi AR, Mohamad AM, Suhaimi MLH, Johari MAAM, Yahya HN, Yahya H. Duckweed as a future food: Evidence from metabolite profile, nutritional and microbial analyses. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
15
|
Namwong A, Kumphune S, Seenak P, Chotima R, Nernpermpisooth N, Malakul W. Pineapple fruit improves vascular endothelial dysfunction, hepatic steatosis, and cholesterol metabolism in rats fed a high-cholesterol diet. Food Funct 2022; 13:9988-9998. [DOI: 10.1039/d2fo01199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypercholesterolaemia is a significant risk factor for developing vascular disease and fatty liver. Pineapple (Ananas comosus), a tropical fruit widely cultivated in Asia, is reported to exhibit antioxidant and cholesterol-lowering...
Collapse
|
16
|
Das G, Heredia JB, de Lourdes Pereira M, Coy-Barrera E, Rodrigues Oliveira SM, Gutiérrez-Grijalva EP, Cabanillas-Bojórquez LA, Shin HS, Patra JK. Korean traditional foods as antiviral and respiratory disease prevention and treatments: A detailed review. Trends Food Sci Technol 2021; 116:415-433. [PMID: 34345117 PMCID: PMC8321624 DOI: 10.1016/j.tifs.2021.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Korean traditional food (KTF), originated from ancestral agriculture and the nomadic traditions of the Korean peninsula and southern Manchuria, is based on healthy food that balances disease prevention and treatment. Fermented foods that include grains, herbs, fruits, and mushrooms are also an important practice in KTF, providing high levels of Lactobacilli, which confer relevant health benefits, including antiviral properties. Some of these probiotics may also protect against the Influenza virus through the modulation of innate immunity. SCOPE AND APPROACH The emerging of the COVID-19 pandemic, in addition to other diseases of viral origin, and the problems associated with other respiratory disorders, highlight how essential is a healthy eating pattern to strengthen our immune system.Key Findings and Conclusions: The present review covers the information available on edible plants, herbs, mushrooms, and preparations used in KTF to outline their multiple medicinal effects (e.g., antidiabetic, chemopreventive, antioxidative, anti-inflammatory, antibacterial), emphasizing their role and effects on the immune system with an emphasis on modulating properties of the gut microbiota that further support strong respiratory immunity. Potential functional foods commonly used in Korean cuisine such as Kimchi (a mixture of fermented vegetables), Meju, Doenjang, Jeotgal, and Mekgeolli and fermented sauces, among others, are highlighted for their great potential to improve gut-lung immunity. The traditional Korean diet and dietary mechanisms that may target viruses ACE-2 receptors or affect any step of a virus infection pathway that can determine a patient's prognosis are also highlighted. The regular oral intake of bioactive ingredients used in Korean foods can offer protection for some viral diseases, through protective and immunomodulatory effects, as evidenced in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - J Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, CP. 80110, Culiacán, Sinaloa, Mexico
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, 250247, Cajicá, Colombia
| | - Sonia Marlene Rodrigues Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- HMRI and Hunter Cancer Research Alliance Centres, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erick Paul Gutiérrez-Grijalva
- Catedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, CP. 80110 Culiacán, Sinaloa, Mexico
| | - Luis Angel Cabanillas-Bojórquez
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, CP. 80110, Culiacán, Sinaloa, Mexico
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, South Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| |
Collapse
|
17
|
Mitochondrial Metabolism behind Region-Specific Resistance to Ischemia-Reperfusion Injury in Gerbil Hippocampus. Role of PKCβII and Phosphate-Activated Glutaminase. Int J Mol Sci 2021; 22:ijms22168504. [PMID: 34445210 PMCID: PMC8395184 DOI: 10.3390/ijms22168504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Ischemic episodes are a leading cause of death worldwide with limited therapeutic interventions. The current study explored mitochondrial phosphate-activated glutaminase (GLS1) activity modulation by PKCβII through GC-MS untargeted metabolomics approach. Mitochondria were used to elucidate the endogenous resistance of hippocampal CA2-4 and dentate gyrus (DG) to transient ischemia and reperfusion in a model of ischemic episode in gerbils. In the present investigation, male gerbils were subjected to bilateral carotids occlusion for 5 min followed by reperfusion (IR). Gerbils were randomly divided into three groups as vehicle-treated sham control, vehicle-treated IR and PKCβII specific inhibitor peptide βIIV5-3-treated IR. Vehicle or βIIV5-3 (3 mg/kg, i.v.) were administered at the moment of reperfusion. The gerbils hippocampal tissue were isolated at various time of reperfusion and cell lysates or mitochondria were isolated from CA1 and CA2-4,DG hippocampal regions. Recombinant proteins PKCβII and GLS1 were used in in vitro phosphorylation reaction and organotypic hippocampal cultures (OHC) transiently exposed to NMDA (25 μM) to evaluate the inhibition of GLS1 on neuronal viability. PKCβII co-precipitates with GAC (GLS1 isoform) in CA2-4,DG mitochondria and phosphorylates GLS1 in vitro. Cell death was dose dependently increased when GLS1 was inhibited by BPTA while inhibition of mitochondrial pyruvate carrier (MPC) attenuated cell death in NMDA-challenged OHC. Fumarate and malate were increased after IR 1h in CA2-4,DG and this was reversed by βIIV5-3 what correlated with GLS1 activity increases and earlier showed elevation of neuronal death (Krupska et al., 2017). The present study illustrates that CA2-4,DG resistance to ischemic episode at least partially rely on glutamine and glutamate utilization in mitochondria as a source of carbon to tricarboxylic acid cycle. This phenomenon depends on modulation of GLS1 activity by PKCβII and remodeling of MPC: all these do not occur in ischemia-vulnerable CA1.
Collapse
|
18
|
Zhao XX, Lin FJ, Li H, Li HB, Wu DT, Geng F, Ma W, Wang Y, Miao BH, Gan RY. Recent Advances in Bioactive Compounds, Health Functions, and Safety Concerns of Onion ( Allium cepa L.). Front Nutr 2021; 8:669805. [PMID: 34368207 PMCID: PMC8339303 DOI: 10.3389/fnut.2021.669805] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Onion (Allium cepa L.) is a common vegetable, widely consumed all over the world. Onion contains diverse phytochemicals, including organosulfur compounds, phenolic compounds, polysaccharides, and saponins. The phenolic and sulfur-containing compounds, including onionin A, cysteine sulfoxides, quercetin, and quercetin glucosides, are the major bioactive constituents of onion. Accumulated studies have revealed that onion and its bioactive compounds possess various health functions, such as antioxidant, antimicrobial, anti-inflammatory, anti-obesity, anti-diabetic, anticancer, cardiovascular protective, neuroprotective, hepatorenal protective, respiratory protective, digestive system protective, reproductive protective, and immunomodulatory properties. Herein, the main bioactive compounds in onion are summarized, followed by intensively discussing its major health functions as well as relevant molecular mechanisms. Moreover, the potential safety concerns about onion contamination and the ways to mitigate these issues are also discussed. We hope that this paper can attract broader attention to onion and its bioactive compounds, which are promising ingredients in the development of functional foods and nutraceuticals for preventing and managing certain chronic diseases.
Collapse
Affiliation(s)
- Xin-Xin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Fang-Jun Lin
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Hang Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Wei Ma
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yu Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Bao-He Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| |
Collapse
|
19
|
Patel VD, Shamsi SA, Sutherland K. Capillary electromigration techniques coupled to mass spectrometry: Applications to food analysis. Trends Analyt Chem 2021; 139. [DOI: 10.1016/j.trac.2021.116240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Fernández-Jalao I, Balderas C, Calvo MV, Fontecha J, Sánchez-Moreno C, De Ancos B. Impact of High-Pressure Processed Onion on Colonic Metabolism Using a Dynamic Gastrointestinal Digestion Simulator. Metabolites 2021; 11:metabo11050262. [PMID: 33922352 PMCID: PMC8145356 DOI: 10.3390/metabo11050262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Onions are the main dietary source of flavonols that have been associated with important health-promoting properties. Onion treated by high-pressure processing (HPP-treated onion) was subjected to a dynamic gastrointestinal digestion and colon fermentation simulator (DGID-CF) to study the effect on the gut microbiota metabolism in the three colon regions (ascending—AC, transverse—TC, and descending—DC) by means of chronic feeding with 27 g/day for 14 days. HPP-treated onion presented a high content of the flavonols quercetin-3,4’-diglucoside and quercetin-4’-glucoside, and a large percentage of them reached the AC without change. TC and DC progressively increased the total phenolic metabolites 2.5 times respective to day 2, mainly 3-hydroxyphenylacetic, 4-hydroxyphenylacetic, 3-(4-hydroxyphenyl)-propionic, and 3,4-dihydroxyphenylpropionic acids. In addition, the chronic feeding increased the beneficial colon bacteria Bifidobacterium spp. and Lactobacillus spp. and the production of total SCFAs (acetic, propionic, and butyric acids) 9 times (AC), 2.2 times (TC), and 4.4 times (DC) respective to day 1. A multivariate analysis (principal component analysis, PCA) showed a clear separation between the three colon regions based on their phenolic composition (precursors and metabolites). These results showed that HPP-treated onion modulated the human gut microbiota’s metabolism and the DGID-CF is a good system to study these changes.
Collapse
Affiliation(s)
- Irene Fernández-Jalao
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (I.F.-J.); (C.B.); (C.S.-M.)
| | - Claudia Balderas
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (I.F.-J.); (C.B.); (C.S.-M.)
| | - María V. Calvo
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain; (M.V.C.); (J.F.)
| | - Javier Fontecha
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain; (M.V.C.); (J.F.)
| | - Concepción Sánchez-Moreno
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (I.F.-J.); (C.B.); (C.S.-M.)
| | - Begoña De Ancos
- Department of Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (I.F.-J.); (C.B.); (C.S.-M.)
- Correspondence: ; Tel.: +34-915-492-300
| |
Collapse
|
21
|
Shikh Zahari SMSN, Mohamed Ali NS, Zabidi AR, Rosli D, Abdul Manap MN, Yahaya N. Influence of neck slaughtering in broiler chicken meat on physicochemical analysis and metabolites ‘fingerprinting’ to enhance meat quality. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
22
|
Fernández-Ochoa Á, Leyva-Jiménez FJ, De la Luz Cádiz-Gurrea M, Pimentel-Moral S, Segura-Carretero A. The Role of High-Resolution Analytical Techniques in the Development of Functional Foods. Int J Mol Sci 2021; 22:ijms22063220. [PMID: 33809986 PMCID: PMC8004826 DOI: 10.3390/ijms22063220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022] Open
Abstract
The approaches based on high-resolution analytical techniques, such as nuclear magnetic resonance or mass spectrometry coupled to chromatographic techniques, have a determining role in several of the stages necessary for the development of functional foods. The analyses of botanical extracts rich in bioactive compounds is one of the fundamental steps in order to identify and quantify their phytochemical composition. However, the compounds characterized in the extracts are not always responsible for the bioactive properties because they generally undergo metabolic reactions before reaching the therapeutic targets. For this reason, analytical techniques are also applied to analyze biological samples to know the bioavailability, pharmacokinetics and/or metabolism of the compounds ingested by animal or human models in nutritional intervention studies. In addition, these studies have also been applied to determine changes of endogenous metabolites caused by prolonged intake of compounds with bioactive potential. This review aims to describe the main types and modes of application of high-resolution analytical techniques in all these steps for functional food development.
Collapse
Affiliation(s)
- Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Berlin Institute of Health Metabolomics Platform, 10178 Berlin, Germany
- Correspondence: (Á.F.-O.); (M.D.l.L.C.-G.)
| | - Francisco Javier Leyva-Jiménez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain; (F.J.L.-J.); (A.S.-C.)
| | - María De la Luz Cádiz-Gurrea
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain; (F.J.L.-J.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain;
- Correspondence: (Á.F.-O.); (M.D.l.L.C.-G.)
| | - Sandra Pimentel-Moral
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain;
| | - Antonio Segura-Carretero
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain; (F.J.L.-J.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain;
| |
Collapse
|
23
|
Chromatography hyphenated to high resolution mass spectrometry in untargeted metabolomics for investigation of food (bio)markers. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Capillary Electrophoresis-Mass Spectrometry for Metabolomics: Possibilities and Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:159-178. [PMID: 34628632 DOI: 10.1007/978-3-030-77252-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Capillary electrophoresis-mass spectrometry (CE-MS) is a very useful analytical technique for the selective and highly efficient profiling of polar and charged metabolites in a wide range of biological samples. Compared to other analytical techniques, the use of CE-MS in metabolomics is relatively low as the approach is still regarded as technically challenging and not reproducible. In this chapter, the possibilities of CE-MS for metabolomics are highlighted with special emphasis on the use of recently developed interfacing designs. The utility of CE-MS for targeted and untargeted metabolomics studies is demonstrated by discussing representative and recent examples in the biomedical and clinical fields. The potential of CE-MS for large-scale and quantitative metabolomics studies is also addressed. Finally, some general conclusions and perspectives are given on this strong analytical separation technique for probing the polar metabolome.
Collapse
|
25
|
Data-dependent normalization strategies for untargeted metabolomics—a case study. Anal Bioanal Chem 2020; 412:6391-6405. [DOI: 10.1007/s00216-020-02594-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/25/2022]
|
26
|
Wang Z, Gao S, Xie J, Li R. Identification of multiple dysregulated metabolic pathways by GC-MS-based profiling of liver tissue in mice with OVA-induced asthma exposed to PM 2.5. CHEMOSPHERE 2019; 234:277-286. [PMID: 31220661 DOI: 10.1016/j.chemosphere.2019.06.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Particulate matter (PM) exposure increases the risk of asthma. However, the effect of PM2.5 exposure on liver metabolism in mice with asthma symptoms remains unclear. We established an ovalbumin (OVA)-induced asthma model in mice and divided the animals into four groups: control group (C), PM2.5 exposure group (P), OVA-induced asthma group (O) and OVA-induced asthma PM2.5 exposure group (OP). Gas chromatography-mass spectrometry (GC-MS) was used to identify the metabolite markers and related perturbed metabolic pathways in mouse liver tissue after PM2.5 exposure. Multivariate analysis showed 9 and 12 potential metabolite markers in the P and OP groups, respectively, after PM2.5 exposure that were significantly correlated with lipid peroxidation indices. PM2.5 exposure perturbed 5 and 7 metabolic pathways in the P and OP groups, respectively. These metabolic pathways mainly involve the lipid metabolism, amino acid metabolism, carbohydrate metabolism, and nucleotide metabolism. These results highlight the potential to study PM2.5-triggered alterations via liver tissue in normal and OVA-induced asthmatic mice to gain a more realistic appraisal of the resulting early toxicity events. Additionally, these results revealed potential metabolite markers of early antioxidant defense events triggered by PM2.5 and indicated that metabolite markers are more sensitive than antioxidant indicators.
Collapse
Affiliation(s)
- Zhentao Wang
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, PR China
| | - Shaolong Gao
- State Environmental Protection Key Laboratory on Efficient Resource-utilization Techniques of Coal Waste, Institute of Resources and Environment Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Jingfang Xie
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, PR China.
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China
| |
Collapse
|
27
|
González-Riano C, Dudzik D, Garcia A, Gil-de-la-Fuente A, Gradillas A, Godzien J, López-Gonzálvez Á, Rey-Stolle F, Rojo D, Ruperez FJ, Saiz J, Barbas C. Recent Developments along the Analytical Process for Metabolomics Workflows. Anal Chem 2019; 92:203-226. [PMID: 31625723 DOI: 10.1021/acs.analchem.9b04553] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carolina González-Riano
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Danuta Dudzik
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain.,Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy , Medical University of Gdańsk , 80-210 Gdańsk , Poland
| | - Antonia Garcia
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Alberto Gil-de-la-Fuente
- Department of Information Technology, Escuela Politécnica Superior , Universidad San Pablo-CEU , 28003 Madrid , Spain
| | - Ana Gradillas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Joanna Godzien
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain.,Clinical Research Centre , Medical University of Bialystok , 15-089 Bialystok , Poland
| | - Ángeles López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Francisco J Ruperez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Jorge Saiz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| |
Collapse
|
28
|
Martínez-López M, Iborra S, Conde-Garrosa R, Mastrangelo A, Danne C, Mann ER, Reid DM, Gaboriau-Routhiau V, Chaparro M, Lorenzo MP, Minnerup L, Saz-Leal P, Slack E, Kemp B, Gisbert JP, Dzionek A, Robinson MJ, Rupérez FJ, Cerf-Bensussan N, Brown GD, Bernardo D, LeibundGut-Landmann S, Sancho D. Microbiota Sensing by Mincle-Syk Axis in Dendritic Cells Regulates Interleukin-17 and -22 Production and Promotes Intestinal Barrier Integrity. Immunity 2019; 50:446-461.e9. [PMID: 30709742 PMCID: PMC6382412 DOI: 10.1016/j.immuni.2018.12.020] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 07/30/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
Abstract
Production of interleukin-17 (IL-17) and IL-22 by T helper 17 (Th17) cells and group 3 innate lymphoid cells (ILC3s) in response to the gut microbiota ensures maintenance of intestinal barrier function. Here, we examined the mechanisms whereby the immune system detects microbiota in the steady state. A Syk-kinase-coupled signaling pathway in dendritic cells (DCs) was critical for commensal-dependent production of IL-17 and IL-22 by CD4+ T cells. The Syk-coupled C-type lectin receptor Mincle detected mucosal-resident commensals in the Peyer's patches (PPs), triggered IL-6 and IL-23p19 expression, and thereby regulated function of intestinal Th17- and IL-17-secreting ILCs. Mice deficient in Mincle or with selective depletion of Syk in CD11c+ cells had impaired production of intestinal RegIIIγ and IgA and increased systemic translocation of gut microbiota. Consequently, Mincle deficiency led to liver inflammation and deregulated lipid metabolism. Thus, sensing of commensals by Mincle and Syk signaling in CD11c+ cells reinforces intestinal immune barrier and promotes host-microbiota mutualism, preventing systemic inflammation.
Collapse
Affiliation(s)
- María Martínez-López
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Salvador Iborra
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid 28029, Spain; Department of Immunology, School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain.
| | - Ruth Conde-Garrosa
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Annalaura Mastrangelo
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Camille Danne
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Delyth M Reid
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Valérie Gaboriau-Routhiau
- INRA Micalis Institut, UMR1319, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; INSERM UMR1163, Institut Imagine, Laboratory of Intestinal Immunity, 75015 Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 75006 Paris, France
| | - Maria Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Diego de León 62, Madrid 28006, Spain
| | - María P Lorenzo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, Urbanización Montepríncipe, km 0, M501, Alcorcón 28925, Spain
| | | | - Paula Saz-Leal
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Emma Slack
- Institute of Food, Nutrition, and Health, ETH Zurich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | | | - Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Diego de León 62, Madrid 28006, Spain
| | | | | | - Francisco J Rupérez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, Urbanización Montepríncipe, km 0, M501, Alcorcón 28925, Spain
| | - Nadine Cerf-Bensussan
- INSERM UMR1163, Institut Imagine, Laboratory of Intestinal Immunity, 75015 Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 75006 Paris, France
| | - Gordon D Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - David Bernardo
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Diego de León 62, Madrid 28006, Spain
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a Zurich 8057, Switzerland
| | - David Sancho
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid 28029, Spain.
| |
Collapse
|
29
|
Stolz A, Jooß K, Höcker O, Römer J, Schlecht J, Neusüß C. Recent advances in capillary electrophoresis-mass spectrometry: Instrumentation, methodology and applications. Electrophoresis 2018; 40:79-112. [PMID: 30260009 DOI: 10.1002/elps.201800331] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022]
Abstract
Capillary electrophoresis (CE) offers fast and high-resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user-friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano-electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE-MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two-dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE-modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.
Collapse
Affiliation(s)
| | - Kevin Jooß
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Oliver Höcker
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Instrumental Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jennifer Römer
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Johannes Schlecht
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Jena, Germany
| | | |
Collapse
|
30
|
Drouin N, Pezzatti J, Gagnebin Y, González-Ruiz V, Schappler J, Rudaz S. Effective mobility as a robust criterion for compound annotation and identification in metabolomics: Toward a mobility-based library. Anal Chim Acta 2018; 1032:178-187. [DOI: 10.1016/j.aca.2018.05.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/04/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
|
31
|
Ramautar R, Somsen GW, de Jong GJ. CE-MS for metabolomics: Developments and applications in the period 2016-2018. Electrophoresis 2018; 40:165-179. [PMID: 30232802 PMCID: PMC6586046 DOI: 10.1002/elps.201800323] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
Abstract
In the field of metabolomics, CE-MS is now recognized as a strong analytical technique for the analysis of (highly) polar and charged metabolites in a wide range of biological samples. Over the past few years, significant attention has been paid to the design and improvement of CE-MS approaches for (large-scale) metabolic profiling studies and for establishing protocols in order to further expand the role of CE-MS in metabolomics. In this paper, which is a follow-up of a previous review paper covering the years 2014-2016 (Electrophoresis 2017, 38, 190-202), main advances in CE-MS approaches for metabolomics studies are outlined covering the literature from July 2016 to June 2018. Aspects like developments in interfacing designs and data analysis tools for improving the performance of CE-MS for metabolomics are discussed. Representative examples highlight the utility of CE-MS in the fields of biomedical, clinical, microbial, and plant metabolomics. A complete overview of recent CE-MS-based metabolomics studies is given in a table, which provides information on sample type and pretreatment, capillary coatings and MS detection mode. Finally, some general conclusions and perspectives are given.
Collapse
Affiliation(s)
- Rawi Ramautar
- Biomedical Microscale Analytics, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gerhardus J de Jong
- Biomolecular Analysis, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
32
|
Dudzik D, Barbas-Bernardos C, García A, Barbas C. Quality assurance procedures for mass spectrometry untargeted metabolomics. a review. J Pharm Biomed Anal 2017; 147:149-173. [PMID: 28823764 DOI: 10.1016/j.jpba.2017.07.044] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/16/2022]
Abstract
Untargeted metabolomics, as a global approach, has already proven its great potential and capabilities for the investigation of health and disease, as well as the wide applicability for other research areas. Although great progress has been made on the feasibility of metabolomics experiments, there are still some challenges that should be faced and that includes all sources of fluctuations and bias affecting every step involved in multiplatform untargeted metabolomics studies. The identification and reduction of the main sources of unwanted variation regarding the pre-analytical, analytical and post-analytical phase of metabolomics experiments is essential to ensure high data quality. Nowadays, there is still a lack of information regarding harmonized guidelines for quality assurance as those available for targeted analysis. In this review, sources of variations to be considered and minimized along with methodologies and strategies for monitoring and improvement the quality of the results are discussed. The given information is based on evidences from different groups among our own experiences and recommendations for each stage of the metabolomics workflow. The comprehensive overview with tools presented here might serve other researchers interested in monitoring, controlling and improving the reliability of their findings by implementation of good experimental quality practices in the untargeted metabolomics study.
Collapse
Affiliation(s)
- Danuta Dudzik
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, San Pablo CEU University, Boadilla del Monte, ES-28668, Madrid, Spain.
| | - Cecilia Barbas-Bernardos
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, San Pablo CEU University, Boadilla del Monte, ES-28668, Madrid, Spain.
| | - Antonia García
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, San Pablo CEU University, Boadilla del Monte, ES-28668, Madrid, Spain.
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, San Pablo CEU University, Boadilla del Monte, ES-28668, Madrid, Spain.
| |
Collapse
|