1
|
Qureshi KA, Parvez A, Ismatullah H, Almahasheer H, Al Rugaie O. Exploring the antimicrobial and antibiofilm potency of four essential oils against selected human pathogens using in vitro and in silico approaches. PLoS One 2025; 20:e0315663. [PMID: 40273059 DOI: 10.1371/journal.pone.0315663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/28/2024] [Indexed: 04/26/2025] Open
Abstract
Multi-drug-resistant (MDR) pathogens pose a significant global health challenge, underscoring the urgent need for novel antimicrobial agents with minimal toxicity to humans. This study investigated the in vitro and in silico antimicrobial and antibiofilm potentials of four essential oils (EOs): clove bud oil (CBO; Syzygium aromaticum L.), black seed oil (BSO; Nigella sativa L.), cinnamon bark oil (CNBO; Cinnamomum zeylanicum), and citronella oil (CTLO; Cymbopogon nardus L.), against 19 selected human pathogens, including MDR strains. Among the tested EOs, CBO, BSO, and CNBO exhibited the highest antibacterial activity against Staphylococcus epidermidis, with the mean zone of inhibition diameters (ZIDs) of 20.0 ± 0.2 mm, 46.0 ± 0.3 mm, and 32.0 ± 0.1 mm, respectively, at a concentration of 10 µL/disc, while CTLO displayed no antibacterial activity. CNBO demonstrated superior antifungal activity, with the mean ZIDs of 49.0 ± 0.3 mm and 36.0 ± 0.3 mm for Candida albicans and Aspergillus niger, respectively. Molecular docking analyses revealed robust interactions of key bioactive compounds-eugenol (EU) from CBO, thymoquinone (TQ) from BSO, cinnamaldehyde (CN) from CNBO, citronellal (CIT) and linalool (LIN) from CTLO-with microbial target proteins, substantiating their antimicrobial and antibiofilm potential. Notably, CTLO, despite limited in vitro activity, exhibited unique binding interactions in silico, suggesting potential niche applications. These findings underscore the translational potential of EOs as alternative antimicrobial therapies against MDR infections, particularly biofilm-associated infections, and highlight the need for further in vivo studies to validate their efficacy and safety.
Collapse
Affiliation(s)
- Kamal A Qureshi
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Adil Parvez
- NextGen Life Sciences Pvt. Ltd., New Delhi, India
| | - Humaira Ismatullah
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Hanan Almahasheer
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Biology and Immunology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
2
|
Abid A, Mekhadmi N, Mlik R, Bentahar A, Bireche K, Frih B, Boussebaa W, Mouane A, Cherrada N, Sanches Silva A, Dekmouche M, Bechki L, Al-Anazi KM, Farah MA, Ali A. Unveiling the Therapeutic Potential of Atractylis aristata Batt. Aqueous Extract: Anti-inflammatory, Antioxidant, Antibacterial, Sedative Activities & Phytochemical Profiling. ChemistryOpen 2025:e202500056. [PMID: 40244084 DOI: 10.1002/open.202500056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Medicinal plants possess the potential to yield bioactive compounds that offer significant health benefits; positioning them as valuable and promising sources for the development of innovative pharmaceutical products. This study aims to comprehensively assess the in vitro and in vivo pharmacological effects of the aqueous extract of the plant Atractylis aristata (AEAA) as well as assessments of its phytochemical composition. UPLC-ESI-MS/MS analysis of AEAA revealed a variety of bioactive compounds, including flavonoids and phenolic acids. In antioxidant assays, AEAA demonstrated considerable activity, with IC50 values of 0.269±0.05 mg/mL for DPPH scavenging and 0.0376±0.003 mg/mL for hydrogen peroxide radical inhibition. AEAA exhibited strong anti-inflammatory activity in vitro, with an IC50 value of 2.563 mg/mL in the BSA denaturation test. In vivo, AEAA reduced carrageenan-induced paw edema by 56.51 %, in comparison to an 83.58 % reduction with Ibuprofen®. Antibacterial testing showed AEAA's broad-spectrum activity, with the highest inhibition against Bacillus subtilis (34 mm zone of inhibition). Additionally, AEAA induced significant sedative effects, reducing locomotor activity by 48.98 %. These findings underscore the diverse pharmacological potential in addressing oxidative stress, inflammation, microbial infections, and anxiety of A. aristata, which can be attributed to its rich phytochemical profile.
Collapse
Affiliation(s)
- Asma Abid
- Laboratory of Valorization and Promotion of Saharan Resources, Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, 30000, Ouargla, Algeria
| | - Nourelhouda Mekhadmi
- Department of Biology, Faculty of Nature and Life Sciences, University of El Oued, 39000, El Oued, Algeria
- Laboratory of the Development and Technology of Saharan Resources (VTRS), Echahid Hamma Lakhdar El Oued University, Algeria
| | - Randa Mlik
- National Institute of Agronomic Research of Algeria, INRAA, P. O. Box 299, Station of, Adrar, Adrar, Algeria
| | - Assia Bentahar
- Laboratory of Phytotherapy Applied to Chronic Diseases, SNV Faculty, University of Setif 1, 19000, Sétif, Algeria
| | - Kamilia Bireche
- Laboratory of Valorization and Promotion of Saharan Resources, Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, 30000, Ouargla, Algeria
| | - Bariza Frih
- Department of Biology, Faculty of Nature and Life Sciences, University of El Oued, 39000, El Oued, Algeria
- Laboratory of the Development and Technology of Saharan Resources (VTRS), Echahid Hamma Lakhdar El Oued University, Algeria
| | - Walid Boussebaa
- Scientific and Technical Research Center in Physico-Chemical Analysis (CRAPC), Tipaza, Algeria
| | - Aicha Mouane
- Department of Biology, Faculty of Nature and Life Sciences, University of El Oued, 39000, El Oued, Algeria
| | - Nezar Cherrada
- Department of Biology, Faculty of Nature and Life Sciences, University of El Oued, 39000, El Oued, Algeria
- Laboratory of Biodiversity and Application of Biotechnology in Agriculture, University of El Oued, El-Oued, Algeria
| | - Ana Sanches Silva
- University of Coimbra, Faculty of Pharmacy, Coimbra, 3000-548 Coimbra, Portugal
- Centre for Animal Science Studies (CECA), ICETA, 4099-002, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, 1300-477, Lisbon, Portugal
| | - Messaouda Dekmouche
- Laboratory of Valorization and Promotion of Saharan Resources, Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, 30000, Ouargla, Algeria
| | - Lazhar Bechki
- Laboratory of Valorization and Promotion of Saharan Resources, Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, 30000, Ouargla, Algeria
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098
| |
Collapse
|
3
|
González-Cortazar M, Salinas-Sánchez DO, Herrera-Ruiz M, Hernández-Hernández P, Zamilpa A, Jiménez-Ferrer E, Utrera-Hernández BE, Pérez-García MD, Gutiérrez-Roman AS, Ble-González EA. Chemical Profile Analysis of Prosopis laevigata Extracts and Their Topical Anti-Inflammatory and Antibacterial Activities. PLANTS (BASEL, SWITZERLAND) 2025; 14:1118. [PMID: 40219189 PMCID: PMC11991005 DOI: 10.3390/plants14071118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
There are two major global morbidity and mortality problems in the health sector: inflammation, which is the physiological process that, in acute and chronic conditions, gradually causes the loss of the body's functionality, leading to severe damage to health; and microbial diseases, which are caused by pathogenic microorganisms such as bacteria. In the present study, the anti-inflammatory effects of three extracts of mesquite (Prosopis laevigata)-n-hexane (PH), dichloromethane (PD), and methanol (PM)-were assessed in a mouse model of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear oedema, and the antimicrobial effects against 14 microorganisms were assessed using the broth microdilution method. The extracts inhibited ear oedema by 60.81% (PH), 75.96% (PD), and 60.29% (PM). The most active anti-inflammatory extract (PD) was fractionated through chromatography, and three fractions (PDR3, PDR6, and PDR7) were evaluated. One of the most active fractions (PDR7) was purified via column chromatography, and ethyl veratrate (VE, 1) was isolated and identified. VE inhibited ear oedema by 85.1%. The anti-inflammatory effect is evidenced by the quantification of two pro-inflammatory cytokines (IL-10 and TNF-α). The PD extract, the PDR7 fraction, and the compound present an IL-10 concentration of 11.8, 18.9, and 36.5 pg/mg of protein, values significantly higher than the group that received only phorbol ester (* p < 0.05). These treatments also significantly decreased the concentration of TNF-α (* p < 0.05) to 197.6, 241.9, and 247.0 pg/mg protein, respectively. The PM extract showed the most pronounced antimicrobial effect, with a minimum inhibitory concentration (MIC) of <12.5 µg/mL for almost all the 14 tested strains, followed by the PD and PH extracts. Chromatographic fractionation of the PM extract yielded the PMR6, PMR7, and PMR10 fractions that inhibited all tested microorganisms with a MIC between 6.25 and 200 µg/mL. Compound 1 was active on five strains, with a concentration between 2 and 8 µg/mL. High-performance liquid chromatography analysis and comparison with commercial standards allowed for the identification of rutin (2) and quercetin 3-O-glucoside (3). Gas chromatography-mass spectrometry analysis of the PH and PD extracts allowed for the identification of fatty acids, terpenes, and phenols.
Collapse
Affiliation(s)
- Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico (A.Z.); (E.J.-F.); (M.D.P.-G.); (A.S.G.-R.)
| | - David Osvaldo Salinas-Sánchez
- Centro de Investigación en Biodiversidad y Conservación (CIByC), Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
- Escuela de Estudios Superiores del Jicarero (EESJ), Universidad Autónoma del Estado de Morelos, Carretera Galeana-Tequesquitengo s/n Col. el Jicarero, Jojutla 62909, Morelos, Mexico
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico (A.Z.); (E.J.-F.); (M.D.P.-G.); (A.S.G.-R.)
| | - Paulina Hernández-Hernández
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico (A.Z.); (E.J.-F.); (M.D.P.-G.); (A.S.G.-R.)
- Escuela de Estudios Superiores del Jicarero (EESJ), Universidad Autónoma del Estado de Morelos, Carretera Galeana-Tequesquitengo s/n Col. el Jicarero, Jojutla 62909, Morelos, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico (A.Z.); (E.J.-F.); (M.D.P.-G.); (A.S.G.-R.)
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico (A.Z.); (E.J.-F.); (M.D.P.-G.); (A.S.G.-R.)
| | - Beatriz E. Utrera-Hernández
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán 86690, Tabasco, Mexico (E.A.B.-G.)
| | - Ma. Dolores Pérez-García
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico (A.Z.); (E.J.-F.); (M.D.P.-G.); (A.S.G.-R.)
| | - Ana S. Gutiérrez-Roman
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico (A.Z.); (E.J.-F.); (M.D.P.-G.); (A.S.G.-R.)
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla s/n km 85, San Isidro 62739, Morelos, Mexico
| | - Ever A. Ble-González
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán 86690, Tabasco, Mexico (E.A.B.-G.)
| |
Collapse
|
4
|
Qureshi KA, Parvez A, Jaremko M. Repurposing eugenol and cinnamaldehyde as potent antimicrobial agents: A comprehensive in-vitro and in-silico study. Bioorg Chem 2025; 156:108199. [PMID: 39855115 DOI: 10.1016/j.bioorg.2025.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Multi-drug-resistant (MDR) pathogens represent a critical global health threat, necessitating the development of novel antimicrobial agents with broad-spectrum activity and minimal toxicity. This study investigates the antimicrobial and anti-biofilm properties of 4-Allyl-2-methoxyphenol (eugenol, EU) and (E)-3-Phenylprop-2-enal (cinnamaldehyde, CN) against 19 clinically significant pathogens through a combination of in-vitro assays and in-silico analyses. EU displayed remarkable activity, particularly against Aspergillus niger (20.5 ± 0.5 mm), and strong binding affinities with key protein targets, including peptide deformylase and β-carbonic anhydrase, with binding free energies (ΔG) ranging from -12.75 to -0.60 kcal/mol. CN exhibited exceptional activity against Staphylococcus epidermidis (29.6 ± 0.4 mm) and Candida albicans (36.6 ± 0.4 mm), supported by a significant binding affinity with β-carbonic anhydrase (ΔG: -5.23 kcal/mol). Dissociation constants (Kd) derived from MM-GBSA analyses indicated EU's strong inhibitory potential with nano- to picomolar Kd values, directly correlating with low IC50 values. CN demonstrated moderate inhibitory activity with Kd in the micromolar range. Molecular dynamics (MD) simulations confirmed the stability of these protein-ligand complexes, revealing critical hydrophobic interactions, such as those involving PHE122, that contributed to binding stabilization. ADMET profiling further underscored the favorable pharmacokinetics and safety of both compounds. These findings establish EU and CN as promising candidates for antimicrobial therapy, with potential applications in combating MDR pathogens and biofilm-associated infections. The complementary strengths of EU and CN warrant further structural optimization and combination studies, offering new avenues in the development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Kamal A Qureshi
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Adil Parvez
- NextGen Life Sciences Pvt. Ltd., New Delhi 110092, India.
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
5
|
Naji Bin-Asal FS, Saeed AA, Alawi Bin Yahia AR. Corallocarpus glomeruliflorus: Pharmacological potential revealed by phytochemical and in silico investigations. Biochem Biophys Rep 2025; 41:101940. [PMID: 39995632 PMCID: PMC11848803 DOI: 10.1016/j.bbrep.2025.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Corallocarpus glomeruliflorus (CGP), a plant native to Yemen, has been traditionally used for the management of various health conditions, including cancer, inflammation, and diabetes. This study presents the first comprehensive phytochemical and pharmacological investigation of CGP, revealing novel molecular mechanisms and therapeutic potential. Phytochemical analysis of the CGP extract revealed the presence of diverse bioactive compounds, including phenols, flavonoids, and other secondary metabolites. Notably, this is the first report identifying maritimetin, assafoetidin, kaempferol 3-rhamnoside 7-xyloside, and lespenefril in CGP, compounds with significant therapeutic potential. The total phenolic content was 88.12 ± 4.48 mg GAE/g, significantly higher than previously reported for related species (63.78 ± 1.27 mg GAE/g), and the total flavonoid content was 22.1 ± 0.01 mg QE/g. The extract demonstrated superior antimicrobial activity against Pseudomonas aeruginosa compared to previous studies, with a zone of inhibition of 16.7 ± 1.53 mm at 200 mg/mL concentration. The CGP extract displayed strong antioxidant activity in DPPH, FRAP, and phosphomolybdenum assays, with an IC50 value of 48.39 ± 1.58 μg/mL in the DPPH assay, compared to 9.88 ± 0.54 μg/mL for the positive control ascorbic acid. Most significantly, the CGP extract exhibited more potent selective anticancer effects on human breast (MCF-7) and colon (HCT-116) cancer cell lines than previously reported for related Cucurbitaceae species, with IC50 values of 49.18 ± 2.81 μg/mL and 244.2 ± 9.86 μg/mL, respectively. Our novel molecular docking studies revealed previously unreported interactions between CGP compounds and key therapeutic targets, particularly Pim-1, PIK3CA, α-amylase, and Gyr-B, providing new insights into its mechanism of action.
Collapse
Affiliation(s)
| | - Adel A.M. Saeed
- Department of Chemistry, Faculty of Science, University of Aden, Aden, Yemen
| | | |
Collapse
|
6
|
Faturoti AO, Ogidi CO. Inclusion of antimicrobial and antioxidant spices into milk candy towards enhancement of nutrient contents and bio-functional activities. Heliyon 2025; 11:e42249. [PMID: 39959487 PMCID: PMC11830343 DOI: 10.1016/j.heliyon.2025.e42249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025] Open
Abstract
Herbs and spices are known for their health benefits and thus, commonly used in foods to enhance taste, flavour and shelf life. This study produced milk candy with medicinal spices, assessed their proximate composition, prebiotic, and antioxidant activities using standard methods. Phenol contents of extracts from Aframomum melegueta (25.40 mg/100g) and Ocimum gratissimum (24.80 mg/100g) were not significantly different (p ≥ 0.05). Extracts from Ocimum gratissimum (5.50 mg/100g), Piper guineense (5.50 mg/100g), Cinnamomum burmannii (5.10 mg/100g), and Trigonella foenum-graecum (5.20 mg/100g) have similar (p ≥ 0.05) terpenoid content. Zones of inhibition displayed by the spices against indicator microorganisms ranged from 5.20 mm to 10.30 mm with MIC values of 50-200 μg/mL. Extracts from Ocimum gratissimum, Aframomum melegueta, and Xylopia aethiopica scavenged 1, 1-diphenyl-2-picrylhydrazyl (DPPH) with similar (p ≥ 0.05) values of 90.6 %, 91.5 %, and 92.5 %, respectively. The crude fibre of milk candy with spices increased from 6.90 to 8.10 % when compared (p ≥ 0.05) to milk candy without spices (3.90 %). Milk candies with Xylopia aethiopica and Zingiber officinale have the same scavenging activity of 65.80 % against DPPH. Milk candy fortified with Cuminum cyminum supported the growth of probiotics; Lactobacillus fermentum with the highest values of 8.30 × 105 cfu/mL and 6.90 × 105 cfu/mL for Lactobacillus acidophilus. Addition of spices to milk candy gain wide acceptance by consumers due to savory. Medicinal herbs and spices can be successfully incorporated into milk products to enhance their bio-functional potentials, and to alleviate the intolerance of individual that are allergic to dairy products.
Collapse
Affiliation(s)
- Adeyanmola Oluwaseyi Faturoti
- Department of Food Science and Technology, Olusegun Agagu University of Science and Technology, PMB 353 Okitipupa, Nigeria
| | - Clement Olusola Ogidi
- Department of Food Science and Technology, Olusegun Agagu University of Science and Technology, PMB 353 Okitipupa, Nigeria
| |
Collapse
|
7
|
Medalcho TH, Ali KA, Augchew ED. Effects of spices mixture and cooking on antioxidant activity in Ethiopian spicy hot red pepper powder. Sci Rep 2025; 15:5203. [PMID: 39939636 PMCID: PMC11821873 DOI: 10.1038/s41598-025-85952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/07/2025] [Indexed: 02/14/2025] Open
Abstract
In Ethiopia, spicy hot red pepper, locally known as berbere, is a common food additive that is consumed in a variety of forms, which have high antioxidant potentials. The antioxidant activity of selected spices, such as garlic, ginger, cardamom, and black cumin, and hot red pepper (HRP) as well as both raw and cooked experimental and commercial spicy hot red pepper were evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric ion (Fe3+) reducing antioxidant power (FRAP), and ferrous ion (Fe2+) chelating activity (FICA) assays. The IC50 of DPPH and ABTS of garlic were the lowest of all selected spices; conversely, they had the strongest free radical scavenging activities. The FRAP of ginger, and FICA of garlic were the strongest of all selected spices. The antioxidant potential of raw experimental (ESP), and commercial (CSP) spicy hot red pepper were stronger than the plain spices; however, cooked commercial spicy HRP or sauté (CSS) was the strongest of all following uncooked commercial spicy HRP (CSP). The DPPH and ABTS, and FRAP and FICA, respectively ranked in ascending order: HRP < ESP < ESS < CSP < CSS, and HRP < ESP < CSP ≤ ESS < CSS. Correlations between DPPH versus total flavonoid content (TFC), ABTS versus total phenolic content (TPC), FRAP versus TPC, and FICA versus condensed tannin content were strong in plain spices. The DPPH against TPC and TFC, ABTS against TFC, FRAP against TFC, and FICA against TPC correlated strongly in both raw and cooked spice mixture products. Spices used for popular Ethiopian spicy hot red pepper powder production, and both raw and cooked mixture of them are promising sources of antioxidants with positive health effects.
Collapse
Affiliation(s)
- Tadewos Hadero Medalcho
- School of Nutrition, Food Science and Technology, Hawassa University, P. O. Box: 05, Hawassa, Ethiopia.
| | - Kebede Abegaz Ali
- School of Nutrition, Food Science and Technology, Hawassa University, P. O. Box: 05, Hawassa, Ethiopia
| | | |
Collapse
|
8
|
Aminullah N, Mostamand A, Zahir A, Mahaq O, Azizi MN. Phytogenic feed additives as alternatives to antibiotics in poultry production: A review. Vet World 2025; 18:141-154. [PMID: 40041511 PMCID: PMC11873379 DOI: 10.14202/vetworld.2025.141-154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/19/2024] [Indexed: 03/06/2025] Open
Abstract
The overuse of antimicrobials in food-producing animals, particularly poultry, has led to growing concerns about multidrug microbial resistance, posing significant risks to both animal and human health. Subtherapeutic doses of antibiotics have traditionally been used to enhance growth and improve economic efficiency in poultry farming. However, these practices have facilitated the emergence of resistant microbial strains, threatening global health security and prompting a search for sustainable alternatives. This review highlights the significance of phytogenic as feed additives (PFAs) as promising substitutes for antibiotic as feed additives (AFAs) in poultry production. PFAs, derived from plant-based compounds, exhibit multiple beneficial properties, including antimicrobial, antioxidative, anti-inflammatory, and immune-modulatory effects. Moreover, they offer the potential to produce high-quality organic poultry products while reducing the likelihood of microbial resistance. Despite these advantages, inconsistent results among studies underscore the importance of standardized approaches to maximize their efficacy. This review aims to evaluate the current status of antibiotic use in poultry farming globally, explore the properties and mechanisms of PFAs, and assess their potential as viable alternatives to antibiotics. By consolidating available knowledge, this review provides insights into the benefits and challenges associated with PFAs, offering guidance for future research and practical applications in sustainable poultry production.
Collapse
Affiliation(s)
- Noor Aminullah
- Department of Pri-Clinic, Faculty of Veterinary Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| | - Allauddin Mostamand
- Department of Animal Husbandry, Faculty of Animal Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| | - Ahmadullah Zahir
- Department of Food Science and Technology, Faculty of Veterinary Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| | - Obaidullah Mahaq
- Department of Animal Nutrition and Production, Faculty of Agriculture, Afghan International Islamic University, Kabul 1004, Afghanistan
| | - Mohammad Naeem Azizi
- Department of Pri-Clinic, Faculty of Veterinary Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| |
Collapse
|
9
|
Berrú MBC, García MCM, Re SLS, Barreto JLR, Sánchez LRB, Radice M, Manfredini S, Abreu-Naranjo R. In Vitro Evaluation of the Antifungal Properties of Bixa orellana L. Essential Oil from the Ecuadorian Amazon Against Candida albicans (ATCC 10231). Life (Basel) 2024; 14:1628. [PMID: 39768336 PMCID: PMC11677816 DOI: 10.3390/life14121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Essential oils are investigated due to their biological activity, and the Amazon rainforest, with its rich biodiversity, is a promising source of therapeutic compounds. The aim of this study was to evaluate the essential oil from the leaves of Bixa orellana as an antifungal agent, thus contributing to the search for alternatives that can address the growing resistance to conventional antifungals. B. orellana leaves were collected in the Ecuadorian Amazon and their essential oil was obtained by steam distillation. Their chemical composition was analysed by Gas Chromatography-Mass Spectrometry (GC-MS) and their antifungal activity against Candida albicans was evaluated using the Kirby-Bauer disc diffusion method (ATCC 10231), with nystatin as a positive control. GC-MS analysis revealed the presence of 60 compounds, the main ones being dihydroedulan (27.5%), β-caryophyllene (10.3%), nerolidol (7.21%), trans-β-bergamotene (5.73%), α-santalene (4.94%) and trans-α-bergamotene (4.26%). The essential oil showed moderate antifungal activity against C. albicans, producing an inhibition halo of 13 mm in diameter, which is 48% of the inhibition observed with nystatin (27 mm). The presence of sesquiterpenes, such as β-caryophyllene, known for its membrane-disrupting properties, probably contributes to the observed antifungal effects. The study highlights the potential of B. orellana essential oil as a natural antifungal agent; however, further research is required to evaluate its efficacy against a wider range of pathogenic fungi, its possible synergistic effects with conventional antifungals and its safety and efficacy in vivo.
Collapse
Affiliation(s)
- María Belén Cruz Berrú
- Carrera de Biología, Facultad de Ciencias de la Vida, Universidad Estatal Amazónica (UEA), Vía Tena km 2½, Puyo 160150, Pastaza, Ecuador; (M.B.C.B.); (M.C.M.G.)
| | - María Coraima Mora García
- Carrera de Biología, Facultad de Ciencias de la Vida, Universidad Estatal Amazónica (UEA), Vía Tena km 2½, Puyo 160150, Pastaza, Ecuador; (M.B.C.B.); (M.C.M.G.)
| | - Sandra Luisa Soria Re
- Facultad de Ciencias de la Tierra, Universidad Estatal Amazónica (UEA), Vía Tena km 2½, Puyo 160150, Pastaza, Ecuador; (S.L.S.R.); (J.L.R.B.); (L.R.B.S.); (M.R.); (R.A.-N.)
| | - Jannys Lizeth Rivera Barreto
- Facultad de Ciencias de la Tierra, Universidad Estatal Amazónica (UEA), Vía Tena km 2½, Puyo 160150, Pastaza, Ecuador; (S.L.S.R.); (J.L.R.B.); (L.R.B.S.); (M.R.); (R.A.-N.)
| | - Luis Ramón Bravo Sánchez
- Facultad de Ciencias de la Tierra, Universidad Estatal Amazónica (UEA), Vía Tena km 2½, Puyo 160150, Pastaza, Ecuador; (S.L.S.R.); (J.L.R.B.); (L.R.B.S.); (M.R.); (R.A.-N.)
| | - Matteo Radice
- Facultad de Ciencias de la Tierra, Universidad Estatal Amazónica (UEA), Vía Tena km 2½, Puyo 160150, Pastaza, Ecuador; (S.L.S.R.); (J.L.R.B.); (L.R.B.S.); (M.R.); (R.A.-N.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Reinier Abreu-Naranjo
- Facultad de Ciencias de la Tierra, Universidad Estatal Amazónica (UEA), Vía Tena km 2½, Puyo 160150, Pastaza, Ecuador; (S.L.S.R.); (J.L.R.B.); (L.R.B.S.); (M.R.); (R.A.-N.)
| |
Collapse
|
10
|
Mafe AN, Edo GI, Akpoghelie PO, Yousif E, Gaaz TS, Opiti RA, Onyibe PN, Owheruo JO, Isoje EF, Igbuku UA, Essaghah AEA, Akhayere E, Umar H. Pepper soup: A cultural and culinary exploration of a traditional Nigerian dish, with a focus on health benefits and antimicrobial activity. Int J Gastron Food Sci 2024; 38:101036. [DOI: 10.1016/j.ijgfs.2024.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Wasim Akram SA, Arokiarajan MS, Christopher JJ, Jameel M, Saquib M, Saripally TSK, Anwar N, Asif M, Ahmed K K. Antimicrobial and antioxidant study of combined essential oils of Anethum Sowa Kurz. and Trachyspermum ammi (L.) along with quality determination, comparative histo-anatomical features, GC‒MS and HPTLC chemometrics. Sci Rep 2024; 14:27010. [PMID: 39505931 PMCID: PMC11541756 DOI: 10.1038/s41598-024-75773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Spices played crucial and variable roles in traditions, culture, history, religious ceremonials and festivals along with fetching food flavor and microbial protection globally due to presence of structurally unique and multi-natured chemotypes. Their existence in dishes portrayed key roles in improving shelf life by regulating spoilage of cuisine with different synergistic mechanism. Histo-anatomically (A) sowa exhibited distinguished cellular attributes which created remarkable differences with T. ammi. HPTLC chemometrics of both fruits revealed several peaks for active metabolomics with unique isocratic combination of menstruum. GC-MS study of hydro-distillate exhibited presence of monoterpenic cyclic and aromatic hydrocarbons, alcoholic and ketonic groups along with phenolic derivative that covers majorly 90% of total metabolites. Combined essential oils (EOs 1 + 2) of both fruits showed excellent antimicrobial activity against various clinical pathogenic strains such as K. pneumoniae at 10 µL/mL, S. aureus at 2.5 µL/mL, E. coli and E. faecalis at 1.25 µL/mL, and MRSA and Bcereus at 0.625 µL/mL and (C) albicans at 0.312 µL/mL as the MIC. The antioxidant study of (EOs 1 + 2) with maximum inhibition percentage to DPPH assay was 84.02 ± 1.05 at 100 µg/mL, and minimal inhibition was 72.31 ± 0.63 at 5 µg/mL with IC50 value 4.69 ± 0.22 µg/mL, while ABTS assay extreme was 79.15 ± 2.14 µg/mL and minimal was 67 ± 1.34 with the IC50 value of 18.37 ± 0.15 µg/mL, in superoxide assay uppermost inhibition was 81.03 ± 0.27 µg/mL and lowest was at 65.16 ± 3.15 with the IC50 value 16.46 ± 0.54, and H2O2 radical scavenging activity, predominant value was 78.01 ± 0.47 and least was 64.1 ± 2.01 with IC50 15.58 ± 0.34. These comparative key diagnostic features and synergistic effect of multicomponent natural antimicrobials will provide profound intellect of ancient utility and further scientists to explore their multiple mechanistic modality and application in food and beverages industry.
Collapse
Affiliation(s)
- S A Wasim Akram
- Regional Research Institute of Unani Medicine, Royapuram, Chennai, 600013, India
| | - Mary Shamya Arokiarajan
- Regional Research Institute of Unani Medicine, Royapuram, Chennai, 600013, India
- Central Council for Research in Unani Medicine, Ministry of AYUSH, Govt of India, New Delhi, 110025, India
| | - J John Christopher
- Regional Research Institute of Unani Medicine, Royapuram, Chennai, 600013, India
| | - Mohammad Jameel
- Regional Research Institute of Unani Medicine, Royapuram, Chennai, 600013, India.
| | - Mohd Saquib
- Regional Research Institute of Unani Medicine, Royapuram, Chennai, 600013, India
| | | | - Noman Anwar
- Regional Research Institute of Unani Medicine, Royapuram, Chennai, 600013, India
| | - Mohd Asif
- Regional Research Institute of Unani Medicine, Royapuram, Chennai, 600013, India
| | - Kabiruddin Ahmed K
- Regional Research Institute of Unani Medicine, Royapuram, Chennai, 600013, India
| |
Collapse
|
12
|
Chaudhary V, Kajla P, Lather D, Chaudhary N, Dangi P, Singh P, Pandiselvam R. Bacteriophages: a potential game changer in food processing industry. Crit Rev Biotechnol 2024; 44:1325-1349. [PMID: 38228500 DOI: 10.1080/07388551.2023.2299768] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 01/18/2024]
Abstract
In the food industry, despite the widespread use of interventions such as preservatives and thermal and non-thermal processing technologies to improve food safety, incidences of foodborne disease continue to happen worldwide, prompting the search for alternative strategies. Bacteriophages, commonly known as phages, have emerged as a promising alternative for controlling pathogenic bacteria in food. This review emphasizes the potential applications of phages in biological sciences, food processing, and preservation, with a particular focus on their role as biocontrol agents for improving food quality and preservation. By shedding light on recent developments and future possibilities, this review highlights the significance of phages in the food industry. Additionally, it addresses crucial aspects such as regulatory status and safety concerns surrounding the use of bacteriophages. The inclusion of up-to-date literature further underscores the relevance of phage-based strategies in reducing foodborne pathogenic bacteria's presence in both food and the production environment. As we look ahead, new phage products are likely to be targeted against emerging foodborne pathogens. This will further advance the efficacy of approaches that are based on phages in maintaining the safety and security of food.
Collapse
Affiliation(s)
- Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Deepika Lather
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nisha Chaudhary
- Department of Food Science and Technology, College of Agriculture, Agriculture University, Jodhpur, Rajasthan, India
| | - Priya Dangi
- Department of Food and Nutrition and Food Technology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Punit Singh
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University Mathura, Mathura, Uttar Pradesh, India
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
13
|
Abidizadegan M, Peltomaa E, Ilina P, Tammela P, Blomster J. Cryptophytes as potential source of natural antimicrobials for food preservation. Front Microbiol 2024; 15:1462696. [PMID: 39391605 PMCID: PMC11465241 DOI: 10.3389/fmicb.2024.1462696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Cryptophytes are a promising source of bioactive compounds that have not been fully explored. This research investigated the antimicrobial activity of total phenolic compounds (TPC) and exopolysaccharides (EPS) extracted from several cryptophytes against a range of harmful foodborne bacteria and fungi. To measure the minimum inhibitory concentration (MIC) value, the broth microdilution method was used. In the antibacterial evaluation of TPC, the MIC ranged between 31.25 and 500 μg/mL, while for the antifungal activity test, it varied from 31.25 to 125 μg/mL. In the antibacterial activity test of EPS, the MIC values ranged from 125 to 1,000 μg/mL, whereas in the antifungal susceptibility test, it ranged between 62.5 and 1,000 μg/mL. The most resistant pathogen against TPC was Escherichia coli, while Campylobacter jejuni was the most susceptible. In the case of EPS, the most resistant pathogen was Salmonella Typhimurium, while Aspergillus versicolor exhibited the highest susceptibility. Overall, in terms of antimicrobial activity, TPC was more effective than EPS. Finally, the tolerance level (TL) for TPC and EPS was ≤4 in all tested samples, indicating their bactericidal/fungicidal mechanism of action. In conclusion, TPC and EPS isolated from cryptophytes demonstrated remarkable antimicrobial properties and ability to fully eradicate pathogens, and could be considered as natural preservatives in the food industry.
Collapse
Affiliation(s)
- Maryam Abidizadegan
- Ecosystem and Environmental Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Elina Peltomaa
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Polina Ilina
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jaanika Blomster
- Ecosystem and Environmental Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Zhao K, Wonta KB, Xia J, Zhong F, Sharma V. Phytochemical profiling and evaluation of antimicrobial activities of common culinary spices: Syzygium aromaticum (clove) and Piper nigrum (black pepper). Front Nutr 2024; 11:1447144. [PMID: 39211834 PMCID: PMC11358098 DOI: 10.3389/fnut.2024.1447144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Background The increasing resistance of microbial pathogens to conventional antibiotics necessitates the exploration of alternative antimicrobial agents. This study aims to evaluate the antimicrobial potential and phytochemical properties of Syzygium aromaticum (clove) and Piper nigrum (black pepper) extracts, both of which are known for their historical use in traditional medicine and culinary applications. Methods Hydroalcoholic and aqueous extracts of clove and black pepper were prepared. The antimicrobial activity of these extracts was assessed using the disk diffusion method against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger. Minimum inhibitory concentration (MIC) was determined using the broth dilution method. Qualitative phytochemical screening identified the presence of key bioactive compounds, while quantitative analysis measured total phenolic and flavonoid contents. LC-HRMS/MS analysis of ethanolic extracts was performed. Results Both spices extracts exhibited significant antimicrobial activity, with inhibition zones ranging from 14 to 18 mm. clove showed superior antimicrobial efficacy compared to black paper, particularly against fungi. MIC values ranged between 3 mg/mL and 6 mg/mL for both spices. Phytochemical analysis revealed higher total phenolic and flavonoid contents in clove, with hydroalcoholic extracts showing greater concentrations than aqueous extracts. HPLC quantified higher eugenol content in clove extracts and higher piperine content in black pepper extracts. The differences in bioactive compound content were statistically significant (p < 0.05). Conclusion The study confirms that both spices possess significant antimicrobial properties, attributable to their rich phytochemical composition, particularly phenolics and flavonoids. Clove exhibited slightly superior antimicrobial activity compared to black paper. These findings support the potential use of these spices as complementary antimicrobial agents. Further research should investigate their synergistic effects with conventional antibiotics and explore their applications in food preservation and alternative medicine.
Collapse
Affiliation(s)
- Kexin Zhao
- Department of Respiratory Medicine, Shenzhen Children’s Hospital, Shenzhen, China
| | - Kou B. Wonta
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Jinquan Xia
- Clinical Research Centre, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Fuhua Zhong
- Clinical Research Centre, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Vipasha Sharma
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
15
|
Wakhungu C, Okoth S, Amimo N, Wachira P, Amakhobe T, Owiti A, Wachira P. Screening of mycoflora and ochratoxin A on common culinary herbs and spices in Kenya. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1003-1017. [PMID: 38870338 DOI: 10.1080/19440049.2024.2367212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
The study aimed to screen fungal diversity and ochratoxin A levels on culinary spice and herb samples sold in open-air markets and supermarkets in Nairobi County, Kenya. All herbs were grown in Kenya, while locally-produced and imported spices were purchased from both types of retail outlet. The results showed a high frequency of Aspergillus and Penicillium species contaminating the samples. The isolated species included Aspergillus ochraceous, Aspergillus nomiae, Aspergillus niger, Aspergillus flavus, Aspergillus ustus, Aspergillus terrus, Aspergillus nidulans, Aspergillus clavutus, Penicillium crustosum, Penicillium expansum, Penicillium brevicompactum, Penicillium glabrum, Penicillium thomii, Penicillium citrinum, Penicillium polonicum, and Cladosporium cladosporioides. Total fungal count on spice and herb samples collected from various sources varied between 6 and 7 CFU/mL. Of imported spices, garlic had the highest fungal diversity, while cardamom had the least. For spices from both open market and supermarket outlets, cloves had the highest fungal diversity, while white pepper had the least. For the herbs sampled from the open markets, basil was the most contaminated, while sage was the least. In supermarket samples, parsley, sage, and mint had the highest fungal diversity, and bay had the least. The results indicate the contamination of spices and herbs with OTA at high concentrations. The calibration curve was saturated at 40 µg/kg; with samples of garlic, cinnamon, red chili, basil, thyme, mint, sage, and parsley having levels above this. Of the spices, imported ginger had the highest OTA levels (28.7 µg/kg), while turmeric from the open market had the least, 2.14 µg/kg. For herb samples, parsley from the open market had the highest OTA levels at 29.4 µg/kg, while marjoram from the open market had the lowest at 6.35 µg/kg. The results demonstrate the presence of mycotoxigenic fungi and OTA contamination of marketed culinary herbs and spices beyond acceptable limits. Hence, there is a need for informed and sustainable mitigation strategies aimed at reducing human exposure in Kenya to OTA mycotoxicosis through dietary intake of spices and herbs.
Collapse
Affiliation(s)
- Cynthia Wakhungu
- Department of Applied and Technical Biology, Technical University of Kenya, Nairobi, Kenya
| | - Sheila Okoth
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Nicholas Amimo
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Peter Wachira
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | | | - Ann Owiti
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Patrick Wachira
- Department of Biology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
16
|
Zeng C, Sun Y, Lin H, Li Z, Zhang Q, Cai T, Xiang W, Tang J, Yasurin P. D-Limonene Inhibits Pichia kluyveri Y-11519 in Sichuan Pickles by Disrupting Metabolism. Molecules 2024; 29:3561. [PMID: 39124965 PMCID: PMC11314558 DOI: 10.3390/molecules29153561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The Pichia kluyveri, a proliferation commonly found in Sichuan pickles (SCPs), can accelerate the growth and reproduction of spoilage bacteria, causing off-odor development and decay. Although D-limonene, a common natural preservative, effectively restricts P. kluyveri, its inhibitory mechanism remains unclear. This study aimed to elucidate this molecular mechanism by investigating the impact on basic P. kluyveri metabolism. The findings revealed that D-limonene inhibited P. kluyveri growth and disrupted the transcription of the genes responsible for encoding the enzymes involved in cell wall and membrane synthesis, oxidative phosphorylation, glycolysis, and the tricarboxylic acid (TCA) cycle pathway. The results indicated that these events disrupted crucial metabolism such as cell wall and membrane integrity, adenosine triphosphate (ATP) synthesis, and reactive oxygen species (ROS) balance. These insights provided a comprehensive understanding of the inhibitory effect of D-limonene on the growth and reproduction of P. kluyveri while highlighting its potential application in the SCP industry.
Collapse
Affiliation(s)
- Chaoyi Zeng
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Yue Sun
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Haoran Lin
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Ziyu Li
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Qing Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Ting Cai
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Wenliang Xiang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; (Y.S.); (H.L.); (Z.L.); (T.C.); (W.X.); (J.T.)
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Patchanee Yasurin
- Department of Food Biotechnology, Faculty of Biotechnology, Assumption University, Bangkok 10240, Thailand;
| |
Collapse
|
17
|
Cao D, Zhang Z, Jiang X, Wu T, Xiang Y, Ji Z, Guo J, Zhang X, Xu K, Liu Z, Zhang Y. Psoralea corylifolia L. and its active component isobavachalcone demonstrate antibacterial activity against Mycobacterium abscessus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118142. [PMID: 38583730 DOI: 10.1016/j.jep.2024.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia L. (Fabaceae) is a traditional medicinal herb used to treat various diseases, including kidney disease, asthma, psoriasis and vitiligo. AIM OF THE STUDY To explore the antibacterial activity of Psoralea corylifolia L. and its bioactive components against Mycobacterium abscessus (M. abscessus). MATERIALS AND METHODS Ultra high performance liquid chromatography was utilized to analyze the bioactive fractions and compounds present in 30%, 60%, and 90% ethanol extracts of Psoralea corylifolia L.. The antibacterial effects of Psoralea corylifolia L. and potential active ingredients were determined by minimum inhibitory concentration (MIC). The bactericidal activity of the active ingredient isobavachalcone was evaluated and then scanning electron microscopy was used to explore the bactericidal mechanism of isobavachalcone. RESULTS The 90% ethanol extracts of Psoralea corylifolia L. showed significant antibacterial activity against M. abscessus, with an MIC of 156 μg/mL. Isobavachalcone was identified as the bioactive ingredient, and testing of 118 clinical isolates of M. abscessus indicated their MICs ranged from 2 to 16 μg/mL, with an average MIC of 8 μg/mL. Furthermore, the minimum bactericidal concentration/MIC ratio and the time-kill test indicated rapid bactericidal activity of isobavachalcone against M. abscessus. Finally, we found that the bactericidal mechanism of isobavachalcone involved damage to the bacterial cell membrane, causing wrinkled and sunken cell surface and a noticeable reduction in bacterial length. CONCLUSION Psoralea corylifolia L. ethanol extracts as well as its active component isobavachalcone show promising antimicrobial activity against M. abscessus.
Collapse
Affiliation(s)
- Dan Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zunjing Zhang
- Lishui Traditional Chinese Medicine Hospital affiliated to the Zhejiang Chinese Medical University, Lishui, 323020, Zhejiang, China
| | - Xiuzhi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tiantian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanghui Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongkang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Guo
- Lishui Traditional Chinese Medicine Hospital affiliated to the Zhejiang Chinese Medical University, Lishui, 323020, Zhejiang, China
| | - Xiaoqin Zhang
- Lishui Traditional Chinese Medicine Hospital affiliated to the Zhejiang Chinese Medical University, Lishui, 323020, Zhejiang, China
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongda Liu
- Lishui Traditional Chinese Medicine Hospital affiliated to the Zhejiang Chinese Medical University, Lishui, 323020, Zhejiang, China.
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
| |
Collapse
|
18
|
Kačániová M, Joanidis P, Lakatošová J, Kunová S, Benešová L, Ikromi K, Akhmedov F, Boboev K, Gulmahmad M, Niyatbekzoda F, Toshkhodjaev N, Bobokalonov F, Kamolov N, Čmiková N. Effect of Essential Oils and Dried Herbs on the Shelf Life of Fresh Goat Lump Cheese. Foods 2024; 13:2016. [PMID: 38998522 PMCID: PMC11241544 DOI: 10.3390/foods13132016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
In recent years, the use of natural preservatives in food products has gained significant attention due to their potential health benefits and effectiveness. A standardized microbiological analysis was conducted on Slovak farm-produced lump goat cheese samples to determine the antibacterial activity of dry herbs and essential oils added to vacuum-packed goat cheese. We employed five dried herbs and five essential oils derived from the same plants. The microbiological quality of 145 fresh and vacuum-packed goat cheese samples was assessed. The number of coliform bacteria, total viable count, lactic acid bacteria, and microscopic filamentous fungi were examined in raw cheese samples stored for 12 days at 4 °C. All cheese samples were vacuum-packed (control samples were packed without vacuum). This study evaluated the potential benefits of using essential oils and dried herbs from thyme (Thymus serpyllum L.), black pepper (Piper nigrum L.), clove (Eugenia caryophyllus Thunb.), mint (Mentha × piperita L.), and basil (Ocimum basilicum L.) as preservatives. The essential oils were obtained from Hanus Ltd., Nitra, Slovakia, and were applied at a concentration of 2%. The dried herbs were obtained from Popradský čaj (Poprad, Slovakia) and Mäspoma Ltd. (Zvolen, Slovakia). The results showed that all microorganism groups were significantly reduced in cheese samples following the application of essential oils throughout the entire storage period. During the preservation of cheese samples in polyethylene bags used for vacuum packing food, Lactococcus garvieae, L. lactis, Enterobacter cloacae, and Serratia liquefaciens were the most frequently isolated microbiota. Essential oils and dried herbs demonstrated antimicrobial potential during the storage of vacuum-packed goat cheese.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Faculty of Horticulture and Landscape Engineering, Institute of Horticulture, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- School of Medical and Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01043 Warszawa, Poland
| | - Patrícia Joanidis
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Jana Lakatošová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Simona Kunová
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Lucia Benešová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Khurshed Ikromi
- Department of Food Production Technology, Technological University of Tajikistan, 63/3, N. Karabaeva Str., Dushanbe 734061, Tajikistan
| | - Farkhod Akhmedov
- Department of Food Production Technology, Technological University of Tajikistan, 63/3, N. Karabaeva Str., Dushanbe 734061, Tajikistan
| | - Khayyol Boboev
- Department of Food Production Technology, Technological University of Tajikistan, 63/3, N. Karabaeva Str., Dushanbe 734061, Tajikistan
| | - Mirzozoda Gulmahmad
- Department of Food Production Technology, Technological University of Tajikistan, 63/3, N. Karabaeva Str., Dushanbe 734061, Tajikistan
| | - Fariza Niyatbekzoda
- Department of Food Production Technology, Technological University of Tajikistan, 63/3, N. Karabaeva Str., Dushanbe 734061, Tajikistan
| | - Nasimjon Toshkhodjaev
- Department of Food Technology, Khujand Polytechnic Institute of Tajik Technical University (KPITTU), 226, I. Somoni Avenue, Khujand 735700, Tajikistan
| | - Farkhod Bobokalonov
- Department of Food Technology, Khujand Polytechnic Institute of Tajik Technical University (KPITTU), 226, I. Somoni Avenue, Khujand 735700, Tajikistan
| | - Nasimdzhon Kamolov
- Department of Food Technology, Khujand Polytechnic Institute of Tajik Technical University (KPITTU), 226, I. Somoni Avenue, Khujand 735700, Tajikistan
| | - Natália Čmiková
- Faculty of Horticulture and Landscape Engineering, Institute of Horticulture, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
19
|
Guo J, Yan S, Jiang X, Su Z, Zhang F, Xie J, Hao E, Yao C. Advances in pharmacological effects and mechanism of action of cinnamaldehyde. Front Pharmacol 2024; 15:1365949. [PMID: 38903995 PMCID: PMC11187351 DOI: 10.3389/fphar.2024.1365949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/06/2024] [Indexed: 06/22/2024] Open
Abstract
Cinnamaldehyde is extracted from Cinnamomum cassia and other species, providing diverse sources for varying chemical properties and therapeutic effects. Besides natural extraction, synthetic production and biotechnological methods like microbial fermentation offer scalable and sustainable alternatives. Cinnamaldehyd demonstrates a broad pharmacological range, impacting various diseases through detailed mechanisms. This review aims to encapsulate the diverse therapeutic effects of cinnamaldehyde, its molecular interactions, and its potential in clinical applications. Drawing on recent scientific studies and databases like Web of Science, PubMed, and ScienceDirect, this review outlines cinnamaldehyde's efficacy in treating inflammatory conditions, bacterial infections, cancer, diabetes, and cardiovascular and kidney diseases. It primarily operates by inhibiting the NF-κB pathway and modulating pro-inflammatory mediators, alongside disrupting bacterial cells and inducing apoptosis in cancer cells. The compound enhances metabolic health by improving glucose uptake and insulin sensitivity and offers cardiovascular protection through its anti-inflammatory and lipid-lowering effects. Additionally, it promotes autophagy in kidney disease management. Preclinical and clinical research supports its therapeutic potential, underscoring the need for further investigation into its mechanisms and safety to develop new drugs based on cinnamaldehyde.
Collapse
Affiliation(s)
- Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinya Jiang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Zixia Su
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang and Yao Medicine, Ministry of Education, Guangxi University of Chinese Medicine, Nanning, China
| | - Chun Yao
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang and Yao Medicine, Ministry of Education, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
20
|
Kačániová M, Vukovic NL, Čmiková N, Bianchi A, Garzoli S, Ben Saad R, Ben Hsouna A, Elizondo-Luévano JH, Said-Al Ahl HAH, Hikal WM, Vukic MD. Biological Activity and Phytochemical Characteristics of Star Anise ( Illicium verum) Essential Oil and Its Anti- Salmonella Activity on Sous Vide Pumpkin Model. Foods 2024; 13:1505. [PMID: 38790803 PMCID: PMC11121629 DOI: 10.3390/foods13101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Illicium verum, commonly known as star anise, represents one of the notable botanical species and is recognized for its rich reservoir of diverse bioactive compounds. Beyond its culinary application as a spice, this plant has been extensively utilized in traditional medicine. Given the contemporary emphasis on incorporating natural resources into food production, particularly essential oils, to enhance sensory attributes and extend shelf life, our study seeks to elucidate the chemical composition and evaluate the antibacterial (in vitro, in situ) and insecticidal properties of Illicium verum essential oil (IVEO). Also, microbiological analyses of pumpkin sous vide treated with IVEO after inoculation of Salmonella enterica were evaluated after 1 and 7 days of study. GC/MS analysis revealed a significantly high amount of (E)-anethole (88.4%) in the investigated EO. The disc diffusion method shows that the antibacterial activity of the IVEO ranged from 5.33 (Streptococcus constellatus) to 10.33 mm (Citrobacter freundii). The lowest minimal inhibition concentration was found against E. coli and the minimum biofilm inhibition concertation was found against S. enterica. In the vapor phase, the best antimicrobial activity was found against E. coli in the pears model and against S. sonei in the beetroot model. The application of the sous vide method in combination with IVEO application decreased the number of microbial counts and eliminated the growth of S. enterica. The most isolated microbiota identified from the sous vide pumpkin were Bacillus amyloliquefaciens, B. cereus, B. licheniformis, and Ralstonia picketii. Modifications to the protein composition of biofilm-forming bacteria S. enterica were suggested by the MALDI TOF MS instigations. The IVEO showed insecticidal potential against Harmonia axyridis. Thanks to the properties of IVEO, our results suggest it can be used in the food industry as a natural supplement to extend the shelf life of foods and as a natural insecticide.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (M.D.V.)
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (M.D.V.)
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy;
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (R.B.S.); (A.B.H.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Joel Horacio Elizondo-Luévano
- Faculty of Agronomy, Universidad Autónoma de Nuevo León (UANL), Av. Francisco Villa S/N, Col. Ex Hacienda el Canadá, General Escobedo 66050, Nuevo León, Mexico;
| | - Hussein A. H. Said-Al Ahl
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St. Dokki, Giza 12622, Egypt;
| | - Wafaa M. Hikal
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Milena D. Vukic
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (N.Č.); (M.D.V.)
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
21
|
Vila-Clarà G, Vila-Martí A, Vergés-Canet L, Torres-Moreno M. Exploring the Role and Functionality of Ingredients in Plant-Based Meat Analogue Burgers: A Comprehensive Review. Foods 2024; 13:1258. [PMID: 38672930 PMCID: PMC11049229 DOI: 10.3390/foods13081258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The development of plant-based meat analogues has become a significant challenge for the food industry in recent years due to the increasing demand for sustainable and healthier proteins in the context of a global protein transition. Plant-based meat analogues imitate the visual, textural, and chemical properties of traditional meat products and are required to closely resemble meat to appeal to consumers. In addition, consumers demand natural, clean-label, and nutritional, and healthy products. To address these challenges, the food industry must develop highly healthy, nutritious, and E-number-free meat analogue products. Understanding the functionality of each ingredient and its role in the food matrix is crucial to being a key player in the innovation of the meat analogue market. This review provides updated information on the primary ingredients utilized for the development of plant-based burger meat alternatives and their functionality. The key components of meat analogue burgers are outlined, including plant proteins, binding agents, fats and oils, flavorings, colorings, preservatives, fortificants, and clean-label considerations.
Collapse
Affiliation(s)
- Gil Vila-Clarà
- Research Group M3O, Methodology, Methods, Models and Outcomes of Health and Social Sciences, Faculty of Health Sciences and Welfare, University of Vic—Central University of Catalonia, 08500 Vic, Spain; (G.V.-C.); (M.T.-M.)
- Zyrcular Protein Labs, SL2, 28001 Madrid, Spain;
| | - Anna Vila-Martí
- Research Group M3O, Methodology, Methods, Models and Outcomes of Health and Social Sciences, Faculty of Health Sciences and Welfare, University of Vic—Central University of Catalonia, 08500 Vic, Spain; (G.V.-C.); (M.T.-M.)
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), 08500 Vic, Spain
| | | | - Miriam Torres-Moreno
- Research Group M3O, Methodology, Methods, Models and Outcomes of Health and Social Sciences, Faculty of Health Sciences and Welfare, University of Vic—Central University of Catalonia, 08500 Vic, Spain; (G.V.-C.); (M.T.-M.)
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), 08500 Vic, Spain
| |
Collapse
|
22
|
Iseppi R, Truzzi E, Sabia C, Messi P. Efficacy and Synergistic Potential of Cinnamon ( Cinnamomum zeylanicum) and Clove ( Syzygium aromaticum L. Merr. & Perry) Essential Oils to Control Food-Borne Pathogens in Fresh-Cut Fruits. Antibiotics (Basel) 2024; 13:319. [PMID: 38666995 PMCID: PMC11047545 DOI: 10.3390/antibiotics13040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
The presence of microbial pathogens in ready-to-eat produce represents a serious health problem. The antibacterial activity of cinnamon (Cinnamomum zeylanicum) and clove (Syzygium aromaticum L. Merr. & Perry) essential oils (EOs) was determined toward food-borne pathogens by agar disk diffusion and minimum inhibitory concentration (MIC) assays. The growth kinetics of all strains, both in a buffer suspension assay and "on food" in artificially contaminated samples, were also investigated. The two EOs demonstrated a good antibacterial effect both alone and in combination (EO/EO). The use of EO/EO led to a synergistic antibacterial effect, also confirmed by the growth kinetics studies, where the EOs were active after 10 h of incubation (p < 0.0001) at significantly lower concentrations than those when alone. In the "on food" studies performed on artificially contaminated fruit samples stored at 4 °C for 8 days, the greatest killing activity was observed at the end of the trial (8 days) with a reduction of up to 7 log CFU/g compared to the control. These results confirm the good antibacterial activity of the EOs, which were more effective when used in combination. Data from the "on food" studies suggest cinnamon and clove essential oils, traditionally used in the food industry, as a possible natural alternative to chemical additives.
Collapse
Affiliation(s)
- Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (R.I.); (C.S.)
| | - Eleonora Truzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (R.I.); (C.S.)
| | - Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (R.I.); (C.S.)
| |
Collapse
|
23
|
Kusmiati K, Fanani A, Nurkanto A, Purnaningsih I, Mamangkey J, Ramadhani I, Nurcahyanto DA, Simanjuntak P, Afiati F, Irawan H, Puteri AL, Ewaldo MF, Juanssilfero AB. Profile and in silico analysis of metabolite compounds of the endophytic fungus Alternaria alternata K-10 from Drymoglossum piloselloides as antioxidants and antibacterials. Heliyon 2024; 10:e27978. [PMID: 38524563 PMCID: PMC10958433 DOI: 10.1016/j.heliyon.2024.e27978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
Endophytic fungi are known for producing secondary metabolites with valuable biological activities, including antiviral, anticancer, antibacterial, and antioxidant properties. This study aims to evaluate an endophytic fungus from Dragon Scales leaves (Drymoglossum piloselloides) and analyze its metabolites as antioxidants and antibacterials. In this study, an endophytic fungus was isolated from the leaves of Dragon Scales (D. piloselloides) and identified using molecular analysis of the Internal Transcribed Spacer (ITS) ribosomal RNA locus. The fungus was authenticated as Alternaria alternata strain K-10. Crude extracts were obtained using n-hexane and ethyl acetate and analyzed via GC-MS Shimadzu-QP 2010 Ultra with NIST spectral library. Antibacterial activity was observed against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa using the paper disc method, showing inhibition zones of 8.7-9.3 mm and 8.8-9.4 mm for ethyl acetate and n-hexane extracts, respectively. Ethyl acetate and n-hexane extracts exhibited strong antioxidant potential against 2,2-diphenyl-1-picrylhydrazil (DPPH) radical (IC50 values of 50.99 μg mL-1 and 74.44 μg mL-1, respectively). GC-MS analysis revealed 40 compounds in both extracts, some of which, including 2-ethylhexyl ester benzoic acid, benzo-b-dihydropyran-6-hydroxy-4-4-5-7-8-pentamethyl, diethyl phthalate, and octadecanoic acid, were identified through in silico analysis and found to possess antioxidant properties. These findings hold implications for potential applications of the plant and its biological constituent to be developed as lead compounds in the medical sector.
Collapse
Affiliation(s)
- Kusmiati Kusmiati
- Research Center for Biosystematics and Evolution- Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Asrul Fanani
- Research and Education Center for Bioinformatics, Indonesia Institute of Bioinformatics, Malang, 65162, Indonesia
| | - Arif Nurkanto
- Research Center for Biosystematics and Evolution- Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Ismu Purnaningsih
- Directorate of Scientific Collection Management, The National Research and Innovation Agency (BRIN)- KST Soekarno, Jl Raya Bogor Km 46, Cibinong Bogor, 16911, Indonesia
| | - Jendri Mamangkey
- Department of Biology Education, Faculty of Education and Teacher Training, Universitas Kristen Indonesia, Jakarta, Indonesia
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Bogor, Indonesia
| | - Indriati Ramadhani
- Research Center for Biosystematics and Evolution- Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Dian Alfian Nurcahyanto
- Research Center for Biosystematics and Evolution- Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Partomuan Simanjuntak
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Indonesia
| | - Fifi Afiati
- Research Center for Applied Microbiology-Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Herman Irawan
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Bogor, Indonesia
| | - Ade Lia Puteri
- Research Center for Biosystematics and Evolution- Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| | - Muhammad Farrel Ewaldo
- Master's Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia Jl. Salemba Raya – Jakarta Pusat, Indonesia
| | - Ario Betha Juanssilfero
- Research Center for Applied Microbiology-Research Organization for Life Sciences and Environment, The National Research and Innovation Agency (BRIN), Indonesia
| |
Collapse
|
24
|
García-Rodríguez J, Saro C, Mateos I, Carro MD, Ranilla MJ. Effects of Garlic Oil and Cinnamaldehyde on Sheep Rumen Fermentation and Microbial Populations in Rusitec Fermenters in Two Different Sampling Periods. Animals (Basel) 2024; 14:1067. [PMID: 38612306 PMCID: PMC11011117 DOI: 10.3390/ani14071067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Garlic oil (GO) and cinnamaldehyde (CIN) have shown potential to modify rumen fermentation. The aim of this study was to assess the effects of GO and CIN on rumen fermentation, microbial protein synthesis (MPS), and microbial populations in Rusitec fermenters fed a mixed diet (50:50 forage/concentrate), as well as whether these effects were maintained over time. Six fermenters were used in two 15-day incubation runs. Within each run, two fermenters received no additive, 180 mg/L of GO, or 180 mg/L of CIN. Rumen fermentation parameters were assessed in two periods (P1 and P2), and microbial populations were studied after each of these periods. Garlic oil reduced the acetate/propionate ratio and methane production (p < 0.001) in P1 and P2 and decreased protozoal DNA concentration and the relative abundance of fungi and archaea after P1 (p < 0.05). Cinnamaldehyde increased bacterial diversity (p < 0.01) and modified the structure of bacterial communities after P1, decreased bacterial DNA concentration after P2 (p < 0.05), and increased MPS (p < 0.001). The results of this study indicate that 180 mg/L of GO and CIN promoted a more efficient rumen fermentation and increased the protein supply to the animal, respectively, although an apparent adaptive response of microbial populations to GO was observed.
Collapse
Affiliation(s)
- Jairo García-Rodríguez
- Departamento de Producción Animal, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain; (J.G.-R.); (C.S.); (I.M.)
- Instituto de Ganadería de Montaña, CSIC—Universidad de León, Finca Marzanas, s/n, 24346 Grulleros, Spain
| | - Cristina Saro
- Departamento de Producción Animal, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain; (J.G.-R.); (C.S.); (I.M.)
- Instituto de Ganadería de Montaña, CSIC—Universidad de León, Finca Marzanas, s/n, 24346 Grulleros, Spain
| | - Iván Mateos
- Departamento de Producción Animal, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain; (J.G.-R.); (C.S.); (I.M.)
- Instituto de Ganadería de Montaña, CSIC—Universidad de León, Finca Marzanas, s/n, 24346 Grulleros, Spain
| | - María Dolores Carro
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Agroalimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain;
| | - María José Ranilla
- Departamento de Producción Animal, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain; (J.G.-R.); (C.S.); (I.M.)
- Instituto de Ganadería de Montaña, CSIC—Universidad de León, Finca Marzanas, s/n, 24346 Grulleros, Spain
| |
Collapse
|
25
|
Noorbakhsh MF, Ghaemi M, Gholamhosseini A, Heidari AA. Effects of Dietary Supplement of Basil Extract on Biochemical and Immunological Parameters and Growth Performance in Oncorhynchus mykiss. AQUACULTURE NUTRITION 2024; 2024:5388049. [PMID: 39555564 PMCID: PMC10990648 DOI: 10.1155/2024/5388049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/02/2024] [Accepted: 02/21/2024] [Indexed: 11/19/2024]
Abstract
Ocimum basilicum has antioxidant, anti-inflammatory, and antimicrobial effects. The present study was conducted to evaluate the effects of O. basilicum extract on growth yield, safety, and marinating physiologic functions of the rainbow trout. The fish were fed with food rations containing 0%, 1%, 2%, and 3% of basil extract. Basil extract, especially at 1% concentration food ration, significantly increased the growth parameters compared with the control group (p < 0.05). The biochemical parameters of hepatic function, renal function, glucose, triglyceride, and cholesterol level were significantly reduced in the treatment groups compared with the control group (p < 0.05). Feeding with basil extract led to a significant increase in Ig, lysozyme, and respiratory burst assay, with the most prominent elevation at 2% concentration food ration. The mucosal antibacterial activity was improved. The mortality rate after exposure to Yersinia ruckeri was lower in the treatment groups compared with the control group. The results of the present study suggest that adding 2% basil extract to the food rations of the fish may improve their physiologic function and growth yield and reinforce their immune system.
Collapse
Affiliation(s)
| | - Mehran Ghaemi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amin Gholamhosseini
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amir Ali Heidari
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
26
|
Baky MH, Elkenawy NM, El-Nashar HAS, Abib B, Farag MA. Comparison of autoclaving and γ-radiation impact on four spices aroma profiles and microbial load using HS-SPME GC-MS and chemometric tools. Sci Rep 2024; 14:5752. [PMID: 38459176 PMCID: PMC10923872 DOI: 10.1038/s41598-024-56422-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
Herbal spices are widely consumed as food additives owing to their distinct aroma and taste as well as a myriad of economic and health value. The aroma profile of four major spices including bay leaf, black pepper, capsicum, and fennel was tested using HS-SPME/GC-MS and in response to the most widely used spices´ processing methods including autoclaving and γ-radiation at low and high doses. Additionally, the impact of processing on microbial contamination of spices was tested using total aerobic count. GC-MS analysis led to the identification of 22 volatiles in bay leaf, 34 in black pepper, 23 in capsicum, and 24 in fennel. All the identified volatiles belonged to oxides/phenols/ethers, esters, ketones, alcohols, sesquiterpene and monoterpene hydrocarbons. Oxides/phenol/ethers were detected at high levels in all tested spices at ca. 44, 28.2, 48.8, 61.1%, in bay leaves, black pepper, capsicum, and fennel, respectively of the total blend and signifying their typical use as spices. Total oxides/phenol/ethers showed an increase in bay leaf upon exposure to γ-radiation from 44 to 47.5%, while monoterpene hydrocarbons were enriched in black pepper upon autoclaving from 11.4 in control to reach 65.9 and 82.6% for high dose and low dose of autoclaving, respectively. Cineole was detected in bay leaf at 17.9% and upon exposure to autoclaving at high dose and γ-radiation (both doses) its level increased by 29-31%. Both autoclaving and γ-radiation distinctly affected aroma profiles in examined spices. Further, volatile variations in response to processing were assessed using multivariate data analysis (MVA) revealing distinct separation between autoclaved and γ-radiated samples compared to control. Both autoclaving at 115 °C for 15 min and radiation at 10 kGy eliminated detected bioburden in all tested spices i.e., reduced the microbial counts below the detection limit (< 10 cfu/g).
Collapse
Affiliation(s)
- Mostafa H Baky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr CityCairo, 11829, Egypt
| | - Nora M Elkenawy
- Drug Radiation Research Department, National Center of Radiation and Research Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City, 11787, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Bishoy Abib
- Chemistry Department, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
27
|
Nasra S, Meghani N, Kumar A. Nanoemulsion-Based System as a Novel and Promising Approach for Enhancing the Antimicrobial and Antitumoral Activity of Thymus vulgaris (L.) Oil in Human Hepatocellular Carcinoma Cells. Appl Biochem Biotechnol 2024; 196:949-970. [PMID: 37273096 DOI: 10.1007/s12010-023-04571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
The utilisation of medicinal plants and their essential oils is receiving more attention due to the ineffectiveness of current therapeutic methods in the treatment of various cancers and the rising incidence of bacterial antibiotic resistance. Thymol, an active ingredient of Thymus vulgaris, is known to have hepatoprotective, antibacterial, and antioxidant properties. To overcome major obstacles to their usage, such as quick oxidation and high volatility, plant essential oils must be administered through a system to improve the delivery of their active pharmaceutical ingredient. The bioavailability of active substances may be enhanced by the colloidal dispersion nanoemulsion. Therefore, this study aims to derive a comparative evaluation of the thyme oil nanoemulsion formulation and the characterisation of its antibacterial and antitumorigenic activities. A nanoemulsion (NE) with a droplet size of 122.2 ± 1.079 nm was discovered to be stable and mono-dispersed for 4 months and inhibited the growth of B. subtilis, E. coli, P. aeruginosa, and S. aureus. It also displayed antitumorigenic capabilities in HepG2 cells by arresting the cell cycle in the G2/M phase and upregulating the gene expression levels of Bcl-2-associated X protein (Bax), Caspase 3, 8, and 9, as well as a concomitant concentration-dependent decrease in B-cell leukaemia/lymphoma 2 protein (BCL2). Along with an increase in inducible nitric oxide synthase (iNOS) levels, upregulation of the expression levels of the reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), and endoplasmic reticulum (ER) stress pathways was also seen, indicating of ROS formation in the cancer cells.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Nikita Meghani
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
28
|
Rusin-Żurek K, Kuciel S. Strength properties and ability to dissipate mechanical energy of biopolypropylene basalt/cellulose composites with the addition of antibacterial turmeric. Sci Rep 2024; 14:820. [PMID: 38191797 PMCID: PMC10774429 DOI: 10.1038/s41598-023-51145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024] Open
Abstract
The aim of this study was to evaluate the possibility of producing novel reinforced biocomposites based on polypropylene produced from biomass with the addition of antibacterial turmeric as a natural antibacterial agent for the manufacturing of orthoses and other small external medical equipment. Six hybrid composites containing 5-15% basalt fibers, 5-15% microcellulose fibers, 2% turmeric powder and 2% anhydride maleic compatibilizer were produced on a biobased polypropylene matrix by injection molding. The basic strength properties were determined in a static tensile, bending and impact test. The low-cycle dynamic test was carried out to determine changes in dissipation energy and the development of relaxation processes. In order to assess the microstructure of the composites, SEM micrographs were taken after the tensile test. The obtained results confirm that it was possible to produce functional biocomposites based on biopolypropylene with the addition of basalt and lignocellulosic fibers modified with natural antibacterial turmeric. Based on the results of strength properties tests, it can be seen that the addition of basalt fibers increases strength and stiffness, while microcellulose particles reduce the ability to dissipate mechanical energy, and in both cases water has a plasticizing effect on the produced composites. The addition of fibers increases the flexural modulus by 39-196% and is higher the higher the fiber content. The most promising seem to be hybrid composites with a balanced proportion of 10:10 and 15:15 basalt and EFC fibers, which are characterized by 20% higher strength and almost two and a half times higher stiffness than neat polypropylene.
Collapse
Affiliation(s)
- Karina Rusin-Żurek
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Kraków, Poland
| | - Stanisław Kuciel
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Kraków, Poland.
| |
Collapse
|
29
|
Pathak D, Mazumder A. Potential of Flavonoids as Promising Phytotherapeutic Agents to Combat Multidrug-Resistant Infections. Curr Pharm Biotechnol 2024; 25:1664-1692. [PMID: 38031767 DOI: 10.2174/0113892010271172231108190233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Considering the limited number of current effective treatments, Multidrug- Resistant (MDR) illnesses have grown to be a serious concern to public health. It has become necessary to look for new antimicrobial drugs because of the emergence of resistance to numerous kinds of antibiotics. The use of flavonoids is one phytotherapeutic strategy that has been researched as a potential remedy for this issue. Secondary plant compounds called flavonoids have been found to have an antibacterial effect against resistant microorganisms. OBJECTIVE This review seeks to give readers a glimpse into contemporary studies on flavonoids' potential to fight MDR infections. METHODS A systematic search was conducted on electronic databases (PubMed, Scopus, and Google Scholar) using relevant keywords such as flavonoids, MDR infections, antimicrobial activity, and resistance microbes. Studies that investigated the antimicrobial activity of flavonoids against resistant microbes were included in this review. RESULTS Most research found that flavonoids have antibacterial efficacy against resistant microorganisms, and some also showed that they have synergistic benefits with traditional antibiotics. The flavonoids quercetin, kaempferol, apigenin, and luteolin were the most often investigated ones. According to research, flavonoids affect microbial gene expression, inhibit microbial enzymes, and disrupt the integrity of microbial cell membranes. Additionally, a few studies have noted the flavonoids' low toxicity and safety. CONCLUSION For the treatment of infections that are resistant to many drugs, flavonoids constitute a promising class of phytotherapeutic agents. To develop flavonoid-based treatment methods for treating MDR illnesses and assess the potential of flavonoids as adjuvants to conventional antimicrobial drugs, more study is required.
Collapse
Affiliation(s)
- Deepika Pathak
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), Uttar Pradesh, India
| |
Collapse
|
30
|
Ke Q, Ma K, Zhang Y, Meng Q, Huang X, Kou X. Antibacterial aroma compounds as property modifiers for electrospun biopolymer nanofibers of proteins and polysaccharides: A review. Int J Biol Macromol 2023; 253:126563. [PMID: 37657584 DOI: 10.1016/j.ijbiomac.2023.126563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023]
Abstract
Electrospinning is one of the most promising techniques for producing biopolymer nanofibers for various applications. Proteins and polysaccharides, among other biopolymers, are attractive substrates for electrospinning due to their favorable biocompatibility and biodegradability. However, there are still challenges to improve the mechanical properties, water sensitivity and biological activity of biopolymer nanofibers. Therefore, these strategies such as polymer blending, application of cross-linking agents, the addition of nanoparticles and bioactive components, and modification of biopolymer have been developed to enhance the properties of biopolymer nanofibers. Among them, antibacterial aroma compounds (AACs) from essential oils are widely used as bioactive components and property modifiers in various biopolymer nanofibers to enhance the functionality, hydrophobicity, thermal properties, and mechanical properties of nanofibers, which depends on the electrospun strategy of AACs. This review summarizes the recently reported antimicrobial activities and applications of AACs, and compares the effects of four electrospinning strategies for encapsulating AACs on the properties and applications of nanofibers. The authors focus on the correlation of the main characteristics of these biopolymer electrospun nanofibers with the encapsulation strategy of AACs in the nanofibers. Moreover, this review also particularly emphasizes the impact of the characteristics of these nanofibers on their application field of antimicrobial materials.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Kangning Ma
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
31
|
Laelago Ersedo T, Teka TA, Fikreyesus Forsido S, Dessalegn E, Adebo JA, Tamiru M, Astatkie T. Food flavor enhancement, preservation, and bio-functionality of ginger ( Zingiber officinale): a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2194576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
32
|
Popescu (Stegarus) DI, Frum A, Dobrea CM, Cristea R, Gligor FG, Vicas LG, Ionete RE, Sutan NA, Georgescu C. Comparative Antioxidant and Antimicrobial Activities of Several Conifer Needles and Bark Extracts. Pharmaceutics 2023; 16:52. [PMID: 38258063 PMCID: PMC10821083 DOI: 10.3390/pharmaceutics16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Nowadays, an increased concern regarding using natural products for their health benefits can be observed. The aim of this study was to assess and compare several phenolic compounds found in 15- to 60-year-old Douglas fir, silver fir, larch, pine, and spruce needle and bark extracts and to evaluate their antioxidant and antimicrobial activities. Spectrophotometric assays were used to determine the total polyphenol content and the antioxidant activity that was assessed by using the DPPH• radical scavenging assay (RSA), the ferric reducing antioxidant power assay (FRAP), and the ABTS•+ radical cation scavenging assay (ABTS). The phytochemical content was determined by using high-performance liquid chromatography, and the antimicrobial activity was determined by assessing the minimal inhibition concentration (MIC). The results of the study show a total polyphenol content of 62.45-109.80 mg GAE/g d.w. and an antioxidant activity of 91.18-99.32% for RSA, 29.16-35.74 µmol TE/g d.w. for FRAP, and 38.23-53.57 µmol TE/g d.w. for ABTS. The greatest quantity of phenolic compound for most of the extracts was for (+)-catechin, and it had values between 165.79 and 5343.27 µg/g d.w. for these samples. The antimicrobial inhibition for all the extracts was the strongest for Staphylococcus aureus (MIC 62.5-125 µg/mL). The extracts analyzed could be used for their bioactive potential after further investigations.
Collapse
Affiliation(s)
- Diana Ionela Popescu (Stegarus)
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 240050 Ramnicu Valcea, Romania; (D.I.P.); (R.E.I.)
| | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Carmen Maximiliana Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Ramona Cristea
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania; (R.C.); (C.G.)
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
| | - Laura Gratiela Vicas
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Roxana Elena Ionete
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 240050 Ramnicu Valcea, Romania; (D.I.P.); (R.E.I.)
| | - Nicoleta Anca Sutan
- Department of Natural Sciences, Piteşti University Center, National University of Science and Technology Politechnica Bucharest, 110040 Pitesti, Romania;
| | - Cecilia Georgescu
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania; (R.C.); (C.G.)
| |
Collapse
|
33
|
Wu Y, Gong Y, Sun J, Zhang Y, Luo Z, Nishanbaev SZ, Usmanov D, Song X, Zou L, Benito MJ. Bioactive Components and Biological Activities of Crocus sativus L. Byproducts: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19189-19206. [PMID: 37963243 DOI: 10.1021/acs.jafc.3c04494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The production of saffron spice results in numerous byproducts, as only 15 g of spice can be produced from 1 kg of flowers, indicating that over 90% of the saffron flower material is eventually discarded as waste. In view of this, the paper reviews current knowledge on the natural active components in saffron byproducts and their biological activities, aiming to lay a theoretical and scientific foundation for the further utilization. Saffron byproducts contain a variety of phytochemical components, such as flavonoids, anthocyanins, carotenoids, phenolic acids, monoterpenoids, alkaloids, glycosides, and saponins. The activities of saffron byproducts and their mechanisms are also discussed in detail here.
Collapse
Affiliation(s)
- Yuanfeng Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Yucui Gong
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Juan Sun
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Yao Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Sabir Z Nishanbaev
- Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100170, Uzbekistan
| | - Durbek Usmanov
- Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100170, Uzbekistan
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Ligen Zou
- Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang 310023, China
| | - María José Benito
- School of Agricultural Engineering, University of Extremadura, Badajoz 06007, Spain
| |
Collapse
|
34
|
Yan H, Neves MDG, Wise BM, Moraes IA, Barbin DF, Siesler HW. The Application of Handheld Near-Infrared Spectroscopy and Raman Spectroscopic Imaging for the Identification and Quality Control of Food Products. Molecules 2023; 28:7891. [PMID: 38067622 PMCID: PMC10708147 DOI: 10.3390/molecules28237891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
The following investigations describe the potential of handheld NIR spectroscopy and Raman imaging measurements for the identification and authentication of food products. On the one hand, during the last decade, handheld NIR spectroscopy has made the greatest progress among vibrational spectroscopic methods in terms of miniaturization and price/performance ratio, and on the other hand, the Raman spectroscopic imaging method can achieve the best lateral resolution when examining the heterogeneous composition of samples. The utilization of both methods is further enhanced via the combination with chemometric evaluation methods with respect to the detection, identification, and discrimination of illegal counterfeiting of food products. To demonstrate the solution to practical problems with these two spectroscopic techniques, the results of our recent investigations obtained for various industrial processes and customer-relevant product examples have been discussed in this article. Specifically, the monitoring of food extraction processes (e.g., ethanol extraction of clove and water extraction of wolfberry) and the identification of food quality (e.g., differentiation of cocoa nibs and cocoa beans) via handheld NIR spectroscopy, and the detection and quantification of adulterations in powdered dairy products via Raman imaging were outlined in some detail. Although the present work only demonstrates exemplary product and process examples, the applications provide a balanced overview of materials with different physical properties and manufacturing processes in order to be able to derive modified applications for other products or production processes.
Collapse
Affiliation(s)
- Hui Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Marina D. G. Neves
- Department of Physical Chemistry, University Duisburg-Essen, 45117 Essen, Germany;
| | | | - Ingrid A. Moraes
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (I.A.M.); (D.F.B.)
| | - Douglas F. Barbin
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (I.A.M.); (D.F.B.)
| | - Heinz W. Siesler
- Department of Physical Chemistry, University Duisburg-Essen, 45117 Essen, Germany;
| |
Collapse
|
35
|
Awad NFS, Abd El-Hamid MI, Nabil NM, Tawakol MM, Eid S, Al-Zaban MI, Farouk H, Zakai SA, Elkelish A, Ibrahim MS, Mahmoud HA, Salem SM, Ismail HM, Hamed RI. Multidrug resistant and multivirulent avian bacterial pathogens: tackling experimental leg disorders using phytobiotics and antibiotics alone or in combination. Poult Sci 2023; 102:102889. [PMID: 37666144 PMCID: PMC10491818 DOI: 10.1016/j.psj.2023.102889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 09/06/2023] Open
Abstract
Locomotor disorders caused by multidrug-resistant (MDR) bacterial pathogens denote one of the most detrimental issues that collectively threaten the poultry industry leading to pronounced economic losses across the world. Hence, searching for effective alternatives, especially those extracted from plant origins became of great priority targeting a partial or complete replacement of chemical antimicrobials to tackle their developing resistance. Therefore, we aimed to determine the prevalence and antimicrobial resistance of Staphylococcus aureus (S. aureus), Salmonella species, Mycoplasma synoviae (M. synoviae), and Escherichia coli (E. coli) recovered from 500 broilers and ducks (250 each) with locomotor disorders in various farms in Dakahlia and Sharkia Governorates, Egypt. Additionally, we assessed, for the first time, the in vitro antimicrobial effectiveness of marjoram, garlic, ginger and cinnamon essential oils (EOs) against MDR and multivirulent bacterial isolates as well as the in vivo efficiency of the most effective antibiotics and EOs either separately or in combination in the treatment of experimentally induced poultry leg disorders. The overall prevalence rates of S. aureus, E. coli, Salmonella species, and M. synoviae were 54, 48, 36, and 2%, respectively. Salmonella species and S. aureus prevailed among ducks and broilers (36 and 76%, respectively). Notably, MDR was observed in 100, 91.7, 81.1, and 78.5% of M. synoviae, E. coli, Salmonella, and S. aureus isolates, respectively. Our in vitro results displayed that marjoram was the most forceful EO against MDR and multivirulent chicken vancomycin-resistant S. aureus (VRSA) and duck S. Typhimurium isolates. The current in vivo results declared that marjoram in combination with florfenicol or amoxicillin/clavulanic acid succeeded in relieving the induced duck and chicken leg disorders caused by S. Typhimurium and VRSA, respectively. This was evidenced by improvement in the clinical and histopathological pictures with a reduction of bacterial loads in the experimental birds. Our encountered successful in vitro and in vivo synergistic effectiveness of marjoram combined with florfenicol or amoxicillin/clavulanic acid recommends their therapeutic application for leg disorders and offers opportunities for reducing the antibiotics usage in the poultry industry.
Collapse
Affiliation(s)
- Naglaa F S Awad
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Nehal M Nabil
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Maram M Tawakol
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Samah Eid
- Department of Bacteriology, Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Mayasar I Al-Zaban
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Heba Farouk
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Shadi A Zakai
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Department of Botany, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Mona S Ibrahim
- Department of Poultry Diseases, Animal Health Research Institute (AHRI), Mansoura Laboratory, Agriculture Research Center (ARC), Mansoura, Egypt
| | - Hanim A Mahmoud
- Department of Bacteriology, Animal Health Research Institute (AHRI), Mansoura Laboratory, Agriculture Research Center (ARC), Mansoura, Egypt
| | - Sanaa M Salem
- Department of Pathology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44516, Egypt
| | - Hala M Ismail
- Department of Pathology, Animal Health Research Institute (AHRI), Mansoura Laboratory, Agriculture Research Center (ARC), Mansoura, Egypt
| | - Rehab I Hamed
- Department of Poultry Diseases, Reference Laboratory for Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44516, Egypt
| |
Collapse
|
36
|
Zhang J, Zhang M, Ju R, Chen K, Bhandari B, Wang H. Advances in efficient extraction of essential oils from spices and its application in food industry: A critical review. Crit Rev Food Sci Nutr 2023; 63:11482-11503. [PMID: 35766478 DOI: 10.1080/10408398.2022.2092834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the increase of people's awareness of food safety, it is crucial to find natural and green antimicrobial agents to replace traditional antimicrobial agents. Essential oils of spices (SEOs) are low toxicity or nontoxic, which exhibited antioxidants and antimicrobial activity according to many in vitro and in situ experiments. Spices are widely available and low cost as a plant raw material for the extraction of SEOs. This review summarized highly efficient extraction techniques for SEOs, such as physical field assisted extraction technology, supercritical fluid extraction, and biological-based techniques. Furthermore, purification of SEOs and components were also recapitulated. Purification techniques of SEOs improve their utilization value due to the increased content of bioactive components. Finally, the review concentrated on the applications of SEOs in food industry, including food preservation, food active packaging by means of films or coatings, antioxidant properties. In addition, addressing the problem of unstability of SEOs and its role to inhibit the pathogenic bacteria, the encapsulation of SEOs for use in the food industrial sectors reduces the safety risk to human health.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd., Yangzhou, Jiangsu, China
| |
Collapse
|
37
|
Nomura K, Nakayama M, Okizaki A. Benefits of basil tea for patients with differentiated thyroid cancer during radioiodine therapy: A randomized controlled trial. Heliyon 2023; 9:e20691. [PMID: 37829808 PMCID: PMC10565770 DOI: 10.1016/j.heliyon.2023.e20691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Background Acute sialadenitis is one of the major physical complications of radioactive iodine therapy (RAIT) for differentiated thyroid cancer (DTC). It is considered necessary to pay attention to the psychological impact on the patient as well as the physical influence during RAIT. Objective To find evidence of the benefits of Basil tea on the psychological and physical side effects of RAIT. Methods Forty-four DTC patients after total thyroidectomy were randomly divided into Group A (Basil tea group, n = 22) and Group B (Control group, n = 22). Subjects in Group A drank 180 mL of Basil tea prepared from 2.0 g of Holy basil (Ocimum tenuiflorum Linn.) leaves after each meal for four days, starting on the day RAIT was performed. Those in Group B drank the same amount of distilled water after each meal for the same period as those in Group A. The State-Trait Anxiety Inventory (STAI) was used to assess anxiety, while the saliva component test, and salivary gland scintigraphy were used to assess the oral cavity. Results The rate of change of the STAI score (both State Anxiety and Trait Anxiety) was significantly lower in Group A than in Group B (P < 0.05). The rates of change of cariogenic bacteria, ammonia, protein, and occult blood were significantly lower in Group A than in Group B (P < 0.05). The rate of change of the washout ratio for salivary gland scintigraphy was significantly lower in Group B than in Group A (P < 0.05). Conclusions Basil tea consumption not only protected against oral mucosal conditions and salivary gland disorders but also significantly relieved the patient's RAIT-related anxiety. Therefore, it was suggested that this tea could be useful for the maintenance of patients' QOL during RAIT.
Collapse
Affiliation(s)
- Kenta Nomura
- Department of Radiology, Asahikawa Medical University, Hokkaido, Japan
| | | | - Atsutaka Okizaki
- Department of Radiology, Asahikawa Medical University, Hokkaido, Japan
| |
Collapse
|
38
|
Velázquez R, Rodríguez A, Hernández A, Casquete R, Benito MJ, Martín A. Spice and Herb Frauds: Types, Incidence, and Detection: The State of the Art. Foods 2023; 12:3373. [PMID: 37761082 PMCID: PMC10528162 DOI: 10.3390/foods12183373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
There is a necessity to protect the quality and authenticity of herbs and spices because of the increase in the fraud and adulteration incidence during the last 30 years. There are several aspects that make herbs and spices quite vulnerable to fraud and adulteration, including their positive and desirable sensorial and health-related properties, the form in which they are sold, which is mostly powdered, and their economic relevance around the world, even in developing countries. For these reasons, sensitive, rapid, and reliable techniques are needed to verify the authenticity of these agri-food products and implement effective adulteration prevention measures. This review highlights why spices and herbs are highly valued ingredients, their economic importance, and the official quality schemes to protect their quality and authenticity. In addition to this, the type of frauds that can take place with spices and herbs have been disclosed, and the fraud incidence and an overview of scientific articles related to fraud and adulteration based on the Rapid Alert System Feed and Food (RASFF) and the Web of Science databases, respectively, during the last 30 years, is carried out here. Next, the methods used to detect adulterants in spices and herbs are reviewed, with DNA-based techniques and mainly spectroscopy and image analysis methods being the most recommended. Finally, the available adulteration prevention measurements for spices and herbs are presented, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Rocío Velázquez
- Departamento de Ingeniería, Medio Agronómico y Forestal, Investigación Aplicada en Hortofruticultura y Jardinería, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain; (A.H.); (R.C.); (M.J.B.); (A.M.)
| | - Alicia Rodríguez
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain; (A.H.); (R.C.); (M.J.B.); (A.M.)
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Alejandro Hernández
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain; (A.H.); (R.C.); (M.J.B.); (A.M.)
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Rocío Casquete
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain; (A.H.); (R.C.); (M.J.B.); (A.M.)
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - María J. Benito
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain; (A.H.); (R.C.); (M.J.B.); (A.M.)
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Alberto Martín
- Instituto Universitario de Investigación de Recursos Agrarios (INURA), Universidad de Extremadura, Avda. de la Investigación s/n, Campus Universitario, 06006 Badajoz, Spain; (A.H.); (R.C.); (M.J.B.); (A.M.)
- Departamento de Producción Animal y Ciencia de los Alimentos, Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| |
Collapse
|
39
|
Arumuganainar D, Subramaniam G, Kurumathur Vasudevan A, Subbusamy Kanakasabapathy B. An In Vitro Evaluation of the Antibacterial Efficacy of Solanum xanthocarpum Extracts on Bacteria From Dental Plaque Biofilm. Cureus 2023; 15:e45202. [PMID: 37842394 PMCID: PMC10576197 DOI: 10.7759/cureus.45202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
OBJECTIVE The focus of research has recently shifted toward developing herbal-based medicines due to the emerging bacterial resistance and side effects of antibiotics. Solanum xanthocarpum (Sx) is a medicinal plant with potent pharmacological properties. This study aimed to evaluate the antibacterial activity of its crude extracts on bacteria isolated from dental plaque in patients with gingivitis. MATERIALS AND METHODS Aqueous, ethyl acetate, hexane, chloroform, and ethanolic extracts were prepared from Sx. Dental plaque samples were collected from patients with plaque-induced gingivitis. Disk diffusion assay was performed to determine the antibacterial activity of the extracts at concentrations of 25 mg/ml, 50 mg/ml, and 75 mg/ml with ampicillin 200 mg/ml as a positive control. The minimum inhibitory concentration (MIC) of the aqueous extract was also evaluated by broth dilution test against bacteria isolated from dental plaque biofilm. RESULTS The antibacterial activity was estimated by measuring the zones of inhibition through the disc diffusion method. The Kruskal Wallis with Dunn post hoc test performed for intergroup comparison between the various extracts showed a statistically significant difference in inhibition of bacterial growth between 25 mg/ml and 75 mg/ml concentrations. There was no significant difference between the 75 mg/ml Sx concentration and the positive control. In addition, the MIC was elucidated to be 0.625 g/ml, at which there was maximum inhibition of bacterial growth. CONCLUSION The Sx extract exhibited antibacterial activity against periodontal pathogens. Thus, it can be concluded that optimum concentrations of Sx could be used in therapeutic strategies to prevent and manage periodontal diseases.
Collapse
Affiliation(s)
| | - Gopinath Subramaniam
- Department of Pharmaceutics, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | | | | |
Collapse
|
40
|
Adaszyńska-Skwirzyńska M, Zych S, Bucław M, Majewska D, Dzięcioł M, Szczerbińska D. Evaluation of the Antibacterial Activity of Gentamicin in Combination with Essential Oils Isolated from Different Cultivars and Morphological Parts of Lavender ( Lavandula angustifolia Mill.) against Selected Bacterial Strains. Molecules 2023; 28:5781. [PMID: 37570751 PMCID: PMC10421019 DOI: 10.3390/molecules28155781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of the study was to investigate the antibacterial effects of essential oils isolated from different cultivars and morphological parts of lavender (Lavandula angustifolia Mill.) in combination with the aminoglycoside antibiotic gentamicin. This in vitro study analyzed the effectiveness of the combinations of gentamicin and lavender essential oils against the following strains: Staphylococcus aureus ATCC 25923, Staphylococcus aureus MRSA and Pseudomonas aeruginosa ATCC 9027. The effect of the combination of lavender oils with gentamicin was tested using the checkerboard method. A synergistic effect against S. aureus strain ATCC 25923 was found when gentamicin was combined with lavender essential oils isolated from flowers and leafy stalks (flowers: 'Blue River' FICI-0.192; 'Ellagance Purple' FICI-0.288; leafy stalks: 'Blue River' FICI-0.192; 'Ellagance Purple' FICI-0.320). A synergistic effect was also observed for the combination of gentamicin with lavender essential oils from flowers against the resistant strain of S. aureus (MRSA) ('Blue River' FICI-0,191; 'Ellagance Purple' FICI-0.263), as well as for the essential oils from leafy stalks ('Blue River' FICI-0.076; 'Ellagance Purple' FICI-0.089). No interaction was observed for the combination of studied essential oils with gentamicin against P. aeruginosa strain ATCC 9027 (FICI = 1.083-1.300).
Collapse
Affiliation(s)
- Michalina Adaszyńska-Skwirzyńska
- Department of Monogastric Animal Sciences, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Janickiego Str. 29, 71-270 Szczecin, Poland; (M.B.); (D.M.); (D.S.)
| | - Sławomir Zych
- Laboratory of Chromatography and Mass Spectrometry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Janickiego Str. 29, 71-270 Szczecin, Poland;
| | - Mateusz Bucław
- Department of Monogastric Animal Sciences, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Janickiego Str. 29, 71-270 Szczecin, Poland; (M.B.); (D.M.); (D.S.)
| | - Danuta Majewska
- Department of Monogastric Animal Sciences, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Janickiego Str. 29, 71-270 Szczecin, Poland; (M.B.); (D.M.); (D.S.)
| | - Małgorzata Dzięcioł
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland;
| | - Danuta Szczerbińska
- Department of Monogastric Animal Sciences, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Janickiego Str. 29, 71-270 Szczecin, Poland; (M.B.); (D.M.); (D.S.)
| |
Collapse
|
41
|
Xiong RG, Li J, Cheng J, Zhou DD, Wu SX, Huang SY, Saimaiti A, Yang ZJ, Gan RY, Li HB. The Role of Gut Microbiota in Anxiety, Depression, and Other Mental Disorders as Well as the Protective Effects of Dietary Components. Nutrients 2023; 15:3258. [PMID: 37513676 PMCID: PMC10384867 DOI: 10.3390/nu15143258] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The number of individuals experiencing mental disorders (e.g., anxiety and depression) has significantly risen in recent years. Therefore, it is essential to seek prevention and treatment strategies for mental disorders. Several gut microbiota, especially Firmicutes and Bacteroidetes, are demonstrated to affect mental health through microbiota-gut-brain axis, and the gut microbiota dysbiosis can be related to mental disorders, such as anxiety, depression, and other mental disorders. On the other hand, dietary components, including probiotics (e.g., Lactobacillus and Bifidobacterium), prebiotics (e.g., dietary fiber and alpha-lactalbumin), synbiotics, postbiotics (e.g., short-chain fatty acids), dairy products, spices (e.g., Zanthoxylum bungeanum, curcumin, and capsaicin), fruits, vegetables, medicinal herbs, and so on, could exert protective effects against mental disorders by enhancing beneficial gut microbiota while suppressing harmful ones. In this paper, the mental disorder-associated gut microbiota are summarized. In addition, the protective effects of dietary components on mental health through targeting the gut microbiota are discussed. This paper can be helpful to develop some dietary natural products into pharmaceuticals and functional foods to prevent and treat mental disorders.
Collapse
Affiliation(s)
- Ruo-Gu Xiong
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Jiahui Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Jin Cheng
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Dan-Dan Zhou
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Si-Xia Wu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Si-Yu Huang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Adila Saimaiti
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Zhi-Jun Yang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Hua-Bin Li
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| |
Collapse
|
42
|
Jahanshir M, Nobahar M, Ghorbani R, Malek F. Effect of clove mouthwash on the incidence of ventilator-associated pneumonia in intensive care unit patients: a comparative randomized triple-blind clinical trial. Clin Oral Investig 2023; 27:3589-3600. [PMID: 36961592 PMCID: PMC10036978 DOI: 10.1007/s00784-023-04972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/19/2023] [Indexed: 03/25/2023]
Abstract
OBJECTIVES Ventilator-associated pneumonia (VAP) is one of the most common nosocomial infections in intensive care units (ICUs), and the use of mouthwash is the most widely used method to prevent its incidence. The aim of this study was to investigate effect of clove mouthwash on the incidence of VAP in the ICU. MATERIALS AND METHODS This comparative, randomized, triple-blind, clinical trial was conducted on 168 eligible ICU patients at Kosar Hospital in Semnan, Iran, during 2021-2022, who were divided into intervention and control groups using random blocks. The intervention group received clove extract mouthwash at 6.66% concentration, and the control group received chlorhexidine 0.2% twice a day for 5 days (routine care). Data were collected using a demographic questionnaire, and disease severity was measured based on the Acute Physiology and Chronic Health Evaluation II (APACHE II) score, oral health status was examined using the Beck Oral Assessment Scale (BOAS), and VAP diagnosis was made based on the Modified Clinical Pulmonary Infection Score (MCPIS). RESULTS Before the intervention, there was no significant difference in disease severity (p = 0.412) and oral health status (p = 0.239) between the patients in the two groups. After the intervention, 20.2% of the patients in the intervention group and 41.7% of those in the control group acquired VAP. The risk of VAP was 2.06 times higher in the control group than in the intervention group (p = 0.005, 95% CI: 1.26-3.37, RR = 2.06), but the severity of VAP did not differ significantly between the patients in the two groups (p = 0.557). CONCLUSION The findings showed that clove mouthwash reduces the incidence of VAP significantly. CLINICAL RELEVANCE Clove mouthwash can be used as a simple and low-cost method to prevent VAP in ICU patients.
Collapse
Affiliation(s)
- Mojgan Jahanshir
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Monir Nobahar
- Nursing Care Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Nursing, Faculty of Nursing and Midwifery, Semnan University of Medical Sciences, Semnan, Postal Code: 3513138111 Iran
| | - Raheb Ghorbani
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Farhad Malek
- Department of Internal Medicine, Kosar Hospital, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
43
|
Gengatharan A, Rahim MHA. The application of clove extracts as a potential functional component in active food packaging materials and model food systems: A mini-review. APPLIED FOOD RESEARCH 2023; 3:100283. [DOI: 10.1016/j.afres.2023.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
44
|
Bencze B, Temesfői V, Das S, Papp H, Kaltenecker P, Kuczmog A, Jakab F, Kocsis B, Kőszegi T. Development of a novel, entirely herbal-based mouthwash effective against common oral bacteria and SARS-CoV-2. BMC Complement Med Ther 2023; 23:138. [PMID: 37127611 PMCID: PMC10150350 DOI: 10.1186/s12906-023-03956-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Parallel to the growth of the oral healthcare market, there is a constantly increasing demand for natural products as well. Many customers prefer products that contain fewer toxic agents, therefore providing an environmentally friendly solution with the benefit of smaller risk to the user. Medieval and early modern medicinal knowledge might be useful when looking for natural, herbal-based components to develop modern products. Along with these considerations we created, tested, and compared an entirely natural mouthwash, named Herba Dei. METHODS The manufacturing procedure was standardized, and the created tincture was evaluated by GC/MS analysis for active compounds, experimentally tested in cell-based cytotoxicity, salivary protein integrity, cell-free antioxidant activity, anti-bacterial and anti-viral assays, and compared with three market-leading mouthwashes. RESULTS Our tincture did not show significant damage in the cytotoxicity assays to keratinocyte and Vero E6 cells and did not disrupt the low molecular weight salivary proteins. Its radical scavenging capacity surpassed that of two tested, partly natural, and synthetic mouthwashes, while its antibacterial activity was comparable to the tested products, or higher in the bacterial aerobic respiratory assay. The active compounds responsible for the effects include naturally occurring phenylpropanoids, terpenes, and terpenoids. Our mouthwash proved to be effective in vitro in lowering the copy number of SARS-CoV-2 in circumstances mimicking the salivary environment. CONCLUSIONS The developed product might be a useful tool to impede the transmission and spread of SARS-CoV-2 in interpersonal contact and aerosol-generating conditions. Our mouthwash can help reduce the oral bacterial flora and has an antioxidant activity that facilitates wound healing and prevents adverse effects of smoke in the oral cavity.
Collapse
Affiliation(s)
- Bálint Bencze
- Department of Laboratory Medicine, Clinical Centre, Medical School, University of Pécs, Ifjúság Út 13, Pécs, 7624, Hungary
| | - Viktória Temesfői
- Department of Laboratory Medicine, Clinical Centre, Medical School, University of Pécs, Ifjúság Út 13, Pécs, 7624, Hungary.
- Lab-On-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary.
- Hungarian National Laboratory On Reproduction, University of Pécs, Pécs, 7624, Hungary.
| | - Sourav Das
- Department of Laboratory Medicine, Clinical Centre, Medical School, University of Pécs, Ifjúság Út 13, Pécs, 7624, Hungary
- Lab-On-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
| | - Henrietta Papp
- National Laboratory of Virology, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Ifjúság Útja 6, Pécs, 7624, Hungary
| | - Péter Kaltenecker
- Lab-On-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
- Hungarian National Laboratory On Reproduction, University of Pécs, Pécs, 7624, Hungary
| | - Anett Kuczmog
- National Laboratory of Virology, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Ifjúság Útja 6, Pécs, 7624, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Ifjúság Útja 6, Pécs, 7624, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Clinical Centre, Medical School, University of Pécs, Szigeti Út 12, Pécs, 7624, Hungary
| | - Tamás Kőszegi
- Department of Laboratory Medicine, Clinical Centre, Medical School, University of Pécs, Ifjúság Út 13, Pécs, 7624, Hungary
- Lab-On-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
- Hungarian National Laboratory On Reproduction, University of Pécs, Pécs, 7624, Hungary
| |
Collapse
|
45
|
Brunstrom JM, Flynn AN, Rogers PJ, Zhai Y, Schatzker M. Human nutritional intelligence underestimated? Exposing sensitivities to food composition in everyday dietary decisions. Physiol Behav 2023; 263:114127. [PMID: 36787811 DOI: 10.1016/j.physbeh.2023.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
The social and cultural significance of food is woven into every aspect of our dietary behaviour, and it contributes to our complex interaction with food. To find order within this complexity scientists often look for dietary 'universals' - phenomena or basic principles that guide our food choice and meal size, irrespective of wider context. One such idea is that taste characteristics provide a signal for dietary composition (e.g., sweet taste signals carbohydrate). Others have suggested that behaviour is guided by learning and is based on associations that form between the flavour of a food and its post-ingestive effects. Despite a large body of research, evidence supporting both processes is equivocal, leading some to conclude that humans are largely indifferent to food composition. Here, we argue that human abilities to gauge the nutritional composition or value of food have been underestimated, and that they can be exposed by embracing alternative methods, including cross-cultural comparisons, large nutrition surveys, and the use of virtual portion-selection tools. Our group has focused on assessments of food choice and expected satiety, and how comparisons across everyday foods can reveal non-linear relationships with food energy density, and even the potential for sensitivity to micronutrient composition. We suggest that these abilities might reflect a complex form of social learning, in which flavour-nutrient associations are not only formed but communicated and amplified across individuals in the form of a cuisine. Thus, rather than disregarding sociocultural influences as extraneous, we might reimagine their role as central to a process that creates and imbues a 'collective dietary wisdom.' In turn, this raises questions about whether rapid dietary, technological, and cultural change disrupts a fundamental process, such that it no longer guarantees a 'nutritional intelligence' that confers benefits for health.
Collapse
Affiliation(s)
- Jeffrey M Brunstrom
- Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol, United Kingdom; NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston, NHS Foundation Trust and University of Bristol, United Kingdom.
| | - Annika N Flynn
- Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Peter J Rogers
- Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Yujia Zhai
- Nutrition and Behaviour Unit, School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Mark Schatzker
- Modern Diet and Physiology Research Center, Affiliated with Yale School of Medicine, Yale University, United States
| |
Collapse
|
46
|
Okazaki K, Sumitani H, Takahashi K, Isegawa Y. Mode of Antifungal Action of Daito- Gettou ( Alpinia zerumbet var. exelsa) Essential Oil against Aspergillus brasiliensis. Foods 2023; 12:foods12061298. [PMID: 36981224 PMCID: PMC10048414 DOI: 10.3390/foods12061298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Plant-derived essential oils (EOs) are used in medicines, disinfectants, and aromatherapy products. Information on the antifungal activity of EO of Alpinia zerumbet var. exelsa (known as Daito-gettou) found in Kitadaito Island, Okinawa, is limited. Therefore, we aimed to evaluate the antifungal activity of EOs obtained via steam distillation of leaves of Daito-gettou, which is a hybrid of A. zerumbet and A. uraiensis. Daito-gettou EO showed antifungal activity (minimum inhibitory concentration = 0.4%) against Aspergillus brasiliensis NBRC 9455, which was comparable to that of A. zerumbet found in the Okinawa main island. Gas chromatography/mass spectrometry revealed that the main components of Daito-gettou EOs are γ-terpinene, terpinen-4-ol, 1,8-cineole, 3-carene, and p-cymene. Terpinen-4-ol content (MIC = 0.075%) was 17.24%, suggesting that the antifungal activity of Daito-gettou EO was mainly attributable to this component. Daito-gettou EO and terpinen-4-ol inhibited mycelial growth. Moreover, calorimetric observations of fungal growth in the presence of Daito-gettou EO showed a characteristic pattern with no change in the initial growth rate and only a delay in growth. As this pattern is similar to that of amphotericin B, it implies that the action mode of Daito-gettou EO and terpinen-4-ol may be fungicidal. Further studies on the molecular mechanisms of action are needed for validation.
Collapse
Affiliation(s)
- Kiyo Okazaki
- Department of Health and Nutrition, Faculty of Human Life Science, Shikoku University, Furukawa, Ojin-cho, Tokushima 771-1192, Tokushima, Japan
- Department of Food Sciences and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, Nishinomiya 663-8558, Hyogo, Japan
| | | | - Katsutada Takahashi
- Laboratory of Biophysical Chemistry, The Keihanna Academy of Science and Culture, Kyoto 619-0237, Kyoto, Japan
| | - Yuji Isegawa
- Department of Food Sciences and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, Nishinomiya 663-8558, Hyogo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
47
|
Zinno P, Guantario B, Lombardi G, Ranaldi G, Finamore A, Allegra S, Mammano MM, Fascella G, Raffo A, Roselli M. Chemical Composition and Biological Activities of Essential Oils from Origanum vulgare Genotypes Belonging to the Carvacrol and Thymol Chemotypes. PLANTS (BASEL, SWITZERLAND) 2023; 12:1344. [PMID: 36987032 PMCID: PMC10059975 DOI: 10.3390/plants12061344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The remarkable biological activities of oregano essential oils (EOs) have recently prompted a host of studies aimed at exploring their potential innovative applications in the food and pharmaceutical industries. The chemical composition and biological activities of EOs from two Origanum vulgare genotypes, widely cultivated in Sicily and not previously studied for their biological properties, were characterized. Plants of the two genotypes, belonging to the carvacrol (CAR) and thymol (THY) chemotypes and grown in different cultivation environments, were considered for this study. The chemical profiles, including the determination of enantiomeric distribution, of the EOs, obtained by hydrodistillation from dried leaves and flowers, were investigated by GC-MS. Biological activity was evaluated as antimicrobial properties against different pathogen indicator strains, while intestinal barrier integrity, reduction in pathogen adhesion and anti-inflammatory actions were assayed in the intestinal Caco-2 cell line. The chemical profile of the CAR genotype was less complex and characterized by higher levels of the most active compound, i.e., carvacrol, when compared to the THY genotype. The enantiomeric distribution of chiral constituents did not vary across genotypes, while being markedly different from that observed in Origanum vulgare genotypes from other geographical origins. In general, all EOs showed high antimicrobial activity, both in vitro and in a food matrix challenge test. Representative EOs from the two genotypes resulted not altering epithelial monolayer sealing only for concentrations lower than 0.02%, were able to reduce the adhesion of selected pathogens, but did not exert relevant anti-inflammatory effects. These results suggest their potential use as control agents against a wide spectrum of foodborne pathogens.
Collapse
Affiliation(s)
- Paola Zinno
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, P.le E. Fermi 1, 80055 Portici, Italy
| | - Barbara Guantario
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy
| | - Gabriele Lombardi
- Department of Environmental Biology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giulia Ranaldi
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy
| | - Alberto Finamore
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy
| | - Sofia Allegra
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy
| | - Michele Massimo Mammano
- CREA-Research Centre for Plant Protection and Certification, S.S. 113-Km 245.500, 90011 Bagheria, Italy
| | - Giancarlo Fascella
- CREA-Research Centre for Plant Protection and Certification, S.S. 113-Km 245.500, 90011 Bagheria, Italy
| | - Antonio Raffo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy
| | - Marianna Roselli
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178 Rome, Italy
| |
Collapse
|
48
|
Response of Saccharomyces cerevisiae var. diastaticus to nerol: Evaluation of antifungal potential by inhibitory effect and proteome analyses. Food Chem 2023; 403:134323. [DOI: 10.1016/j.foodchem.2022.134323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
|
49
|
Wu T, Huang Z, Zhao L, Zhou X, Chen H, Zhou X, Li M, Zhou J, Lin Y. Effects of the Marinating Process on the Quality Characteristics and Bacterial Community of Leisure Dried Tofu. Foods 2023; 12:foods12040841. [PMID: 36832916 PMCID: PMC9956934 DOI: 10.3390/foods12040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Leisure dried tofu (LD-tofu) was prepared using two different marinating processes: the repeated heating method (RHM) and the vacuum pulse method (VPM). The quality characteristics and bacterial community succession of LD-tofu and the marinade were evaluated. The results showed that the nutrients in LD-tofu were easily dissolved into the marinade during the marinating process, while the protein and moisture content of RHM LD-tofu changed most dramatically. With the increase in marinade recycling times, the springiness, chewiness and hardness of VPM LD-tofu increased significantly. The total viable count (TVC) of the VPM LD-tofu decreased from the initial value of 4.41 lg cfu/g to 2.51-2.67 lg cfu/g as a result of the marinating process, which had a significant inhibitory effect. Additionally, 26, 167 and 356 communities in the LD-tofu and marinade were detected at the phylum, family and genus levels, respectively. Pearson correlation analysis showed that Pseudomonadaceae, Thermaceae and Lactobacillaceae were closely related to the quality characteristics of LD-tofu, whereas Caulobacteriaceae, Bacillaceae and Enterobacteriae were closely related to the marinade. The present work provides a theoretical basis for the screening of functional strains and quality control in LD-tofu and marinade.
Collapse
Affiliation(s)
- Tao Wu
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Zhanrui Huang
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
- Correspondence: (Z.H.); (L.Z.)
| | - Liangzhong Zhao
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
- Correspondence: (Z.H.); (L.Z.)
| | - Xiaohu Zhou
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Hao Chen
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Xiaojie Zhou
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Ming Li
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Jinsong Zhou
- Jinzai Food Group Co., Ltd., Yueyang 414022, China
| | - Yingyi Lin
- Beijing Kangdeli Machinery Manufacturing Co., Ltd., Beijing 100074, China
| |
Collapse
|
50
|
Rybczyńska-Tkaczyk K, Grenda A, Jakubczyk A, Kiersnowska K, Bik-Małodzińska M. Natural Compounds with Antimicrobial Properties in Cosmetics. Pathogens 2023; 12:320. [PMID: 36839592 PMCID: PMC9959536 DOI: 10.3390/pathogens12020320] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Currently, the cosmetic industry is a very intensively growing part of the economy. Consumer demands are adapted to the current lifestyle, which is based on technological innovations and awareness of the impact of various factors on human health and fitness. There is growing interest in cosmetics based on environmentally friendly natural compounds exerting health-promoting effects. Chemicals with antimicrobial properties used as ingredients in cosmetics ensure their durability and safety. Polyphenolic compounds, peptides, essential oils, and plant extracts characterized by these properties are natural ingredients that can replace synthetic components of cosmetics. The advantage of these compounds is that they exhibit antioxidant, anti-inflammatory, and soothing properties, enhancing the product value in addition to their antimicrobial properties. This review article describes the antimicrobial properties of natural compounds that can protect cosmetics and can replace previously used preservative agents. Various studies indicate that the use of these compounds increases consumer interest in these products and has a positive impact on the environment.
Collapse
Affiliation(s)
- Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, University of Life Sciences in Lublin, St. Leszczyńskiego 7, 20-069 Lublin, Poland
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University in Lublin, ul. Jaczewskiego 8, 20-090 Lublin, Poland
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Kaja Kiersnowska
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Marta Bik-Małodzińska
- Institute of Soil Science, Engineering and Environmental Management, University of Life Sciences in Lublin, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
| |
Collapse
|